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Motivated by the collective behaviour of biological swarms, we study the critical dynamics of
field theories with coupling between order parameter and conjugate momentum in the presence of
dissipation. By performing a dynamical renormalization group calculation at one loop, we show
that the violation of momentum conservation generates a crossover between a conservative yet
IR-unstable fixed point, characterized by a dynamic critical exponent z = d/2, and a dissipative
IR-stable fixed point with z = 2. Interestingly, the two fixed points have different upper critical
dimensions. The interplay between these two fixed points gives rise to a crossover in the critical
dynamics of the system, characterized by a crossover exponent κ = 4/d. Such crossover is regulated
by a conservation length scale, R0, which is larger the smaller the dissipation: beyond R0 the
dissipative fixed point dominates, while at shorter distances dynamics is ruled by the conservative
fixed point and critical exponent, a behaviour which is all the more relevant in finite-size systems
with weak dissipation. We run numerical simulations in three dimensions and find a crossover
between the exponents z = 3/2 and z = 2 in the critical slowing down of the system, confirming the
renormalization group results. From the biophysical point of view, our calculation indicates that in
finite-size biological groups mode-coupling terms in the equation of motion can significantly change
the dynamical critical exponents even in the presence of dissipation, a step towards reconciling theory
with experiments in natural swarms. Moreover, our result provides the scale within which fully
conservative Bose-Einstein condensation is a good approximation in systems with weak symmetry-
breaking terms violating number conservation, as quantum magnets or photon gases.

I. INTRODUCTION

The success of the theory of critical phenomena is
based upon a simple observation: systems with very
different microscopic details behave in strikingly similar
ways when correlations are sufficiently strong. This ex-
perimental fact eventually crossed over into theory with
the formulation of the phenomenological scaling laws [1–
4], whose key idea is that the only relevant scale ruling
the spatio-temporal behaviour of a system near its critical
point is the correlation length. Eventually, the great con-
ceptual edifice of the Renormalization Group (RG) tied
everything together, explaining why microscopically dif-
ferent systems shared so much at the macroscopic level,
giving a demonstration of universality through the con-
cept of attractive fixed points, and providing a method to
calculate experimentally accessible quantities, most con-
spicuously the critical exponents [5–8].

Employing the same set of conceptual tools in collec-
tive biological systems could prove very helpful, given
the recent massive flow of hugely diverse empirical data
theory has to make sense of. In support of this strategy
there is first an empirical observation regarding collec-
tive biological systems, namely systems in which a large
numbers of units (cells, bacteria, insects, birds, mam-
mals) interact locally in space and time giving rise to
macroscopic patterns [9, 10]: these systems often exhibit

unusually strong correlations, whose spatial range is sig-
nificantly larger than the microscopic scales [11–15]. Be-
sides, recent experiments on natural swarms found evi-
dence of dynamical scaling, a core mechanisms of statis-
tical physics linking spatial correlation to temporal relax-
ation [3, 16], whose validity in a biological context can
hardly be considered a coincidence. Hence, despite the
temptation, in front of the arresting complexity of biol-
ogy, to confine ourselves to describing the specifics, we
believe that exploring the path correlation-scaling-RG is
a reasonable course of action. The hydrodynamic the-
ory of flocking of Toner and Tu has led the way: it ap-
plied field-theoretical methods and the RG to bird flocks,
namely collective biological systems in their strongly or-
dered phase [17–19]. Here, we use the RG approach to
study the other side of collective behaviour, namely the
near-critical disordered phase of natural swarms.

In the biophysics of collective behaviour, a prominent
role is played by a class of ferromagnetic theories with
continuous symmetries, both in their symmetry-broken
phase (flocks), and in the near-critical disordered phase
(swarms) [17, 20]. When dynamics is taken into consid-
eration, though, this universality class breaks down into
smaller sub-classes, as there are different ways to im-
plement the dynamics given the same static probability
distribution of the system [21, 22]. Dynamical diversity
is regulated essentially by two distinct - though related
- factors, namely conservation laws and symmetries. On
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the one hand, we have dynamical theories lacking symme-
tries and conservation laws (as in the classic Heisenberg
model, or Model A of [21]), or in which conservation is im-
posed despite the absence of an explicit symmetry (as in
phase separation, or Model B of [21]). On the other hand,
we have theories ruled by symmetry and conservation
laws, whose dynamics is characterized by the coupling
between two fields, namely the order parameter and the
conserved generator of the symmetry, i.e. the conjugate
momentum. This second type of theories therefore have
non-dissipative mode-coupling terms in the equations of
motions, and were originally introduced to describe sys-
tems displaying Bose-Einstein condensation (BEC), as
superfluid helium, superconductivity, and quantum mag-
nets (Models E, F, and G of [21]). Bizarre as it may
seem, recent experiments suggest that some collective bi-
ological systems, as bird flocks [23] and insect swarms
[20], also have non-dissipative mode-coupling terms in
their dynamical equations, and are thus akin to this sec-
ond class of theories. The connection between BEC sys-
tems and flying animals reflects the great generality of
the mathematical structure of collective dynamics gov-
erned by symmetry and conservation laws, whether the
order parameter is the quantum phase of a condensate,
or the direction of motion of a flock.

Here we will focus on this second class of theories, with
the aim to study the critical dynamics of swarms. To
make this introductory discussion more concrete, let us
anticipate the actual dynamical field equations we are
going to derive and analyze in detail in this work:

∂ψ

∂t
= −Γ0

δH
δψ

+ g0ψ ×
δH
δs

+ θ (1)

∂s

∂t
= (λ0∇2 − η0)

δH
δs

+ g0ψ ×
δH
δψ

+ ζ , (2)

with effective Hamiltonian,

H =

∫
ddx

{
1

2
(∇ψ)2 +

1

2
r0ψ

2 + u0ψ
4 +

s2

2χ0

}
. (3)

In the biological context the vector order parameter
ψ(x, t) represents the velocity field, but it has different
interpretations in BEC systems (for example, in liquid
helium ψ is the expectation value of the Bose field). In
all cases, though, the order parameter is coupled to its
conjugate momentum, we call it spin, s(x, t), which is
the generator for rotations of ψ, given the rotational
symmetry of H.1 The distinctive trait of this class of
models are the mode-coupling cross terms, ∂tψ ∼ δsH

1 More precisely, the field canonically conjugate to s is the phase ϕ
of the order parameter, ψ, not ψ itself; for example, in the planar
case the order parameter is a complex field and ψ = eiϕ. This is
the reason why cross products enter the dynamical equations; the
relation between order parameter, phase and spin is similar to
that between position, angle and angular momentum in standard
rotational motion – see [24] for a discussion of this point.

and ∂ts ∼ δψH, which generate a non-dissipative dy-
namics with the classic coordinate-momentum Hamilto-
nian structure; were it only for these terms, dynamics
would be completely deterministic. On the other hand,
the diagonal terms, ∂tψ ∼ δψH and ∂ts ∼ δsH, give rise
to the diffusion and transport phenomenology typical of
stochastic statistical systems, and are thus complemented
by the noises, θ and ζ, whose variance is proportional to
the kinetic coefficients, 2Γ0 and 2(−λ0∇2 + η0), respec-
tively.

The crucial feature of this theory is that, in absence of
dissipation, namely when the effective friction η0 is zero,
the total integral of the spin is conserved: the cross term
in (2) gives rise to a continuity equation for the symme-
try generator, s(x, t), prescribed by Noether’s theorem,
while the stochastic transport term in (2), λ0∇2s, is still
the divergence of a current, leaving the continuity equa-
tion intact. This structure - symmetry and conservation
- is a very profound feature of this class of models, as
it leads to the existence of propagating hydrodynamic
modes in the ordered phase, called spin waves; this mech-
anism give rise to ‘second sound’ in liquid helium [21], it
is responsible for linear information propagation in bird
flocks [25], and finally it explains spin-wave remnants in
the near-critical phase of insect swarms [20].

Why, then, introducing in equation (2) a dissipative
term, η0, which destroys spin conservation? In the con-
text of biological systems the answer is quite simple: the
symmetry generator, or spin, is conjugated to the veloc-
ity field; hence, by rotating the velocity, the spin is what
actually makes an animal to turn. Indeed, kinematically
one can prove that the spin is related to the radius of
curvature of the individual trajectories [26]. Hence, at
the individual level it is clear that there must be some
dissipation relaxing the spin, thus making a trajectory
straight in absence of external perturbations or interac-
tion with the neighbours. On the other hand, in systems
like superfluids or superconductors, the conservation law
generated by the continuous symmetry of the quantum
phase corresponds to number conservation and it cannot
be violated. In other BEC systems, though, like quantum
magnets [27], exciton condensates [28], and photon gases
[29], the Hamiltonian can contain terms that weakly vi-
olate the symmetry, hence dissipating the density in the
continuity equation of the momentum. The effect of
weak dissipation in the ordered phase is simply to gen-
erate a damping length scale on propagating spin-waves.
However, in the near-critical phase the situation is more
complicated: dissipative and non-dissipative models are
known to have completely different critical exponents,
hence what is the effect of dissipation in this case is un-
clear. This question is particularly relevant for biological
swarms, as experiments found a dynamical critical ex-
ponent that cannot be reconciled with the prediction of
purely dissipative theories [20].

Here, by using a dynamical renormalization group ap-
proach, we study the effect of dissipation on the critical
dynamics of a systems with mode-coupling terms. Our
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calculation shows that the dissipative term η0 gives rise to
an interesting crossover characterized by nontrivial crit-
ical exponents. The competition between conservative
transport, λ0∇2s, and dissipative friction, −η0s, gener-
ates a novel conservation length scale, R0; beyond R0

the dynamics is ruled by a purely dissipative RG fixed
point, so that the whole conservative (and propagating)
nature of the theory is lost, whereas for distances smaller
than R0, the conservative RG fixed point governs the dy-
namics, giving rise to the classic spin-wave phenomenol-
ogy. We calculate the value of the dynamical critical
exponents in these two regimes and of the crossover ex-
ponent, and we confirm our results through numerical
simulations.

As we shall see, the conservation scale R0 is larger the
smaller the dissipation. The implications of this fact are
very important in the biophysical context. The presence
of dissipation in the dynamical equations of biological
groups may suggest that these systems are in the same
universality classes as fully dissipative models, as dissipa-
tion always wins over conservative terms in the infinite-
time and infinite-distance hydrodynamic limit. However,
real biological groups are of course finite-size systems
(and quite moderately sized, in the case of flocks and
swarms), in which dissipation has been demonstrated by
experiments to be quite low [20]. Therefore, the size of
these systems may actually be smaller than the crossover
scale R0, so that, even if dissipative terms are present in
the equations of motion, critical dynamics is still ruled
by the symmetric and conservative structure of the equa-
tions, and therefore have critical exponents drastically
different from the dissipative ones. As we shall see, for
natural swarms this theoretical mechanism produces a
critical dynamics whose phenomenology is remarkable
similar to that found in experiments.

Although our motivation is biological, it is worthwhile
to remark that our results apply to any BEC system with
weak dissipation, a relevant example of which are quan-
tum magnets [27], exciton condensates [28] and photon
gases [29]. In quantum magnets Bose-Einstein conden-
sation of magnons occurs at low temperature, due to
the spontaneous breaking of the U(1) symmetry; real
quantum magnets, though, contain weakly symmetry-
breaking terms in their Hamiltonian, thus violating the
conservation of the conjugate momentum. Another BEC
system our results could be applied to is that of excitons,
bosonic hole-particle excitations created by laser pumps,
whose number, though, is conserved only within their
lifetime (which is finite, and dependent on many factors)
[28]. A similar situation arises within the context of pho-
ton gases, when a polariton condensate emerges [29]; in
this case, too, depending on the polariton lifetime, one
can have a violation of the number conservation symme-
try, which is equivalent to an effective dissipation. In all
these cases, our calculation could provide the crossover
scale within which an exact BEC assumption is justi-
fied and it may describe the critical behaviour of the
crossover.

Here is the plan of the paper. In Section II we will
give a derivation of the microscopic dynamical equations
in their biological context, whereas in Section III we will
coarse-grain the microscopic equations and work out the
dynamical field theory described by equations (1) and
(2). In Section IV we will perform a renormalization
group calculation of critical dynamics in the momentum
shell context; this Section will culminate with the formu-
lation of the RG recursive equations, while the analysis
of the crossover between the two different fixed points
on the critical manifold, and the corresponding crossover
of the critical dynamics, will be studied in Section V. In
Section VI we will give an alternative derivation of our
results using the more field-theoretical Callan-Symanzik
approach. In Section VII we will perform numerical sim-
ulations to validate the RG results, and finally we will
present our conclusions and discuss the outlook in Section
VIII. Parts of the most technical material are contained
in the Appendixes. A shorter account of our results can
be found in [30].

II. BIOPHYSICAL ORIGIN OF THE
MICROSCOPIC MODEL

In this Section we derive the microscopic model of col-
lective behaviour that we will use to describe the dy-
namics of natural swarms. Because this model was first
introduced in the context of flocks, rather than swarms,
we will have to take a short detour in that direction. At
the end of the Section we will discuss under what approx-
imations we will be able to perform a field-theoretical RG
study of the model.

A. Collective behaviour and the Vicsek model

Collective behaviour in biological systems, and more
specifically collective motion, is essentially a game of mu-
tual imitation, in which each individual tries to make
its own state of motion as close as possible to that of
its neighbours [9]. From a physical point of view, such
mechanism is clearly suggestive of a ferromagnetic-like
interaction: if we focus our attention on the direction
of motion of each individual, that is on the orientation
of the velocity vector, such imitation game amounts to
a local interaction due to which each (normalized) ve-
locity vector tends to align to those of its neighbours,
much as classical Heisenberg spins tend to align to each
other. At variance with standard ferromagnets, though,
in collective motion the positions of the particles change
in time, as they are carried around by their own veloc-
ities, thus creating a non-equilibrium feedback between
the alignment degrees of freedom and the interaction net-
work [18, 31]. The simplest yet most illuminating model
describing this core mechanism of collective motion was
introduced by Vicsek and co-workers [32]; it describes
a set of self-propelled particles that interact with each
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other in a ferromagnetic way,

η̂
dvi
dt

= vi × Ĵ
∑
j

nij(t)vj + vi × ζi (4)

dri
dt

= vi , (5)

where ri is the position of particle i, vi its velocity,
and nij(t) is the (short-ranged) adjacency matrix (who
is neighbour of whom) at time t. The interaction be-
tween individuals is given by the ferromagnetic term in
(4), where Ĵ gives the strength of the tendency to align
to each other.2 Such alignment interaction is often called
social force in the collective behaviour literature [9]. In
the Vicsek model the speed is kept fixed, |vi| = 1, which
is the purpose of the cross-products at the r.h.s. of (4).
The term ζi is a Gaussian white noise with variance,

〈ζi(t) · ζj(t′)〉 = 2d η̂ T δijδ(t− t′) , (6)

where η̂ is a dissipation coefficient and T a generalized
temperature measuring the strength of the noise.

The power of the Vicsek model is that it describes col-
lective motion in its two different phases. When noise
is low (or density is high, in the metric case [9]), the
alignment interaction produces long-range order across
the system, forming a polarized moving flock. The in-
teresting thing is that such ordering also occurs in two
dimensions, which would be forbidden by the Mermin-
Wagner theorem [33] in an equilibrium ferromagnet with
continuous symmetry; however, the Vicsek model has
an off-equilibrium feedback between alignment and self-
propulsion promoting long-range order [18]. On the other
hand, when noise is large enough (or density is low, in
the metric case [9]), the system is in a disordered (para-
magnetic) phase, which reproduces quite well the statis-
tical properties of real swarms. More precisely, it has
been observed that natural swarms are disordered, but
highly correlated systems [34]; the velocity static cor-
relations are reproduced (at least qualitatively) by the
Vicsek model close to its ordering transition. Hence, the
Vicsek model captures rather well the static correlation
functions of collective motion for both flocks and swarms.
Dynamics is more problematic, though, at both the qual-
itative and the quantitative level.

B. The Inertial Spin Model

The first hint that the Vicsek equation of collective
motion required some new ingredients came from exper-
iments on flocks, in which it was observed that distur-
bances in the direction of motion of the birds (that is,

2 We use hatted parameters in the microscopic equations to dis-
tinguish them from their coarse-grained counterpart in the field
equations later on.

turns) propagate linearly, with very low dissipation [25].
Although the hydrodynamic field-theoretical description
of the Vicsek model introduced by Toner and Tu [17] con-
tains linearly propagating ‘sound’ modes, caused by the
feedback between local density and phase fluctuations
[35], experiments indicate that flocks follow a different
mechanism: during the propagating event the density
displays very weak fluctuations, if any; moreover, the
speed of propagation of the wave has been found to be
higher the higher the polarization of the group, a feature
absent in the hydrodynamic theory of the Vicsek model
[17] (see also the discussion in [24]). It was therefore
suggested in [25] and [23] that Vicsek dynamics had to
be complemented with some non-dissipative inertial cou-
plings between order parameter (the velocity) and a con-
jugate momentum, in order to reproduce the structure
of a conservative Hamiltonian dynamics. The resulting
microscopic dynamical equations give rise to the Inertial
Spin Model (ISM) of collective motion [23],

dvi
dt

=
1

χ̂
si × vi

dsi
dt

= vi × Ĵ
∑
j

nij(t)vj −
η̂

χ̂
si + vi × ζi

dri
dt

= vi ,

(7)

where the new variable si represents a generalized mo-
mentum conjugated to the velocities vi and it is the gen-
erator of the rotational symmetry of the interaction; it
is therefore called spin, in an analogy with quantum me-
chanics. Associated to the momentum si we have a gen-
eralized inertia, χ̂, which embodies the resistance of a
particle to change its instantaneous radius of curvature
[36]. One can show that, in the low noise, strongly polar-
ized phase, the non-dissipative coupling between spin and
velocity of the ISM generates linear propagating modes
of the velocity fluctuations, which match quite accurately
the experimental results, including the key relation be-
tween speed of propagation and polarization [37].

In absence of a dissipative term, the Hamiltonian struc-
ture of the ISM would conserve the total spin, as it hap-
pens for any generator of a symmetry. However, one
can show that the spin is essentially the instantaneous
curvature of the particle’s trajectory [25], hence a single
particle (or bird, in a flock) would maintain its radius of
curvature forever, were the spin strictly conserved. This
is quite unrealistic. Rather, it seems reasonable to ex-
pect curvature (and therefore spin) to be dissipated in
the long run in absence of interaction or external pertur-
bations. For this reason the ISM has also the dissipative
term, −η̂si, and stochastic noise, ζi, granting relaxation
of the spin for large times. If dissipation is small, though,
and the biological group has finite size, linear waves will
still propagate across the system, before dissipation kicks
in [23]. In other words, although in the hydrodynamic
limit (infinitely large times and distances) the conserva-
tive Hamiltonian structure always becomes irrelevant, on
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the finite-time and finite-size scales typical of biological
phenomena the interplay between velocity and spin has
crucial consequences on signal propagation. Note, finally,
that once dissipation is included in the equations, one can
recover the Vicsek model as the over-damped limit of the
ISM [23], which is quite reassuring.

The second hint that a model with non-dissipative dy-
namics was required came from swarms. Swarms of in-
sects are systems apparently completely different from
flocks: they show no group-scale coordination, so that
their net motion is zero: swarms ‘dance’ above some land-
mark in seemingly random fashion [13]. In fact, experi-
ments on natural swarms [13] showed that these systems
have strong velocity correlations, indicating that, despite
the lack of long-range order, the individuals within these
groups are interacting with each other rather intensely,
hence driving the system close to an ordering transition;
indeed, such static correlations were qualitatively simi-
lar to those developed by the Vicsek model at its critical
point [34]. More recent experiments [20] showed that
swarms in their natural environment exhibit another im-
portant property of classical statistical physics, namely
dynamic scaling [3]: according to this law, the dynamic
correlation function of a system close to the critical point
obeys the following relations,

C(k, t) = C0(k) F (t/τk, kξ)

τk = k−zf(kξ) ,
(8)

where t is time, k momentum, C0 is the static correlation
function, τk is the relaxation time of mode k, F and f
are well-behaved scaling functions, and z is the dynamic
critical exponent, ruling how space and time scale with
each other. The key idea of dynamic scaling is that the
only relevant scale in ruling both spatial and temporal
behaviour of a system close to the critical point, is the
correlation length, ξ. For k = 0 we obtain, τ ∼ ξz,
a property known as critical slowing down: a system
strongly correlated in space must also be strongly corre-
lated in time [21]. Experiments showed that swarms sat-
isfy relations (8) with a dynamic critical exponent z ≈ 1,
whereas numerical simulations of the Vicsek model in
d = 3 give z ≈ 2 [20]. It must be noted that z = 2
is the exact value of the dynamical critical exponent for
a purely dissipative free theory (Gaussian model), and
that even in the interacting case the exponent receives
only very small (two loops) corrections to the value 2, if
the dynamics has only dissipative terms (or even values
larger than 2, as in the case of Model B [21]). On the
other hand, dynamical models with non-dissipative iner-
tial terms tend to have values of the exponent z signifi-
cantly smaller than 2, as a result of the interplay between
order parameter and conjugate momentum [21]. Hence,
the low value of z in natural swarms was a further in-
dication of the need for non-dissipative dynamics also
in these non-polarized systems. Finally, dynamic relax-
ation in the Vicsek model has a classic exponential form
[20], while natural swarms display a completely different
shape, showing clear evidence of non-dissipative inertial

behaviour for short times. More precisely, if we define the
relaxation form factor [20], h = Ċ(t/τ)/C(t/τ), in the
limit t/τ → 0 we have that h → 1 for the Vicsek model
(as for any exponential correlation function), while ex-
periments showed h→ 0 for natural swarms, as it would
happen in a weakly damped harmonic system, where in-
ertia dominates over dissipation [20]. Hence, the whole
dynamical behaviour of swarms seems to require the ex-
istence of non-dissipative inertial terms in the equations
of motion, which is exactly the extra ingredient the ISM
has compared to the Vicsek model.

Our plan is therefore to study the critical dynamics
of the ISM in its disordered yet near-critical phase, to
describe the collective behaviour of natural swarms of
insects, in order to try and reproduce the experimental
results of [20]. Because the ISM was originally introduced
to describe the dynamics of flocks, it has been studied
extensively in its deeply ordered (i.e. polarized) phase,
both numerically [23], and theoretically [37], while no
previous studies of the ISM in the near-critical regime
have been performed.

C. Fixed network approximation

Before we proceed with the coarse-graining of the
model, though, we need to decide whether to attack
directly the full-fledged off-equilibrium problem, which
includes the self-propelled nature of collective motion,
or whether we first take on the simpler (and yet non-
trivial) equilibrium problem, in which particles sit on a
fixed network and thus have a time-independent inter-
action matrix. For a number of reasons, we will follow
the second strategy. The model we want to study dif-
fers from previous known cases in two main respects: i)
it contains non-dissipative terms and effective friction,
the interplay of which has never been studied before, not
even at equilibrium; ii) the model is a self-propelled one,
hence intrinsically off-equilibrium, which may seem par-
ticularly important in the swarm phase, in which each
particle changes the local neighbours quite rapidly. Our
central experimental concern is to reproduce the cor-
rect dynamical critical exponent z and the correct relax-
ation form factor in natural swarms. The fact that the
self-propelled, off-equilibrium Vicsek model in its swarm
phase gives exactly the same exponent and form factor
as equilibrium fully dissipative models (as the classical
Heisenberg model), suggests that self-propulsion is not
the primary source of the anomalous critical dynamics of
swarms. Moreover, we believe that having under control
the equilibrium problem puts us in a more solid position
to tackle the off-equilibrium one in the future, much as
knowing the physics of the equilibrium XY and Heinse-
berg models has been fundamental to fully understand
and appreciate the Vicsek model. Hence, we will study a
fixed-network version of the ISM, in which the particles
belong to a lattice and the connectivity matrix does not
depend on time. In this context, the order parameter no
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longer has the role of a physical velocity, hence we will
call it ψ, the generic symbol for the order parameter, and
write the microscopic model in the following way,

dψi
dt

=
1

χ̂
si ×ψi (9)

dsi
dt

= ψi × Ĵ
∑
j

nijψj −
η̂

χ̂
si +ψi × ζi . (10)

The modulus of the order parameter is still fixed to
|ψi|2 = 1 and the adjacency matrix nij now corresponds
to a fixed interaction network. Thanks to this approxi-
mation, dynamics can now be rewritten in Hamiltonian
terms,

dψi
dt

= −ψi ×
∂H

∂si
(11)

dsi
dt

= −ψi ×
∂H

∂ψi
− η̂ ∂H

∂si
+ψi × ζi , (12)

with microscopic Hamiltonian,

H = −Ĵ
∑
i,j

nijψi ·ψj +
∑
i

s2
i

2χ̂
. (13)

This is the dynamical model we now proceed to coarse-
grain in order to obtain a dynamical field theory.

III. COARSE-GRAINED FIELD THEORY

A. Equations of motion

Since we are interested in describing the large scale
behavior of the system, it is convenient to pass from a
microscopic description in terms of site dependent vari-
ables to a field description, where we consider smoothly
varying velocity and spin fields ψ(x, t), and s(x, t), ob-
tained by coarse graining the original variables over a
small spatial volume. Upon coarse-graining, the original
Hamiltonian (13) gives rise to an effective field Hamilto-
nian H[ψ, s] that - as in standard ferromagnetic systems
- reads [38, 39]

H[ψ, s] =

∫
ddx

{
1

2
(∇ψ)2 +

1

2
r0ψ

2 + u0ψ
4 +

s2

2χ0

}
,

where r0 is the bare mass (negative in the ordered phase),
u0 is the bare static coupling constant and χ0 is the effec-
tive inertia. Here, we remind, the gradient term comes
from the mutual alignment interaction, which favours
smoother configurations; the quadratic and quartic con-
tributions forψ represent a confining potential and derive
from the original constraint on the ψi and the coarse-
graining entropy; while the field s remains Gaussian as
its microscopic counterpart.

When writing down the dynamical equation of motion
for the fields, we need to take into account the presence of

both the reversible and dissipative contributions present
in the microscopic dynamics (11)(12), and add additional
dissipative terms, which might arise upon coarse grain-
ing. Under very general assumptions [21, 40], we can
therefore write

∂ψ

∂t
= −Γ0

δH
δψ

+ g0ψ ×
δH
δs

+ θ (14)

∂s

∂t
= (λ0∇2 − η0)

δH
δs

+ g0ψ ×
δH
δψ

+ ζ , (15)

where the noise correlations are chosen to have a
Boltzmann-like static probability distribution, i.e.〈
θα(x, t)θβ(x′, t′)

〉
= 2Γ0δαβδ

(d)(x− x′)δ(t− t′)〈
ζα(x, t)ζβ(x′, t′)

〉
= 2(η0 − λ0∇2)δαβδ

(d)(x− x′)δ(t− t′)
(16)

Here Γ0, η0 and λ0 are the bare kinetic coefficient of
the field ψ, the bare friction coefficient and transport
coefficient of the field s, respectively, while g0 is a mode-
coupling constant that regulates the reversible dynamical
terms and describes the symmetry properties relating the
two fields: the fact that s is the infinitesimal generator
of rotations of ψ is indeed specified by the Poisson com-
mutation rules,

{ψα, sβ} = g0 εαβγψγ ; {sα, sβ} = g0 εαβγsγ , (17)

where εαβγ is the Levi-Civita antisymmetric symbol.3

The static properties of the model only depend on the
Hamiltonian H. For the field ψ they are therefore the
same as in the Heisenberg model [21], with an ordering
phase transition occurring for r0 = rc. On the other
hand, at the static level s is a trivial, purely massive,
Gaussian field. Since there is no static coupling term be-
tween this field and the order parameter, the inertia χ0

will not acquire any perturbative contributions; hence, in
order to simplify our notation, we choose the units of s
such that χ0 = 1. The dynamic properties are ruled by
the transport coefficient λ0, by the effective friction η0,
by the kinetic coefficient Γ0 and by the dynamic coupling
constant g0; these quantities will take perturbative con-
tributions arising from the dynamic interaction between
s and ψ, which is ruled by g0.

Equations (14)-(15) have two additional dissipative
terms compared to the microscopic theory of Eqs. (11)-
(12), namely −Γ0δH/δψ and λ0∇2δH/δs. The first term
actually contains two contributions: first, a derivative of
the confining potential, ψ2 + ψ4, which is the coarse-
grained analogue of the microscopic sharp constraint,
|ψi|2 = 1; second, a diffusive piece, Γ0∇2ψ(x, t), which

3 Note that we reabsorbed the minus sign in front of the cross
products in (11-12) into the definition of the coarse-grained dy-
namical coupling constant, g0, so to obtain in (14-15) the same
field-theory notation as the classic reference papers, [41] and [42].
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derives from a loss of reversibility due to the coarse-
graining, and which describes the role of the fluctuations
of the order parameter in the relaxation process; even
though such fluctuations are negligible in the low tem-
perature phase (where we recover the microscopic theory
with Γ0 = 0) they are crucial when considering the sys-
tem close to the critical point. For this reason, even
though we neglected the Laplacian of the order parame-
ter in our previous analysis in the deeply ordered phase
[37], we need to take it into account in the present study
of the critical regime.

On the other hand, the origin of the spin transport
term, λ0∇2s(x, t), is perhaps less intuitive. In the micro-
scopic model the spin is dissipated by the friction through
the term −η̂si(t), hence one might have expected just a
term −η0s(x, t) in the coarse-grained theory. Why then
are we introducing the term in λ0∇2s(x, t)? We will show
in the following Sections that, in the context of pertur-
bation theory and the renormalization group, such term
arises naturally from the non linear interaction between
the two fields once a momentum shell integration is per-
formed. It is then necessary to include the transport
coefficient λ0 directly from the starting field equations.

We notice that for η0 = 0, equations (14) and (15) co-
incide with those of Model G (antiferromagnet), or, in
the planar case, of Model E (liquid helium), which have
a fully conserved spin dynamics and whose critical dy-
namical properties have been studied long ago in a series
of seminal papers [41, 42]. The renormalization group a-
nalysis described in the following sections will show that
in an appropriate regime (when η0 is small), the ISM
displays the same critical behaviour as these fully con-
servative models.

B. Free theory in Fourier space

The starting point to build the perturbative expansion
of the equations of motion is the free (or non-interacting)
theory, which is obtained by setting to zero the non-linear
coupling constants, namely g0 = 0 and u0 = 0. In Fourier
variables, hence using momentum k and frequency ω, the
free equations of motion become,

−iω ψ(k, ω) = −Γ0(k2 + r0) ψ(k, ω) + θ(k, ω) (18)

−iω s(k, ω) = −(η0 + λ0k
2) s(k, ω) + ζ(k, ω) . (19)

The free theory is linear and it is therefore possible to
solve it exactly by merely inverting equations (18) and
(19),

ψ(k, ω) = G0,ψ(k, ω)θ(k, ω) (20)

s(k, ω) = G0,s(k, ω)ζ(k, ω) , (21)

where the free propagators (or Green functions) are the
inverse of the dynamical operators in Fourier space,

G−1
0,ψ(k, ω) =− iω + Γ0(k2 + r0) (22)

G−1
0,s(k, ω) =− iω + (η0 + λ0k

2) . (23)

The propagators describe the response of the fields to
noise and to external perturbations [43]. We can also
define the free dynamic correlation functions,

C0,ψ(k, ω) = 〈ψ(k, ω)ψ(−k,−ω)〉 (24)

C0,s(k, ω) = 〈s(k, ω)s(−k,−ω)〉 . (25)

By using (20) and (21), and the noise correlators (16),
we get the relations,

C0,ψ = 2Γ0|G0,ψ|2 (26)

C0,s = 2(η0 + λ0k
2)|G0,s|2 . (27)

These four quantities, propagators and correlation func-
tions, are the building blocks of the perturbative expan-
sion.

Calculations in the RG context are carried out in
Fourier space, hence all relevant integrals are performed
over the momentum, k; in the infinite size limit the lowest
extreme of integration is k = 0 (otherwise, in finite-size
systems, it is of order 1/L), whereas the upper extreme
of integration is a momentum scale - the so-called cut-
off - indicated by Λ, corresponding to the inverse of the
length scale over which the coarse-graining has been per-
formed; practically speaking, if the continuous field has
been obtained by averaging the microscopic variables on
a volume of linear size L, we have Λ = 1/L. In principle
the coarse-graining is supposed to be performed over a
scale much larger than the lattice spacing, a; in practice,
though, L is still a microscopic length scale of the sys-
tem, so that, broadly speaking, one often assumes that
Λ is of order 1/a.

The cutoff is an arbitrary scale, which therefore
appears as an extra unknown parameter of the the-
ory. In fact, all bare parameters in the theory,
r0, u0,Γ0, λ0, η0, g0, depend on Λ, and therefore they are
all equally unknown. As we shall see, the central idea
of the renormalization group is to exploit constructively
the arbitrariness of Λ, by studying how the bare parame-
ters change when Λ is changed; from this flow the critical
properties of the theory will emerge.

IV. RENORMALIZATION GROUP IN
MOMENTUM SHELL

Broadly speaking, the renormalization group is a set of
symmetry transformations that are useful to determine
the scale invariance properties of a system at its crit-
ical point [5]. An RG transformation unfolds through
two stages: i) integration of the short wavelength details
and, ii) rescaling of length and time. The first operation
amounts to integrating the fields over large values of the
momentum, Λ/b < k < Λ, where b is a rescaling factor
larger than - but close to - 1; this integration interval is
the so-called momentum shell. The effect of integration
is to shift the cutoff from Λ to Λ/b; the RG idea is that
the long-distance physics of a system close to the criti-
cal point, where the correlation length is large, cannot
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change due to an arbitrary change of the cutoff. Hence,
the second stage consists in rescaling space (and conse-
quently time) in such a way to formally restore the orig-
inal cutoff Λ and to compare the newly obtained equa-
tions to the original ones. The compound effect of these
two stages is to effectively change the parameters that
appears in the equations of motion, hence determining
a flow in the space of parameters. At the critical point,
where the correlation length is infinite, the RG transfor-
mation must have left the system exactly the same, and
therefore the fixed points of the RG flow provide all the
important information on the large scale physical prop-
erties of the system.

The RG technique is nowadays standard and discussed
in the literature both for static and dynamical problems
[22, 40, 44, 45]. In this section we adopt a momentum
shell renormalization scheme [5], as this is the approach
that was used in the original papers on critical dynamics
[21, 41, 46]. This will allow us to immediately spot differ-
ences with respect to the fully conservative case [41]. In
Section VI we will illustrate how the same results can be
obtained using a Callan-Symanzik approach, more com-
mon in recent applications of the dynamical renormaliza-
tion group [40].

A. Integration of the short-wavelength details

In the first stage of the RG we integrate out short wave-
length fluctuations, namely modes with Λ/b < k < Λ.
This operation (described in Appendix D) leads to a new
effective theory that only depends on fields fluctuating
over larger wavelengths, k < Λ/b. In the free theory,
modes at different wave vectors are independent, so this

operation has no practical effects. On the other hand,
when non-linear interactions are present, the coupling
between long and short wavelength modes makes it im-
possible to carry our exactly this operation, which there-
fore requires a perturbative expansion that we describe
in detail in Appendix A. The bottom line result of shell
integration is to produce additional terms in the equa-
tions of motion that effectively modify the coefficients
of both the linear and the non-linear terms. We start
with the linear dynamical coefficients, namely Γ0, λ0 and
η0. These parameters are contained in the free propaga-
tors, eqs. (22) and (23). Due to the shell integration,
the propagators acquire some new contributions, the so-
called on-shell self-energies, Σb and Πb, so we can write,

G−1
ψ (k, ω) = −iω + Γ0(k2 + r0)− Σb(k, ω) (28)

G−1
s (k, ω) = −iω + (η0 + λ0k

2)−Πb(k, ω) . (29)

As we said, to compute the self-energies one uses per-
turbation theory. To carry out the expansion we follow
the generating functional approach of Martin-Siggia-Rose
[22, 42, 47], where averages of physical observables over
the stochastic dynamics are rewritten as thermal aver-
ages over a functional measure. The complication is that
new auxiliary fields must be introduced and the effective
field theory therefore involves four fields, rather than two.
The advantage is that the standard Feynman technique
can be used to perform a diagrammatic expansion, and
perturbation theory can be carried out in the same way as
in equilibrium statistical field theory. The details can be
found in Appendix A. To one loop order, the self-energies
read,

Σb(k, ω) =− 2g2
0

∫ Λ

Λ/b

ddp

(2π)d
(k2 + r0)

(p2 + r0)(−iω + Γ0(p2 + r0) + λ0(k− p)2 + η0)
(30)

Πb(k, ω) =− g2
0

∫ Λ

Λ/b

ddp

(2π)d
[p2 − (k− p)2]2

(p2 + r0)[(k− p)2 + r0][−iω + Γ0(p2 + (k− p)2 + 2r0)]
. (31)

The self-energies modify the poles of the propagators in
the frequency plane, therefore affecting the way response
and correlation functions decay in time. In particular,
the k → 0 and ω → 0 expansion of the self-energies and
of their derivatives modify the kinetic and transport co-
efficients, so that we can define their renormalized values,

ΓR ≡
∂G−1

ψ

∂k2

∣∣∣∣
k=0
ω=0

= Γ0

(
1− 1

Γ0

∂Σb
∂k2

∣∣∣∣
k=0
ω=0

)
(32)

λR ≡
∂G−1

s

∂k2

∣∣∣∣
k=0
ω=0

= λ0

(
1− 1

λ0

∂Πb

∂k2

∣∣∣∣
k=0
ω=0

)
(33)

ηR ≡ G−1
s

∣∣∣∣
k=0
ω=0

= η0

(
1− 1

η0
Πb

∣∣∣∣
k=0
ω=0

)
. (34)

First of all, we notice an important point: from (31) we
immediately see that Πb(k = 0) = 0, and therefore we
conclude that the effective friction η0 has no perturba-
tive corrections. As discussed in Appendix A, from the
diagrammatic point of view this is a consequence of the
structure of the vertex, which makes all perturbative con-
tributions to Πb(k = 0) equal to zero; therefore this result
is valid to all orders in perturbation theory. Physically,
this fact is a consequence of the rotational symmetry of
the theory: even though η0 breaks the conservation law
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of the spin, the symmetry is still at work, implying that
it is impossible for the conservative theory to produce a
non-conservative friction through coarse-graining.

The accuracy of the perturbation expansion is in-
creased by substituting the bare mass r0 with its renor-
malized value r [45], which represents the inverse static
susceptibility and goes to zero when the systems ap-
proaches the critical temperature. Since we are interested
in the critical behavior, from now on we will evaluate all
integrals at r = 0, namely at the critical point; given that
integrals are on the shell there are no infrared singulari-
ties and the self-energies are finite. We thus have,

ΓR = Γ0

[
1 + 2

g2
0

Γ0

∫ Λ

Λ/b

ddp

(2π)d
1

p2[(Γ0 + λ0)p2 + η0]

]
(35)

λR = λ0

[
1 +

1

2

g2
0

Γ0λ0

∫ Λ

Λ/b

ddp

(2π)d
1

p4

]
(36)

ηR = η0 . (37)

These equations show that there is a great difference in
the role of the two parameters λ0 and η0. If we start from

a frictionless model that has η0 = 0, the coarse-graining
of the RG will not generate a friction, ηR 6= 0, through
shell integration. On the contrary, even if we start from
a model without spin transport coefficient, λ0 = 0, in-
tegration over short wavelengths inevitably generates a
transport term λR 6= 0. In other words, the interaction
between the spin s and the primary field ψ generates a
non-zero transport coefficient λR even if λ0 = 0 in the
original microscopic theory. For this reason, we included
from the outset the parameter λ0 in the coarse-grained
field equations4.

To make further progress we must address a rather
crucial algebraic detail. While the integral in (36) is
straightforward, the one in (35) requires some care. The
cutoff Λ is large, while the rescaling factor b is close to 1;
hence, the shell integration is performed over large values
of the internal momentum p. If the effective friction η0

is finite (or zero), then the term of order p2 dominates
over η0 at the denominator, so that the overall integrand
will have a 1/p4 behaviour for large momentum. As we
shall see later on, the hypothesis that η0 < ∞ is by no
means harmless, and we shall need to return over this
point. Yet, for now we will work under this hypothesis,
and recognise that it is therefore convenient to rewrite
the integral as,

ΓR = Γ0

1 + 2
g2

0

Γ0(Γ0 + λ0)

∫ Λ

Λ/b

ddp

(2π)d
1

p2
(
p2 + η0

Γ0+λ0

)
 . (38)

We can now change variables, defining p = Λx, and obtain,

ΓR = Γ0

1 + 2
g2

0Λd−4

Γ0λ0(1 + Γ0

λ0
)

∫ 1

1/b

ddx

(2π)d
1

x2
(
x2 + η0

λ0

Λ−2

1+Γ0/λ0

)
 (39)

λR = λ0

[
1 +

1

2

g2
0Λd−4

Γ0λ0

∫ 1

1/b

ddx

(2π)d
1

x4

]
, (40)

It is now convenient to introduce a set of effective parameters, through which we can express these integrals in a
simpler way (so to speak),

f0 =
g2

0

λ0Γ0
KdΛ

d−4, w0 =
Γ0

λ0
, R0 =

√
λ0

η0
, (41)

where Kd is the unit sphere volume in dimension d. We can thus finally write the perturbative expression of all three
kinetic parameters after shell integration,

ΓR = Γ0

[
1 +

2f0

1 + w0

∫ 1

1/b

ddx

x2

1

x2 + (R0Λ)−2(1 + w0)−1

]
= Γ0

[
1 +

2f0

1 + w0
X0 log b

]
(42)

λR = λ0

[
1 +

f0

2

∫ 1

1/b

ddx

x4

]
= λ0

[
1 +

1

2
f0 log b

]
(43)

ηR = η0 , (44)

4 More to the point: η0 = 0 is an RG fixed point (although unsta- ble, as we shall see), whereas λ0 = 0 is not a fixed point.
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where we have introduced the dimensionless crossover pa-
rameter X0,

X0 =
(R0Λ)2(1 + w0)

1 + (R0Λ)2(1 + w0)
, (45)

and where to compute the integrals we have exploited the
fact that in the limit b → 1, that is for an infinitesimal
RG transformation, the shell becomes infinitesimal, so we
have written the integrals as the shell thickness, 1−1/b ∼
log b, times the integrand evaluated at x = 1.

The dimensionless parameter w0 is rather harmless,
and it will play only a moderate role in what follows;
quite conveniently, it will remain finite in all fixed points
we will find. On the other hand, f0 is crucial, as it ac-
quires the role of the effective dynamical coupling con-
stant: the perturbative expansion, which naively one
would think as a series in powers of g0, is in fact a series
in powers of f0. From the dimensional form of f0, and
in particular from the fact that it contains a term Λd−4,
RG connoisseurs can already deduce that the dynamical
upper critical dimension of the theory will be dc = 4,
the same as the static one. This will be made explicit
once we will have solved the recursive RG equation for
f0 further on. We recall that this is a consequence of the
fact that both integrands go like 1/p4 for large momenta,
hence giving a logarithmic behaviour at d = 4, and that,
in turns, this is a consequence of having assumed that η0

is finite in the integral of equation (35). We will return
on this hypothesis later on.

The second important effective parameter emerging
from the equations is the length scale, R0, given by the
ratio between the transport coefficient and the effective
friction of the spin. Because of its definition, we can intu-
itively expect that if R0 is large (η0 small) the dynamics
of the spin is ruled by a conservative diffusion mechanism.
On the contrary, if R0 is small (η0 large), we expect the
dynamics of the spin to be ruled by a dissipation mech-
anism. It is worth noticing that for R0 = ∞, namely
η0 = 0, the crossover parameter is equal to 1, and one
correctly gets the same equations as the fully conserva-
tive Model G. On the other hand, when the conservation
length scale is very small, R0 ∼ 0, which happens for
η0 � λ0, one gets X0 ∼ 0, so that Γ0 receives very
weak perturbative corrections at one loop. We will re-
turn on this crucial point later on and we will see that
this interplay between non-conservative dissipation and
conservative transport coefficient of the spin plays a key
role, giving rise to a non-trivial crossover between two
different RG fixed points with different dynamic critical
exponents.

Up to now we focused on the coefficients of the linear
terms in the equations of motion, Γ0, λ0, η0. However,
in general shell integration produces corrections to all
terms, including the non-linear ones. Therefore, the dy-
namical coupling constant, g0, could in principle get a
perturbative correction from shell integration, in partic-
ular from the renormalized vertex. However, it can be
shown that - due to the structure of the interaction ver-

tices - there are no perturbative corrections at all orders
(see Appendix B about vertex corrections),

gR = g0 . (46)

As in the case of the lack of corrections to η0, this result is
a consequence of the symmetry properties of the system.
Indeed, we remind that the field s is the generator of
the rotational symmetry of the ψ field. Even though the
global spin is not conserved in our case, the symmetry
still generates some Ward identities that protect g0 at all
orders (see Appendix C).

Finally, let us note that the static coupling constant,
u0, is renormalized as usual in the standard equilibrium
theory [45]. However, the lowest order corrections to the
dynamical coefficients due to the vertex u0 are at two
loops [21], whereas we perform here a one loop calcula-
tion. Therefore we do not need to address static renor-
malization any further in what follows. This is actually a
nice feature of all theories with mode-coupling terms: the
dynamical vertex is triple (see Appendix A), hence one
obtains very sizeable corrections to the critical exponents
already at one loop order, without using the two-loop
corrections of the static vertex.

B. Rescaling of space and time

After integration over the shell, we are left with a the-
ory which has new renormalized parameters, and also a
new, smaller cutoff, Λ/b. In order to compare the new
theory with the old one, and therefore to be able to write
a set of recursive equations for the parameters, we rescale
space, and therefore momentum k, by a factor b, in such
a way to formally restore the original cutoff, Λ/b → Λ.
It must be noted that frequency does not have a similar
cutoff, hence in principle we would have no formal need
to rescale ω; however, this is deceiving: in order to re-
absorb all powers of b in the novel equations of motions
one can see that it is necessary also to rescale frequency
[21]. Physically, this means that to the rescaling of space
and time cannot proceed independently: space and time
are tied together by the - yet unknown - dynamic critical
exponent z, through the following rescaling relations,

k → bk ω → bzω . (47)

Due to the non-linear form of the equations of motion,
we do not a priori know how the spatial integration af-
fects the dynamics and we therefore allow for a generic
dynamic critical exponent, z. As we shall see, its value
determines how the order parameter relaxes close to crit-
icality.

Rescaling momentum and frequency actually means
changing physical units, hence each parameter will also
rescale according to its naive physical dimensions, which
can be expressed in powers of b in the following way,

Γ0 → bz−2Γ0 , λ0 → bz−2λ0

η0 → bzη0 , g0 → bz−d/2g0 .
(48)
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Because the perturbative contribution of the shell in-
tegrals are given in terms of the effective parameters,
f0, w0,R0, it is also necessary to write their correspond-
ing rescaling laws,

f0 → b4−df0 , w0 → w0 , R0 → b−1R0 . (49)

For d > 4 the naive dimension of the effective coupling
constant f0 becomes negative; as we shall see this implies
that at its non-trivial fixed point the effective coupling
constant will be of order ε, with,

ε = 4− d , (50)

as it happens to the static coupling constant, u0 [8], con-
firming the fact that the dynamical upper critical dimen-
sion is dc = 4. We notice that, in general, the rescaling of
k and ω implies also a rescaling of the fields, which also
carry some physical dimensions. However, once again we
remark that the current calculation is at one-loop level,
whereas the fields renormalize at two-loop level; hence,
in the following, for all practical purposes all will proceed
as if the fields do not renormalize.5

C. Renormalization group recursive equations

The two stages described above, shell integration and
rescaling, must now be put together to define one step of
the RG transformation; in this step, a generic parameter
P is brought from its initial bare value, P0, to a new
value, P1 through an RG equation with the structure,

P1 = bDP P0 (1 + δP log b) , (51)

where the power of b comes from the rescaling step, so
that DP is the physical dimension of P, whereas the term
in the bracket comes from the shell integration. For an in-
finitesimal RG transformation b ∼ 1, hence we can write
1 + δP log b = bδP , so that δP is an effective correction
to the naive scaling dimension DP of the parameter. Of
course, δP , which is the result of the shell integration,
will depend on all the other parameters of the theory.
One can then iterate this step l times, giving rise to a
recursive RG equation for P,

Pl+1 = bDP Pl (1 + δPl log b) , (52)

where we emphasise that all integrals that appear at the
r.h.s. through the factor δPl , must be evaluated at the
running value of the parameters, namely at their value
at the RG step l, whereas the naive physical dimension
DP is fixed once and for all. By using this procedure for

5 For this same reason the anomalous dimension of the field ψ,
normally called η (not to be confused with the friction), will be
set to zero in the present calculation.

the dynamical parameters of our theory, we obtain the
following RG recursive relations,

Γl+1 = bz−2 Γl

(
1 +

2fl
1 + wl

Xl log b

)
(53)

λl+1 = bz−2 λl

(
1 +

1

2
fl log b

)
(54)

ηl+1 = bz ηl (55)

gl+1 = bz−d/2 gl , (56)

and we recall that we are working at T = Tc, namely
on the critical manifold. From these equations we can
finally write a closed set of recursive relations for the ef-
fective coupling constant fl, the dimensionless parameter
wl, and the conservation length scale Rl,

fl+1 = fl b
ε

[
1− fl

(
1

2
+

2Xl

1 + wl

)
log b

]
wl+1 = wl

[
1− fl

(
1

2
− 2Xl

1 + wl

)
log b

]
Rl+1 = Rl b−1

[
1 +

1

4
fl log b

]
,

(57)

where Xl depends on Rl and wl through equation (45).
We note that the full scaling dimension of the conserva-
tion length scale R is determined by its naive dimension,
b−1, plus a perturbative contribution, 1+ 1

4fl log b = b
1
4 fl ,

hence developing an anomalous scaling dimension that
will be crucial in ruling the crossover.

The derivatives of f , w and R with respect to (− log b)
are called beta-functions, and measure how the parame-
ters change when performing an infinitesimal RG trans-
formation,6

βf = −f
[
ε− f

(
1

2
+

2X

1 + w

)]
βw = wf

[
1

2
− 2X

1 + w

]
βR = R

[
1− 1

4
f

]
.

(58)

The zeros of these functions define the fixed points of
the RG flow and thus have a crucial role in the theory.
The beta-functions also will provide a link between the
momentum shell RG approach followed so far and the
Callan-Symanzik approach described in Section VI.

6 Normally, in momentum shell, the β-functions are defined as
derivatives wrt log b; however, in that way one ends up with
the opposite sign of the Callan-Symanzik approach, within the
context of which they are defined as derivatives wrt the arbitrary
momentum scale, µ, which is morally 1/b. No big deal; we use
this convention so to have, in the end, the same set of β-functions.
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D. Fixed points and dynamic critical exponent

The fixed point values of the RG equations (that we
are going to indicate with an asterisk) rule the critical
behaviour of the system. The exponent z can be found
by requiring that the fixed point value of the kinetic coef-
ficient of ψ, namely Γ∗, is finite [21, 22]. This condition,
as we shall see, is what we need to investigate the relax-
ation behavior of the field ψ close to criticality. From
equation (53) we obtain z as:

Γ∗ = O(1) ⇒ z = 2− 2f∗

1 + w∗
X∗ . (59)

The dynamic critical exponent is therefore given by the
fixed point values of the parameters f , w and X.

From the corresponding recursion equation (57) it is
evident that R can have two fixed points, namely:

R∗ = 0 R∗ =∞ . (60)

Since the fixed point of f is expected to be of order ε
(see Eqs. (58)), the scaling dimension of R is negative.
Therefore, the R∗ = 0 fixed point is IR-stable while the
R∗ =∞ fixed point is IR-unstable: any large, but finite,
initial value ofR0, decreases under the RG equation (57),
driving the systems to the R∗ = 0 fixed point. Inserting
back the possible values of R∗ in the other equations,
we therefore find two fixed points for the global set of
parameters.

1. The IR-unstable conservative fixed point

The first fixed point with R∗ =∞ and X∗ = 1, which
we call IR-unstable (or conservative), is:

f∗ = ε w∗ = 3 R∗ =∞ X∗ = 1 ⇒ z = d/2 .

This fixed point describes a dynamics with z = d/2, typi-
cal of conservative models such as Model G and Model E
[41]. Indeed, dissipation becomes irrelevant (η∗ = 0), and
the conservation law expressed by the symmetries of the
Hamiltonian, rules the dynamics at all scales. If the sys-
tem has R0 =∞ (i.e. η0 = 0) the RG flow will converge
to this fixed point, the only stable one for zero dissipa-
tion. However, as mentioned above, any other value of
R0 will cause the flow to eventually converge to the other
fixed point.

2. The IR-stable dissipative fixed point

The second fixed point is characterized by R∗ = 0, or
equivalently X∗ = 0, and we call it IR-stable (or dissipa-
tive):

f∗ = 2ε w∗ = 0 R∗ =∞ X∗ = 0 ⇒ z = 2 .

In this case, dissipation takes over (η∗ =∞) and the dy-
namic critical exponent that we obtain is z = 2, which
is common for models with a completely dissipative dy-
namics [21]. What we have depicted here is a scenario
that includes the presence of two fixed points with dif-
ferent dynamical behaviors and different dynamic critical
exponents, namely z = d/2 (conservative dynamics) and
z = 2 (dissipative dynamics). Even though one of such
fixed points is unstable along one direction, it is stable
along the others and - as it will be discussed in the next
section - it can rule the RG flow at intermediate itera-
tions. In other terms, there is a crossover in the RG flow
in parameter space and, as a consequence, also in the
behavior of physical observables.

V. RENORMALIZATION GROUP CROSSOVER

A. RG flow on the critical manifold

To investigate the dynamic crossover we studied the
RG flow from a numerical point of view. In the limit
of infinitesimal RG transformation (b → 1), the recur-
sion relations (57) become a system of coupled differ-
ential equations. We introduce the continuous variable
x = l log b; Eqs. (57) can then be rewritten in the con-
tinuum limit (replacing, for instance, f(x) = fl):

f ′(x) = βf (f, w,R)

w′(x) = βw(f, w,R)

R′(x) = βR(f, w,R) ,

(61)

where the prime stands for a derivative with respect to
x.

The set of Equations (61) can be studied numerically,
for any given initial condition. In Fig.1 (upper panel), we
show the resulting flow in the (X, f) plane, each line cor-
responding to a different set of initial values of η0, λ0,Γ0

(and therefore of f0 and X0). The flow always proceeds
from the conservative to the dissipative fixed point, as
expected. However, how fast it does so, depends on the
initial condition X0. When this value is close to 1, which
means that the friction η0 is small, the flow of parame-
ters approaches the z = d/2 fixed point and remains close
to it for many RG iterations. Then, it eventually moves
towards the stable fixed point with z = 2. In the lower
panel of FIG.1 we show the same dynamic crossover in
terms of z, of the coupling constant f and of X. From
this figure we clearly see that there is a well defined in-
termediate regime where the flow is regulated by the un-
stable fixed point, the parameter X driving the dynamic
critical exponent from one value (z = d/2) to the other
(z = 2).
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FIG. 1. Renormalization group flow and crossover.
Top: Flow diagram on the (Xl, fl) plane for d = 3. When
the initial friction η0 is small, X0 ∼ 1, the flow converges
towards the unstable fixed point, z = d/2, and remains in
its proximity for many iterations, before crossing over to the
stable z = 2 fixed point. Bottom: running parameters and
critical exponent z as a function of the iteration step along a
flow line at small η0.

B. Crossover in the critical dynamics

What we have discussed so far is the crossover tak-
ing place along the RG flow in parameters space. This
crossover has important observable consequences in the
relaxational behavior of the system. In the previous sec-
tion we showed that there is a parameter with the dimen-
sions of a lenght-scale, R, which plays a crucial role in
the RG flow. As we shall see, it is precisely the interplay
between R and the relevant physical lenght-scales in the
system, to determine the way it relaxes.

1. Crossover in k at ξ =∞

Let us start by considering the system at the critical
point (r = 0). In this case the correlation length is infi-
nite and the only physically relevant length scale is the
one at which we are observing the system, namely 1/k.
To study relaxation at this scale, we can measure the
characteristic frequency of the order parameter, which
is directly connected to the dynamic critical exponent
through the dynamic scaling hypothesis (8), which, for

ξ =∞ and for small k, reads,

ωc(k) = τ−1
k ∼ kz , (62)

where we have introduce the characteristic frequency, ωc,
as the inverse of the relaxation time. Since there are two
possible values of z one can wonder at this point which is
the one to consider in this relationship. It turns out that
this depends on k vs. R. To see this, we remind that
the characteristic frequency is the pole of the propaga-
tor of the field ψ and we can therefore study its infrared
behavior by looking at G−1

ψ at small k. This is very con-
venient because - by construction - propagators along the
RG flow are related to each other, and we can link what
happens in parameters space to the physical behavior of
the system.

At every step l of the RG, the physical propagator
verifies the relation,

Gψ(k, ω,P) = (bl)zlGψ(blk, ωbzl ,Pl) , (63)

where with Pl we indicate the set of the parameters after
l steps of RG (and P = P0 in the l.h.s.). The scaling
factor on the right side of (63) is just the scaling dimen-
sion of the propagator. What we are doing is to con-
sider an initial point in parameters space corresponding
to our physical system (l.h.s.), and then follow the RG
flow in the critical manifold starting at that point. As
l increases, the propagator on the r.h.s. is evaluated at
farther points along the RG line. Since we know that
there is a crossover along the RG flow we are writing this
expression with a dynamic critical exponent, which ex-
plicitly depends on the recursion step l. If we choose l
such that bl = Λ/k, i.e. the maximum possible value, the
inverse of the propagator satisfies:

G−1
ψ (k, ω = 0,P) =

(
Λ

k

)−z∗
G−1
ψ (Λ, ω = 0,P∗) . (64)

Here we have evaluated the function on the right side at
the fixed point values of the parameters P. This is justi-
fied if l is large enough to approach the vicinity of a fixed
point (i.e. small k). Which one of the two fixed points is
reached - and therefore the value of z∗ above - depends
on the starting point (i.e. the set P) and on the precise
number of iterations. More precisely, the condition that
discriminates between the two possible fixed points is:

Rl ' Λ−1 , (65)

because it determines the value of the variable Xl in ex-
pression (59). Let us consider the situation, which in-
terests us more, where the starting point of the flow is
close to the IR-unstable fixed point. The initial value of
R is therefore large, corresponding to a system with low
η0. If Rl � Λ−1 holds for all the iterations, the flow
will explore only the neighborhoods of the unstable fixed
point and the values of P∗ in (64) are the ones of the
conservative dynamics. Therefore, in this case:

G−1
ψ (k, ω = 0,P) ∼ kd/2 =⇒ ωc ∼ kd/2 . (66)
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However, it may happen that, even starting at the same
point in parameters space, the number of iterations is so
large that eventually the condition Rl � Λ−1 becomes
satisfied, and the flow approaches the stable fixed point
corresponding to z = 2. In this case:

G−1
ψ (k, ω = 0,P) ∼ k2 =⇒ ωc ∼ k2 . (67)

Since the number of iterations is fixed by the value of
the wave-number k (bl = Λ/k), the condition Rl ' Λ−1

can be translated into a condition on k. The recur-
sion relation for the conservation length scale gives Rl =
R0b

l(−1+f∗/4); since we are considering a flow starting
close to the conservative fixed point, we can set f∗ = ε,
which gives the anomalous scaling dimension of R at the
conservative fixed point,

R ∼ b−d/4 , (68)

from which we see that the length scale R has a scaling
dimension equal to its naive dimension at the upper crit-
ical dimension, d = 4, as expected. From the relation
Rl = R0b

l(−d/4) we can finally identify a threshold value
kc marking the limit between the two different scenarios
described above, namely:

kc = Λ(ΛR0)−4/d . (69)

To summarize, we therefore find that at criticality the
relaxation behavior of the order parameter - as captured
by the critical exponent z - depends on the relation be-
tween the scale at which we observe the system and the
value of the length-scale R0, i.e.

k � Λ(ΛR0)−4/d → z = 2

k � Λ(ΛR0)−4/d → z = d/2 .
(70)

We therefore have found the third non-trivial critical ex-
ponent of the theory, namely the crossover exponent [22],

κ = 4/d , (71)

which, as we have seen, is intimately related to the
anomalous dimension of the conservation length scale.
In Fig.2 we show the regions corresponding to the two
dynamical behaviors in the (k−1,R0) plane.

2. Crossover in ξ at k = 0

In many cases, and in particular when looking at exper-
imental data, real systems are not exactly at the critical
point. For all practical purposes we need to extract infor-
mation on the critical behavior of the system also when
its correlation length ξ is finite, even if large. Predictions
can be obtained following a reasoning much similar to
the one above, but taking explicitly into account the de-
pendence of the propagator on temperature, i.e. on the
correlation length. Besides, since there is a characteristic

z = 2

z =
d

2

1 2 3 4 5
1

2

3

4

5

ξ,-1

ℛ
0

FIG. 2. Different critical regions. Different values of k, ξ
and R0 correspond to different critical behaviors. Red region
corresponds to conservative critical dynamics with z = d/2,
while green region corresponds to dissipative critical dynamics
with z = 2. We set Λ = 1 so that physical values for lengths
are k−1 > 1, ξ > 1 and R0 > 1. On the critical manifold
relaxation is studied in the (k−1,R0) plane: the two different

regimes are separated by the curve R0 = k−d/4. Off the
critical manifold relaxation is studied in the (ξ,R0) plane: the

two different regimes are separated by the curve R0 = ξd/4.
The black dashed line represents, respectively, R0 = k−1 or
R0 = ξ. The figure refers to the d = 3 case.

length-scale, it is convenient to set k = 0, ω = 0. Instead
of Eq. (63), the relevant equation for the propagators
then becomes

Gψ(ξ) = Gψ(k = 0, ω = 0, ξ,P)

=
(
bl
)zl

Gψ(k = 0, ω = 0, ξl,Pl) .
(72)

What we are doing is, again, to consider a point in param-
eters space corresponding to our physical system, and to
relate the physical propagator with propagators of mod-
els along an RG line starting at that point. The differ-
ence with the previous case is that now the RG flow takes
place off the critical manifold, therefore not only the pa-
rameters change upon iteration, but also the correlation
length, i.e.

ξl+1 = ξl/b , (73)

with ξ0 = ξ (i.e. the correlation length of the physical
system). We can choose the number l of iterations such
that bl = ξΛ. If ξ is large enough that the system comes
close to a fixed point, then the inverse propagator satisfies
the relation:

G−1
ψ (ξ) = (Λξ)−z

?

G−1
ψ (k = 0, ω = 0,P∗) . (74)

Since the pole of the propagator for k = 0 is the global
characteristic frequency of the system, we immediately
get the relaxation behavior as ωc(ξ) ∼ ξ−z

?

. As before,
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the value of z depends on which one of the two fixed
points is approached at the end of the RG flow after l
iterations. The discriminating condition is always Rl '
Λ−1. For Rl � Λ−1 the fixed point is characterized by
z = d/2, then the characteristic frequency diverges as:

G−1
ψ (ξ) ∼ ξ−d/2 =⇒ ωc ∼ ξ−d/2 . (75)

For Rl � Λ−1, the other fixed point is reached (z = 2)
and we have:

G−1
ψ (ξ) ∼ ξ−2 =⇒ ωc ∼ ξ−2 . (76)

Since the number of iterations is fixed by ξ (i.e. bl = ξΛ),
the discriminating condition Rl ' Λ−1 now identifies a
threshold value ξc for the correlation length that can be
obtained using the recursion relations of both R and ξ:

ξc '
(
R0Λ

)4/d
Λ−1 . (77)

To conclude, we therefore find that critical slowing down
is ruled by two different critical exponents depending on
how large the correlation length is (i.e. how close the
system is to the critical point) with respect to the con-
servation length-scale R0, i.e.

ξ �
(
R0Λ

)4/d
Λ−1 =⇒ z = 2

ξ �
(
R0Λ

)4/d
Λ−1 =⇒ z = d/2 ,

(78)

thus giving the same crossover exponent as in the k de-
scription. A graphical representation of the different crit-
ical regimes can be found in Fig.2. To summarize, it is
therefore the interplay between the correlation length ξ

and the conservation length-scale R0 that defines what
kind of critical dynamical behavior is observed. We also
note that - due to the non-trivial recursion relation for
R (see Eqs.(57)) - these two lenghtscales rescale differ-
ently upon RG transformations. As a consequence, the
region corresponding to the conservative critical dynam-
ics is larger than in the case of naive scaling.

C. A new upper critical dimension

So far we have been studying the RG flow in the vicin-
ity of the conservative, z = d/2, fixed point. Our original
motivation was indeed to describe experimental findings
on swarms of insects, where a low-dissipation critical dy-
namics has been observed. As we have seen, in the neigh-
bourhood of this fixed point we have an upper critical
dimension dc = 4 and the effective dynamic coupling
constant is the parameter f0. However, we also showed
that the conservative fixed point is unstable, hence the
RG flow inevitably brings the system to the dissipative
fixed point, z = 2. The problem is that, in the vicinity
of this fixed point, the on-shell self-energy Σb has to be
treated quite differently form the previous case, and f0

does not play the role of the effective dynamic coupling
constant anymore. Let us see this in more detail.

In proximity of the IR-stable fixed point, the running
effective friction ηl becomes very large, eventually diverg-
ing. In this regime, our previous assumption to have a
mild, finite value of the friction ηl in equation (35) must
be revised, and the integral must be rearranged differ-
ently,

Γl+1 = bz−2 Γl

[
1 + 2

g2
l

Γl

∫ Λ

Λ/b

ddp

(2π)d
1

p2[(Γl + λl)p2 + ηl]

]
= bz−2 Γl

1 + 2
g2
l

Γlηl

∫ Λ

Λ/b

ddp

(2π)d
1

p2
(

Γl+λl
ηl

p2 + 1
)
 .

(79)

We see that, as the running friction ηl goes to infinity,
approaching the stable fixed point, the large p behaviour
of the integrand turns from 1/p4 to 1/p2, thus giving,

Γl+1 = bz−2 Γl

[
1 + 2

g2
l

Γlηl

∫ Λ

Λ/b

ddp

(2π)d
1

p2

]
. (80)

From this last equation it is clear that, in the proximity
of the IR-stable fixed point, the actual effective coupling
constant in the perturbative expansion of Γl, is no longer
fl, but ql = g2

l Λ2−d/Γlηl, whose naive scaling dimension
is d − 2, not d − 4; accordingly, the integral now has a
logarithmic UV divergence at d = 2. We conclude that
the upper critical dimension for this fixed point is no
longer 4, but d̃c = 2, and that the actual parameter of

expansion is,

ε̃ = 2− d . (81)

In d = 3, which is the case of interest for us, the dimen-
sions of q is negative, which is equivalent to say that the
only stable fixed point is q∗ = 0 (this can also be seen
explicitly by writing the RG recursive equations for ql).
Therefore, the self-energy contribution in (80) vanishes
and the kinetic coefficient has no perturbative contribu-
tions (at one loop), thus giving,

Γl+1 = bz−2Γl , (82)

so that the only way to keep finite the kinetic coefficient
at its fixed point is to have,

z = 2 , (83)
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in agreement with the previous result. In this regime ψ
behaves dynamically as an independent field, i.e. its re-
laxation has no contributions from the mode-couplings
term in the equations of motion. This very non-trivial
crossover between two different upper critical dimensions
will be made more explicit in the Callan-Symanzik ap-
proach, which we describe the following Section.

VI. CALLAN-SYMANZIK APPROACH

In this section we derive the RG results within a dif-
ferent renormalization approach, in which the large scale
properties of the system are deduced from a differential
equation (called Callan-Symanzik equation or renormal-
ization group equation). This equation in turn follows, as
we explain below, from a reparametrization invariance of
the renormalized dynamic theory, which is introduced to
deal with the strong cutoff (Λ) dependence of the original
theory (which leads to divergences in the Λ→∞ limit).
This approach is complementary to the momentum-shell
renormalization developed in Sec. IV. Its principles are
described in several texts, e.g. [39, 48–50]. Our treat-
ment of the ISM under the Callan-Symanzik approach
follows the lines of the dynamic renormalization study of
model E by De Dominicis and Peliti [42] (see also [50]).
The CS approach involves the following steps:

1. Write a renormalized theory, i.e. reparametrize the
original dynamic functional in a way that all Λ-
dependence (equivalently, divergencies that appear
for Λ → ∞) of physical observables is absorbed
into a finite set of constants. This is done at an
arbitrary momentum scale µ.

2. Using the fact that the renormalization can be done
at arbitrary values of µ, write a differential equa-
tion describing how relevant renormalized observ-
ables (in our case the response and correlation func-
tions) change as µ = |µ| is varied. This is the
RG equation, sometimes called CS equation. Com-
bining this with dimensional analysis, one finally
obtains a differential equation that describes the
change of the renormalized observable as the obser-
vation scale (external momentum) is varied. The
coefficients of this equation are the β-functions,
which are computed from the renormalization con-
stants at a given order in perturbation theory. The
equation is solved by the standard method of char-
acteristics.

3. The solution by the method of characteristics shows
that the behavior of the response and correlations
functions at large scales can be obtained by study-
ing the response/correlation at a reference observa-
tion scale but with scale-dependent coupling con-
stants. How the coupling constants change when
increasing the observation scale is ruled by the β
functions, and the trajectories in parameter space

induced by a change of scale are called RG flow.
Thus one finally studies the RG flow, with partic-
ular attention to fixed points, which will lead to
scaling behavior of the response.

We describe these steps in the following subsections.
Many aspects of the calculation are identical to Models
E and G and for these we refer to the article by De Do-
minicis and Peliti [42]. We only describe in detail the
aspects that are novel in the ISM.

A. Renormalized theory and renormalization
factors

The diagrammatic expansion of the dynamical action
involves integrals in momentum space that are divergent
(in the space dimension of interest) for large integration
momenta (ultraviolet divergences) unless some regular-
ization procedure is adopted (like the cutoff Λ for large
momentum we used in the momentum-shell calculation,
see Appendix A). To construct a renormalized theory
means to reparameterize the functional in terms of a dif-
ferent set of coupling constants and fields in such a way
that the divergences (or equivalently the details of the
regularization procedure) are confined in a finite set of
constants.

Instead of using a cutoff, here we renormalize accord-
ing to the dimensional regularization plus minimal sub-
traction prescription [50]: diverging integrals are evalu-
ated in a dimension low enough that they are conver-
gent, then analytically extended to non-integer dimen-
sion. The original divergences then show up as poles in
the dimension variable. The minimal subtraction proce-
dure consists in introducing the renormalized parameters
so that they absorb only those poles.

Renormalization thus starts with the identification of
all the ultraviolet divergences of the theory and with the
definition of the renormalized constants to absorb them.
Looking at the perturbative expansion, we see that the
introduction of η0 leaves the free propagator of the ψ
field (22) unchanged with respect to the model G case,
while in the free propagator of the s field G0,s(k, ω) a k-
independent term is added, so that the k →∞ behavior
of the free propagators is unchanged. Then, since the
structure of the diagrams is identical to that of models
G and E (because the interacting part is the same), the
divergences in ISM arise in the same diagrams. Then
from ref. [42] we know that the theory is renormalizable
in d = 4 (which is the upper critical dimension of the
theory). The divergent diagrams relevant to the dynamic
renormalization arise in the expansion of Gψ(k, ω) and
Gs(k, ω), in particular in the derivatives

∂G−1
ψ

∂k2
,

∂G−1
s

∂k2
. (84)

Both divergences are logarithmic in d = 4. There are
two additional divergences in Gψ(k, ω) that we do not



17

need to consider. One is the quadratic divergence in
G−1
ψ (k = 0, ω = 0) that is absorbed into a renormalized

mass (susceptibility) in the static theory. Since we work
here at the critical point defined by r = 0, in practice
this means setting r0 = 0 in all the diagrams we consider.
There is also a logarithmic divergence in ∂G−1

ψ (k, ω)/∂ω

that however does not arise at the 1-loop level (and which
is related to field renormalization).

The divergences are taken care in the following way:
we consider the relevant divergent quantities (e.g. the
derivatives in Eq. (84)) and evaluate them at ω = 0 and
at a given value of the momentum k = µ (so as to elim-
inate infrared divergences). We then replace the original
kinetic/transport coefficients and coupling constants by
renormalized counterparts that absorb the divergences,
in a such a way that - once expressed in terms of the new
parameters - the quantities of interest are finite. The
renormalized parameters are defined through multiplica-
tion by Z-factors; when considering the derivatives in
(84) this amounts to introduce renormalized kinetic co-
efficients

Γ = ZΓΓ0, λ = Zλλ0. (85)

The two remaining dynamic couplings, g0 and η0 do not
pick up perturbative renormalization. In the case of g0

this is a consequence of a Ward identity deriving from
the fact that s generates the rotations of ψ (Appendix
B and C) [42]. In the case of η0 the reason is that it
is not involved in absorbing divergences due to the fact
that G−1

s (k = 0, ω = 0) is finite (see next section). We
introduce however η and g as adimensional counterparts
of η0, and g0,

g2 = Kdµ
d−4g2

0 , η =
η0

µ2
, (86)

where Kd = 2πd/2(2π)−d/Γ(d/2) is introduced for con-
venience and µ is the arbitrary momentum scale used to
evaluate the propagators during renormalization. (Note
that in this section we choose the frequency units so that
Γ0 and λ0 are adimensional, i.e. [ω] = [k2]).

The Z-factors now have to be determined at a given
order in perturbation theory so that all the renormal-
ized propagators (and in consequence correlation and re-
sponse functions) are finite, i.e. the Z-factors are diver-
gent in a such way that all observable quantities (ex-
pressed as averages with the renormalized theory) are
finite. One can then in principle determine all the renor-
malized parameters of the model in terms of a finite num-
ber of observations (at fixed wavenumber and frequency).
Finally, since at one-loop, as mentioned above, the fields
are not renormalized, the relation between original and
renormalized propagators and correlations is

Gψ(k, ω, u0, g0,Γ0, λ0, η0) = GRψ (k, ω, u, g,Γ, λ, η;µ)

(87)

Cψ(k, ω, u0, g0,Γ0, λ0, η0) = CRψ (k, ω, u, g,Γ, λ, η;µ)

(88)

We discuss the determination of the Z-factors in be-
low. These play a leading role in the CS procedure since
they give the nontrivial contributions to the RG equation
coefficients (sec. VI B).

B. RG equation and dynamic critical exponent

In this approach the dynamic critical exponent is iden-
tified after finding the dynamic scaling form of the cor-
relation functions. The procedure is the standard one,
which we briefly recall. From the perturbation expan-
sion at ω 6= 0, one can see that the correlation function
Cψ can be written in terms of the static coupling u0, the
effective dynamic couplings (f0, w0, R0) and Γ0, where
Γ0 and ω always appear in the combination ω/Γ0. So we
can rewrite Eq.(88) as

Cψ(k, ω, u0, g0,Γ0, λ0, η0) = CRψ (k, ω/Γ, u, f, w,R;µ).
(89)

Since the lhs is independent of the arbitrary scale µ, de-
riving with respect to logµ one obtains the RG equation:{

µ
∂

∂µ
+
∑
l

βl
∂

∂l
+ νΓΓ

∂

∂Γ

}
CRψ = 0, (90)

where l = u, f, w,R and the β and ν functions are

βl(u, f, w,R) = µ
∂l

∂µ
, νX = µ

∂ logZX
∂µ

. (91)

The only dimensional arguments are k, ω and µ, and the
dimension of CRψ is 2. Then dimensional analysis leads
to an Euler equation which can be used to eliminate the
µ derivative:[

µ
∂

∂µ
+ k · ∇k + 2ω

∂

∂ω

]
CRψ = −2CRψ . (92)

Restricting ourselves to changes in the scale of k, i.e.
k = µ/b, we have that k·∇k = −b∂/∂b. Then combining
(90) and (92) we get{∑

l

βl
∂

∂l
+ νΓΓ

∂

∂Γ
− 2− 2ω

∂

∂ω
+ b

∂

∂b

}
CRψ = 0 (93)

(we have omitted terms that only appear beyond one
loop). We solve (93) using as initial condition b = 1, i.e.
the value of the correlation at a reference k = µ, at some
frequency ω, and at the physical values of the couplings
Γ, u, f , w, R. The solution, found by the method of
characteristics, is

CRψ

(µ
b
, ω,Γ, u, f, w,R

)
=

b2CRψ

(
k0,

ωb2

Γ̂(b)
, û(b), f̂(b), ŵ(b), R̂(b)

)
, (94)
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with

Γ̂(b) = Γ exp

[
−
∫ b

1

νΓ(b′)

b′
db′

]
, (95)

and where νΓ depends on b through the couplings f, w,R.
The dependence of these on b is given by the functions
û(b) etc. (the running coupling constants), which are the
solution of the system

b
dû

db
= −βu(û), û(1) = u, (96a)

b
df̂

db
= −βf (f̂ , ŵ, R̂), f̂(1) = f, (96b)

b
dŵ

db
= −βw(f̂ , ŵ, R̂), ŵ(1) = w, (96c)

b
dR̂
db

= −βR(R̂, f̂), R̂(1) = R, (96d)

where the β functions must be computed perturbatively
from the relation between the bare and renormalized cou-
plings (85). At one loop, the flow of the static coupling
constant u is completely uncoupled from the dynamic
couplings, so we do not take it into account in the fol-
lowing.

The meaning of (94) is that the correlation function at
the physical values of the couplings ~u ≡ (u, f, w,R) and
at a rescaled wave vector µ/b is equal to the response
function at the original scale µ but evaluated for differ-

ent couplings ~̂u(b). Fixed points thus are sets of coupling
values ~u∗ such that all β functions vanish simultaneously:
it is clear that if the flow starts at such a point, or ap-
proaches it for some large value of b, it will stay there for
all larger b. If in addition the function CRψ (k, ω/Γ, ~u) is
continuous at ~u = ~u∗, then all the k-dependence at large
b (small k) is contained in ωb2/Γ(b): equation (94) is then
the scaling law we seek, and we can read off the scaling
behavior from its second argument even if we don’t know
the form of CRψ . For example, if the flow is near a fixed

point for b > b∗, then νΓ(b) = νΓ(~u(b)) ≈ νΓ(~u∗) ≡ ν∗Γ.
Then (95) gives

Γ̂(b) ≈ Γ exp

[
−
∫ b∗

1

νΓ(b′)

b′
db′ − ν∗Γ log(b/b∗)

]
∼ b−ν∗Γ .

Since k = µ/b, we have b ∼ k−1 and

ωb2

Γ̂(b)
∼ ωb2+ν∗Γ ∼ ωk−z, z = 2 + ν∗Γ, (97)

i.e. the value of ηΓ at the fixed point gives the correction
to the naive dynamic critical exponent.

So we proceed next (secs. VI C and VI D) to deter-
ine the Z-factors that furnish the β-functions, and then
(sec. VI E) to find the fixed points of the flow (96) and
their infrared (i.e. b → ∞) stability. The infrared stable
fixed points will rule the scaling behavior at large length-
scales. Unstable fixed points may, depending on initial
conditions, lead to transient scaling laws observable in
certain regimes.

C. Determination of Z-factors

We must determine the two dynamic Z-factors Zλ and
ZΓ (in a two or higher loops calculation a third factor,
related to field renormalization, would arise, but we do
not need it here). First Zλ is fixed by requiring that
∂G−1

s /∂k2|ω=0,k=µ be finite. We have

G−1
s (k, ω) =

(
−iω + η0 + λ0k

2 −Π(k, ω)
)
, (98)

where Π is the same self-energy7 as in equation (31).
From Eq.(87) we then have

∂(GRs )−1

∂k2

∣∣∣∣
k=µ
ω=0

=
λ

Zλ
− ∂Π

∂k2

∣∣∣∣
k=µ
ω=0

(99)

From this equation two conclusions follow: the first is
that the λ0k

2 term cannot be left out from a renormal-
izable theory. This is a consequence of the fact that, in
an expansion of Π in the external wavevector, it is the
k2 coefficient that is divergent, not that of k0 (in fact
Π(k = 0) = 0). Thus if λ0 is absent, it is useless to de-
fine η = Zηη0 and try to absorb the pole of Π into Zη,
because η drops out from (99). This is equivalent to the
finding, in the momentum-shell scheme, that the renor-
malization transformation generates a λ coefficient even
if it is absent in the original theory.

The second conclusion is that Zλ is determined solely
by the behavior of Π, and, since at one loop this self
energy is unchanged with respect to model G, we can
without further discussion write it from the model G re-
sult [42]:

Zλ = 1 +
f

2ε
. (100)

At one loop, the differences between model G and ISM
are only found in ZΓ, which we proceed to compute now.
The propagator of the ψ field is

G−1
ψ (k, ω) = δαβ

[
−iω + Γ0(k2 + r0)− Σ(k, ω)

]
, (101)

where Σ is the self-energy (30), which we recall here for
convenience:

Σ = −2g2
0

∫
ddp

(2π)d
k2 + r0

p2 + r0
×

× 1

−iω + Γ0(p2 + r0) + λ0(k− p)2 + η0
. (102)

We must now consider the renormalized derivative

∂(GRψ )−1

∂k2

∣∣∣∣
k=µ
ω=0

=
Γ

ZΓ
− ∂Σ

∂k2

∣∣∣∣
k=µ
ω=0

(103)

7 Notice, however, that from now on all the integrals in k in
the self-energies will no longer be performed on-shell, but rather
between 0 and ∞, and for this reason we drop the subscript b
from the self-energy symbols.
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and choose ZΓ so that it is finite. In the dimensional reg-
ularization procedure this means that the Z-factor cancel
the poles that appear for d = 4 (i.e. terms proportional to
1/ε, ε = 4− d), so that (103) is free of poles. Computing

the derivative from (102) for general dimension d = 4− ε
at the critical point and ignoring the contribution from
a convergent integral one has

∂(GRψ )−1

∂k2

∣∣∣∣
k=µ
ω=0

= Γ0

{
1 +Kd

Γ(d/2)

πd/2Γ0

g2
0µ

d−4

Γ0 + λ0

∫
ddx

x2

1

x2 + [−2λ0µ̂ · x + λ0 + η0/µ2]/[Γ0 + λ0]

}
= Γ0

{
1 +KdΓ(d/2)

g2
0

Γ0λ0

µ−ε

1 + Γ0/λ0
Γ(2− d/2) Iψ (R, w)

}
, (104)

where R2 = λ/η = µ2Zλλ0/η0, µ̂ = µ/µ and,

Iψ(R, w) ≡
∫ 1

0

dβ

[
1 +R−2

1 + w
β − 1

(1 + w)2
β2

]d/2−2

.

(105)
The renormalized counterpart can therefore be written
as,

∂(GRψ )−1

∂k2

∣∣∣∣
k=µ
ω=0

= Γ

{
1

ZΓ
+

f

1 + w
Γ(d/2) Γ(2− d/2)Iψ(R, w)} , (106)

The one-loop term has a pole in d = 4 (from the second
Γ function): this is how the original divergence of the
integral in d = 4 manifests itself in dimensional regular-
ization. The minimal renormalization prescription stip-
ulates that this pole be identified so that an equivalent
pole but with opposite residue can be added to 1/ZΓ, thus
making the renormalized vertex finite. So we expand the
second term: setting I(R, w) = (1 + R−2)β/(1 + w) −
β2/(1 + w)2,

∂(GRψ )−1

∂k2
= Γ

{
1

ZΓ
+

f

1 + w

[
2

ε
+O(ε0)

]
×

×
[
1− ε

2

∫ 1

0

dβ log I(R, w) +O(ε2)

]}
= Γ

{
1

ZΓ
+

2

ε

f

1 + w
+ . . .

}
, (107)

As long as R 6= 0, all singular behavior is contained in
the pole at d = 4, i.e. the term proportional to 1/ε in the
last line of (107). Then defining ZΓ = 1+(2/ε)f/(1+w)
renders GRψ finite. Thus naively one finds that ZΓ is in-
dependent of R, and, since Zλ is also independent of R
at one loop, this leads to β-functions for the parameters
f and w that are independent of R, and thus to flow
equations identical to model G for f and w, uncoupled
to the flow ofR. However, this is wrong: we have already
seen, in the momentum-shell scheme, that the presence
of η0 profoundly affects the flow of f and w, with the

notable macroscopic consequence of a change in the dy-
namic critical exponent.

Even without the insight we have from the momentum-
shell calculation, one could guess that the naive expec-
tation cannot be right: since R0 has the dimensions of a
length, one expects that its stable fixed point is 0, and
indeed below we shall find from the β-function (115) that
R ∼ b−1+f∗/4 for b→∞, with f∗ of order ε. In the above
equations, one sees that the limit R → 0 requires special
treatment: in (107) a logarithmic divergence appears in
the ε expansion of I(R, w), and even before expanding
one sees that (105) is problematic because Iψ(R → 0, w)
vanishes for d < 4, while limR→0 limd→4 Iψ(R, w) = 1.

The difficulty here is that the length scale R occurs in
the Gaussian part of the dynamical functional, and that
it appears in the loop integrals in such a way that their
convergence properties change at one of the fixed points
of R. To deal with this we use a generalized minimal
substraction as discussed by Frey and others [51, 52].
This method involves incorporating the singular R de-
pendence into the renormalization Z-factors (and conse-
quently into the β-functions): we thus “enrich” the pole
with a crossover factor X(R, w) extracted from I(R, w)
which absorbs the singular R → 0 behavior. Let us
rewrite (106) as

∂(GRψ )−1

k2
= Γ

{
1

ZΓ
+

f

1 + w
Γ(d/2)Γ(2− d/2)×

×X(R, w)X−1(R, w)Iψ(R, w)

}
, (108)

where X(R, w) is such that X−1(R, w)Iψ(R, w) (and in
consequence all coefficients of its ε-expansion) is well-
behaved for all values of R (including R = 0, R = ∞).
We discuss in the next subsection how to fix this fac-
tor, but before let us write the renormalization factors
including the as-yet unknown X(R, w):

Zλ = 1 +
1

ε
f/2, (109)

ZΓ = 1 +
1

ε
2X(R, w)

f

1 + w
. (110)
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We conclude this subsection writing νΓ, νλ, and the β
functions for the couplings f , w and for R. These func-
tions determine the RG flow and the asymptotic scaling
properties of the observables (sec. VI B). Recalling the
definition (91) of β functions and ν exponents, and de-
veloping the to first order in f we get

νΓ = −2X(R, w)
f

1 + w
, (111)

νλ = −f
2
, (112)

so that the β-functions (to be compared to (58)) are the
following,

βf ≡ µ
∂f

∂µ
= −f(ε+ νΓ + νλ)

= −f
[
ε− f

(
1

2
+

2X

1 + w

)]
(113)

βw ≡ µ
∂w

∂µ
= w(νΓ − νλ) = wf

[
1

2
− 2X

1 + w

]
, (114)

βR ≡ µ
∂R
∂µ

= R(1 + νλ/2) = R
[
1− 1

4
f

]
. (115)

D. Determination of the crossover factor X

To determine X(R, w), the idea is to to fix it in such
a way that the renormalization factor ZΓ contains all
the singularities near both fixed points R = 0 and R =
∞. When R is nonzero, the only singularity in (106)
is the pole at d = 4 originating in the Gamma function
Γ(2− d/2). Thus the first condition we impose is that

lim
R→∞

X(R, w) = 1. (116)

To find another condition, we must study G−1
ψ for van-

sishing R. To do this let’s define a new parameter

q ≡ g2

Γη
=

Kdg
2
0µ

d−4

ZΓΓ0µ−2η0
= fR2, (117)

and rewrite (104) as

∂(GRψ )−1

∂k2
= Γ

{
1

ZΓ
+ q

Γ(d/2)

πd/2

∫
ddx

x2 +m2
×

× 1

R2wx2 +R2(x− µ̂)2 + 1

}
, (118)

where we have introduced a constant m2 to avoid an
infrared divergence in d = 2. We can now set R = 0 in
the integral to find

∂(GRψ )−1

∂k2
= Γ

{
1

ZΓ
+ qΓ(1− d/2)Γ(d/2)md−2

}
. (119)

We now find a pole at d = 2, corresponding to the fact
that for R = 0 the integral in (118) diverges for d ≥ 2:
the critical dimension for q is dc = 2, not 4. We then
expand around dc = 2, and find

ZΓ = 1 + q
2

2− d = 1 +
2

ε̃
q, (120)

βq = −(2− d)q + 2q2 = −ε̃q + 2q2, (121)

where,

ε̃ = 2− d . (122)

We note that βq above is correct up to second order in ε̃,
i.e. around the new critical dimension dc = 2. Equation
(121) can give us the condition to impose on X(R, w)
near the other fixed point: from (113) and (115) we can
write

βq = R2βf + 2RfβR = −q
[
2− d− 2X(R, w)

f

1 + w

]
,

(123)
so that to recover (121) we impose

lim
R→0

lim
d→2

X(R, w) = (1 + w)R2. (124)

A simple choice for X(R, w) is then

X(R, w) =

[
(1 + w)R2

1 + (1 + w)R2

]a(d)

. (125)

with a(d = 2) = 1. Referring to (108), we find

X−1(R, w)Iψ(R, w) =

∫ 1

0

dβ

[
(1 + w)R2

1 + (1 + w)R2

]−a [
1 + 1/R2

1 + w
β − 1

(1 + w)2
β2

]−ε/2
=

∫ 1

0

dβ

[
(1 + w)R2

1 + (1 + w)R2

]−a+ε/2 [
1 +R2

1 + (1 + w)R2
β − R2

1 + (1 + w)R2

β2

1 + w

]−ε/2
, (126)
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so that X(R, w) defined as in (125) with a = ε/2 fulfills
the three conditions i) X(R → ∞) = 1, ii) X(R →
0, d → 2) = (1 + w)R2, and iii) makes X−1(y, w)I(y, w)
finite and non-vanishing for all values of R, so that all
terms not included in ZΓ (i.e terms of order ε0 or higher)
are regular and don’t cause further trouble. In particular
limR→0 limd→4X

−1Iψ = limd→4 limR→0X
−1Iψ = 1.

A subtle but important point however remains to be
made. At face value, our choice of X(R, w) recovers the
flow (121) only at d exactly equal to 2, while (121) has ac-
tually been obtained in general dimension. Thus it seems
that one would want a = 1, which however accounts for
the R → 0 behavior of I(R, w) only at d = 2. The way
out of this seeming inconsistence is to remember that
(121) is valid in general dimension but only up to second
order in ε̃ = 2 − d = ε − 2. This means that one should
actually write this exponent as a = 1 + ε̃/2, and (125) as

X(R, w) =
(1 + w)R2

1 + (1 + w)R2

{
1+

ε̃

2
log

[
(1 + w)R2

1 + (1 + w)R2

]
+ . . .

}
. (127)

It is then clear that (since the nonzero fixed point of q
will be of order ε̃) (123) indeed recovers (121) in the limit
R → 0 for general dimension up to order ε̃2. But then
it also becomes clear that (121) cannot fix X(R, w) at
order ε̃ and beyond. So a = 1 + ε̃/2 is fine near d = 2
and also near d = 4 (where (106) must be expanded).

From these considerations, in what follows, we will
simply set a = 1 when writing the β functions also in
d = 3, which is the dimension of interest here. We do
so because this is the simplest choice that gives a cor-
rect description of the flow at the one-loop level: when
R → 0 the O(ε̃) contributions to X(R, w) cannot be
fixed without going to two loops so we may as well omit
them, and on the other hand near theR →∞ fixed point
X(R, w) → 1 independently of the exponent. So the fi-
nal form of β functions we find within the CS scheme is
identical to equations (58) we previously obtained with
the momentum-shell technique.

E. Fixed points

Equations (115) and (96d) show thatR∗ = 0 andR∗ =
∞ are fixed points of R. The flow can be solved formally
as

R̂(b) = R exp

[∫ b

1

1− f(b′)/4

b′
db′

]
. (128)

Since we expect (and confirm below) that the fixed point
of f will be of order ε, we see that the integrand within
the exponential is negative (for large b) at least, and that
R∗ = 0 is IR-stable while R∗ =∞ is IR-unstable.

1. R∗ =∞ - conservative fixed point

The R∗ =∞ fixed point corresponds to X(R, w) = 1.
Since it is unstable, it is only relevant for b → ∞ when
the system starts at 1/R = 0. This corresponds to a
very important special case, namely η0 = 0, i.e. model
G (equivalent to model E for what concerns the scaling
properties). It is also relevant at moderately large scales
for 1/R very small, when the flow stays near X = 1 long
enough that the other couplings approach the model E
fixed point before R becomes so small that X is signifi-
cantly different from 1 (see secs. V.D and VI F).

Equations (96b) and (96c) for X = 1 were studied by
DeDominics and Peliti [42], who considered model E at
two loops, and we refer to them for the analysis of the
fixed points and their stability. In summary the relevant
(IR-stable in the (f, w) subspace) fixed point is

f∗ = ε , w∗ = 3 , R∗ =∞ (129)

implying,

ν∗Γ = − ε
2

, z = 2− ε

2
=
d

2
. (130)

It is interesting to remark that the result for z, although
obtained here at one loop, has to be valid at all orders
in perturbation theory as long as w∗ and f∗ are different
from 0: if w is non-null, (114) implies νΓ = νλ, and (113)
then gives 2νΓ = −ε.

2. R∗ = 0 - dissipative fixed point

When R = 0, X(R, w) = 0 which gives immediately

ν∗Γ = 0, z = 2, (131)

regardless of w and f (as long as they are finite). Setting
X(R, w) = 0 in (96b) and (96c) one finds two solutions:

f∗ = 0, (132)

and

f∗ = 2ε, w∗ = 0. (133)

The stability of the two fixed points can be studied
linearizing the flow (96) around the fixed point ~u∗:

b
d~u

db
= −W

(
~u− ~u∗

)
, (134)

where W is the Jacobian matrix

W =


∂βf
∂f

∂βf
∂w

∂βf
∂R

∂βw
∂f

∂βw
∂w

∂βw
∂R

∂βR
∂f

∂βR
∂w

∂βR
∂R

 (135)
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evaluated at the fixed point. The fixed point is stable if
W is positive definite, i.e. its eigenvalues are all positive.
We find for the two cases above

W (f = 0,R = 0) =

−ε 0 0
1/2 0 0
0 0 1

 , (136)

which has eigenvalues 0, 1, and −ε, while

W (f = 2ε, w = 0,R = 0) =

 ε 0 0
1/2 ε/2 0
0 0 1− ε

 , (137)

with eigenvalues ε, ε/2 and 1− 2ε. So the only IR stable
fixed point (at 1 loop, near d = 4) is f∗ = 2ε, w∗ = 0,
R∗ = 0, which implies as we have seen that the critical
exponent is z = 2.

F. Crossover

We have just concluded that the only IR-stable fixed
point gives z = 2, so that for large observation scales
(k → 0) the critical dynamics is like that of a purely dis-
sipative model (like model A) when the starting (phys-
ical) value of η is nonzero. However, for non zero but
small η, such that the starting R is very large, the initial
value of X(R, w) is very close to 1 and will stay so until
R(b) is of order one (e.g. for w = 3, X is larger than 0.99
for R > 5). So one can expect that f and w will at first
move as if X = 1, i.e. towards the conservative (model G)
fixed point, staying in its neighborhood until R decreases
significantly, and in effect the numerical study of the flux
(Fig. 1) confirms this expectation. Then experimentally
one will observe model G critical behavior (z = d/2) for
moderate (i.e. not too small) values of k, possibly lasting
a rather wide interval, until at some point for k → 0 the
asymptotic z = 2 exponent will be seen. We show here
how to obtain the scaling of the wavevector kc (marking
the end of the model G behavior) with the physical value
of R (cf. sec. V E).

Assume then that the physical value of R is R̂(b =
1) ≡ R1 � 1 so that X(R1, w(1)) ≈ 1. Assume also
that one is observing at a scale k = µ/b such that the
flow has already reach the neighborhood of the z = d/2
fixed point (which in particular implies νΓ ≈ −ε/2). We
ask how small we must make k so that the system moves
away from this fixed point and the scaling law changes.
For this to happen, X must be significantly less than 1,
so let’s impose that X < c, with c = 0.99 say. This
requires R(k) < Rc =

√
c/[4(1− c)]. Now since we are

near the conservative fixed point we can use (96d) with
νΓ = ν∗Γ to obtain

R(k) ≈ R1(k/µ)1+ν∗λ/2. (138)

Now the crossover wavevector will be such that R(kc) =
Rc, so that

kc ∼ R−1/(1+ν∗λ/2)
1 = R−1/(1−ε/4)

1 = R−4/d
1 . (139)

Hence, we find the same crossover exponent as in mo-
mentum shell, namely,

κ = 4/d . (140)

Let us notice that the crossover exponent κ is nontrivial:
from naive dimensional analysis one would have guessed
kc ∼ R−1

1 . However, the renormalized R is dimension-
less, and the RG result is actually taking into account the
nontrivial effects of the hidden microscopic lengthscale.

Finally, let us note that the crossover exponent derives
its value from νλ at the model G fixed point which, as
we have mentioned before, takes the value −ε/2 at all
orders in perturbation theory [42], and thus so must the
crossover exponent.

VII. NUMERICAL SIMULATIONS

To test our results, we performed numerical simula-
tions of the microscopic ISM model on a fixed lattice in
d = 3. We implemented the dynamical equations (9) (10)
using a generalized Verlet integrator [53–55] for second
order equations. Details of the algorithm can be found
in [56]. The lattice spacing is Λ−1 = 1. We fixed the

parameters Ĵ = 1, χ̂ = 1, and performed simulations at
several values of the temperature T and of the friction
coefficient η̂. Since the temperature sets the correlation
length and the friction regulates the conservation length
scale R0 we can in this way explore the (ξ,R0) plane of
Fig.2. For all values of T and η̂ considered, we computed
the correlation length ξ and the relaxation time τ , and
inferred the exponent z from the scaling relation Eq. (8)
between them. In this way, we could investigate the dy-
namical critical behavior and compare results with the
predictions of the RG computation. Before illustrating
the results, let us briefly explain the procedure followed
to compute the main quantities required for our analysis,
namely ξ and τ .

A. Static behaviour and determination of ξ

Since we are interested in the critical behavior of the
system, we need first of all to locate the transition tem-
perature and characterize the static critical properties of
the system. To do so, we perform numerical simulations
of Eqs.(9) (10) in the stationary regime, and use decor-
related dynamical configurations to compute equal time
equilibrium averages (from now on indicated with 〈· · · 〉).
From the static point view the ISM on a lattice is com-
pletely equivalent to a standard ferromagnetic model, we
therefore expect static properties to reproduce the well
known results of the Heisenberg model. For a system of
N velocities/vectors, it is possible to define the polariza-
tion as:

Φ =
1

N

∑
i

ψi , (141)
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FIG. 3. Static critical behaviour. a): Average scalar polarization for temperatures 0.1 ≤ T ≤ 3.0 and for different sizes
(N = 512, 1000, 2197, 4096, 8000). An ordering transition occurs at approximately Tc ' 1.5. b) Susceptibility as a function of
temperature, same sizes as in panel a); the maximum of each curve is located at a temperature that decreases with increasing
the size of the system, and approaches the critical temperature Tc in the thermodynamic limit. c) Finite size scaling of the
susceptibility. Curves at N = 2197, 4096, 8000 satisfy finite size scaling with exponents ν = 0.707 and γ/ν = 1.973, as predicted
by the theory of the Heisenberg model [39].

measuring the degree of global alignment, and its modu-
lus, the scalar polarization φ. The average value of this
quantity is plotted in Fig.3a as a function of temper-
ature, and clearly shows the occurrence of an ordering
transition. The critical temperature can be conveniently
located by looking at the fluctuations of 〈φ〉, namely the
susceptibility

χ = βN [〈φ2〉 − 〈φ〉2] , (142)

where β is the inverse of the temperature. We ana-
lyzed these quantities for a wide range of temperatures
(0.1 ≤ T ≤ 5.0) and sizes (N = 512, 2197, 4096, 8000).
From Fig.3a,b we can see that the critical temperature
is located approximately at Tc ' 1.5. The critical point
moves towards lower temperatures as the linear size of
the system increases, in according to finite size scaling.

To measure the correlation length ξ we first computed
the static connected correlation function C(r):

C(r) =

∑
i,j〈δψi · δψj〉δ(r − rij)∑

i,j δ(r − rij)
, (143)

where rij is the distance between two sites i and j, and
δψi = ψi − 〈ψi〉. Since we are mostly interested in the
paramagnetic phase of the model, the relevant one to de-
scribe experimental data of insect swarms, we focused
on temperatures T > Tc, approaching the critical point
from above. The behaviour of the correlation function
(not displayed) is as expected for a Heisenberg model,
we therefore computed the correlation length from the
expression rC(r) = exp(−r/ξ), exploiting the fact that
the anomalous dimension is small [39]. We combined this
information with data on the susceptibility to obtain an
estimate of the ratio between critical exponents γ/ν for
sizes N = 2197, 4096, 8000. Simulations at N = 8000
give γ/ν = 1.905, in agreement with the literature [39].
We therefore used this size of the system for all following
analysis. Finally, to further test the equivalence of the
static properties of ISM with the Heisenberg model we

performed a finite size scaling analysis on the suscepti-
bility, as displayed in Fig.3c.

B. Dynamic behaviour and determination of τ

To investigate the dynamical behavior of the system
one has to look at time dependent quantities. In par-
ticular, the characteristic time scale τ is by definition
the scale over which fluctuations of the order parameter
become decorrelated. To compute it, we introduce the
spatio-temporal correlation function, that is:

C(k, t) =
1

N

∑
i,j

sin(krij)

krij
〈δψi(t0) · δψj(t0 + t)〉t0

〈(·)〉t0 =
1

Tmax − t

Tmax−t∑
t0=1

(·)

(144)

with Tmax the length of the simulation. The number of
operations needed to calculate this quantity is in general
∼ TmaxN2; however what we actually need for the scaling
analysis is the correlation function at k = 0 (see previous
section), which is numerically less demanding:

C(k = 0, t) =
1

Tmax − t

Tmax−t∑
t0=1

δψ(t0) · δψ(t0 + t)

δψ(t0) =
1

N

∑
i

δψi(t0) .

(145)

From this quantity, we computed the characteristic time
scale τ from the condition,

1

2π
=

∫ ∞
0

dt
1

τ
sin

(
t

τ

)
C(k = 0, t)

C(k = 0, t = 0)
. (146)

This condition corresponds to requiring that half of the
total integrated area of the dynamic correlation function
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in the frequency domain comes from the interval −ωc <
ω < ωc, with ωc = 1/τ . This definition of τ has the
advantage of capturing the relevant time-scale both when
relaxation is dissipative, and when propagating modes
are present, and it is the standard definition adopted in
the literature on dynamic critical phenomena [16].

C. Dynamic crossover

Our primary objective is to observe the crossover in
the dynamic critical behavior predicted by the RG com-
putation. The simplest protocol to do that would seem
to fix the value of the dissipation coefficient (and there-
fore R0), and extensively vary the correlation length by
tuning T . In the (ξ,R0) plane of Fig.2 it corresponds
to a straight horizontal line crossing from the red con-
servative region on the left to the dissipative green one
on the right. In numerical simulations, when plotting τ
vs. ξ, we should then observe two different power laws,
one with exponent z = d/2 for small ξ, and another one
with z = 2 at large ξ. The problem with this protocol is
that to see a power-law crossover one should span several
orders of magnitudes in ξ; three decades is the very mini-
mum, but L = 103, gives N = 109 in d = 3, which is quite
awful, considering that the largest relaxation time would
be of order, τ ∼ ξ2 ∼ L2 ∼ 106. This is not possible,
and the maximum size we used is well below (L ≤ 20).
In other terms, as illustrated in Fig.4, we can in practice
explore only a finite horizontal interval in ξ included be-
tween the lattice spacing and the maximum achievable
ξ, which is not long enough to appropriately measure
the exponents in the two dynamical regimes (segment b
in Fig.4). Interestingly, the same figure shows that for
many values of R0 the accessible interval does not even
intercept the crossover line, but entirely lies within the
same dynamic regime (segments a and c in Fig.4). In this
case, in numerical simulations at fixed η̂ we should expect
that only one power-law is observed in the τ vs. ξ plot.
For this reason, the best way to capture the presence of
the crossover is to run simulations at different values of
the effective friction. If the picture above is correct, when
η̂ is small, corresponding to large R0, we should measure
z = 3/2 (segment a), while for large enough η̂ we should
measure z = 2 (segment c).

The numerical findings fully confirm this scenario. In
Fig.5 we show results for three different sets of simula-
tions, respectively for η̂ = 1, 2, 4. We cannot use larger
values for the effective dissipation, because the maxi-
mum relaxation time becomes too long to equilibrate
the system. For the smaller values (η̂ = 1, 2), the data
are in good agreement with a dynamic critical exponent
z = 3/2, while for η̂ = 4 the characteristic time scales
with the correlation length with an exponent z = 2.
We therefore conclude that the ISM exhibits a dynamic
crossover in critical behavior, as predicted by the RG
approach.

To further support the existence of two distinct regimes

ξ>ξMAX

a

b

c

2 4 6 8 10 12 14
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FIG. 4. Numerical protocol in the (ξ,R0) plane. Sim-
ulations performed at fixed η̂ and different T correspond to
exploring the (ξ,R0) plane along horizontal segments. Since
the size of the system is finite (L ≤ 20), only a limited window
of ξ can be accessed and the length of such segments is finite
(1 = Λ−1 < ξ < ξmax = 10). According to the RG prediction,

for all values of η̂ corresponding to R0 > 103/4 the segments
belong entirely to the conservative region (segment a). For

larger values of η̂, such that 1 < R0 < 103/4, the segments
cross from the conservative region to the dissipative one (seg-
ment b): in this case there is no sufficient span in each region
to extract the exponent z from the τ vs ξ plot. Since the
minimum physical value of R0 is Λ−1 = 1, larger values of η̂
are all equivalent to the R0 = 1 case (segment c).

in dynamical behavior, we tested the full dynamic scal-
ing hypothesis (8) on the dynamic correlation functions.
In Fig. 6, upper panels, we display the normalized
C(k = 0, t) for all the temperatures that we analyzed,
and for two different values of η̂. In the lower panels,
we report the same curves but plotted as a function of
the rescaled variable t/ξz, where we used the values of
z obtained from the previous analysis. The figure shows
that dynamic scaling is nicely verified, but with different
exponents (z = 3/2 and z = 2, respectively) at small and
large values of the friction coefficient.

D. Natural swarms and inertial dynamics

Both theoretical computations and numerical simula-
tions describe a dynamic crossover between two different
critical regimes, which is ruled by the interplay of the
correlation length ξ vs. the conservation length scale R0.
Our analysis has important consequences when consider-
ing systems of finite size. What we have shown is that,
even in presence of dissipation, the critical behavior of the
system can be ruled by a conservative critical dynamics
with exponent z = 3/2 (in d = 3) in an extensive re-
gion of parameters (case R0 > ξ3/4; red region in Fig.4).
This result is particularly relevant if we think back at
the biological motivation of our study: explaining exper-
imental data in natural swarms of insects. As discussed
in Section II, swarms exhibit dynamic scaling, but with
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FIG. 5. Dynamic critical exponents. Relaxation time
vs correlation length in d = 3, for L = 20, N = 8000, and
T ∈ [1.48 : 2.00], at various values of the friction coefficient,
η̂ = 1.0, 2.0, 4.0. Each point is an average over 10 samples,
apart from the lowest T (largest ξ and τ) at η̂ = 4, for which
we have 4 samples (one such sample takes 7 days to run on a
i7-8700-3.20GHz CPU workstation). Lines are the best fit to
z = 1.5 (low friction - η̂ = 1.0, 2.0) and z = 2 (large friction -
η̂ = 4.0).

an exponent smaller than the one predicted by models
of collective motion with a purely dissipative dynamics.
This is why we considered the ISM in the first place: to
put back inertial terms in the dynamical equations and to
understand whether they can produce a z < 2 on the col-
lective scale of living groups. The answer to this question
is therefore yes. The exponent that we get in the conser-
vative region, z = 1.5 is not yet the value observed in the
data (z = 1), but it is a big step forward as compared to
the prediction of the Vicsek model (z = 2). This strongly
indicates that the ISM captures an important ingredient
- inertia - absent in previous models.

Numerical simulations of the ISM also reproduce an-
other feature measured in natural swarms, which is not
reproduced by previous models. Experimental correla-
tion functions in natural swarms display a concave shape
at short times, incompatible with the exponential relax-
ation predicted by the Vicsek model [20]. The ISM on
the other hand displays the same kind of behavior as in
the swarms data. To show this, in Fig.7a we compare the
dynamical relaxation of natural swarms with simulations
of the ISM and of the Vicsek model in the paramagnetic
phase. We can see that ISM reproduces the curvature of
the experimental correlation for t → 0, contrary to the
Vicsek model. The consistency between ISM and natu-
ral swarms becomes even more striking when we compute
the relaxation form factor [20],

h(t/τ) ≡ Ċ(t/τ)

C(t/τ)
. (147)

The limit of this function for t → 0 is equal to 1 if the
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FIG. 6. Dynamic scaling for correlations. Test of the
dynamic scaling hypothesis on the dynamic correlation func-
tions at k = 0. Upper panels: spatio-temporal correlation
functions at various values of the temperature for η̂ = 1 (panel
a) and η̂ = 4 (panel b). Lower panels: same curves plotted
as a function of t/ξz with, respectively, z = 1.5 (panel c)
and z = 2 (panel d): in both cases the functions verify the
dynamic scaling hypothesis.
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FIG. 7. Inertial behavior: Experiments vs Models. a)
Normalized dynamical correlation functions C(k, t)/C(k, 0) at
nonzero values of k; in all three cases k has been chosen in
such a way to have kξ = 1, to reproduce the scaling situation
found in experiments on natural swarms [20] (Vicsek swarm
k = 0.717, natural swarm k = 0.798 and ISM k = 0.673). b)

The relaxation form factor h(t/τ) ≡ Ċ(t/τ)/C(t/τ), goes to 1
for overdamped exponential relaxation, while it goes to 0 for
inertial relaxation [20]. The fixed-network ISM reproduces
the correlation form of real swarms in a rather compelling
way.

dynamics is purely exponential, as in the case of the Vic-
sek model. On the other hand, an inertial dynamics ap-
proaches zero for small times: this is the case of ISM, and
of natural swarms. We therefore conclude that the ISM in
the paramagnetic phase qualitatively well describes the
inertial dynamics of natural swarms.
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VIII. CONCLUSIONS

We have performed a one-loop RG calculation of the
critical dynamics of a statistical system with inertial non-
dissipative couplings, in presence of a dissipative term
which violates the conservation law of the symmetry gen-
erator. Our calculation was motivated by recent exper-
iments on the collective dynamics of natural swarms of
insects [20], although the dynamical field equations we
studied are relevant also for BEC systems with terms
weakly violating the symmetry in the Hamiltonian [27–
29]. We find that the RG flow has two fixed points, a
conservative yet unstable one, and a dissipative stable
fixed point, associated to the dynamical critical expo-
nents z = d/2 and z = 2, respectively. The crossover
between the two fixed points is regulated by a conserva-
tion length scale, R0: for scales much larger than R0, the
dynamics is ruled by the dissipative fixed point, while for
scales smaller than R0 critical slowing down is governed
by the conservative fixed point. Numerical simulations
on the microscopic model confirm our results.

The crossover length scale, R0, is determined by the
ratio between the transport coefficient, λ0, and the effec-
tive friction, η0, of the spin field. If the coarse-grained
parameter η0 is certainly connected to its microscopic
counterpart, η̂, in the original model, the same cannot
be said for the transport coefficient, as in the original
microscopic model there is no transport term. The in-
teresting fact, then, is that the conservative transport
term, λ0∇2s, is explicitly generated by the renormaliza-
tion group, through the spin self-energy Π at one loop.
Therefore, we are in one of those rare cases in which a cru-
cial length scale of the system, i.e. R0, cannot be guessed
purely on the basis of dimensional analysis of the micro-
scopic equations of motion (possibly with some renormal-
ized anomalous dimensions). Of course, one could have
guessed (admittedly rather smartly) that the presence
of a symmetry and conservation law, albeit violated by
η0, should require a conservative transport term. But in
case our intuition were not so good, the RG would re-
quire by itself the existence of such term, and therefore
the emergence of a crossover length scale, thus confirm-
ing its power in dictating what is relevant and what is
not in strongly correlated systems.

The fact that the crossover length scale R0 is larger
the smaller the dissipation has important consequences
for biological systems. Real biological groups always have
finite size, hence in order to study their behaviour we
cannot just take for granted the hydrodynamic limit (in-
finitely large times and distances), but we have to cope
with the actual size of the system. In both flocks and
swarms, experiments have shown that dissipative terms
are rather weak [20, 25], hence suggesting that the con-
servation length scale R0 is quite large. Under these
circumstances one may have a conservation length scale
that is larger than the system’s size, R0 > L. In this case,
one expects to find a dynamical critical exponent equal
to that of the fully conservative RG fixed point, namely

z = 3/2 in d = 3, and a dynamic correlation function
with strong signature of non-exponential inertial relax-
ation. Thanks to this finite-size critical crossover, the
fully conservative phenomenology should hold at all prac-
tically attainable values of the correlation length, which
is always limited by the system’s size.

From the point of view of the comparison between the-
ory and experiments in natural swarms, our calculation
therefore puts us in a semi-satisfactory situation. Cer-
tainly we can say that the form of the dynamical corre-
lation functions of natural swarms, and in particular the
non-exponential inertial nature of the short times dynam-
ics, is rendered by the ISM in a much more compelling
way than the Vicsek model (Fig.7); actually, our simu-
lations show almost no quantitative difference between
theory and experiments in this respect. Concerning the
dynamical critical exponent, z, the situation is still open,
although we would say that the result of the present cal-
culation - namely z = 3/2 in finite-size weakly-damped
3d swarms - definitely goes in the right direction. Ex-
periments give z ≈ 1, even though values up to z = 1.2
would probably be acceptable, given the noise in the data
[20]. On the other hand, the Vicsek model, and in fact
any model dominated at short times by purely dissipa-
tive dynamics, gives z ≈ 2. This is quite understand-
able, as all these models belong (at equilibrium) to the
same dynamical universality class as classic Heisenberg
(Model A of [21]), which has z = 2 at one loop level, with
very small corrections at two loops [21]. Moreover, when
off-equilibrium (self-propelled) effects are taken into ac-
count, numerical simulations performed over time and
space scales comparable to real swarms still give z ≈ 2
[20], completely incompatible with the data. The present
calculation, on the other hand, shows that, once non-
dissipative terms are introduced in the dynamics, and
provided that dissipation is not too strong, the dynami-
cal critical exponent changes already at one loop, giving
z = 3/2 in three dimensions. This is a value signifi-
cantly closer to the experimental exponent than that of
purely dissipative models. Hence, it seems to us that non-
dissipative terms are important to reproduce the correct
critical dynamics of real swarms.

Of course, one must now ask how to bridge the gap
between the one-loop RG exponent, z = 3/2, and the ex-
perimental value, z ≈ 1. There are several possibilities.
First, one should try to have more statistics in the exper-
iments, possibly with larger swarms, to check whether or
not the data are really inconsistent with z = 3/2; work
in this direction requires considerable technical effort on
the experimental side (in particular, higher definition and
faster acquisition systems). Secondly, one may hope that
a two-loop calculation improves things. We are not very
optimistic in this respect, though. Normally, two-loop
corrections to the exponents are quite small, so it seems
hard to bridge the gap between 1.5 and 1 in this way; fur-
thermore, in the non-dissipative case the value z = 3/2
is actually valid at all order of the perturbative series,
courtesy of the Ward identities generated by the symme-
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try [41]. Although in our case there is dissipation, we
suspect that, as long as the system is in the proximity of
the conservative RG fixed point, z = 3/2 will resist any
attempt to be perturbatively changed.

Finally, there is the third and most promising source of
corrections to z, namely off-equilibrium effects due to the
self-propulsion of the individuals. Even though these are
not sufficient to change the critical exponent in the Vic-
sek model, it could be that the compound effect of hav-
ing non-dissipative inertial couplings and a self-propelled
dynamics, further shifts the exponent in the correct di-
rection. Studying this case from the theoretical point of
view (i.e. by using RG), will be quite non-trivial, as one
needs to use the approach of Toner and Tu [17], includ-
ing in the theory one extra field, the density, coupled to
velocity and spin, much as it has been done in [37] for
the low temperature phase. However, at low temperature
one could exploit the spin-wave expansion to linearize the
equations, while close to Tc, which is the case of inter-
est for swarms, one needs to fully take into account the
non-linearities through the RG. Performing even a one
loop calculation with three fields (which become six once
we use the Martin-Siggia-Rose representation) really does
not look like a piece of cake. Still, one should try. In the
meanwhile, numerical simulations of the full-fledged self-
propelled ISM close to criticality should be performed,
to see from the data if there is case for hope.

Actually, we have some reasons to be optimistic. The
fact that models with non-dissipative terms have dy-
namical critical exponent z significantly smaller than the
purely dissipative value 2 may be interpreted as a critical
counterpart of the linear spin-wave behaviour at low T :
in this regime, ‘second sound’ modes propagate linearly,
with dispersion relation ω = ck [36]. Naively, this rela-
tion would suggest z = 1 for these systems, but this is not
the case, because close to Tc parameters renormalize, so
that that the second sound speed, c, goes to zero as some
function of k; this RG-induced k dependence changes the
exponent from the trivial 1, to the final z = 3/2 in this
kind of models [21]. Despite this correction, though, the
exponent remains significantly lower than the purely dis-
sipative 2, as a relic of the low-temperature spin-wave dy-
namics. We may hope that a similar mechanism will be
at work when self-propulsion will be taken into account.
The first obvious effect of self-propulsion on a system
with non-dissipative mode-coupling terms is to produce
ballistic (i.e. linear) motion of each individual, even in
the disordered collective phase. The dynamic critical ex-
ponent does not measure the motion of the individuals, of
course, but rather the relaxation law of the velocity fluc-
tuations; however, similarly to what happens with the
renormalization of linear spin-waves, one may hope that
some relic of the ballistic regime creeps into the critical
phase calculation of z, thus lowering it below the static
equilibrium value, 3/2, eventually bringing it closer to
the experimental value. Further experimental, numeri-
cal and theoretical effort will tell whether this educated
guess is just wishful thinking or not.
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Appendix A: Perturbation expansion

1. Martin-Siggia-Rose formalism

The Martin-Siggia-Rose (MSR) formalism is a method
to write stochastic differential equations as a field theory
formulated using path integrals. The core idea is that,
when computing thermal averages, of all possible field
configurations only those satisfying the original equations
do contribute. One can select such configurations using
a Dirac delta functional: suppose that we want to select
only configurations of the field ψ that satisfy the equa-
tion F(ψ) − θ = 0, where F(ψ) generically describes
the deterministic part of the equation (i.e. time deriva-
tives, differential operators as well as interaction terms,
coupling with other fields etc), and θ is the stochastic
noise. If det(δF/δψ) = 1, which is the case for stochas-
tic Langevin equations in the Ito representation [22, 57],
we can write:

1 =

∫
Dψ(x, t) δ(F(ψ(x, t))− θ(x, t)) (A1)

We can introduce the field ψ̂(x, t) and use the integral
representation of the Dirac delta functional:

1 =

∫
DψDψ̂e{−i

∫
ddx

∫
dt ψ̂(x,t)[F(ψ(x,t))−θ(x,t)]}

(A2)

The field ψ̂ may also be interpreted as a Lagrange mul-
tiplier, since it is introduced to select given values, or
rather configurations, of the field ψ. In our case, since
(14) and (15) are two coupled equations for two distinct
fields, we need to implement two delta functions, and

therefore introduce two auxiliary fields ψ̂ and ŝ. The
above identity can then be averaged over the distribu-
tion of the stochastic noises, leaving with an effective
functional measure that can be used to compute thermal
averages, i.e.

1 =

∫
DψDψ̂ DsDŝe−S[ψ,ψ̂,s,ŝ] (A3)

〈f〉 =

∫
DψDψ̂ DsDŝfe−S[ψ,ψ̂,s,ŝ] , (A4)

where f is a generic function of the fields. After standard
manipulations [22], we get,
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S[ψ, ψ̂, s, ŝ] = S0,ψ[ψ̂,ψ] + S0,s[ŝ, s] + SI [ψ, ψ̂, s, ŝ] (A5)

Here S0,ψ and Ss,0 are Gaussian free actions respectively for the field ψ and s and are given by:

S0,ψ =

∫
ddk

(2π)d
dω

2π
ψ̂α(−k,−ω)[−iω + Γ0(k2 + r2

0)]ψα(k, ω) + Γ0ψ̂α(−k,−ω)ψ̂α(k, ω) (A6)

S0,s =

∫
ddk

(2π)d
dω

2π
ŝα(−k,−ω)

[
−iω + (η0 + λ0k

2)
]
sα(k, ω) + (η0 + λk2)ŝα(−k, ω)ŝα(k, ω) (A7)

where greek letters stand for space coordinates and repeated indexes are summed. The interaction term involves both

s, ŝ and ψ, ψ̂ and is given by:

SI = −g0εαβγ

∫
ddk1

(2π)d
ddk2

(2π)d
dω1

2π

dω2

2π
(k2

2 − k2
1)ψγ(k2, ω2)ψβ(k1, ω1)ŝα(−k1 − k2,−ω1 − ω2)

−g0

2
εαβγ

∫
ddk1

(2π)d
ddk2

(2π)d
dω1

2π

dω2

2π
ψ̂α(k1, ω1)ψβ(k2, ω2)sγ(−k1 − k2,−ω1 − ω2)

−2Γ0u0

∫
ddk1

(2π)d
ddk2

(2π)d
ddk3

(2π)d
dω1

2π

dω2

2π

dω3

2π
ψ̂α(k1, ω1)ψα(k2, ω2)ψα(k3, ω3)ψα(−k1 − k2 − k3,−ω1 − ω2 − ω3)

(A8)

From the free part of the action (A6)(A7) we immediately read the expressions for the bare propagators and correlation
functions for the effective field theory, which coincide with Eqs. (22) (23) and (26)(27):〈

ψα(−k,−ω)ψ̂β(k, ω)
〉

= δαβG0,ψ(k, ω) = δαβ
[
−iω + Γ0(k2 + r0)

]−1
(A9)〈

ψα(−k,−ω)ψβ(k, ω)
〉

= δαβC0,ψ(k, ω) = 2δαβΓ0|G0,ψ|2 (A10)〈
sα(−k,−ω)ŝβ(k, ω)

〉
= δαβG0,s(k, ω) = δαβ

[
−iω + (η0 + λ0k

2)
]−1

(A11)〈
sα(−k,−ω)sβ(k, ω)

〉
= δαβC0,s(k, ω) = 2δαβ(η0 + λ0k

2)|G0,s|2 (A12)

These functions are the building blocks of the perturba-
tive expansion: full correlation functions and propagators
can be written in terms of these bare averages. At this
point, standard Feynman rules can be applied to carry
out the perturbation theory.

From the form of the interacting part of the action,
we can see that there are two kinds of dynamic vertices,
namely:

ψ̂α

ψβ

sγ − g0εαβγsγ(1)ψ̂α(2)ψβ(−1− 2) (A13)

ψγ

ψβ

ŝα − g0

2
εαβγ(k2

2−k2
1)ψβ(1)ψγ(2)ŝα(−2−1)

(A14)

Here we are representing with a solid line the fields ψ,

ψ̂, and with wavy lines the fields s,ŝ; for clarity, we are
indicating with ±n the dependence of the fields on wave-
number and frequency: ψα(±n) = ψα(±kn,±ωn). Be-
side these two dynamic vertices there is also the vertex
related to the static interaction coupling u0. Since we are
focusing on the contributions of purely dynamic origin
to the perturbative expansion we are not concerned with
that vertex in our discussion. We just give for granted
that the perturbation expansion related to u0 gives back
the terms of the equilibrium theory and refer the reader
to the standard literature for more details [22, 45]

At this level, we should notice that the second vertex
carries with it an important factor (k2

2 − k2
1). This is a

consequence of the reversible couplings between the field
ψ and s present in the equations of motion. Its origin lies
in the symmetries of the system: the spin is the generator
of rotations of the order parameter and, consequently,
the reversible couplings between the fields occur just via
a cross product. The field ŝ therefore couples only with
(∇ψ)2; for this reason the vertex is proportional to (k2

2−
k2

1), and this implies that every diagram with an ŝ(k =
0, ω) external line is null.



29

2. Perturbation expansion at one loop

To compute average quantities with the measure (A4)
one proceeds as usual to develop the exponential contri-
bution due to the interaction action, being left with a
perturbation expansion where only free propagators and
free correlations appear, connected to each other through
the various interaction vertices. When building the full
averages in such a way, we have to take into account that

both
〈
ψ̂ψ

〉
0

and
〈
ψψ

〉
0

are non zero. To graphically
distinguish between them, we will represent the propa-
gators with an arrow and the correlation functions with
a line, since propagators are time ordered while correla-
tion functions are not. We will use the same rules also
for propagators and correlation functions of s, but us-
ing wavy lines. It is more convenient to write down the
perturbative expansion of G using the Dyson equation
[58]:

G−1
ψ (k, ω)αβ = G−1

0,ψ(k, ω)δαβ − Σαβ(k, ω) (A15)

G−1
s (k, ω)αβ = G−1

0,s(k, ω)δαβ −Παβ(k, ω) (A16)

For which, we use the following diagrammatic notation:

G0,ψα,β = C0,ψα,β = (A17)

G0,sα,β = C0,ψα,β = (A18)

Σα,β = ψα ψ̂β (A19)

Πα,β = sα ŝβ (A20)

Here the blob indicates the sum of all 1PI diagrams with

an incoming ψ (or s) field and an out coming ψ̂ (or ŝ)
field and with amputated external legs: namely, the self-
energies Σαβ and Παβ .

The diagrammatic expressions for the self-energies of
s and ψ at one loop are:

Σαβ = ψα ψ̂β + ψα ψ̂β

(A21)

Παβ = sα ŝβ (A22)

where external legs are amputated. It is possible to trans-
late these diagrams into integrals using standard Feyn-
man diagrams rules:

Σαβ(k, ω) = −2g2
0δαβ

∫
ddp

(2π)d

∫
dω′

2π

[
G0,ψ(p, ω′)C0,s(k− p, ω − ω′) + (k2 − p2)C0,ψ(p, ω′)G0,s(k− p, ω − ω′)

]
(A23)

Παβ(k, ω) = −2g2
0δαβ

∫
ddp

(2π)d

∫
dω′

2π

[
C0,ψ(p, ω′)G0,ψ(k− p, ω − ω′)((k− p)2 − p2)

]
(A24)

Performing the frequency integration, we get the following expressions for the self energies:

Σαβ(k, ω) =− 2g2
0δαβ

∫
ddp

(2π)d
(k2 + r0)

(p2 + r0)(−iω + Γ0(p2 + r0) + λ0(k− p)2 + η0)
(A25)

Παβ(k, ω) = −g2
0δαβ

∫
ddp

(2π)d
1

(p2 + r0)((k− p)2 + r0)

[p2 − (k− p)2]2

(−iω + Γ0(p2 + (k− p)2 + 2r0))
(A26)

We thus find that the self-energies only have, as expected,
a diagonal non-zero contribution for α = β. We shall
therefore drop the coordinate index and simply indicate
them as Σ and Π, as in Eqs.(30)(31) in the main text.
When the perturbative corrections are calculated inte-
grating over the shell, as in the RG approach we use in
Section IV, the integrals are performed between Λ/b and
Λ. On the the other hand, in the Callan-Symanzik ap-

proach of Section VI all p integrals are performed between
0 and ∞.
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Appendix B: Vertex corrections

It can be shown that the dynamic coupling constant
g0 has no perturbative contributions at all orders of per-

turbation theory. At one loop the correction ∆g
(1)
αβγ , of

order g3
0 , to vertex (A13) comes from these two diagrams:

∆g
(1)
αβγ =

k3

k1

k2

sγ

ψ̂α

ψβ

+
k3

k1

k2

sγ

ψ̂α

ψβ

(B1)
After integration over the internal lines we get expres-
sions of the kind:

∆g
(1)
αβγ = εα1β1γεα2βγ2

εαβ3γ3
τα1β1α2γ2β3γ3

(k1, k2, k3) ,

(B2)
where we are summing over all repeated indices, and the
tensor τ only depends on the internal indices and on the
external momenta. At zero incoming momentum and fre-
quency, because of the symmetry under exchange of the
two internal lines of the field ψ, τ becomes a symmetric
tensor. In particular τ(0, 0, 0) is symmetric under ex-
change of indices α1 and β1. Therefore the contraction
between εα1β1γ and τ is zero. Other possible one loop
corrections may come from both static and dynamic ver-
tices of the kind

∆g
(2)
αβγ = sγ

ψ̂α

ψβ

(B3)

which is of order g0u0. Also in this case, at zero incoming

momentum and frequency, the correction ∆g
(2)
αβγ is zero

by symmetry.

It is possible to extend this reasoning to all orders
in perturbation theory; the full perturbative expansion
∆gαβγ of vertex (A13) satisfies the following diagram-
matic equation

∆gαβγ =

ψ̂i

ψj

sγ (B4)

∆gαβγ = sγ

ψ̂α

ψβ

+ sγ

ψ̂α

ψβ

(B5)
where we explicitly described the possible ways in which
the external sγ line can attach to the correction diagram.
The result is zero for the same symmetry reason as above;
the dynamic coupling constant g0 therefore has no per-
turbative corrections at all orders in perturbation theory.

Appendix C: Ward Identities

The fact that g0 has no corrections at all orders in per-
turbation theory is related to the presence of Ward Iden-
tities relating response functions (or, equivalently vertex
functions [58]) of different order. These identities derive
from the fact that the spin is the generator of the rota-
tional symmetry of the order parameter. In absence of
dissipation the global spin is conserved. In this case, if
the system is prepared in an equilibrium state with global
polarization 〈Φ〉 the effect of an homogeneous field H(t)
coupled to the spin is simply to rotate the polarization,
i.e.

d〈Φ〉
dt

= g0H× 〈Ψ〉 (C1)

Let us now consider a more complex situation where we
apply two fields: the first one, h(x, t), coupled to the
local order parameter, and the second, H(t), coupled to
the spin. The first field will generate a space dependent
local polarization 〈ψ(x, t)〉, the second field will simply
homogeneously rotate such local polarizations. If there is
dissipation, and the global spin is not conserved, the field
H(t) will also change the value of the global spin, giving
a further contribution to the rotation frequency of the
〈ψ(x, t)〉. Let us focus on the parts of both fields that are
uniquely due to the presence of H(t); from Eqs.(14)(15)
we get

d〈δψ(x, t)〉
dt

= g0 (H(t)− δs(t))× 〈ψ(x, t)〉 (C2)

d〈δs(t)〉
dt

= −η0δs(t) + η0H(t) (C3)

where δs is the change of spin per volume. Integrating
both equations, we get

〈δψα(x, t)〉 =g0εαβγ

∫ t

0

dt′′〈ψγ(x, t′′)〉 [Hβ(t′′)

− η0

∫ t′′

0

dt′e−η0(t−t′)Hβ(t′) ]

(C4)
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Both sides in this expression implicitly also depend on
h(x, t). Let us then derive with respect to this last field
and then set it to zero. We get:

d〈δψα(x, t)〉
dhδ(x1, t1)

∣∣∣∣
h=0

= g0εαβγ

∫ t

0

dt′′Hβ(t′′)[
Rhγδ(x, t

′′; x1, t1)− η0

∫ t

t′′
dt′e−η0(t′−t′′)Rhγδ(x, t

′; x1, t1)

]
(C5)

where we relabelled integration variables in the second
integral for future convenience. Here, Rhγδ(x, t; x1, t1) =

∂〈ψγ(x, t)〉/∂hδ(x1, t1)|h,H=0 is the linear response of the
order parameter to its conjugate field. Using response
theory, the l.h.s. of (C5) can also be written as

d〈δψα(x, t)〉
dhδ(x1, t1)

∣∣∣∣
h=0

=∫ t

0

dt′′dx′′Hβ(t′′)RhHαβδ(x, t; x1, t1; x′′, t′′) ,

(C6)

where now in the r.h.s RhHαβδ(x, t; x1, t1; x′′, t′′) =

∂2〈ψα(x, t)〉/(∂hδ(x1, t1)∂Hβ(x′′, t′′))|h,H=0 is the non-
linear quadratic response. Equating the r.h.s. of
(C5)(C6) we finally get∫
dx′′RhHαβδ(x, t; x1, t1; x′′, t′′) = g0εαβγ

[
Rhγδ(x, t

′′; x1, t1)

−η0

∫ t

t′′
dt′e−η0(t′−t′′)Rhγδ(x, t

′; x1, t1)

]
(C7)

with t1 < t′′ < t. For η0 = 0 this relation corresponds to
the Ward identity reported for model E in [41].

Appendix D: Shell integration

To perform a RGT, as described in the main text,
we need to implement two different steps: integration of
short wavelength fluctuations, and rescaling. To this end,
once fixed the coarse-graining factor b, it is convenient to
rewrite the fields as the sum of two distinct components,
one fluctuating on short wavelengths Λ/b < k < Λ and
and the other on larger ones 0 < k < Λ/b, i.e.

ψ(k, ω) = ψ<(k, ω) +ψ>(k, ω) (D1)

At this point, one integrates out explicitly from Eq.(A4)
the ψ> fields, to remain with a measure and a new effec-
tive action that only depend on the ψ< fields. To perform
this integration one proceeds, again, using perturbation
theory. The basic ingredients of this perturbation expan-
sion (free propagators and vertices) are the same as the
ones discussed in the previous sections, the difference be-
ing that they refer to ψ> fields only, while the ψ< are
kept fixed as external sources. The perturbation series
therefore consists in diagrams with external ψ< legs and
internal loops integrated over > propagators. It can be
recasted in exponential form, as usual, by only retaining
one particle irreducible diagrams. These diagrams, that
have external ψ< fields attached, will therefore modify
the original terms appearing in the action. For example,
for the Gaussian part of the action we get

S<0,ψ =

∫ Λ/b ddk

(2π)d
dω

2π
ψ̂<(−k,−ω)[−iω + Γ0(k2 + r2

0) + Σb(k, ω)]ψ<(k, ω) + Γ0ψ̂α(−k,−ω)ψ̂α(k, ω) , (D2)

where Σb has the same expressions as in Eq.(A23), but
where integrals are performed only in the shell Λ/b < k <
Λ. From this expression we immediately see that the be-
havior of the self-energy Σb at small k effectively modifies
the coefficient of k2. We are then left with a free part
of the action similar to the original one, but where inte-
grals run only up to Λ/b. The second step of the RGT,

namely the rescaling of k, ω, ψ and ψ̂, has the purpose
of reinstating momentum integrals over their original in-
tegration range. At one loop the renormalization of the
field is trivial (i.e. related to its physical dimensions) and
has therefore not been addressed explicitly in the main
text. The result is a new action formally of the same kind

as the original one but with a new renormalized kinetic
coefficient Γb. A similar procedure can be applied also
to the free action of the field s, and to the interacting
part. All the coefficients and coupling constants will get
renormalized by the shell integration and rescaling. If we
call P the set of all parameters entering the action, i.e.
P ≡ {r0, u0,Γ0, η0, λ0, g0}, a RGT will therefore imply

P −→ Pb
S(P) −→ Sb = S(Pb)

(D3)

Multiple iterations of the RGT therefore define a flow in
the space of parameters, i.e. in the space of the statistical
models defined by the action (A5).
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