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Abstract In this paper, we investigate algorithms for finding centers of a given collection N of sets.
In particular, we focus on metric rational set similarities, a broad class of similarity measures including
Jaccard and Hamming. A rational set similarity S is called metric if D = 1 − S is a distance function.
We study the 1-center problem on these metric spaces. The problem consists of finding a set C that
minimizes the maximum distance of C to any set of N . We present a general framework that computes
a (1 + ε) approximation for any metric rational set similarity.

1 Introduction

Clustering algorithms form a fundamental subroutine in any data analysis chain. The aim of clustering
is to partition the data set N such that similar objects are grouped together and dissimilar objects
are grouped in distinct clusters. Often, we assume that the objects lie in some metric space, i.e., their
similarity (or rather dissimilarity) is characterized by some distance function D. In this case, center-based
clustering objectives are particularly popular. For these problems, we aim to find a subset of objects C,
such that some function of the distances between the sets of N and their respectively closest center in
C is minimized. Among the most commonly used functions are the sum of distances, which corresponds
to the k-median problem, the sum of squared distances, which corresponds to the k-means problem, and
the maximum distance, which corresponds to the k-center problem.

In this paper, we focus on the 1-center problem for a large class of metrics defined on sets. Specifically
given a collection of sets N from some universe U and some distance function D, we aim to find a set
C ⊂ U such that max

A∈N
D(A,C) is minimized. In this paper, we assume that the distance function is induced

by rational set similarities. Given two subsets A and B of some ground set U , the similarity between A and
B is defined as a the ratio between linear combinations of the cardinalities of symmetric difference A4B,
intersection A∩B, and negated union A ∪B. The induced dissimilarity function is 1 minus the similarity.
If the dissimilarity is a distance function, the similarity is known as a metric rational set similarity. Well

known examples for similarities include Sokal-Michener’s simple matching [17] |A∩B|+|A∪B||U | , the Jaccard

index [22] |A∩B||A∪B| , the Anderberg similarity [1] |A∩B|
|A∪B|+|A4B| , and the Rogers-Tanimoto coefficient [30]

|A∩B|+|A∪B|
|U |+|A4B| . For further examples, we refer to Gower and Legendre [18]. We are given a collection N of

n subsets of some ground set U . Our aim is to find a center C ⊆ U minimizing the maximum distance
to all sets of N . We obtain the following result (see Theorem 2 for a precise statement):

The 1-center in the metric space induced by sets and the distance function of a metric rational set
similarity admits a polynomial time approximation scheme.
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Prior to our work, the only metric rational set similarity for which the 1-center problem admits a
PTAS was Sokal-Michener’s simple matching similarity1. The induced distance function is equivalent
to the Hamming distance on the Boolean hypercube and the problem itself is more commonly referred
to as the Closest String Problem. We refer to more related work in Section 3. Our PTAS runs in time
O(npoly(ε

−1)), where the the exponent of ε−1 depends on the underlying rational set similarity and is
never larger than 6. For the Closest String problem, the exponent of ε is 2, which matches the running
time of the best previously known algorithms [2, 26] up to polylog ε−1 factors in the exponent of n. We
note that we require that the coefficients of the linear combination of numerator and denominator are
constants. Since all rational set similarities used in practice satisfy this property, we view this as a mild
assumption.

Rational set similarities appear in a wide variety of areas, including nearest neighbor searching [6,8],
plagiarism detection [4], association rule mining [13], collaborative filtering [15], web compression [9],
biogeographical analysis [29], and chemical similarity searching [33]. Most notably, many of them were
initially proposed for classification and cluster analysis [1,17,30]. However, a rigorous analysis for classical
clustering problems has been mostly constrained to the Closest String Problem and the Jaccard-median
problem. Our work significantly expands upon this.

2 Approach and Techniques

The starting point of all known polynomial time approximation schemes for the Closest String problem,
as well as the Jaccard-center problem, is a natural LP-formulation [5,25]. Specifically, the cardinality of
symmetric difference |A4 C|, intersection |A ∩ C|, and negated union |A ∪ C| can all be expressed as a
linear combination of binary variables Ci = 1 if element i ∈ C or Ci = 0 if element i /∈ C, as long as A is
fixed. Then both numerator Num(A,C) and denominator Den(A,C) of the similarity can be expressed
as a linear combination. By testing the integer linear program

Den(A,C)−Num(A,C) ≤ dist ·Den(A,C)

for feasibility, we know whether a center with maximum distance dist exists. For instance, if the similarity
is Sokal-Michener’s simple matching and the associated distance function is the Hamming norm on the
hypercube, the constraints have the form

|A4 C| =
|U |∑
i=1

Ai + Ci − 2AiCi ≤ dist · |U |.

The main idea is to compute a feasible fractional solution to the LP and subsequently apply randomized
rounding. This simple strategy already provides a high quality center given that the symmetric difference
between center and any input set is sufficiently large. This behavior is also observed in real-world instances
of these problems [11].

In the case that the rounding fails to provide a good solution, the algorithms switch to a number
of enumeration strategies. The first important observation is that using Chernoff bounds [28], one can
bound the symmetric difference between an optimal center and any input set by O(lnn). This already
gives rise to a simple quasi-polynomial time algorithm: Pick an arbitrary input set A, and try all sets
with symmetric difference O(lnn) from A. For a ground set U , there are at most

( |U |
O(lnn)

)
∈ |U |O(lnn)

possibilities.
This type of enumeration may be substantially improved if we simultaneously consider the items of

multiple sets A1, . . . ,Am, all of which have small symmetric distances to the optimum. Here, the number
of candidate subsets cannot increase, but may be reduced. For Hamming center, this was achieved via
the notion of a generator [27]. Essentially, a generator for an optimal center C is a collection M of sets
such that the items either contained in all sets of M are in C and those items not contained in any set
of M are not in C. Formally, M is a generator of C if the items I := {i ∈ {1, . . . , |U |} | ∀A∈M i ∈ A}
and J := {i ∈ {1, . . . ,|U |} | ∀A∈M i /∈ A} satisfy I ⊆ C and J ⊆ U \ C. The conflict set of the
generator, consists precisely of the items not included in either I or J , i.e., U \ (I ∪ J). Given that the
conflict size is small, and that we can determine an appropriate M , we can extract C via brute force
enumeration in polynomial time. Marx [27] showed how a generator may be efficiently constructed for
the Hamming center problem if the distance is small, and Andoni et al. [2] further extended this to

1 A preliminary version of this paper proving polynomial time approximability of the Jaccard center problem appeared
in ICALP 2017 [5]
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(1 + ε)-approximations. Generators are therefore a natural starting point. The limits of the construction
become apparent for the Jaccard-center problem. Items in C and not in C can be treated indiscriminately
for the Hamming center problem, i.e., the Hamming center problem of the instance N is identical to
the Hamming center of the instance N := {A ⊂ U | U \ A ∈ N}. The same does not hold for arbitrary

rational set similarities. For instance the Jaccard distance |A4C|
|A∪C| is highly sensitive to the support of

both A and C.
We therefore aim to expand the properties of a generator to account for the support of the subsets.

This is made more precise via the notion of core-cover. We call a collection of sets M a core-cover, if an
optimal center C is (mostly) contained in

⋃
A∈M A. Specifically, we require that

⋃
A∈M A contains an

(1 + ε)-approximate solution. An anchored core-cover further restricts the possible solutions by always
containing the items in the intersection of all sets of the core-cover, i.e.,

⋂
A∈M A∪

(
C ∩

⋃
A∈M A

)
is an

(1 + ε)-approximate solution. Crucially, we show that the size of an anchored core-cover depends only
on ε−1. This allows us to determine by brute force in time n|M | an anchored core-cover and enumerate
all possible solutions

⋂
A∈M A ∪

(
C ∩

⋃
A∈M A

)
. For more technical remarks comparing core-covers to

generators, we refer to Section 6. They are also related in spirit to coresets for the minimum enclosing
ball, which corresponds to the 1-center problem in Euclidean space [3, 12,24,34].

To extend our analysis to arbitrary rational set similarities, we require a number of additional ideas.
First, the denominator of any rational set similarity can be written as linear combination of the denomi-
nator of Hamming-distance and Jaccard distance. With this observation, we are able to identify a set of
“characteristic” rational set similarities to which any other rational set similarity may be (non-trivially)
reduced. These characteristic rational set similarities are sufficiently closely related to either Hamming
and Jaccard such that the analysis of the LP rounding as well as the construction of a core-cover can be
extended.

3 Related Work

Most center problems for rational set similarities were heuristic, see for instance Guha et al. [20]. In
theory, most attention has been shown to the Closest String Problem. The first PTAS was proposed by
Li, Ma and Wang [25]. Subsequently, the running time of the PTAS was further improved by Andoni,

Indyk and Patrascu [2], and by Ma and Sun [26], with the currently best running time being nO(ε−2).
Andoni, Indyk and Patrascu [2] further gave a conditional lower bound showing that any PTAS must
have running time exp(ε−2), assuming the exponential time hypothesis (ETH). Cygan et al. [14] further

showed that assuming ETH, any (1 + ε) must require time O(nε
−1

). Further, no efficient PTAS (i.e., a
PTAS running in time f(ε) ·poly(n)) can exist unless FPT = W [1]. The Closest String Problem also has
received substantial attention for fixed parameter algorithms, see [7,16,19,21,27] and references therein.

To the best of our knowledge, the only other rational set similarity for which theoretical clustering
problems have been analyzed is the Jaccard-median problem, i.e., the task of finding a center C such
that the sum of Jaccard distances to C is minimized. Spaeth [31] gave a structural result for continuous
Jaccard measures, which proved that even in the Euclidean space, the problem is in NP. Watson [32]
gave a vertex descent algorithm without bounds on the running time. Chierichetti et al. [10] proved that
the Jaccard-median problem is NP-hard, but admits a PTAS. In previous work [5], we showed that the
Jaccard-center problem admits a PTAS.

4 Preliminaries

Let U = {u1, u2, . . . , ud} be a base set containing d elements and let N ⊆ P(U) be a collection of n
subsets of U . Denote the symmetric difference of two sets by A4B := (A \B) ∪ (B \A). We will refer
to the complementary set by A := U \A.

Definition 1 (Rational Set Similarities [18]) Given x,y ≥ 0 and z ≥ z′ ≥ 0, the rational set
similarity Sx,y,z,z′ between two non-empty item sets A and B is

Sx,y,z,z′(A,B) =
x · |A ∩B|+ y · |A ∪B|+ z′ · |A4B|
x · |A ∩B|+ y · |A ∪B|+ z · |A4B|

if it is defined and 1 otherwise. The dissimilarity induced by Sx,y,z,z′ is defined as

Dx,y,z,z′(A,B) := 1− Sx,y,z,z′(A,B) =
(z − z′) · |A4B|

x · |A ∩B|+ y · |A ∪B|+ z · |A4B|
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if it is defined and 0 otherwise. If Dx,y,z,z′ is a distance function, we call Sx,y,z,z′ a metric rational set
similarity.

We will assume throughout this paper that x,y,z,z′ are either positive constant integers, or 0. Further,
without loss of generality, we assume that x ≥ y, as Dx,y,z,z′(A,B) = Dy,x,z,z′(A,B). The arguably most

well-known rational set similarity is the Jaccard similarity S1,0,1,0(A,B) = |A∩B|
|A∪B| . For distances induced

by metric rational set similarities, D1,1,1,0 corresponds to the Hamming distance on the d-dimensional
hypercube. The precise set of conditions under which a rational set similarity Sx,y,z,z′ yields a metric
Dx,y,z,z′ can be found in Janssens’ thesis [23], see also Chierichetti and Kumar [8].

Proposition 1 (Characterizations of Metric Rational Set Similarities, Janssens [23])
(P(U),Dx,y,z,z′(A,B)) is a metric space if and only if z ≥ max(x,y,z′).

We assume z > z′ as otherwise all distances are 0 and the problem is trivial. All rational set similarities
considered in this paper will have metric distance functions. To simplify the analysis, we will only consider
rational set similarities with certain parameters. In Section 5 we will show that the center problem on the
corresponding distance of a general rational set similarity can always be reduced to the center problem
on a simpler distance, the simple rational set distance, which we define next.

Definition 2 (Simple Rational Set Distance (simple RSD)) Given 1 ≥ y ≥ 0 the simple RSD Dy

between two non-empty item sets A and B is

Dy(A,B) :=
|A4B|

|A ∪B|+ y · |A ∪B|

if it is defined and 0 otherwise.

In the subsequent section, we will establish a strong relationship between Dy′ and Dx,y,z,z′ , if y
x = y′.

For now, note that if y′ = y/x

Dy′(A,B) =
|A4B|

|A ∪B|+ y′ · |A ∪B|
=

x · |A4B|
x · |A ∪B|+ y · |A ∪B|

=
x · |A4B|

x · |A ∩B|+ y · |A ∪B|+ x · |A4B|
= Dx,y,x,0(A,B).

We will assume that x,y′,z,z′ are constants.

Problem 1 (RSD-Center) Given the base set U = {u1, u2, . . . , ud}, and a collection N ⊆ P(U) of n
subsets of U , the RSD-center problem consists of finding a set C ⊆ U such that

max
A∈N

Dx,y,z,z′(A,C)

is minimized.

We denote by OPT the value minC⊂U maxA∈N Dx,y,z,z′(A,C) throughout this paper. We further
assume that OPT < 1

1+ε , as any candidate solution K ⊂ U has distance at most 1 to any other subset
of U and therefore would be a (1 + ε) approximation. Lastly, we will frequently use the following easy
verifiable facts throughout the paper.
Fact 1. Let A,B ⊆ U be two item sets. Then the following statements hold:

1. |A ∩B| = |A ∪B| − |A4B| = |A ∪B| −Dy(A,B) ·
[
y · |A ∪B|+ |A ∪B|

]
2. |A \B| = |A4B| − |B \A| = Dy(A,B) ·

[
|A ∪B|+ y · |A ∪B|

]
− |B \A|

3. if y = 0⇒ |A \B| = D0(A,B) · |A ∪B| − |B \A| ≤ D0(A,B) · |A|
4. if y = 0⇒ |A| ≥ (1−D0(A,B)) · |B|

The remaining paper is now organized as follows. Section 5 contains the reduction from arbitrary
metric RSD to simple RSD. Section 6 bounds the size of core-covers for any simple RSD. Section 7
describes the algorithm containing the LP rounding procedure and the core-cover-based enumeration
strategy, as well as proving correctness. We conclude with a minor remark showing that for continuous
Jaccard measures, the 1-center problem is solvable in polynomial time, whereas the 1-median problem is
NP-hard (Section 8).
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5 Reduction from RSD Center to Simple RSD Center

Lemma 1 Let N ⊂ P(U) be a collection of item sets, let y′ be a rational number in [0,1] and let x,y,z,z′

be non-negative integers satisfying z ≥ max(x,y,z′) and y′ = y/x. Then for any set S, we have

S = argmin
S′⊂U

max
A∈N

Dy′(A,S) ⇐⇒ S = argmin
S′⊂U

max
A∈N

Dx,y,z,z′(A,S).

Furthermore, let ε ≥ 0 be a parameter. Then if S is an item set satisfying

max
A∈N

Dy′(A,S) ≤ (1 + ε) min
C⊂U

max
B∈N

Dy′(B,C),

we have

max
A∈N

Dx,y,z,z′(A,S) ≤ (1 + ε) min
C⊂U

max
B∈N

Dx,y,z,z′(B,C).

Proof. In the following, let B = argmax
A∈N

Dy′(A,C). We will first show that am optimal solution C for the

problem min
C′⊂U

max
B∈N

Dy′(B,C
′) is also an optimal solution for the problem min

C′⊂U
max
B∈N

Dx,y,z,z′(B,C
′).

By optimality of C, we know that for any candidate solution C ′ there exists some B′ with Dy′(B,C) ≤
Dy′(B

′,C ′). Hence,

|B 4 C|
|B ∪ C|+ y′|B ∪ C|

≤ |B′ 4 C ′|
|B′ ∪ C ′|+ y′|B′ ∪ C ′|

⇐⇒ |B 4 C| · (|B′ ∪ C ′|+ y′|B′ ∪ C ′|) ≤ |B′ 4 C ′| · (|B ∪ C|+ y′|B ∪ C|)
⇐⇒ |B 4 C| · (|B′ ∪ C ′|+ y′|B′ ∪ C ′|) + z/x|B 4 C| · |B′ 4 C ′|

≤ |B′ 4 C ′| · (|B ∪ C|+ y′|B ∪ C|) + z/x|B 4 C| · |B′ 4 C ′|

⇐⇒ |B 4 C|
|B ∪ C|+ y′|B ∪ C|+ z/x|B 4 C|

≤ |B′ 4 C ′|
|B′ ∪ C ′|+ y′|B′ ∪ C ′|+ z/x|B′ 4 C ′|

⇐⇒ (z − z′)|B 4 C|
x|B ∪ C|+ y|B ∪ C|+ z|B 4 C|

≤ (z − z′)|B′ 4 C ′|
x|B′ ∪ C ′|+ y|B′ ∪ C ′|+ z|B′ 4 C ′|

⇐⇒ Dx,y,z,z′(B,C) ≤ Dx,y,z,z′(B
′,C ′). (1)

This proves the first claim. What is left to show is that this still holds for approximations. With B
defined as above and A = argmax

A∈N
Dy′(A,S), we have

|A4 S|
|A ∪ S|+ y′|A ∪ S|

≤ (1 + ε)
|B 4 C|

|B ∪ C|+ y′|B ∪ C|
=⇒|A4 S| · (|B ∪ C|+ y′|B ∪ C|) ≤ (1 + ε) · |B 4 C| · (|A ∪ S|+ y′|A ∪ S|)

≤ (1 + ε) · |B 4 C| · (|A ∪ S|+ y′|A ∪ S|) + ε · |B 4 C| · (z/x)|A4 S|
⇐⇒ |A4 S| · (|B ∪ C|+ y′|B ∪ C|+ (z/x)|B 4 C|))

≤ (1 + ε) · |B 4 C| · (|A ∪ S|+ y′|A ∪ S|+ (z/x)|A4 S|)

⇐⇒ |A4 S|
|A ∪ S|+ y′|A ∪ S|+ (z/x)|A4 S|

≤ (1 + ε)
|B 4 C|

|B ∪ C|+ y′|B ∪ C|+ (z/x)|B 4 S|

⇐⇒ (z − z′)|A4 S|
x|A ∪ S|+ y|A ∪ S|+ z|A4 S|

≤ (1 + ε)
(z − z′)|B 4 C|

x|B ∪ C|+ y|B ∪ C|+ z|B 4 S|
⇐⇒ Dx,y,z,z′(A,S) ≤ (1 + ε)Dx,y,z,z′(B,C).

Combining the final equation with Equation 1 now yields for any A′ ∈ N and B′,C ′ as defined above

Dx,y,z,z′(A
′,S) ≤ Dx,y,z,z′(A,S) ≤ (1 + ε)Dx,y,z,z′(B,C) ≤ (1 + ε)Dx,y,z,z′(B

′,C ′).
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We remark that while an optimal solution for the 1-center problem with distance function Dy is
equivalent to an optimal solution for the 1-center problem with distance function Dx,y,z,z′ , the same
does not hold for approximations. That is, approximating the 1-center problem with distance funciton
Dx,y,z,z′ may be easier than approximation the problem with distance function Dy. In this sense, the
problem min

C′⊂U
max
B∈N

Dy′(B,C
′) is the canonical hard problem.

Also, as mentioned in the preliminaries, this lemma implies a reduction for the metric spaces of
the form (P(U),Dx,y,z,z′) with y > x, as Dx,y,z,z′(A,B) = Dy,x,z,z′(A,B). As a preprocessing step, we
determine N := {A | A ∈ N} and compute a (1 + ε) approximation for the appropriate simple RSD
center problem on N .

6 Core Covers

Throughout this section, we consider the metric space (P(U),Dy). Let N be a collection of subsets of a
base set U , let OPT be the maximum distance of an optimal center to any subset in N .

Our algorithms are based on the existence of a small collection M of input sets such that a high
quality center can be extracted from M . Informally, the items of an optimal center are well represented
by the items of the sets contained in M .

Definition 3 (Core-covers) Let ε > 0 be a constant. A collection M ⊆ N with IM = ∩A∈MA and
OM = ∪A,B∈MA4B is an (ε,y)-core-cover if there exists an optimal center C with K = (IM ∪OM )∩C
and:

max
A∈N

Dy(A,K) ≤ (1 + ε) ·OPT

A collection M ⊆ N is an (ε,y)-anchored-core-cover if there exists an optimal center C with K =
IM ∪ (OM ∩ C) and:

max
A∈N

Dy(A,K) ≤ (1 + ε) ·OPT.

Marx [27] proposed generator strings for the Hamming center problem on the Boolean hypercube (see
Section 3 of the reference). In our terminology, the problem corresponds to the simple RSD D1 or more
generally D1,1,0,1. Given a collection of sets M , define OM := {i ∈ [d], Ai 6= Bi for some A,B ∈M}. By
showing that a generator M with constant size OM exists, he was able to obtain an FPT algorithm for
the Hamming center problem, which was later also used by Andoni et al. [2] and Ma and Sun [26] to
improve the running time of a PTAS. Hence, anchored core covers are a generalization of generators to
arbitrary metrics induced by rational set similarities.

Marx [27] proved a (tight) bound of O
(
log 1

ε

)
on the size of the generator (or anchored core cover) M

for the Hamming center problem. In the following, we will see that for y > 0, a bound of O
(

log 1
εy

y

)
can

also be achieved for any (ε,y)-anchored core cover. For the Jaccard-center problem (and other RSD with
y = 0), we require a different type of analysis. The resulting bound of O(ε−1) is substantially weaker,
but we can also prove that this is necessary. We begin the analysis of the size of a core-cover with the
following observation.

Observation 1 Let A ∈ N be a set such that 1 ≥ Dy(A,K) > (1 + ε) ·OPT and K ⊆ C. Then:

|A ∩ (C \K)| ≥
{

OPT · ε · y · d+ y · |(C \K) \A| if y 6= 0
OPT · ε · |C| if y = 0

Proof.

|A ∩ (C \K)| K⊆C
= |A ∩ C| − |A ∩K|

Fact 1.1
= |A ∪ C| −Dy(A,C) ·

(
|A ∪ C|+ y · |A ∪ C|

)
−|A ∪K|+Dy(A,K) ·

(
y · |A ∪K|+ |A ∪K|

)
≥ |A ∪ C| −OPT

(
|A ∪ C|+ y · |A ∪ C|

)
− |A ∪ C|+ |(C \K) \A|

+(1 + ε) ·OPT
[
|A ∪ C|+ y · |A ∪ C|+ (y − 1) · |(C \K) \A|

]
= OPT · ε · (|A ∪ C|+ y · |A ∪ C|) + (1 + ε) ·OPT · (y − 1) · |(C \K) \A|

+|(C \K) \A|
≥ OPT · ε · (y · d+ (1− y)|A ∪ C|) + y · |(C \K) \A|,

where the final inequality follows from y ≤ 1 and (1 + ε)OPT < 1. For y 6= 0 we are done. For y = 0, we
have |A ∪ C| ≥ |C|.
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The following lemma now bounds the size of a core-cover. The main argument is that if K is not a
core-cover, Observation 1 guarantees us the existence of a set A containing many elements in C \K.

Lemma 2 For any collection of subsets N and any simple RSD Dy, there exists an (ε,y)-core-cover M
of size

|M | =

{
O
(

log 1
ε

y

)
if y > 0

d 1εe if y = 0
.

Proof. We show the existence of the collection M by proving that we can iteratively add a set to M such
that either K already contains a good approximate solution or the added set contains many elements
from C \K. Thus, we either have C covered by ∪A∈MA or no set violates the approximation guarantee.
Let M (0) = {A0} for an arbitrary A0 ∈ N . Let A(i) be the set added in the ith iteration. We denote by
K(i) = C ∩ (∪A∈M(i)A) our solution after the i-th iteration. Then |C \K(i)| are the components of C
that still have to be covered after i iterations. Note that this implies

Dy(K(i),C) ≤ Dy(K(0),C) ≤ OPT (2)

for all i.
Moreover, we have the invariant

Dy(A(i),K(i−1)) > (1 + ε) ·OPT, (3)

as otherwise the current collection M (i−1) is already a core-cover. Now we analyze separate cases for
simple RSD with either y = 0, and y 6= 0.

Case y 6= 0: We prove the following invariant for the algorithm, assuming that we add a new set to M
in every iteration:

|C \K(i)| ≤ |C \K
(0)|

(1 + y)i
−

i∑
k=1

OPT · ε · y · d
(1 + y)k

. (4)

For i = 0 this clearly holds. Otherwise, we have by induction

|C \K(i)| = |(C \K(i−1)) \A(i)| = |C \K(i−1)| − |A(i) ∩ (C \K(i−1))|
Obs. 1
≤ |C \K(i−1)| −OPT · ε · y · d− y · |(C \K(i−1)) \A(i)|

=
|C \K(i−1)| −OPT · ε · y · d

1 + y

≤

(
|C\K(0)|
(1+y)i−1 −

∑i−1
k=1

OPT ·ε·y·d
(1+y)k

)
−OPT · ε · y · d

1 + y

=
|C \K(0)|
(1 + y)i

−
i∑

k=1

OPT · ε · y · d
(1 + y)k

Then with a bit of calculus, we obtain the following upper bound on the elements that remain to be
covered after adding the A(i):

|C \K(i)|
Eq. 4

≤ |C \K0|
(1 + y)i

−
i∑

k=1

OPT · ε · y · d
(1 + y)k

Fact 1.2
=

Dy(C,K(0)) · [|C ∪K(0)|+ y|C ∪K(0)|]− |K(0) \ C|
(1 + y)i

−
i∑

k=1

OPT · ε · y · d
(1 + y)k

Eq. 2

≤ OPT · d
(1 + y)i

−
i∑

k=1

OPT · ε · y · d
(1 + y)k

=
OPT · d
(1 + y)i

−
i∑

k=0

OPT · ε · y · d
(1 + y)k

+ OPT · ε · y · d

= OPT · d

( 1

1 + y

)i

− ε · y ·
1−

(
1

1+y

)i+1

1− 1
1+y

+ ε · y


= OPT · d

((
1

1 + y

)i

− ε ·

(
1 + y −

(
1

1 + y

)i
)

+ ε · y

)
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= OPT · d

((
1

1 + y

)i

(1 + ε)− ε

)

Suppose the algorithm continues this process until all elements of C are covered, i.e. C \K(i) = ∅.
This happens if

OPT · d

((
1

1 + y

)i

(1 + ε)− ε

)
≤ 0

=⇒
(

1

1 + y

)i

≤ ε

1 + ε

Using the Mercator series ln(1 + y) =
∑infty

i=1
y
i · (−1)i+1, we can conclude that y/2 ≤ ln(1 + y) ≤ y for

y ∈ (0,1]. Therefore, after log1+y
1+ε
ε ≤ ln 2

ε

ln(1+y) ∈ O
(

ln 1
ε

y

)
many iterations, we have either completely

covered C, or the algorithm terminated earlier, meaning that the initial assumption from Equation 3 no
longer holds.

Case y = 0: Let us assume an A(i) exists such that 1 ≥ D0(A,Ki−1) > (1 + ε) · OPT . In this case,
Observation 1 gives us a different bound on |A(i) ∩ (C \K(i−1))|. We will show inductively

|C \K(i)| = |C \K0| − i ·OPT · ε · |C|.

For i = 0, this clearly holds. Otherwise, we have

|C \K(i)| = |(C \K(i−1)) \A(i)| = |C \K(i−1)| − |A(i) ∩ (C \K(i−1))|
Obs. 1
≤ |C \K(i−1)| −OPT · ε · |C| ≤ |C \K(0)| − (i− 1) ·OPT · ε · |C| −OPT · ε · |C|
= |C \K(0)| − i ·OPT · ε · |C|

Therefore, after at most d 1εe many iterations, C will be completely covered.

To prove the bounds on the anchored core-cover, we first require the following observation.

Observation 2 For any three sets C,K,A ⊆ U and y ∈ [0,1]

Dy(A,K) ≤ Dy(A,K ∩ C) +
|K \ C| − 2|(A ∩K) \ C|
|A ∪K|+ y · |A ∪K|

Proof.

Dy(A,K) =
|A4K|

|A ∪K|+ y · |A ∪K|

=
|A4 (K ∩ C)|+ |(K \ C) \A| − |A ∩ (K \ C)|

|A ∪K|+ y · |A ∪K|

=
|A4 (K ∩ C)|

(|A ∪ (K ∩ C)|+ |(K \ C) \A|) + y ·
(
|A ∪ (K ∩ C)| − |(K \ C) \A|

)
+
|(K \ C) \A| − |A ∩ (K \ C)|
|A ∪K|+ y · |A ∪K|

y≤1
≤ |A4 (K ∩ C)|
|A ∪ (K ∩ C)|+ y · |A ∪ (K ∩ C)|

+
|(K \ C) \A| − |A ∩ (K \ C)|
|A ∪K|+ y · |A ∪K|

= Dy(A,K ∩ C) +
|K \ C| − 2|A ∩ (K \ C)|
|A ∪K|+ y · |A ∪K|

If X is an arbitrary input point, K is our possible solution, and C is an optimal center, this obser-
vation implies that it is sufficient to show that Dy(X,K ∩ C) is a good approximation to Dy(X,C) and
|K\C|−2|(X∩K)\C)|
|X∪K|+y·|X∪K| is small or negative.
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Lemma 3 For any collection of input subsets N and any simple RSD Dy, there exists an (ε,y)-anchored-
core-cover M ⊆ N of size

|M | =

{
O
(

log 1
y·ε
y

)
if y > 0

O
(
1
ε

)
if y = 0

.

Proof. Let C be an optimal center. Lemma 2 gives a set M such that K ′ = C ∩ (∪A∈MA) is an (1 + ε)-
approximate solution. Now let K = IM ∪ (OM ∩ C), which is well defined given M and the optimal C.
Note that K ′ = K ∩ C. Using Observation 2, the distance between K and some arbitrary set A is:

D(A,K) ≤ D(A,K ∩ C) +
|K \ C| − 2 · |A ∩ (K \ C)|
|A ∪K|+ y · |A ∪K|

= D(A,K ∩ C) +
|IM \ C| − 2 · |A ∩ (IM \ C)|
|A ∪K|+ y · |A ∪K|

≤ (1 + ε) ·OPT +
|IM \ C| − 2 · |A ∩ (IM \ C)|
|X ∪K|+ y · |X ∪K|

If for every A ∈ N , we have 2 · |A ∩ (IM \ C)| ≥ |IM \ C| then the ratio is non-positive and D(A,K) ≤
D(A,K ∩C) ≤ (1 + ε) ·OPT . Otherwise, there exists an A such that |A ∩ (IM \C)| = |(A ∩ IM ) \C| <
|IM \ C|/2. We iteratively augment the collection M with additional sets A. In each iteration, |IM \ C|
is halved. We now bound |IM \ C| in terms of OPT . Again we distinguish between two cases.

Case y 6= 0: Let B ∈M be arbitrary. Then

|IM \ C| ≤ |B \ C|
Fact 1.2

= D(B,C) ·
(
|B ∪K|+ y · |B ∪K|

)
− |C \B|

≤ D(B,C) ·
(
|B ∪K|+ y · |B ∪K|

)
= D(B,C) ·

(
|B ∪K|+ |B ∪K| − |B ∪K|+ y · |B ∪K|

)
≤ OPT · [d− (1− y) · |B ∪K|]

y≤1
≤ OPT · d.

After adding log( 1
ε·y ) sets such that |IM \C| is halved with each iteration, we have |IM \C| ≤ ε·y ·OPT ·d.

Therefore,

|IM \ C|
|A ∪K|+ y · |A ∪K|

≤ ε · y ·OPT · d
|A ∪K|+ y · |A ∪K|

≤ ε · y ·OPT · d
y · d

= ε ·OPT .

Case y = 0: Let B ∈M be arbitrary. We now have

|IM \ C| ≤ |B \ C|
Fact 1.3
≤ D(B,C) · |B|

Fact 1.4
≤ OPT · |C|

1−OPT

Fact 1.4
≤ OPT · |A|

(1−OPT )2

OPT≤ 1
1+ε

≤ OPT · (1 + ε)2 · |A|
ε2

≤ OPT · 4

ε2
· |A|,

where the last inequality follows for ε ≤ 1. After adding log 4
ε3 sets such that |IM \ C| is halved with

each iteration, we have

|IM \ C|
|A ∪K|

≤ ε ·OPT · |A|
|A ∪K|

≤ ε ·OPT .

For both cases, our approximation factor is therefore (1+2ε)·OPT . Rescaling ε by a factor of 2 completes
the proof.

We conclude this section by showing that the bounds for (ε,0) core-covers are tight, which also implies
that the bounds on (ε,0)-anchored-core-covers are asymptotically tight. Hence, the exponential increase
cannot be avoided as y tends to 0.

Proposition 2 There exists a collection of subsets N such that for any (ε,0)-core-cover M ⊆ N , we
have |M | ≥ 1/ε.
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Proof. For a given ε > 0 and assuming 1/ε to be an integer, we consider the set system consisting of 1/ε
singleton sets, i.e. each set consists of a single item and all sets are disjoint. The center consisting of all

the singleton sets has a Jaccard distance of 1/ε−1
1/ε = 1−ε to each singleton set. If the core cover does not

contain all singleton sets, the maximum distance of any subset of the core-cover to one of the singleton
sets is 1. At the same time OPT · (1 + ε) = (1− ε)(1 + ε) = 1− ε2 < 1, hence the core-cover is required
to contain all singleton sets.

Lastly, we briefly compare the bounds O(
log 1

ε

y ) and O( 1
ε ) for the core-covers with respect to Dy and

y > 0 and D0, respectively. For all rational set similarity defined in literature, the latter bound is better
than the former. However, for a sufficiently small y (e.g. y ≤ ε2), the former bound may become larger.
This might hint at a gap in our analysis. However, we believe that this may be unavoidable; if y is part
of the input a PTAS for the 1-center problem with distance function Dy may not exist. Resolving this
conjecture is an interesting open problem.

7 A PTAS for the 1-Center Problem on Metric RSD

We now turn to our main result. Throughout this section, we consider the metric space (P(U),Dy). Let
N be a collection of subsets of a base set U and let OPT be the maximum distance of an optimal center
to any subset in N .

Recall that Ci =

{
0 if i /∈ C,
1, if i ∈ C

. Observe that, for each set A ∈ N , we have |A4 C| =
∑d

i=1Ai −

2Ai · Ci + Ci, |A ∪ C| =
∑d

i=1Ai −Ai · Ci + Ci and |A ∪ C| =
∑d

i=1 1−Ai · Ci.
Hence we obtain a set of linear inequalities of the form

|A4 C| ≤ OPT · (|A ∪ C|+ y · |A ∪ C|) (5)

which we can test for feasibility by relaxing the integrality constraints on C. Denote a fractional solution
Ĉ. We apply randomized rounding to obtain an integer solution S, rounding each Ci to 1 with probability
Ĉi. We will first characterize the instances where this approach already yields a good solution. To this
end, let us first recall the multiplicative Chernoff bounds.

Input : Collection N of subsets, Parameter ε > 0, distance function Dx,y,z,z′

Output: (1 + ε)-approximate RSD center C
Let D = { i

y·d+(1−y)·j | 1 ≤ j ≤ d and 0 ≤ i < y · d+ (1− y) · j}.
Initialize list Solutions = ∅.
foreach OPT∗ ∈ D do

if ∃A ∈ N : OPT∗ · (d · y + (1− y) · |A|) > 27 ln(4n)

ε2
then

foreach M ⊆ N with |M | =

O

(
log 1

ε
y

)
if y > 0

O
(
1
ε

)
if y = 0

do

Compute optimal solution COPT∗ = IM ∪ S with S ⊆ OM (cf. Lemma 3).
Add COPT∗ to Solutions

end

else
Obtain fractional solution C′OPT∗ by solving the set of linear equations given by Equation 5
Obtain COPT∗ by rounding each entry of C′OPT∗ to 1 with probability

(
C′OPT∗

)
i

Add COPT∗ to C
end

end
return argmin

OPT∗∈D
{COPT∗ ∈ Solutions}

Algorithm 1: PTAS for the RSD-center problem

Lemma 4 (Multiplicative Chernoff-Bounds [28]) Let B1, . . . Bd be independent binary random

variables with µ = E[
∑d

i=1Bi]. Then for any 0 < δ < 1

P

[
d∑

i=1

Bi > (1 + δ) · µ

]
≤ exp

(
−δ

2 · µ
3

)
and P

[
d∑

i=1

Bi < (1− δ) · µ

]
≤ exp

(
−δ

2 · µ
2

)
.
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Lemma 5 Let S be a random binary vector obtained by rounding a feasible fractional solution of the set
of inequalities (5) and let ε > 0 be a constant. Assume OPT to satisfy OPT · (d · y+ (1− y) · min

A∈N
|A|) >

27 ln(4n)
ε2 . Then with probability at least 1/2, the rounding procedure produces a binary solution S with

max
A∈N

Dy(A,S) ≤ (1 + ε) ·OPT

Proof. If the integral solution is feasible, the fractional solution will be feasible as well, which implies

that there exists an estimate ÔPT for which the LP 5 is feasible with ÔPT ≤ OPT . Let us denote by
cost(S) := max

A∈N
Dy(A,S) the value of the rounded solution. A rounded vector is not a good center if

OPT · (1 + ε) ≤ cost(S). We first derive concentration bounds on |A4 S|, and |A ∪ S|+ y · |A ∪ S|. To
keep the notation concise, we use Deny(A,S) = |A ∪ S|+ y · |A ∪ S| to refer to the denominator of each

A ∈ N . Observe that E[S] = Ĉ and

E[|A4 S|]
E[Deny(A,S)]

=
|A4 Ĉ|

Deny(A,Ĉ)
≤ ÔPT ≤ OPT . (6)

We have, due to the assumption on OPT and independently of the outcome of the rounding procedure,

Deny(A,S) = d · y + (1− y) · |A ∪ S| ≥ d · y + (1− y)|A| > 27 ln 4n

ε2 ·OPT
. (7)

Both |A 4 S| and Deny(A,S) are sums of independent (though not identically distributed) Bernoulli
random variables. Applying the multiplicative Chernoff bound (Lemma 4), we have for all A ∈ N :

P
[
Deny(A,S) <

(
1− ε

3

)
· E[Deny(A,S)]

]
≤ exp

(
−ε

2 · E[Deny(A,S)]

18

)
Eq. 7

≤ exp

(
− 27 ln(4n)

18 ·OPT

)
≤ 1

4n

and

P
[
|A4 S| > E[|A4 S|] +

ε

3
·OPT · E[Deny(A,S)]

]
= P

[
|A4 S| >

(
1 +

ε ·OPT · E[Deny(A,S)]

3 · E[|A4 S|]

)
· E[|A4 S|]

]
≤ exp

(
−ε

2 ·OPT 2 · E[Deny(A,S)]2

27 · E[|X 4 S|]2
· E[|X 4 S|]

)
Eq. 6

≤ exp

(
−ε

2 ·OPT · E[Deny(A,S)]

27

)
Eq. 7

≤ exp (− ln 4n) ≤ 1

4n

Combining these two bounds, with probability at least 1− 1/2n, we have:

Dy(A,S) =
|A4 S|

|A ∪ S|+ y · |A ∪ S|
≤

E[|A4 S|] + ε
3 ·OPT · E[Deny(A,S)]

(1− ε
3 ) · E[Deny(A,S)]

≤ OPT + ε/3 ·OPT

1− ε/3
ε<1
≤ (1 + ε) ·OPT .

Applying the union bound we then obtain:

P [cost(S) ≤ (1 + ε) ·OPT ] = 1− P [∃A ∈ N : Dy(A,S) > (1 + ε) ·OPT ] ≥ 1− n

2n
=

1

2
.

Our final algorithm (see also Algorithm 1) is now very simple. We try all possible values of OPT .
Notice that there exist at most d2 many distinct values of OPT , as the numerator can only be a number
i and the denominator a number y · d + (1 − y) · j, for i,j ∈ {1, . . . ,d}. For each candidate value, we
apply the rounding procedure, if the conditions of Lemma 5 are satisfied. Otherwise, we compute an
(ε,y)-anchored-core-cover cover (Lemma 3) and enumerate all possible solutions. We prove correctness
in the following theorem.
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Theorem 1 Given a collection N of n subsets from a base set U of cardinality d and any constant
ε > 0, there exists an algorithm computing a (1 + ε)-approximation to the optimal center problem on Dy

with constant probability. The algorithm runs in time d2 ·
(
nO(ε−6) + LP (n,d)

)
for y = 0 and in time

d2 ·

nO
(

log2 1
yε

y3ε2

)
+ LP (n,d)

 for y > 0, where LP (n,d) is the time required to solve a linear program

with n constraints and d variables.

Proof. If the conditions of Lemma 5 are satisfied, i.e. OPT · (d · y + (1 − y) · min
A∈N
|A|) > 27 ln(4n)

ε2 , the

rounding procedure will produce a good solution with constant probability.
Let us assume instead that the conditions are not satisfied.

We know that there exists at least one set A ∈ N with:

OPT · (d · y + (1− y)|A|) ≤ 27 ln(4n)

ε2
. (8)

Our goal will be to bound the size of OM of an (ε,y)-anchored-core-cover M . By proving that |OM | ∈
O(lnn ·poly ε−1), a complete enumeration becomes feasible in polynomial time for any fixed ε. As before,
we distinguish between the case y = 0 and y > 0.

Case y 6= 0: We first bound the size of |A4B|, for any A,B ∈ N . We have

|A4B| = Dy(A,B) · (|A ∪B|+ y|A ∪B|) ≤ 2 ·OPT · d ≤ 27 ln 4n

yε2
. (9)

Now let us consider an (ε,y)-anchored core cover M . From Lemma 3, we have |M | ∈ O
(

log 1
yε

y

)
. Finding

one requires time O
((

n
|M |
))
∈ n

O

(
log 1

yε
y

)
. Combining this with Equation 9 yields

|OM | =
1

2

∑
A∈M

∑
B∈M

|A4B| ∈ O

(
log2 1

yε

y2ε2
· lnn

)
.

One of the solutions induced by the anchored core-cover is guaranteed to be a (1 + ε)-approximation.

Trying all of these solutions requires time 2OM · n
O

(
log 1

yε
y

)
∈ n

O

(
log2 1

yε

y3ε2

)
. Thus, the total running time

is in O

d2 ·
nO

(
log2 1

yε

y3ε2

)
+ LP (n,d)

.

Case y = 0: We first sharpen the bound given by Equation 8. We have for some A′

OPT · |A′| ≤ 27 ln 4n

ε2
.

This allows us to bound the size of |A4B| as follows

|A4B| = Dy(A,B) · |A ∪B| ≤ OPT · (|A|+ |B|)
Fact 1.4
≤ OPT

2|C|
1−OPT

Fact 1.4
≤ OPT

2|A′|
(1−OPT )2

≤ 54 ln 4n

(1−OPT )2ε2

OPT≤ 1
1+ε

≤ 54 ln 4n

ε4
. (10)

We now bound the size of OM from an (ε,0)-anchored core cover M . From Lemma 3, we have |M | ∈
O(ε−1), and we can find one in time O(nO(ε−1)). Combining this with Equation 10 yields

|OM | =
∑
A∈M

∑
B∈M

|A4B| ∈ O
(

lnn

ε6

)
.

One of the solutions induced by the anchored core-cover is guaranteed to be a (1 + ε)-approximation.

Trying all of these solutions requires time 2OM · nO(ε−1) ∈ nO(ε−6). Thus, the total running time is in

O
(
d2 ·

(
nO(ε−6) + LP (n,d)

))
.
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Finally, combining Theorem 1 with Lemma 1 gives us our main result.

Theorem 2 Let N be a collection of n subsets from a base set U of cardinality d, let x,y,z,z′ be either
positive constant integers or 0 and z ≥ max(x,y,z′) and let ε > 0 be a constant. Then there exists an
algorithm computing a (1 + ε)-approximation to the RSD-center problem with distance function Dx,y,z,z′

with constant probability. The algorithm runs in time d2 ·
(
nO(ε−6) + LP (n,d)

)
for y = 0 and in time

d2 ·

nO
(

log2 1
yε

y3ε2

)
+ LP (n,d)

 for y > 0, where LP (n,d) is the time required to solve a linear program

with n constraints and d variables.

8 A Note on Continuous Jaccard Center

We conclude by briefly describing how to find the continuous Jaccard center of set N of n points in
d-dimensional Euclidean space in polynomial time. We consider this fact to be notable as the continuous
Jaccard median problem is NP-hard [10]. To the best of our knowledge, this is the only distance measure
we are aware of where the 1-median problem is hard while the 1-center problem is easy. For instance,
both 1-center and 1-median problem for the `1 norm (the continuous variant of the Hamming norm on
the hypercube) are solvable in polynomial time using convex optimization.

The Jaccard measure in d-dimensional Euclidean space with non-negative coordinates is defined as

Jcont(A,B) :=

{∑d
i=1 min(Ai,Bi)∑d
i=1 max(Ai,Bi)

if
∑d

i=1 max(Ai,Bi) 6= 0

1 otherwise
.

The corresponding distance Dcont(A,B) is again 1− Jcont(A,B). We will formulate the decision problem
of finding a center with distance at most dist as an LP. The optimum center can thereafter be determined
in polynomial time using binary search over the possible values of dist . In the following let Aj ∈ N be the
jth point of N w.r.t. some arbitrary ordering. We use the variable ci ≥ 0 to denote the ith entry of the
Jaccard center C. We further use the variables maxi,j and mini,j for all i ∈ {1, . . . ,d} and j ∈ {1, . . . n}
to denote the maximum and minimum of Aj

i and ci. We then use the constraints

d∑
i=1

min
i,j
≥ (1− dist) ·

d∑
i=1

max
i,j

for all j ∈ {1, . . . n}

min
i,j
≤ ci, Aj

i ≤ max
i,j

for all j ∈ {1, . . . n}, i ∈ {1, . . . d}

ci ≥ 0 i ∈ {1, . . . d}.

Note that the top most equation corresponds to
∑d

i=1 min(Aj
i ,ci) ≥ (1− dist) ·

∑d
i=1 max(Aj

i ,ci) which

is equal to Dcont(A,C) = 1−
∑d

i=1 min(Aj
i ,ci)∑d

i=1 max(Aj
i ,ci)
≤ dist .

9 Conclusions and Open Problems

We have presented a polynomial time approximation scheme for the 1-center problem on metric rational
set similarities, which are a large class similarity measures on sets. Except for the simple matching
similarity, for which the corresponding distance is the Hamming distance [25] and the Jaccard distance,
for which we had shown a PTAS in a preliminary version of this paper [5], our work is the first polynomial
time approximation scheme for the center problem on these distances. Though we are not able to exactly
match the running time of the state-of-the-art Hamming center PTAS [26], our algorithm is competitive
up to polylog ε−1 factors in the exponent.

For the Jaccard-center problem on n sets, our algorithm runs in time nO(ε−6). It seems unlikely that
the running time can be reduced beyond nO(ε−3) using our approach. Showing either a conditional lower
bound or devising an altogether new approach that achieves nO(ε−2) running time is a challenging open
problem.
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31. H. Späth. The minisum location problem for the Jaccard metric. Operations-Research-Spektrum,
3(2):91–94, 1981.

32. G. A. Watson. An algorithm for the single facility location problem using the Jaccard metric. SIAM
Journal on Scientific and Statistical Computing, 4(4):748–756, 1983.

33. P. Willett, J. M. Barnard, and G. M. Downs. Chemical similarity searching. Journal of Chemical
Information and Computer Sciences, 38(6):983–996, 1998.

34. E. A. Yildirim. Two algorithms for the minimum enclosing ball problem. SIAM Journal on Opti-
mization, 19(3):1368–1391, 2008.


