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A B S T R A C T   

Industrial symbiosis (IS) is a collaborative approach among firms involving physical exchanges of materials, 
energy, and wastes, which creates economic advantages for firms and environmental benefits for the society. In 
this paper, we adopt an ecosystem approach to conceptualize the network of firms involved in IS relationships 
(ISN), in terms of organisms (firms), functions (waste exchange), and services (environmental benefits), and 
provide new insight on how to assess and compute IS performance indicators. In particular, we designed five 
classes of indicators aimed at assessing 1) the impact of services provided by ISNs on the environment, 2) the 
performance of the ISN services, 3) how the single functions contribute to ISN services, 4) the performance of the 
ISN functions, and 5) how the single firms contribute to ISN functions. A numerical example is also discussed 
showing how to compute them and the information they provide. The proposed indicators are useful to develop 
proper strategies to increase the efficiency of the system in exploiting the IS synergies, to improve the symbiotic 
exchanges carried out in ISNs, and to identify firms contributing most to IS benefits. Hence, they may assist 
managers of ISNs and policymakers in decision-making aspects, an urgent need of the literature.   

1. Introduction 

Industrial symbiosis (IS) is a subfield of industrial ecology that en
gages separate industries in a collective approach to competitive 
advantage, involving physical exchanges of materials, energy, and ser
vices (Chertow, 2000; Lombardi and Laybourn, 2012). In particular, 
wastes produced by one production process can be used by other pro
cesses – belonging to the same company or a different company – to 
replace production inputs (e.g., water, raw materials, energy) or be used 
to generate new products, which are sold in markets (Albino and Frac
cascia, 2015). Companies adopting IS can reduce production costs, thus 
achieving economic benefits, and create environmental and social 
benefits for the entire collectivity simultaneously (Simboli et al., 2015; 
Taddeo et al., 2017; Yuan and Shi, 2009). 

For this reason, IS is recognized as one of the key strategies to support 
the transition towards the circular economy (e.g., D’Amato et al., 2019; 
Diaz Lopez et al., 2019; Domenech and Bahn-Walkowiak, 2017; 
Korhonen et al., 2018). Furthermore, several studies indicate that IS can 
be a useful approach for companies to reduce their CO2 emissions 
(Hashimoto et al., 2010; Liu et al., 2017; Sun et al., 2017), which is in 
line with the goals of the Paris agreement (Mathy et al., 2018; Nieto 

et al., 2018). For these reasons, the European Commission has strongly 
recommended companies to implement IS (European Commission, 
2015, 2011) and policymakers of many countries have introduced the IS 
practice in their environmental agenda (Costa et al., 2010; Husgafvel 
et al., 2013; Ministero dell’Ambiente e della Tutela del Territorio e del 
Mare and Ministero dello Sviluppo Economico, 2017; Mirata, 2004; Van 
Berkel et al., 2009). 

One of the best strategies to promote IS is supporting the creation of 
industrial symbiosis networks (ISNs), i.e., networks of firms among 
which IS relationships exist (Chertow, 2007; Fichtner et al., 2005). An 
ISN can be designed by adopting a top-down approach, such as the eco- 
industrial park model (e.g., Boix et al., 2015), can emerge from the 
bottom as the result of a process undertaken by several firms sponta
neously (Chertow and Ehrenfeld, 2012), or can be the result of a facil
itation process driven by a public or private third-party organization 
(Boons et al., 2017). 

Independent on the design approach, the need to quantify and assess 
the performance of ISNs has strongly emerged already in the early 
literature as a way to support the diffusion of IS in practice (e.g., Chiu 
and Yong, 2004). Thus, a high number of performance measurements 
has been developed in the literature, differing in purpose, scope, 
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methodology, and scale – see the recent reviews by Neves et al. (2019) 
and Fraccascia and Giannoccaro (2020). 

In particular, IS indicators have been designed for monitoring, 
evaluation, and – to a lesser extent – decision-making purposes. Moni
toring is the first step to recognize applications of IS in practice and track 
their evolution over time. Evaluation is useful for identifying the best 
practices. Indicators are also essential to support decision-making by 
managers and policymakers at both local and national levels. They 
provide information useful to improve ISN exchanges and optimize 
specific performance. 

As to the scope, different IS indicators have been proposed to measure 
the impacts of IS practice mainly in terms of economic or/and envi
ronmental benefits. Economic indicators focus on cost savings enabled 
by the adoption of IS, economic value created by IS synergies, and 
comprehensive economic feasibility of IS synergies (e.g., Cao et al., 
2017; Tan et al., 2016; Yazan and Fraccascia, 2020). Environmental 
indicators quantify the reduction in the amounts of materials, energy, 
and water used as inputs by industrial processes (e.g., Ali et al., 2019; 
Han et al., 2017; Hu et al., 2017; Li et al., 2015), as well as the reduction 
in the amounts of solid wastes discharged in the landfill, wastewater 
discharged, waste energy not exploited, and greenhouse gas emissions to 
the atmosphere (e.g., Cao et al., 2017; Domenech et al., 2019; Maillé and 
Frayret, 2016; Yu et al., 2015). Hybrid indicators have been also 
developed, which consider simultaneously the economic and environ
mental benefits, such as the eco-efficiency indicators (e.g., Chen et al., 
2010; Park and Behera, 2014; Shah et al., 2020) and resource produc
tivity indicators (e.g., Park and Behera, 2014; Rosano and Schianetz, 
2014; Wen and Meng, 2015). 

As to the methodology adopted to design IS indicators, four classes can 
be distinguished: flow analysis, thermodynamics, Life Cycle Assessment 
(LCA), and network analysis (Fraccascia and Giannoccaro, 2020). In 
particular, flow analysis includes material flow analysis (e.g., Sendra 
et al., 2007), substance flow analysis (e.g., Huang et al., 2012), and the 
enterprise Input-Output approach (e.g., Fraccascia et al., 2017a). The 
thermodynamics category refers to two main methodologies, i.e., 
emergy (e.g., Geng et al., 2014) and exergy analysis (e.g., Wu et al., 
2018). The network analysis embraces social network analysis (e.g., 
Song et al., 2018), stakeholder value network approach (e.g., Hein et al., 
2017), ecological network analysis (e.g., Zhang et al., 2015), and food 
web analysis (e.g., Genc et al., 2019). Each methodology has specific 
advantages but also inherent drawbacks, so that a preferred standard is 
currently lacking. 

As to the scale, the IS indicators developed in the literature measure 
the beneficial effects associated to IS, mainly by taking into account a 
specific unit of analysis, i.e., the single firm, the IS relationship, or the 
symbiotic system as a whole, respectively. 

Referring to the literature on the IS indicators, three main gaps can 
be highlighted. The first gap is that indicators that simultaneously 
address multiple scales are scarcely common. For example, eco- 
efficiency indicators adopted at the individual firm level do not pro
vide information at the overall network level. Similarly, LCA indicators 
adopted at the level of the single IS relationship or at the network level 
do not provide information referring to the single firms. Indicators 
including measurements at multiple scales could be useful to quantify 
the extent to which each firm belonging to the network or each symbi
otic exchange is contributing to the ISN benefits. The possibility to 
allocate the impacts at the network level on the single firms through LCA 
is highly complex from the methodological perspective and in any case 
quite controversial (Guinée et al., 2004; Martin et al., 2015). 

Second, we note that the indicators developed in the literature, being 
mainly designed to measure the impacts of IS practice, are unable to 
assess the extent to which the current performance could be further 
increased. This is because they do not include a reference point. Having a 
reference point would permit to understand whether the ISN is exploiting 
all the symbiotic exchanges, so that the highest possible benefits are 
achieved, or whether the IS exchange could be further enhanced. Third, 

most of the indicators developed in the literature provide a static picture 
of the ISN performance with scant attention for measuring the func
tioning of symbiotic networks over time. This perspective is crucial to 
assist ISN managers and policymakers when driving the evolution of IS, 
from both the operational and strategic point of view. 

All these limits confirm that there is a scarce availability of IS in
dicators useful for decision-making, which is an urgent need for sup
porting IS development (Felicio et al., 2016). 

Therefore, in this paper we aim at designing an integrated set of IS 
indicators overcoming the above-mentioned limitations. In particular, 
they capture all the relevant IS dimensions (i.e., the firm, the symbiotic 
exchange, and the network) and provide information useful for moni
toring, evaluation, and, more importantly, decision-making to managers 
and policymakers interested in favoring IS practices. 

As to the methodology, we rely on the ecosystem theory and frame 
ISNs as industrial ecosystems (Korhonen, 2001; Lowe and Evans, 1995; 
Schlüter et al., 2020). According to our framing, firms correspond to 
organisms and perform specific functions for the system, which are 
associated with waste exchanges (Fraccascia et al., 2017b; Korhonen, 
2001; Korhonen and Baumgartner, 2009). Two kinds of functions are 
distinguished: 1) recovering the produced wastes and 2) saving the 
required inputs. Through the functions performed, the ISN as a whole 
generates services to the external environment, in form of reduced 
environmental impacts of production activities (e.g., GHG emissions, 
water consumption, raw materials consumption, etc.). In this way, all 
the relevant dimensions of IS are taken into account. Based on this 
conceptualization, we design proper indicators to quantify: 1) the per
formance of the single functions, 2) the extent to which the single or
ganisms contribute to the single functions, 3) the impact of ISN services, 
4) the performance of ISN services, and 5) the contribution of the single 
functions to the different services. This set of indicators provides mul
tiple information, which can be specifically adopted for decision-making 
aims. They offer a clear assessment of all the possible opportunities 
coming from the waste exchanges (reference point), if they are fully 
exploited and, if not, what are the reasons for this inefficacy. Further
more, they quantify the specific contribution of the single firms/waste 
exchanges to the ISN operations, so that their importance in the network 
functioning can be easily assessed. 

The rest of the paper is organized as follows. Section 2 provides the 
theoretical background of the paper by conceptualizing ISNs as eco
systems. Section 3 presents the numerical indicators developed. Section 
4 proposes a numerical case example aimed at showing how to compute 
the proposed indicators, as well as their usefulness in practice. The paper 
ends with discussion and conclusions in Section 5 and Section 6. 

2. Industrial symbiosis networks as ecosystems 

ISNs have been recognized as an example of industrial ecosystems, i. 
e., natural ecosystems in industrial contexts (e.g., Allenby and Cooper, 
1994; Lowe and Evans, 1995). A natural ecosystem is composed of an 
environment (abiotic component) and a set of living organisms (biotic 
component), which interact among them through a network of highly 
complex relationships and food webs. In industrial ecosystems, com
panies correspond to the organisms of a natural ecosystem, while the 
physical locations in which business operates are analogous to the 
environment (e.g., Genc et al., 2019; Geng and Côté, 2007; Liwarska- 
Bizukojc et al., 2009). The relationships of IS among companies evoke 
the metaphor of mutualistic symbiosis among organisms in natural 
ecosystems (Ayres, 1989; Korhonen, 2001). A mutualistic symbiotic 
relationship occurs when one organism obtains at least one resource 
from the other organism in return for at least one service provided (e.g., 
Ollerton, 2006). As a result, both organisms benefit from the relation
ship. In the IS context, companies exchanging wastes for inputs corre
spond to natural organisms exchanging resources for services. 

A relevant feature of natural ecosystems is that the overall system 
provides some services to the external environment, with the organisms 
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belonging to the system collectively contributing to operate these ser
vices by carrying out specific functions (e.g., Millennium Ecosystem 
Assessment, 2005). The same occurs in industrial ecosystems (e.g., Liu 
and Côté, 2017). 

Four principles of natural ecosystems can be applied to ISNs framed 
as industrial ecosystems: roundput, diversity, locality, and gradual change 
(Korhonen, 2001). 

Roundput is related to recycling materials and energy within the 
system so that the efficiency in resource usage is increased as much as 
possible, as well as the amounts of wastes disposed of outside the system 
are reduced as much as possible. In ISNs, this principle is fully accom
plished when the overall amount of wastes produced by companies is 
recovered into the ISN, so that no wastes are disposed of in the landfill 
outside the network (Yazan et al., 2016). 

Diversity is related to the diversity in elements belonging to the sys
tem. Companies belonging to ISNs usually come from different indus
trial sectors: therefore, they produce different kinds of wastes and 
require different kinds of inputs. Furthermore, these companies can 
belong to different supply chains and they would not have collaborated 
among them if not involved in waste exchanges. The diversity principle 
is fundamental for ISNs, since allows that different wastes are produced 
and different inputs are required into the same ISN (Fraccascia et al., 
2017b). In fact, the more differentiated the companies within the ISN 
are, the higher the chance to create IS relationships and to obtain a 
system stable over the long period (Côté and Smolenaars, 1997). How
ever, “The diversity of the involved actors means the diversity of interests, 
preferences and values, which can be conflicted” (Geng and Côté, 2007, p. 
332). In this regard, “the organisational cultures of the participating firms 
are different. Management models and styles vary. The more diversity 
existing in the system, the more complex and challenging are the harmonising 
and alignment efforts between the individual firm strategies and the overall 
network strategy” (Korhonen and Baumgartner, 2009, p. 32). 

Locality is related to exploiting local resources produced into the 
system so that the amounts of input required from outside the system is 
reduced as much as possible. This requires the cooperation between 
local actors inside the system and calls for the interdependence of these 
actors (Afshari et al., 2020; Schlüter et al., 2020). Locality in ISNs 
translates into replacing production inputs with wastes generated by 
companies belonging to the ISN as much as possible, according to 
operational issues related, e.g., to the match between demand and 
supply of wastes, as well as technical issues related to using wastes to 
replace production inputs, e.g., the waste quality (Bansal and McNight, 
2009; Herczeg et al., 2018; Prosman and Wæhrens, 2019). 

Finally, gradual change means that the system is able to evolve over 
time, in terms of changing structure and patterns. ISNs are not static 
systems, but they can evolve following multiple logics. Since companies 
are involved in a dynamic business environment, both the types and 
amounts of wastes produced and inputs required can fluctuate over time, 
as well as the ceasing costs thanks to IS and the additional costs required 
to operate IS (Yazan and Fraccascia, 2020). Hence, new symbiotic op
portunities can emerge over time, as well as existing symbiotic oppor
tunities can become no more convenient (Ashton et al., 2017). Any firm 
autonomously decides to establish IS relationships with other firms, 
aimed at reducing its production costs and gaining a competitive 
advantage over other companies not implementing IS (e.g., Ashton, 
2011; Esty and Porter, 1998; Lyons, 2007; Yuan and Shi, 2009). Hence, 
in the long period, new companies can decide to enter a given ISN 
(Chertow and Ehrenfeld, 2012). Accordingly, the types and number of 
wastes produced and inputs required into the ISN can change over time, 
as well as the ISN topology. In this regard, companies are characterized 
by an individual propensity to establish and keep IS relationships, which 
specifies the extent to which the relationship should be economically 
beneficial. Accordingly, firms may decide to interrupt IS relationships in 
which they are involved if they are assessed as not enough economically 
convenient (Chopra and Khanna, 2014; Li and Shi, 2015; Wang et al., 
2017a; Wu et al., 2017). 

3. Methods 

We frame the ISN as an ecosystem, where firms correspond to or
ganisms and perform specific functions for the system (Fraccascia et al., 
2017b; Korhonen, 2001; Korhonen and Baumgartner, 2009). Two kinds 
of functions are distinguished: 1) recovering the produced wastes and 2) 
saving the required inputs. Firms contribute to these functions by 
exchanging wastes for inputs. By performing the ISN functions, the 
companies can reduce their production cost and thus increase their 
economic performance, which in turn contributes to enhance the sur
vivability of companies into their markets. At the same time, through the 
functions performed internally, the ISN as a whole generates several 
services to the external environment, in form of reduced environmental 
impacts of production activities (e.g., GHG emissions, water consump
tion, raw materials consumption, etc.). 

In the following, we first describe how we model the building blocks 
of an ISN ecosystem using the Enterprise Input-Output (EIO) approach 
(Section 3.1). Then, we design the ecosystem-based indicators of ISNs 
(Section 3.2). 

3.1. Modeling the companies and waste flows among them 

In this section, we employ the Enterprise Input-Output (EIO) 
approach (Grubbstrom and Tang, 2000) to model waste flows among 
firms. The EIO model describes the ISN as a network of companies using 
an input-output approach at the enterprise level (Fraccascia et al., 
2017a). The network is made up of firms that procure materials and 
energy (primary inputs), transform them into outputs, and produce 
wastes. Without any IS exchange occurring, primary inputs are pur
chased from conventional suppliers and wastes are disposed of in 
landfills. 

We model a generic ISN made of n companies. For the sake of 
simplicity, we assume that each company produces only one main 
output, which is sold on the market.1 Hence, n outputs are produced into 
the ISN. 

In this regard, let x(t) be the n × 1 vector of gross outputs produced at 
time t. The amounts of outputs produced are considered dependent on 
the market demand for the main products (Yazan, 2016). 

To produce its output, company i requires n(ri) primary inputs and 
generates n(wi) wastes (Fig. 1). Overall, the ISN requires n(r) primary 
inputs, with n(r) ≤

∑n
i=1n(ri), and generates n(w) wastes, with 

n(w) ≤
∑n

i=1n(wi). Equality holds when either each primary input is 
used by only one company or each waste is produced by only one 
company, respectively. 

Let r(t) be the n(r) × 1 vector of primary inputs overall used by 
companies at time t and let w(t) be the n(w) × 1 vector of wastes overall 
generated by companies. Both primary inputs requirement and wastes 
production are related to the gross outputs by the following equations: 

Fig. 1. Graphical representation of a generic company in the ISN model.  

1 This limitation is common to other EIO models (e.g., Fraccascia et al., 
2017a; Yazan, 2016; Yazan et al., 2016) and can be overcome by modeling one 
company as composed by several production processes, each of them having 
input. 
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r(t) = Rx(t) (1)  

w(t) = Wx(t) (2)  

where the n(r) × n matrix of primary input coefficient R and the n(w) × n 
matrix of waste output coefficients W are obtained from observed data. 
The generic element Rlj denotes the quantity of primary input l required 
to produce one unit of the output of company j. Similarly, the element 
Wkj denotes the quantity of waste k generated to produce one unit of the 
output of company j. 

When IS occurs between two companies, wastes produced by a 
company can be used to replace primary inputs by other companies. This 
corresponds to exchange wastes for primary inputs. 

In order to model waste flows taking place among companies, for 
each couple of companies i and j we can define ei→j as the n(w) × 1 vector 
of the observed symbiotic flows between i and j. The generic element 
ek
i→j(t) denotes the amount of the k-th waste flowing from company i to 

company j at time t. Let us assume that waste k produced by company i 
can be used by company j to replace input l. The amount of exchanged 
waste cannot be higher than either the amount of waste k produced by 
company i or the correspondent amount of input l that is required by 
company j. From the numerical point of view, the following condition 
must thus be verified2: 

ei→j
k (t) ≤ min

{

Wkixi(t) ;
Rlj

sl←k
∙xj(t)

}

∀(i, j, k, l), sl←k ∕= 0 (3)  

where sl←k denotes how many units of input l can be replaced by one unit 
of waste k. 

Let us now focus on the generic company i. The amount of the generic 
k-th waste recovered by this company (i.e., not disposed of in landfills) 
at time t because adopting IS can be computed as follows: 

wS
ki(t) =

∑n

j=1
ei→j

k (t) (4) 

Similarly, the amount of the generic l-th primary inputs saved by this 
company (i.e., replaced by wastes and hence not purchased from con
ventional suppliers) at time t because adopting IS can be computed as 
follows: 

rS
li(t) =

∑n(w)

k=1

∑n

j=1
sl←k∙ej→i

k (t) (5) 

At the level of ISN, the amount of k-th waste and l-th input saved at 
time t can be computed as follows: 

wS
k(t) =

∑n

i=1
wS

ki(t) (6)  

rS
l (t) =

∑n

i=1
rS

li(t) (7)  

3.2. Ecosystem-based ISN indicators 

Based on the conceptualization of ISN as ecosystem and the EIO 
model of waste flows, we design five classes of indicators: 1) indicators 
assessing the performance of each function (Section 3.2.1), 2) indicators 
assessing the contribution that each organism is providing to each 

function (Section 3.2.2), 3) indicators assessing the impact of ISN ser
vices to the external environment (Section 3.2.3), 4) indicators assessing 
the performance of ISN services (Section 3.2.4), and 5) indicators 
assessing the contribution that each function is providing to each service 
(Section 3.2.5). Fig. 2 graphically shows a framework of the above- 
mentioned indicators. 

3.2.1. Performance indicators for functions 
These performance indicators aim at quantifying the ability of ISN to 

perform given IS functions, in particular by taking into account the 
extent to which each function is currently performed. We distinguish 
two classes of performance indicators for functions, i.e., for waste 
recovering and input saving. 

For each generic function “recovering waste k”, the following perfor
mance indicator is defined: 

φW
k (t) =

wS
k(t)

wk(t)
(8)  

where wk
S(t) is the amount of waste k recovered at time t (see Eq. (6)) and 

wk(t) is the amount of waste k produced at time t by firms belonging to 
the ISN (see Eq. (2)). Overall, φk

W(t) ranges between zero and one. In 
particular, φk

W(t) = 0 when the ISN is not recovering any amount of 
waste k produced; alternatively, φk

W(t) = 1 when the ISN is recovering 
the overall amount of waste k produced. 

φk
W(t) can be decomposed as the product of two factors, as follows: 

φW
k (t) =

wS
k(t)

wk(t)
=

wS
k(t)

EW
k (t)

×
EW

k (t)
wk(t)

(9)  

where Ek
W(t) is the highest amount of waste k which is possible to recover 

through waste exchanges at time t. In particular, EW
k (t) =

min

{

wk(t) ;
∑n(r)

l=1
∑n

j=1
rlj(t)
sl←k

}

, where wk(t) is the available supply of 

waste k at time t and 
∑n(r)

l=1
∑n

j=1
rlj(t)
sl←k 

is the demand for waste k at time t. 
This decomposition is useful to investigate the reason why the per

formance is not optimized. In particular, the first factor of Eq. (9), wS
k(t)

EW
k (t), 

denotes the amount of waste k currently recovered, compared to the 

highest possible quantity to be recovered. In particular, wS
k(t)

EW
k (t) ranges be

tween zero and one: it is equal to one when the ISN is recovering the 
highest possible amount of waste k, otherwise it is lower than one. Thus, 
it measures the extent to which the operations carried out in the ISN are 
able to recover the maximum amount of the waste available. The second 

factor of Eq. (9), E
W
k (t)

wk(t), denotes the highest possible quantity of waste k to 
be recovered (i.e., the demand of waste k for recovery), compared to the 
overall amount of waste k produced (i.e., the total supply of waste k). In 

particular, E
W
k (t)

wk(t) ranges between zero and one. It is equal to one when the 
demand for waste k is equal to or higher than the available supply, 

otherwise it is lower than one. The lower E
W
k (t)

wk(t), the higher the mismatch 
between demand and supply for waste k. Thus, this factor takes into 
account the level of match between demand and supply for waste k due 

to the structure of waste exchanges inside the ISN. If E
W
k (t)

wk(t) < 1, the per
formance of the function cannot be optimized. 

Similarly, for each generic function “saving input l”, the following 
performance indicator is defined: 

φR
l (t) =

rS
l (t)

rl(t)
(10)  

where rl
S(t) is the amount of input l saved at time t (see Eq. (7)) and rl(t) is 

the amount of input l required at time t by firms belonging to the ISN (see 
Eq. (1)). Overall, φl

R(t) ranges between zero and one. In particular, φl
R(t) 

= 0 when the ISN is not saving any amount of input l produced; 

2 It might happen that one waste can replace more than one input. Let us 
assume that waste k can replace both input l and input m required by company 
j. The Equation (3) can be expressed as follows: 

ei→j
k (t) ≤ min

{

Wkixi(t) ;
[

Rlj

sl←k
+

Rmj

sm←k

]

∙xj(t)
}
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alternatively, φl
R(t) = 1 when the ISN is saving the overall amount of 

input l required. 
Similarly to the above, φl

R(t) can be decomposed into two factors, the 
first one measuring the operational performance of the function and the 
second one the level of match between waste demand and supply: 

φR
l (t) =

rS
l (t)

rl(t)
=

rS
l (t)

ER
l (t)

×
ER

l (t)
rl(t)

(11)  

where El
R(t) is the highest amount of input l which is possible to save 

through waste exchanges. In particular, ER
l (t) =

min

{

rl;
∑n(w)

k=1
∑n

i=1sl←kwki(t)

}

, where k is the generic waste that can 

replace input l. 

The factor rS
l (t)

ER
l (t)

corresponds to the amount of input l saved in per

centage to the highest possible quantity to procure. In particular, rS
l (t)

ER
l (t)

ranges between zero and one: it is equal to one when the ISN is saving 
the highest amount of input l, otherwise it is lower than one. The factor 
ER

l (t)
rl(t) denotes the highest possible quantity of input l to save compared to 

the overall amount of input l required. In particular, E
R
l (t)

rl(t) ranges between 
zero and one. It is equal to one when the production input l is equal to or 
higher than the available supply, otherwise it is lower than one: the 
higher the mismatch between demand and supply for input l, the lower 
ER

l (t)
rl(t) will be. 

Table 1 depicts the meaning of the factors of Eqs. (9) and (11). 

3.2.2. Contribution indicators for organisms to functions 
In ISN ecosystems any organism contributes to at least one function. 

The extent to which each organism is contributing to a given function 

measures the relevance of that organism in the system. 
In light of the ISN framing as an ecosystem, we design indicators that 

measure the extent to which a company is contributing to recovering 
wastes and saving inputs. 

Let us consider the contribution that the company i provides to the 
function “recovering waste k”. We define the indicator χW

i→k(t)as the ratio 
between the amount of waste k recovered by firm i and the total amount 
of waste k recovered into the ISN. It follows that: 

χW
i→k(t) =

wS
ki(t)

wS
k(t)

(12) 

The value of this indicator ranges between zero and one. It is equal to 
zero when company i does not contribute to recover waste k whereas it is 
equal to one when company i is the only firm within the ISN recovering 
waste k. 

Let us consider the contribution that company i provides to the 
function “saving input k” The indicator χR

i→l(t) is defined as the ratio be
tween the amount of input l saved by firm i and the total amount of input 
l saved into the ISN: 

χR
i→l(t) =

rS
li(t)

rS
l (t)

(13) 

The value of χi→l
R (t) ranges between zero and one. It is equal to zero 

when company i does not contribute to save input l whereas it is equal to 
one when company i is the only firm within the ISN saving input l. 

3.2.3. Impact indicators for services 
In our model, the ISN provides the external environment with one or 

more services corresponding to environmental benefits (e.g., the 
reduction in CO2 emissions, the reduction in water consumption, etc.). 
Assessing the impact of a given service means to quantify the environ
mental benefit provided by that service. Consider the service α, the 

Fig. 2. Designing ISN indicators using an ecosystem approach. Organisms contribute to operate functions, which in turn contribute to create services for the external 
environments. 

Table 1 
Meaning of factors in Eqs. (9) and (11).   

<1 1 

Operational 
performance 

wS
k(t)

EW
k (t)

The amount of waste k recovered is lower than the highest possible 
amount 

The ISN is recovering the highest possible amount of waste k 

rS
l (t)

ER
l (t)

The amount of input l saved is lower than the highest possible amount The ISN is saving the highest possible amount of input l 

Structural performance EW
k (t)

wk(t)
The demand for waste k is lower than the available supply The demand for waste k is equal to or higher than the available 

supply 
ER

l (t)
rl(t)

The supply for input l is lower than the available demand The supply for input l is equal to or higher than the available 
demand  
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impact of this service at time t, denoted as εα(t), can be computed as 
follows: 

εα(t) =
∑n(w)

u=1
IW

u→α∙w
S
u(t) +

∑n(r)

v=1
IR

v→α∙r
S
v (t) (14)  

where IW
u→αstands for the impact that recovering one unit of waste u has 

on the creation of service α and IR
v→αstands for the impact that saving one 

unit of input v has on the creation of service α. 
For example, consider α as the service “reducing CO2emissions”: Iu→α

W 

denotes the amount of CO2 emissions avoided by recovering one unit of 
waste k and Iv→α

R denotes the amount of CO2 emissions avoided by saving 
one unit of input v. 

3.2.4. Performance indicators for services 
This performance indicator aims at quantifying the ability of ISN to 

provide the external environment with given services, in particular by 
taking into account the extent to which each service is currently 
performed. 

For the generic service α, the performance indicator σα(t) is defined 
as the ratio between the current impact of the service and the impact 
that it would be provided whether all the ISN functions would have the 
highest performance, i.e., when the overall amount of wastes produced 
is recovered and the overall amount of inputs required is saved. 

It follows that: 

σα(t) =
εα(t)

∑n(w)

u=1
IW

u→α∙wu(t) +
∑n(r)

v=1
IR

v→α∙rv(t)
(15) 

Overall, σα(t) ranges between zero and one. In particular, σα(t) =
0 when the ISN is not creating the service α at all; alternatively, σα(t) = 1 
when the impact created by service α is maximized. 

3.2.5. Contribution indicators for functions to services 
The services that the ISN is able to offer to the environment are 

determined by the ISN functions. Since each generic function differently 

contributes to each service, we design proper indicators to assess this 
contribution. 

The contribution indicator that each generic function “recovering 
waste k” provides to the creation of service α at time t is so defined: 

πW
k→α(t) =

IW
k→α∙wS

k(t)
∑n(w)

u=1
IW

u→α∙wS
u(t) +

∑n(r)

v=1
IR

v→α∙rS
v (t)

(16) 

This contribution indicator is thus defined as the ratio between the 
impact provided by function “recovering waste k” to the creation of ser
vice α and the total impact provided by all the ISN functions to the 
creation of service α. The higher the contribution, the higher the 
importance of the function k for performing the service α. 

In particular, the value of πW
k→α(t)ranges between zero and one. It is 

equal to zero when the function “recovering waste k” does not provide any 
contribution to the creation of service α. Alternatively, it is equal to one 
when “recovering waste k” is the only function contributing to the service 
α. Of course, 

∑
k=1
n(w)πk→α

W (t) = 1 ∀ α. 
It is useful to decompose πW

k→α(t)into two terms as follows: 

πW
k→α(t) =

IW
k→α∙wS

k(t)
∑n(w)

u=1
IW

u→α∙wS
u(t) +

∑n(r)

v=1
IR

v→α∙rS
v (t)

=
IW

k→α∙wS
k(t)

∑n(w)

u=1
IW

u→α∙wS
u(t)
∙

∑n(w)

u=1
IW

u→α∙wS
u(t)

∑n(w)

u=1
IW

u→α∙wS
u(t) +

∑n(r)

v=1
IR

v→α∙rS
v (t)

(17) 

In such a way, the first factor 

⎛

⎜
⎜
⎜
⎝

IWk→α∙w
S
k(t)∑n(w)

u=1
IWu→α∙wS

u(t)

⎞

⎟
⎟
⎟
⎠

expresses the 

contribution that the function “recovery waste k” plays on the service α 
compared to the contribution provided by all the waste recovery func
tions to the same service. This factor ranges between zero and one: it is 
equal to zero when the k-th waste recovery function does not provide 

Table 2 
Nomenclature of performance indicators and contribution indicators defined, as well as terms defined in the equations.  

Performance indicators for functions – Section 3.2.1 
φW

k (t) Performance indicator for the function “recovering waste k” 

φR
l (t) Performance indicator for the function “saving input l”  

Contribution indicators for organisms to functions – Section 3.2.2 
χW

i→k(t) Contribution indicator that company i provides to the function “recovering waste k” 

χR
i→l(t) Contribution indicator that company i provides to the function “saving input l”  

Impact indicator for services – Section 3.2.3 
εα(t) Indicator of the impact of service α to the external environment  

Performance indicators for services – Section 3.2.4 
σα(t) Performance indicator for the service α  

Contribution indicators for functions to services – Section 3.2.5 
πW

k→α(t) Contribution indicator that the function “recovering waste k” provides to the creation of service α at time t 

πR
l→α(t) Contribution indicator that the function “saving input l” provides to the creation of service α at time t  

Single terms 
wS

ki(t) Amount of waste k recovered by firm i at time t 

wS
k(t) Amount of waste k recovered at time t 

EW
k (t) Highest amount of waste k which is possible to recover through waste exchanges at time t 

wk(t) Amount of waste k produced at time t 
rS
li(t) Amount of input l saved by firm i at time t 

rS
l (t) Amount of input l saved at time t 

ER
l (t) Highest amount of input l which is possible to save through waste exchanges 

rl(t) Amount of input l required at time t 
IWk→α  Impact that recovering one unit of waste k has on the creation of service α 

IRl→α  Impact that saving one unit of input l has on the creation of service α  
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any contribution to the α-th service, it is equal to one when the k-th 
waste recovery function is the only waste recovery function contributing 

to the α-th service. The second factor

⎛

⎜
⎜
⎜
⎝

∑n(w)

u=1
IWu→α∙wS

u(t)
∑n(w)

u=1
IWu→α∙wS

u(t)+
∑n(r)

v=1
IRv→α∙rS

v (t)

⎞

⎟
⎟
⎟
⎠

corresponds to the contribution that all the waste recovery functions 
provide to the service α. This factor ranges between zero and one: it is 
equal to zero when the service α is created only by input saving func
tions, it is equal to one when the service α is created only by waste re
covery functions. 

Similarly, we define the contribution indicator that the generic 
function “saving input l” provides to the creation of service α at time t as 
follows: 

πR
l→α(t) =

IR
l→α∙rS

l (t)
∑n(w)

u=1
IW

u→α∙wS
u(t) +

∑n(r)

v=1
IR

v→α∙rS
v (t)

(18) 

The value of πR
l→α(t)ranges between zero and one. In particular, it is 

equal to zero when the function “saving input l” does not provide any 
contribution to the creation of service α. Alternatively, it is equal to one 
when “saving input l” is the only function contributing to creating the 
service α. Of course, 

∑n(r)
l=1 πR

l→α(t) = 1∀α. 
To assess the two factors explaining its value, πR

l→α(t) can be 
decomposed as follows: 

πR
l→α(t) =

IR
l→α∙rS

l (t)
∑n(w)

u=1
IW

u→α∙wS
u(t) +

∑n(r)

v=1
IR

v→α∙rS
v (t)

=
IR

l→α∙rS
l (t)

∑n(r)

v=1
IR

v→α∙rS
v (t)
∙

∑n(r)

v=1
IR

v→α∙rS
v (t)

∑n(w)

u=1
IW

u→α∙wS
u(t) +

∑n(r)

v=1
IR

v→α∙rS
v (t)

(19) 

The first factor, 

⎛

⎜
⎜
⎜
⎝

IRl→α∙r
S
l (t)∑n(r)

v=1
IRv→α∙rS

v (t)

⎞

⎟
⎟
⎟
⎠

, denotes the contribution that the 

input l saving function plays on the service α compared to the contri
bution provided by all the input saving functions. This factor ranges 
between zero and one: it is equal to zero when the input l saving function 
does not provide any contribution to the service α, it is equal to one 
when the input l saving function is the only input saving function 
contributing to the service α. The second factor 
⎛

⎜
⎜
⎜
⎝

∑n(r)
v=1

IRv→α∙rS
v (t)

∑n(w)

u=1
IWu→α∙wS

u(t)+
∑n(r)

v=1
IRv→α∙rS

v (t)

⎞

⎟
⎟
⎟
⎠

indicates the contribution that all the input 

saving functions provide to the service α. This factor ranges between 
zero and one: it is equal to zero when the service α is created only by 
waste recovering functions, it is equal to one when the service α is 
created only by input saving functions. 

Table 2 shows the nomenclature of all the indicators defined in 
Section 3.2, as well as all the single terms used in the eqs. (8)–(19). 

4. Numerical case example 

In this section, we develop an application of our methodology, based 
on a numerical case example (e.g., Fieberg and Jenkins, 2005; Ghod
sypour and O’Brien, 1998; Hill, 1999), to show how the proposed in
dicators can be computed and the information they provide. 

4.1. Case description 

The numerical case example presented in this section is adapted from 
Fraccascia et al. (2017a). The analyzed ISN is composed of five com
panies: one exhausted tires collector (company A), two cement pro
ducers (company B and company C), one synthetic grass producer 
(company D), and one iron and steel producer (company E). For the sake 
of simplicity, only wastes and primary inputs that can be involved in 
symbiotic exchanges are considered. In this regard, two wastes are used 
to replace three inputs: hence, n(w) = 2 and n(r) = 3. In particular, 
company A generates two kinds of wastes from exhausted tires collec
tion: carcasses (w1) and wheel rims (w2). On the side of inputs, coal (r1) 
is required by company B and company C, resilient granules (r2) are 
required by company D, and iron (r3) is required by company E. The 
amounts of wastes produced and inputs required by each company are 
shown in Table 3. 

Carcasses (w1) can replace both coal (r1) and resilient granules (r2). 
In this regard, the practice of substituting fossil fuels like coal with 
ground tires is widespread in the cement industry (e.g., Albino et al., 

Table 3 
Amount of wastes produced and inputs required by each company belonging to 
the ISN.   

Wastes produced Inputs required 

Carcasses 
(w1) 

Wheel 
rims (w2) 

Coal (r1) Resilient 
granules (r2) 

Iron (r3) 

Company 
A 

w1A(t) =
150 t 

w2A(t) =
150 t 

– – – 

Company 
B 

– – r1B(t) =
87.7 t 

– – 

Company 
C 

– – r1C(t) =
101.48 t 

– – 

Company 
D 

– – – r2D(t) = 31.5 
t 

– 

Company 
E 

– – –  r3E(t) =
100 t  

Company A

Company B

Company C

Company D

Company E

100 t

30 t

20 t

100 t

Fig. 3. Waste exchanges implemented among companies into the ISN. Dotted 
lines indicate the exchange of carcasses. The continuous line indicates the ex
change of wheel rims. 
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2011), since positive environmental effects can be produced, mainly in 
form of reducing CO2 and NOx emissions (e.g., European Cement As
sociation, 2009; IEA, 2009). Similarly, the use of exhausted tires as a 
substitute for resilient granules in synthetic grass production is recog
nized as positive from the environmental point of view. In particular, it 
is assumed that one ton of tires can replace 0.877 t of coal (Corti and 
Lombardi, 2004) or 0.8 t of resilient granules (Albino and Yazan, 2013). 
Furthermore, it is assumed that one ton of wheel rims (w2) can replace 
one ton of iron (r3). It follows that s1←1 = 0.877, s2←1 = 0.8, and s3←2 =

1. 
Symbiotic exchanges implemented among companies are shown in 

Fig. 3. Concerning exchanges of carcasses, it is assumed that, at time t, 
100 t are sent from company A to company B (e1

A→B(t) = 100), 30 t are 
sent from company A to company C (e1

A→C(t) = 30), and 20 t are sent 
from company A to company D (e1

A→D(t) = 20). Furthermore, company A 
sends 100 t of wheel rims to company E (e2

A→E(t) = 100). 
In light of our conceptualization of ISNs as ecosystems, the com

panies in the ISN perform the following five functions: (W-1) recovering 
carcasses; (W-2) recovering wheel rims; (R-1) saving coal; (R-2) saving 
resilient granules; and (R-3) saving iron. The ISN provides the envi
ronment with a few services. Three services are considered for this case: 
(α) reduction of CO2 emissions, (β) reduction of CH4 emissions, and (γ) 
reduction of water consumption.3 

In the following, we compute the proposed ISN indicators and 
discuss the relevant meanings. 

4.2. Performance indicators for functions 

In this Section, we compute the performance indicators for functions 
described in Section 3.2.1. Performance indicators for the provided 
functions concerning the two classes “recovering waste” and “saving in
puts” functions are shown in Table 4 and Table 5, respectively. 

Data show that the value of the performance indicators for the 
functions “recovering carcasses” (W-1) and “saving iron” (R-3) is equal 
to one. This means that the overall amounts of carcasses produced is 
recovered into the ISN and the overall amount of iron required into the 
ISN is replaced by wastes produced by other companies. Hence, overall, 
the ISN does not dispose of any unit of carcasses in the landfill and does 
not purchase any unit of iron from conventional suppliers. The best 
performance is thus achieved. 

Let us consider the performance indicators of the functions W-2, R-1, 
and R-2, whose values are lower than one. The two factors permit to 
identify the reason. In particular, three different cases can be high

lighted. For the function “recovering wheel rims” (W-2), wS
k(t)

EW
k (t) = 1 and 

EW
k (t)

wk(t) < 1. This means that the performance of this function is lower than 
one because of the mismatch between the production of wheel rims (i.e., 
150 t) and its correspondent demand (i.e., 100 t). In fact, 50 units of 
wheel rims are currently disposed of in landfills. For the function “saving 

resilient granules” (R-2), rS
l (t)

ER
l (t)

< 1 and E
R
l (t)

rl(t) = 1. This means that, despite 

resilient granules could have been fully replaced by the correspondent 
wastes (since the demand for resilient granules is 31.5 t and the pro
duction of carcasses, able to replace this input, is 150 t, which corre
sponds to 150 × 0.8 = 120 t), the ISN is not recovering the highest 
possible amount of resilient granules. Finally, for the function “saving 

coal” (R-1), both rS
l (t)

ER
l (t)

and E
R
l (t)

rl(t) are lower than one. This means that the 

performance of this function is lower than one because of two reasons: 1) 
the ISN is not saving the highest possible amount of coal – in fact, if the 
overall amount of carcasses produced (150 t) would have been used to 
replace coal, the amount of coal saved would have been 131.55 t; 
however, only 114.01 t of coal are saved, since part of the carcasses 
produced is used to replace resilient granules, and 2) the mismatch be
tween the demand of coal (i.e., 189.18 t) and the production of wastes 
able to replace this input (i.e., 150 t of carcasses, which correspond to 
150 × 0.877 = 131.55 t of input). In fact, 57.63 t of coal are currently 
purchased from conventional suppliers. 

The numerical value of these indicators is extensively computed in 
the Appendix. 

4.3. Contribution indicators for organisms to functions 

In this Section, we compute the contribution indicators for organisms 
to functions described in Section 3.2.2. These quantify the extent to 
which each company contributes to waste recovery and input saving, 
rating, therefore, its importance. Numerical values are shown in Table 6. 

The indicators show that each company contributes to one function, 
except for company A, which contributes to operate two functions – i.e., 
“recovering carcasses” (W-1) and “recovering wheel rims” (W-2). 
Furthermore, each function is operated by one company, except for the 
function “saving coal” (R-1), to which both company B and company C 
contribute. In particular, company B contributes to operate the 76.92% 
of this function, while the remaining 23.08% is operated by company C. 
From the structural perspective, it can be noted that company A is the 
only waste producer in the ISN; in fact, χW

A→1(t) = 1 and χW
A→2(t) = 1. 

This means that, if company A decides to abandon the ISN, the overall 
network would disappear. 

The numerical value of these indicators is extensively computed in 
the Appendix. 

4.4. Impact indicators for services 

In this Section, we compute the impact indicators for services 
described in Section 3.2.3. As stated in Section 4.1, we consider three 
services provided by the ISN: 1) reduction of CO2 emissions; 2) reduction 
of CH4 emissions; and 3) reduction of water consumption. 

This requires to assess first the coefficients IW
u→αand IR

v→α. Their values, 
obtained from the database of OpenLCA,4 are reported in Table 7.5 For 
instance, IW

1→α = 0.06102means that recovering one kg of carcasses 
contributes to reducing CO2 emissions to the air by 0.06102 kg. Simi
larly, IR

2→γ = 17.9  means that saving one kg of resilient granules con
tributes to reducing water consumption by 17.9 kg. 

Overall, through performing the ISN functions described above, the 
services provided by the ISN have the following impact: 1) reduction of 
CO2 emissions – εα(t) – equal to 147.56 t; 2) reduction of CH4 emissions – 
εβ(t) – equal to 1.2559 t; and 3) reduction of water consumption – εγ(t) – 

Table 4 
Performance indicators computed for “recovering waste” functions.   

wk
S(t) Ek

W(t) wS
k(t)

EW
k (t)

EW
k (t)

wk(t)
φk

W(t) 

W-1 Recovering carcasses 150 t 150 t 1 1 1 
W-2 Recovering wheel rims 100 t 100 t 1 0.66 0.66  

3 We are aware that many other services could have been considered. For the 
sake of simplicity in the case explanation and discussion, we have chosen to 
address only these three services, in order to show how our indicators work. 
The impact of other services can be easily computed by following the meth
odology described in Section 3. 

4 OpenLCA is a free LCA software available at http://www.openlca.org/.  
5 For the sake of simplicity in the case example, these numerical data only 

consider the impact of avoided waste disposal and avoided input production. 
Therefore, they do not take into account the additional benefits created by 
replacing input with wastes (e.g., the fact that burning carcasses instead of coal 
might further contribute to reduce emissions to the air). However, this does not 
impact on the case example, which is devoted to show how the designed in
dicators work, independently on the specific numerical values. 
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equal to 911.87 t. 
The numerical value of these indicators is extensively computed in 

the Appendix. 

4.5. Performance indicators for services 

In this Section, we compute the performance indicators for services 
described in Section 3.2.4. Three performance indicators are computed: 
1) the performance of reduction in CO2 emissions – σα(t) – is 0.8183; 2) 
the performance of reduction in CH4 emissions – σβ(t) – is 0.6047; and 3) 
the performance of reduction in water consumption – σγ(t) – is 0.6755. 
None of these performances is equal to one, meaning that the ISN can 

further increase the impact of its services on the environment. For 
instance, the performance of reduction in water consumption – σγ(t) – 
will become equal to one if the overall amounts of coal and resilient 
granules required by companies belonging to the ISN are saved. 

The numerical value of these indicators is extensively computed in 
the Appendix. 

4.6. Contribution indicators for functions to services 

In this Section, we compute the contribution indicators for functions 
to services described in Section 3.2.5. They assess the contribution of 
each function (recovering carcasses; recovering wheel rims; saving coal; 

Table 5 
Performance indicators computed for “saving input” functions.   

rl
S(t) El

R(t) rS
l (t)

ER
l (t)

ER
l (t)

rl(t)
φl

R(t) 

R-1 Saving coal 114.01 t 131.55 t 0.8667 0.6954 0.6027 
R-2 Saving resilient granules 16 t 31.5 t 0.5079 1 0.5079 
R-3 Saving iron 100 t 100 t 1 1 1  

Table 6 
Values of contribution indicators for organisms to functions.   

Functions 

W-1 W-2 R-1 R-2 R-3 

Recovering carcasses Recovering wheel rims Saving coal Saving resilient granules Saving iron 

Company A χW
A→1(t) = 1  χW

A→2(t) = 1  – – – 

Company B – – χR
B→1(t) = 0.7692  – – 

Company C – – χR
C→1(t) = 0.2308  – – 

Company D – – – χR
D→2(t) = 1  – 

Company E – – – – χR
E→3(t) = 1   

Table 7 
Values of coefficients IW

k→αand IR
l→α.   

Services 

α β γ 

Reduction in the CO2 emissions to the air Reduction in the CH4 emissions to the air Reduction of water consumption 

ISN 
functions 

W- 
1 

Recovering carcasses IW1→α = 0.06102[kgCO2/kg carcasses] IW1→β = 0.00036[kg CH4/kg carcasses] IW1→γ = 0[kg water/kg carcasses]

W- 
2 

Recovering wheel 
rims 

IW2→α = 0.01084kg CO2/kg wheel rims] IW2→β = 0.00014kg CH4/kg wheel rims] IW2→γ = 0kg water/kg wheel rims  

R-1 Saving coal IR1→α = 0.1058[kg CO2/kg coal] IR1→β = 0.0079[kg CH4/kg coal] IR1→γ = 2.1373[kg water/kg coal]
R-2 Saving resilient 

granules 
IR2→α = 1.5667[kg CO2/

kg resilient granules]
IR2→β = 0.0142[kg CH4/

kg resilient granules]
IR2→γ = 17.9[kg water/
kg resilient granules]

R-3 Saving iron IR3→α = 1.0019[kg CO2/kg iron] IR3→β = 0.0006[kg CH4/kg iron] IR3→γ = 3.818[kg water/kg iron]

Table 8 
Values of contribution indicators for functions to services.   

Services 

α β γ 

Reduction in the CO2 emissions to the 
air 

Reduction in the CH4 emissions to the 
air 

Reduction in the water 
consumption 

ISN 
functions 

W-1 Recovering carcasses πW
1→α(t) = 0.0620  πW

1→β(t) = 0.0430  πW
1→γ(t) = 0  

W-2 Recovering wheel rims πW
2→α(t) = 0.0073  πW

2→β(t) = 0.0111  πW
2→γ(t) = 0  

R-1 Saving coal πR
1→α(t) = 0.0817  πR

1→β(t) = 0.7172  πR
1→γ(t) = 0.2672  

R-2 Saving resilient 
granules 

πR
2→α(t) = 0.1699  πR

2→β(t) = 0.1809  πR
2→γ(t) = 0.3141  

R-3 Saving iron πR
3→α(t) = 0.6790  πR

3→β(t) = 0.0478  πR
3→γ(t) = 0.4187   
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Fig. 4. Values of contribution indicators for functions to services (graphical representation).  

Fig. 5. Numerical indicators of contribution indicators of companies to functions (see Table 6) and of functions to services (see Table 8).  
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saving resilient granules; and saving iron) to each service (reduction of 
CO2 emissions; reduction of CH4 emissions; and reduction of water 
consumption). A graphical representation is also given in Fig. 4. 

It can be noted that input saving functions contribute more to the 
environmental services than waste recovery functions. In particular, the 
function “saving iron” (R-3) is the one that mostly contributes to 
reducing CO2 emissions and water consumption. In fact, it contributes to 
67.9% of the CO2 emissions reduction and to 41.87% of the water 
consumption reduction. The function “saving coal” (R-1) plays an 
important role in reducing CH4 emissions, since contributing to the 
71.72% of the overall CH4 emission reduction provided by the ISN. The 
function “saving resilient granules” (R-2) is the second function 
contributing to all the services: it contributes to 16.99% of the CO2 
emissions reduction, to 18.09% of the CH4 emission reduction, and to 
31.34% of the water consumption reduction. 

The two waste recovery functions provide a limited contribution to 
the services provided by the ISN. The function “recovery carcasses” (W- 
1) contributes to the 6.20% of the CO2 emissions reduction and to the 
4.3% of the CH4 emissions reduction. The function “recovery wheel 
rims” (W-2) contributes to the 0.73% of the CO2 emissions reduction and 
to the 1.11% of the CH4 emissions reduction. None of the waste recovery 
function contributes to reducing water consumption. 

The numerical value of these indicators is extensively computed in 
the Appendix. 

Fig. 5 shows the numerical indicators of contribution indicators of 
companies to functions and of functions to services. 

For instance, from Fig. 5 it can be synoptically noted that Company A 
contributes to operate two functions (i.e., Function W-1 and Function W- 
2) and both these functions are fully operated by Company A (e.g., no 
other companies contribute to operate these functions). In turn, Func
tion W-1 contributes to the 6.20% of Service α (i.e., is responsible to the 
6.20% of the overall CO2 reduction thanks to the ISN) and to the 4.30% 
of Service β (i.e., is responsible to the 4.30% of the overall CH4 reduction 
thanks to the ISN). The function R-1 is operated by two companies, B and 
C: Company B contributes to 76.92% of the function and Company C 
contributes to the remaining 23.08%. Finally, Service γ is created thanks 
to three functions, R-1, R-2, and R-3, which contribute to 26.72%, 
31.41%, and 41.87%, respectively. 

5. Discussion 

This paper contributes to the literature on IS performance indicators 
– a topic that is receiving increasing attention in IS field (Domenech 
et al., 2019; Fraccascia and Giannoccaro, 2020; Neves et al., 2019) – by 
proposing a new and integrated set of IS indicators useful for moni
toring, evaluation, and, in particular, decision-making, an urgent need 
of the referred literature. The proposed indicators are mainly addressed 
to managers involved in ISN at the firm and network levels, but also 
policymakers interested to develop actions to support the design of 
effective ISNs. In doing so, we contribute to a recent field of studies 
designing dynamic indicators for ISN planning and evolution. 

We conceptualized ISNs as ecosystems and employed the Enterprise 
Input-Output approach to model the flows of waste exchanges. In 
particular, we framed the ISN as made up of firms (organisms) per
forming specific functions enabled by waste exchanges, i.e., waste 
recovering and input saving. These multiple functions contribute to the 
ability of the ISN to provide environmental services in terms of reduced 
environmental impacts of production processes. This approach is inno
vative, since it permits to consider all the relevant dimensions involved 
in the IS, i.e., the firms (organisms), the waste exchanges (functions), 
and the network (the services). In doing so, we address a gap in the 
literature, which has been mainly proposed indicators including only 
one dimension (Felicio et al., 2016). 

Furthermore, we extend previous literature, since our approach 
provides a measure of the environmental impacts of the ISN (impact 
indicators for services), but meaningfully offers indicators to assess its 

functioning. In particular, we designed specific indicators to highlight: 
1) the impact of services provided by the ISN, 2) the extent to which the 
impact of services is maximized, 3) which symbiotic exchanges 
contribute more to the environmental services, 4) whether the symbiotic 
exchanges implemented are optimized, and 5) the extent to which the 
firms belonging to the ISN contribute to these exchanges. Therefore, we 
extend IS indicators based on eco-efficiency measurements (e.g., Park 
and Behera, 2014), LCA methods (e.g., Mattila et al., 2012), input- 
output approach (e.g., Yazan, 2016), and material flow analysis (e.g., 
Sendra et al., 2007), which mainly provide a measure of IS impacts 
referred to a single dimension (system vs. single relationship) and to a 
short and specific period of time. 

The above-mentioned indicators provide three types of information: 
impact, performance, and contribution. The impact indicators of ser
vices provide information on the environmental contribution provided 
by the ISN to the external environment, in terms of reduction in the 
environmental pressure caused by production processes belonging to the 
ISN. Although many indicators have been designed to this aim – see 
Fraccascia and Giannoccaro (2020) – our indicators provide a method
ological advance because able to integrate the EIO approach for IS with 
some elements of LCA, i.e., the coefficients of environmental impact of 
the single functions (see Section 3.2.3). While the integration between 
input-output modeling and LCA has already been explored for envi
ronmental assessment at the product level (Hendrickson et al., 1998) or 
for traditional waste management processes (Nakamura and Kondo, 
2002), as well as for input-output analysis at the macro-level (Tukker 
et al., 2009), to the best of our knowledge this paper is the first that 
integrates EIO models for IS with LCA elements. 

The performance indicators provide indications about the extent to 
which services and functions are optimized. The indicators evaluating 
the performance of the single ISN services provide information about the 
extent to which the impact of the ISN services to the external environ
ment is maximized. A value of the indicators lower than one means that 
the impact of the service is not maximized compared to the theoretical 
potential, due to the non-optimal network functioning. In this regard, 
the indicators evaluating the performance of the single ISN functions are 
useful to provide knowledge about the symbiotic exchanges carried out 
inside the ISN. Two classes of performance indicators were defined, one 
assessing whether the ISN is able to recover all the amounts produced of 
a given waste and the other one evaluating whether the ISN is able to 
save all the amounts of a given input by using the wastes produced into 
the network. A value of the indicators lower than one means that the 
function is not optimized. More interestingly, we also showed that the 
indicators can be decomposed into two factors, aimed at identifying the 
extent to which the performance of a given function is affected by the 
operational issues of IS exchanges carried out by the firms and the 
mismatch between demand and supply of waste. In such a way, the 
cause of not optimal performance can be detected and proper strategies 
can be designed to improve ISN performance, by managers involved in 
ISN planning. 

The contribution indicators provide information about the relevance 
of single companies and functions for the ISN. The indicators quanti
fying the extent to which each firm contributes to ISN functions provide 
useful information on their importance for ISN functioning. This is 
useful to rate firms belonging to ISN based on their relevance for the ISN. 
This information can be useful for managers of single companies to be 
aware of their relevance, especially when they are negotiating the 
clauses of a symbiotic contract. The higher the relevance, the higher the 
contractual power would be, ceteris paribus. 

Furthermore, this set of indicators is relevant for ISN resilience to 
disruptive events. In this context, the contribution of the single firm to 
the ISN functions can be considered as a measure of the impact on the 
ISN in the case of a firm’s abandonment. The higher the contribution of a 
given company for ISN functions, the greater the impact on the ISN if the 
company abandons the network will be, ceteris paribus (Benjamin et al., 
2015; Chopra and Khanna, 2014; Li et al., 2017; Wang et al., 2017b, 
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2018; Zeng et al., 2013; Zhu and Ruth, 2013). Furthermore, these in
dicators provide information useful to assess the ubiquity of single 
wastes, a further structural feature affecting the resilience of ISN 
(Fraccascia et al., 2017b). When a function is operated just by one firm 
(low ubiquity), this means that, in the case of firm removal, the corre
sponding function will be no more carried out by the ISN. Therefore, the 
resilience of ISN against such events is very low. Alternatively, when a 
function is operated by more companies (high ubiquity), if one of them 
fails, the function can still be operated by the other companies. 
Furthermore, companies can be involved in operating multiple functions 
in the ISN. These companies could be very important for the ISN when 
they are the only ones operating these functions. Such information is 
thus very useful for managers involved in ISN planning with the aim of 
improving its resilience to firm removal. 

The indicators assessing the contributions each function provides to 
the single services are useful to identify and assess the sources of the 
environmental services provided by the ISN. This information is 
important for ecosystem services valorization and design payment sys
tems. Furthermore, note that, in a given area, some services can be 
considered more important than others. For instance, in a given area 
characterized by few water sources, reducing the water consumption 
could be a priority compared to reducing CH4 emissions to the air. 
Alternatively, in a highly polluted area, reducing CO2 emissions to the 
air could be a priority compared to reducing water consumption. Hence, 
the proposed indicators are useful to identify which functions contribute 
more to the service with high priority. This information can be used by 
policymakers to design proper incentives more effectively, by promoting 
those symbiotic exchanges having a high priority for a given area. 

Finally, a methodological consideration concerns the Enterprise 
Input-Output approach used to build the indicators. Compared to most 
common approaches adopted to assess environmental indicators, this 
approach is particularly beneficial because permits to compute in
dicators based on dynamic parameters, whose values are time- 
dependent, as well as to highlight the primary drivers of these param
eters – e.g., the amounts of wastes produced and inputs required can be 
computed at the specific time t and depend, in turn, on the amounts of 
main outputs produced by companies (Fraccascia, 2019). Hence, in case 
of changes in the production volumes the values of the proposed in
dicators can be dynamically computed, without carrying out further 
analysis on a new scenario. This is a further advantage of the indicators 
proposed in this paper compared to traditional ones, which adopt a 
static perspective. 

As to the computational efforts required, computing the proposed 
indicators requires the following data, for all the involved companies, as 
inputs: 1) data on the main outputs produced by companies and tech
nical production coefficient, 2) amounts of wastes exchanged among 
companies, 3) the impact coefficients of each function to each service. 
While the first two classes are related to primary data, collected from the 
companies belonging to the ISN, the last class is related to secondary 
data, available from LCA databases. Computing the proposed indicators 
does not require specific software and the computational effort is 
minimum. 

6. Conclusions 

The growing interest in designing and management of ISNs, 

considered as an effective strategy to pursue circular economy and 
achieve sustainable development, has pushed scholars to investigate 
more proper ways to measure IS. Which are the environmental benefits 
provided by an ISN? Can they be enhanced? Are the symbiotic ex
changes fully exploited? How they can be improved? Which are the most 
important firms providing the highest contribution to the symbiotic 
exchange? 

We tackled this issue, by focusing on environmental services pro
vided by ISNs and by designing an integrated set of indicators addressing 
all the questions, based on an ecosystem approach. In particular, a set of 
indicators were designed, able to: 1) quantify the contribution of ISNs in 
reducing the environmental impacts of production processes, 2) quan
tify the performance of the environmental services, 3) compute the 
contribution of symbiotic exchanges to environmental services, 4) 
quantify the efficiency of the symbiotic exchanges carried out in the ISN, 
and 5) measure how single firms contribute to the symbiotic exchanges. 
Hence, they not only quantify the environmental benefits offered by the 
ISN, but provide an assessment of the ISN functioning from multiple 
points of view in an easy, understandable, and immediate way. 

The usefulness of the indicators for decision-making aims was illus
trated by developing a numerical case study, which showed for a hy
pothetical ISN how the methodology should be adopted and how the 
indicators should be computed. Furthermore, we highlighted how they 
are useful to identify proper strategies to increase the efficiency of the 
system in exploiting the IS synergies and to improve its efficacy. 

The paper presents some limitations. The environmental services 
considered in the case example concern a limited set of environmental 
impacts (e.g., CO2 emissions, CH4 emissions, and water consumption). 
However, note that depending on the specific symbiotic exchanges 
realized in the ISN, any other indicator could be included, computed 
according to the methodology proposed in Section 3.2. Furthermore, we 
do not consider how this environmental performance might in turn 
impact higher-level environmental indicators, such as the global 
warming. The next step of the research could address this issue. Further 
research will be also devoted to extending the application of these in
dicators to analyze the impact of functions on the economic and social 
performance of networks and companies. In doing so, the approach will 
cover all the dimensions of sustainability so as to offer a battery of in
dicators to be used, depending on the specific needs. 
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Appendix A. Computation of indices and performance indicators 

The amounts of each waste recovered into the ISN and of each input saved into the ISN are computed as follows: 

wS
1(t) = eA→B

1 (t) + eA→C
1 (t) + eA→D

1 (t) = 100+ 30+ 20 = 150  

wS
2(t) = eA→E

2 (t) = 100 
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rS
1(t) = s1←1∙

[
eA→B

1 (t) + eA→C
1 (t)

]
= 0.877∙(100+ 30) = 114.01  

rS
2(t) = s2←1∙eA→D

1 (t) = 0.8∙20 = 16  

rS
3(t) = s3←2∙eA→E

2 (t) = 1∙100 = 100 

The parameters Ek
W(t) and El

R(t) are computed as follows: 

EW
1 (t) = min

{

w1(t) ;
r1B(t)
s1←1

+
r1C(t)
s1←1

+
r2D(t)
s2←1

}

= min
{

150;
87.7
0.877

+
101.48
0.877

+
31.5
0.8

}

= 150  

EW
2 (t) = min

{

w2(t) ;
r3E(t)
s3←2

}

= min
{

150;
100
1

}

= 100  

ER
1 (t) = min{r1(t) ; s1←1∙w1A(t) } = min{189.18; 0.877∙150} = 131.55  

ER
2 (t) = min{r2(t) ; s2←1∙w1A(t) } = min{31.5; 0.8∙150} = 31.5  

ER
3 (t) = min{r3(t) ; s3←2∙w2A(t) } = min{100; 1∙150} = 100 

The performance indicator of functions operated into the ISN (see Section 3.2.1) are computed as follows: 

φW
1 (t) =

wS
1(t)

EW
1 (t)

×
EW

1 (t)
w1(t)

= 1× 1 = 1  

φW
2 (t) =

wS
2(t)

EW
2 (t)

×
EW

2 (t)
w2(t)

= 1× 0.66 = 0.66  

φR
1 (t) =

rS
1(t)

ER
1 (t)

×
ER

1 (t)
r1(t)

= 0.8667× 0.6954 = 0.6027  

φR
2 (t) =

rS
2(t)

ER
2 (t)

×
ER

2 (t)
r2(t)

= 0.5079× 1 = 0.5079  

φR
3 (t) =

rS
3(t)

ER
3 (t)

×
ER

3 (t)
r3(t)

= 1× 1 = 1 

The contribution indicators of organisms to functions (see Section 3.2.2) are computed as follows: 

χW
A→1(t) =

wS
1A

wS
1
=

150
150

= 1  

χW
A→2(t) =

wS
2A

wS
2
=

150
150

= 1  

χR
B→1(t) =

rS
1B

rS
1
=

87.7
114.01

= 0.7692  

χR
C→1(t) =

rS
1C

rS
1
=

26.31
114.01

= 0.2308  

χR
D→2(t) =

rS
2D

rS
2
=

16
16

= 1  

χR
E→3(t) =

rS
3E

rS
3
=

100
100

= 1 

The impact indicators for services (see Section 3.2.3) are computed as follows: 

εα(t) = IW
1→α∙w

S
1(t)+ IW

2→α∙w
S
2(t)+ IR

1→α∙r
S
1(t)+ IR

2→α∙r
S
2(t)+ IR

3→α∙r
S
3(t) = 0.06102∙150+ 0.01084∙100+ 0.1058∙114.01+ 1.5667∙16+ 1.0019∙100 = 147.56  

εβ(t) = IW
1→β∙w

S
1(t)+ IW

2→β∙w
S
2(t)+ IR

1→β∙r
S
1(t) + IR

2→β∙r
S
2(t)+ IR

3→β∙r
S
3(t) = 0.00036∙150+ 0.00014∙100+ 0.0079∙114.01+ 0.0142∙16+ 0.0006∙100 = 1.2559  

εγ(t) = IW
1→γ∙w

S
1(t)+ IW

2→γ∙w
S
2(t) + IR

1→γ∙r
S
1(t)+ IR

2→γ∙r
S
2(t) + IR

3→γ∙r
S
3(t) = 0∙150+ 0∙150+ 2.1373∙114.01+ 17.9∙16+ 3.818∙100 = 911.87 

The performance indicators for services (see Section3.2.4) are computed as follows: 

σα(t) =
εα(t)

IW
1→α∙w1(t) + IW

2→α∙w2(t) + IR
1→α∙r1(t) + IR

2→α∙r2(t) + IR
3→α∙r3(t)

=
147.56

0.06102∙150 + 0.01084∙150 + 0.1058∙189.18 + 1.5667∙31.5 + 1.0019∙100
= 0.8183  
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σβ(t) =
εβ(t)

IW
1→β∙w1(t) + IW

2→β∙w2(t) + IR
1→β∙r1(t) + IR

2→β∙r2(t) + IR
3→β∙r3(t)

=
1.2559

0.00036∙150 + 0.00014∙150 + 0.0079∙189.18 + 0.0142∙31.5 + 0.0006∙100

= 0.6047  

σγ(t) =
εγ(t)

IW
1→γ∙w1(t) + IW

2→γ∙w2(t) + IR
1→γ∙r1(t) + IR

2→γ∙r2(t) + IR
3→γ∙r3(t)

=
911.87

0∙150 + 0∙150 + 2.1373∙189.18 + 17.9∙31.5 + 3.818∙100
= 0.6755 

The contribution indicators for functions are computed as follows: 

πW
1→α(t) =

IW
1→α∙wS

1(t)
IW

1→α∙wS
1(t) + IW

2→α∙wS
2(t) + IR

1→α∙rS
1(t) + IR

2→α∙rS
2(t) + IR

3→α∙rS
3(t)

=
0.06102∙150

0.06102∙150 + 0.01084∙100 + 0.1058∙114.01 + 1.5667∙16 + 1.0019∙100
= 0.0620  

πW
2→α(t) =

IW
2→α∙wS

2(t)
IW

1→α∙wS
1(t) + IW

2→α∙wS
2(t) + IR

1→α∙rS
1(t) + IR

2→α∙rS
2(t) + IR

3→α∙rS
3(t)

=
0.01084∙100

0.06102∙150 + 0.01084∙100 + 0.1058∙114.01 + 1.5667∙16 + 1.0019∙100
= 0.0073  

πW
1→β(t) =

IW
1→β∙wS

1(t)
IW

1→β∙wS
1(t) + IW

2→β∙wS
2(t) + IR

1→β∙rS
1(t) + IR

2→β∙rS
2(t) + IR

3→β∙rS
3(t)

=
0.00036∙150

0.00036∙150 + 0.00014∙100 + 0.0079∙114.01 + 0.0142∙16 + 0.0006∙100

= 0.0430  

πW
2→β(t) =

IW
2→β∙wS

2(t)
IW

1→β∙wS
1(t) + IW

2→β∙wS
2(t) + IR

1→β∙rS
1(t) + IR

2→β∙rS
2(t) + IR

3→β∙rS
3(t)

=
0.00014∙100

0.00036∙150 + 0.00014∙100 + 0.0079∙114.01 + 0.0142∙16 + 0.0006∙100

= 0.0111  

πW
1→γ(t) =

IW
1→γ∙wS

1(t)
IW

1→γ∙wS
1(t) + IW

2→γ∙wS
2(t) + IR

1→γ∙rS
1(t) + IR

2→γ∙rS
2(t) + IR

3→γ∙rS
3(t)

= 0  

πW
2→γ(t) =

IW
2→γ∙wS

2(t)
IW

1→γ∙wS
1(t) + IW

2→γ∙wS
2(t) + IR

1→γ∙rS
1(t) + IR

2→γ∙rS
2(t) + IR

3→γ∙rS
3(t)

= 0  

πR
1→α(t) =

IW
1→α∙wS

1(t)
IW

1→α∙wS
1(t) + IW

2→α∙wS
2(t) + IR

1→α∙rS
1(t) + IR

2→α∙rS
2(t) + IR

3→α∙rS
3(t)

=
0.1058∙114.01

0.06102∙150 + 0.01084∙100 + 0.1058∙114.01 + 1.5667∙16 + 1.0019∙100
= 0.0817  

πR
2→α(t) =

IW
2→α∙wS

2(t)
IW

1→α∙wS
1(t) + IW

2→α∙wS
2(t) + IR

1→α∙rS
1(t) + IR

2→α∙rS
2(t) + IR

3→α∙rS
3(t)

=
1.5667∙16

0.06102∙150 + 0.01084∙100 + 0.1058∙114.01 + 1.5667∙16 + 1.0019∙100
= 0.1699  

πR
3→α(t) =

IW
3→α∙wS

3(t)
IW

1→α∙wS
1(t) + IW

2→α∙wS
2(t) + IR

1→α∙rS
1(t) + IR

2→α∙rS
2(t) + IR

3→α∙rS
3(t)

=
1.0019∙100

0.06102∙150 + 0.01084∙100 + 0.1058∙114.01 + 1.5667∙16 + 1.0019∙100
= 0.6790  

πR
1→β(t) =

IR
1→β∙wS

1(t)
IW

1→β∙wS
1(t) + IW

2→β∙wS
2(t) + IR

1→β∙rS
1(t) + IR

2→β∙rS
2(t) + IR

3→β∙rS
3(t)

=
0.0079∙114.01

0.00036∙150 + 0.00014∙100 + 0.0079∙114.01 + 0.0142∙16 + 0.0006∙100

= 0.7172  

πR
2→β(t) =

IR
2→β∙wS

2(t)
IW

1→β∙wS
1(t) + IW

2→β∙wS
2(t) + IR

1→β∙rS
1(t) + IR

2→β∙rS
2(t) + IR

3→β∙rS
3(t)

=
0.0142∙16

0.00036∙150 + 0.00014∙100 + 0.0079∙114.01 + 0.0142∙16 + 0.0006∙100

= 0.1809  

πR
3→β(t) =

IR
3→β∙wS

3(t)
IW

1→β∙wS
1(t) + IW

2→β∙wS
2(t) + IR

1→β∙rS
1(t) + IR

2→β∙rS
2(t) + IR

3→β∙rS
3(t)

=
0.0006∙100

0.00036∙150 + 0.00014∙100 + 0.0079∙114.01 + 0.0142∙16 + 0.0006∙100

= 0.0478  

πR
1→γ(t) =

IR
1→γ∙rS

1(t)
IW

1→γ∙wS
1(t) + IW

2→γ∙wS
2(t) + IR

1→γ∙rS
1(t) + IR

2→γ∙rS
2(t) + IR

3→γ∙rS
3(t)

=
2.1373∙114.01

0∙150 + 0∙100 + 2.1373∙114.01 + 17.9∙16 + 3.818∙100
= 0.2672  

πR
2→γ(t) =

IR
2→γ∙rS

2(t)
IW

1→γ∙wS
1(t) + IW

2→γ∙wS
2(t) + IR

1→γ∙rS
1(t) + IR

2→γ∙rS
2(t) + IR

3→γ∙rS
3(t)

=
17.9∙16

0∙150 + 0∙100 + 2.1373∙114.01 + 17.9∙16 + 3.818∙100
= 0.3141  

πR
3→γ(t) =

IR
3→γ∙rS

3(t)
IW

1→γ∙wS
1(t) + IW

2→γ∙wS
2(t) + IR

1→γ∙rS
1(t) + IR

2→γ∙rS
2(t) + IR

3→γ∙rS
3(t)

=
3.818∙100

0∙150 + 0∙100 + 2.1373∙114.01 + 17.9∙16 + 3.818∙100
= 0.4187 
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Fichtner, W., Tietze-Stöckinger, I., Frank, M., Rentz, O., 2005. Barriers of 
interorganisational environmental management: Two case studies on industrial 
symbiosis. Prog. Ind. Ecol. Int. J. 2, 73–88. https://doi.org/10.1504/ 
PIE.2005.006778. 

Fieberg, J., Jenkins, K.J., 2005. Assessing uncertainty in ecological systems using global 
sensitivity analyses: A case example of simulated wolf reintroduction effects on elk. 
Ecol. Model. 187, 259–280. https://doi.org/10.1016/j.ecolmodel.2005.01.042. 

Fraccascia, L., 2019. The impact of technical and economic disruptions in industrial 
symbiosis relationships: An enterprise input-output approach. Int. J. Prod. Econ. 
213, 161–174. https://doi.org/10.1016/J.IJPE.2019.03.020. 

Fraccascia, L., Giannoccaro, I., 2020. What, where, and how measuring industrial 
symbiosis: A reasoned taxonomy of relevant indicators. Resour. Conserv. Recycl. 
157, 104799. https://doi.org/10.1016/j.resconrec.2020.104799. 

Fraccascia, L., Albino, V., Garavelli, C.A., 2017a. Technical efficiency measures of 
industrial symbiosis networks using enterprise input-output analysis. Int. J. Prod. 
Econ. 183, 273–286. https://doi.org/10.1016/j.ijpe.2016.11.003. 

Fraccascia, L., Giannoccaro, I., Albino, V., 2017b. Rethinking resilience in industrial 
symbiosis: Conceptualization and measurements. Ecol. Econ. 137, 148–162. https:// 
doi.org/10.1016/J.ECOLECON.2017.02.026. 

Genc, O., van Capelleveen, G., Erdis, E., Yildiz, O., Yazan, D.M., 2019. A socio-ecological 
approach to improve industrial zones towards eco-industrial parks. J. Environ. 
Manag. 250, 109507. https://doi.org/10.1016/j.jenvman.2019.109507. 

Geng, Y., Côté, R., 2007. Diversity in industrial ecosystems. Int. J. Sustain. Dev. World 
Ecol. 14, 329–335. https://doi.org/10.1080/13504500709469733. 

Geng, Y., Liu, Z., Xue, B., Dong, H., Fujita, T., Chiu, A., 2014. Emergy-based assessment 
on industrial symbiosis: A case of Shenyang economic and technological 
development zone. Environ. Sci. Pollut. Res. 21, 13572–13587. https://doi.org/ 
10.1007/s11356-014-3287-8. 

Ghodsypour, S.H., O’Brien, C., 1998. A decision support system for supplier selection 
using an integrated analytic hierarchy process and linear programming. Int. J. Prod. 
Econ. 56–57, 199–212. https://doi.org/10.1016/S0925-5273(97)00009-1. 

Grubbstrom, R.W., Tang, O., 2000. An overview of input-output analysis applied to 
production-inventory systems. Econ. Syst. Res. 12, 3–25. https://doi.org/10.1080/ 
095353100111254. 

Guinée, J.B., Heijungs, R., Huppes, G., 2004. Economic allocation: Examples and derived 
decision tree. Int. J. Life Cycle Assess. 9, 23–33. https://doi.org/10.1007/ 
BF02978533. 

Han, F., Liu, Y., Liu, W., Cui, Z., 2017. Circular economy measures that boost the upgrade 
of an aluminum industrial park. J. Clean. Prod. 168, 1289–1296. https://doi.org/ 
10.1016/J.JCLEPRO.2017.09.115. 

Hashimoto, S., Fujita, T., Geng, Y., Nagasawa, E., 2010. Realizing CO2 emission 
reduction through industrial symbiosis: A cement production case study for 
Kawasaki. Resour. Conserv. Recycl. 54, 704–710. https://doi.org/10.1016/j. 
resconrec.2009.11.013. 

Hein, A.M., Jankovic, M., Feng, W., Farel, R., Yune, J.H., Yannou, B., 2017. Stakeholder 
power in industrial symbioses: A stakeholder value network approach. J. Clean. 
Prod. 148, 923–933. https://doi.org/10.1016/J.JCLEPRO.2017.01.136. 

Hendrickson, C., Horvath, A., Joshi, S., Lave, L., 1998. Economic input-output models for 
environmental life-cycle assessment. Environ. Sci. Technol. 32 https://doi.org/ 
10.1021/es983471i. 

Herczeg, G., Akkerman, R., Hauschild, M.Z., 2018. Supply chain collaboration in 
industrial symbiosis networks. J. Clean. Prod. 171, 1058–1067. https://doi.org/ 
10.1016/j.jclepro.2017.10.046. 

Hill, R.M., 1999. The optimal production and shipment policy for the single-vendor 
singlebuyer integrated production-inventory problem. Int. J. Prod. Res. 37, 
2463–2475. https://doi.org/10.1080/002075499190617. 

Hu, Y., Wen, Z., Lee, J.C.K., Luo, E., 2017. Assessing resource productivity for industrial 
parks using adjusted raw material consumption (ARMC). Resour. Conserv. Recycl. 
https://doi.org/10.1016/j.resconrec.2017.04.009. 

Huang, C.L., Vause, J., Ma, H.W., Yu, C.P., 2012. Using material/substance flow analysis 
to support sustainable development assessment: A literature review and outlook. 
Resour. Conserv. Recycl. https://doi.org/10.1016/j.resconrec.2012.08.012. 

Husgafvel, R., Watkins, G., Linkosalmi, L., Dahl, O., 2013. Review of sustainability 
management initiatives within Finnish forest products industry 
companies—Translating Eu level steering into proactive initiatives. Resour. Conserv. 
Recycl. 76, 1–11. https://doi.org/10.1016/j.resconrec.2013.04.006. 

IEA, 2009. Cement Technology Roadmap 2009. 
Korhonen, J., 2001. Four ecosystem principles for an industrial ecosystem. J. Clean. 

Prod. 9, 253–259. https://doi.org/10.1016/S0959-6526(00)00058-5. 
Korhonen, J., Baumgartner, R.J., 2009. The industrial ecosystem balanced scorecard. Int. 

J. Innov. Sustain. Dev. 4, 24–42. https://doi.org/10.1504/IJISD.2009.024854. 
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Nieto, J., Carpintero, Ó., Miguel, L.J., 2018. Less than 2 ◦C? An economic-environmental 
evaluation of the Paris agreement. Ecol. Econ. 146, 69–84. https://doi.org/10.1016/ 
j.ecolecon.2017.10.007. 

Ollerton, J., 2006. “Biological barter”: Patterns of specialization compared across 
different mutualisms. In: Waser, N.M., Ollerton, J. (Eds.), Plant-Pollinator 
Interactions: From Specialization to Generalization. The University of Chicago Press, 
Chicago and London.  

Park, H.-S., Behera, S.K., 2014. Methodological aspects of applying eco-efficiency 
indicators to industrial symbiosis networks. J. Clean. Prod. 64, 478–485. https://doi. 
org/10.1016/J.JCLEPRO.2013.08.032. 

Prosman, E.J., Wæhrens, B.V., 2019. Managing waste quality in industrial symbiosis: 
Insights on how to organize supplier integration. J. Clean. Prod. 234, 113–123. 
https://doi.org/10.1016/J.JCLEPRO.2019.06.169. 

Rosano, M., Schianetz, K., 2014. Measuring sustainability performance in industrial 
parks: A case study of the Kwinana industrial area. Int. J. Sustain. Dev. 17, 261. 
https://doi.org/10.1504/IJSD.2014.064181. 

Schlüter, L., Mortensen, L., Kørnøv, L., 2020. Industrial symbiosis emergence and 
network development through reproduction. J. Clean. Prod. 252 https://doi.org/ 
10.1016/j.jclepro.2019.119631. 

Sendra, C., Gabarrell, X., Vicent, T., 2007. Material flow analysis adapted to an industrial 
area. J. Clean. Prod. 15, 1706–1715. https://doi.org/10.1016/j. 
jclepro.2006.08.019. 

Shah, I.H., Dong, L., Park, H.-S., 2020. Tracking urban sustainability transition: An eco- 
efficiency analysis on eco-industrial development in Ulsan, Korea. J. Clean. Prod. 
262, 121286. https://doi.org/10.1016/j.jclepro.2020.121286. 

Simboli, A., Taddeo, R., Morgante, A., 2015. The potential of industrial ecology in agri- 
food clusters (AFCs): A case study based on valorisation of auxiliary materials. Ecol. 
Econ. 111, 65–75. https://doi.org/10.1016/J.ECOLECON.2015.01.005. 

Song, X., Geng, Y., Dong, H., Chen, W., 2018. Social network analysis on industrial 
symbiosis: A case of Gujiao eco-industrial park. J. Clean. Prod. 193, 414–423. 
https://doi.org/10.1016/J.JCLEPRO.2018.05.058. 

Sun, L., Li, H., Dong, L., Fang, K., Ren, J., Geng, Y., Fujii, M., Zhang, W., Zhang, N., 
Liu, Z., 2017. Eco-benefits assessment on urban industrial symbiosis based on 
material flows analysis and emergy evaluation approach: A case of Liuzhou city, 
China. Resour. Conserv. Recycl. 119, 78–88. https://doi.org/10.1016/j. 
resconrec.2016.06.007. 

Taddeo, R., Simboli, A., Morgante, A., Erkman, S., 2017. The development of industrial 
symbiosis in existing contexts. Experiences from three Italian clusters. Ecol. Econ. 
139, 55–67. https://doi.org/10.1016/J.ECOLECON.2017.04.006. 

Tan, R.R., Benjamin, M.F.D., Cayamanda, C.D., Aviso, K.B., Razon, L.F., 2016. P-graph 
approach to optimizing crisis operations in an industrial complex. Ind. Eng. Chem. 
Res. 55, 3467–3477. https://doi.org/10.1021/acs.iecr.5b03205. 

Tukker, A., Poliakov, E., Heijungs, R., Hawkins, T., Neuwahl, F., Rueda-Cantuche, J.M., 
Giljum, S., Moll, S., Oosterhaven, J., Bouwmeester, M., 2009. Towards a global 
multi-regional environmentally extended input-output database. Ecol. Econ. 68, 
1928–1937. https://doi.org/10.1016/j.ecolecon.2008.11.010. 

Van Berkel, R., Fujita, T., Hashimoto, S., Fujii, M., 2009. Quantitative assessment of 
urban and industrial Symbiosis in Kawasaki, Japan. Environ. Sci. Technol. 43, 
1271–1281. https://doi.org/10.1021/es803319r. 

Wang, D., Li, J., Wang, Y., Wan, K., Song, X., Liu, Y., 2017a. Comparing the vulnerability 
of different coal industrial symbiosis networks under economic fluctuations. 
J. Clean. Prod. 149, 636–652. https://doi.org/10.1016/J.JCLEPRO.2017.02.137. 

Wang, D., Zheng, J., Song, X., Ma, G., Liu, Y., 2017b. Assessing industrial ecosystem 
vulnerability in the coal mining area under economic fluctuations. J. Clean. Prod. 
142, 4019–4031. https://doi.org/10.1016/j.jclepro.2016.10.049. 

Wang, Q., Tang, H., Yuan, X., Zuo, J., Zhang, J., Gao, Z., Hong, J., 2018. Investigating 
vulnerability of ecological industrial symbiosis network based on automatic control 
theory. Environ. Sci. Pollut. Res. 1–13 https://doi.org/10.1007/s11356-018-2753-0. 

Wen, Z., Meng, X., 2015. Quantitative assessment of industrial symbiosis for the 
promotion of circular economy: A case study of the printed circuit boards industry in 
China’s Suzhou New District. J. Clean. Prod. 90, 211–219. https://doi.org/10.1016/ 
J.JCLEPRO.2014.03.041. 

Wu, J., Guo, Y., Li, C., Qi, H., 2017. The redundancy of an industrial symbiosis network: 
A case study of a hazardous waste symbiosis network. J. Clean. Prod. 149, 49–59. 
https://doi.org/10.1016/J.JCLEPRO.2017.02.038. 

Wu, J., Pu, G., Guo, Y., Lv, J., Shang, J., 2018. Retrospective and prospective assessment 
of exergy, life cycle carbon emissions, and water footprint for coking network 
evolution in China. Appl. Energy 218, 479–493. https://doi.org/10.1016/J. 
APENERGY.2018.03.003. 

Yazan, D.M., 2016. Constructing joint production chains: An enterprise input-output 
approach for alternative energy use. Resour. Conserv. Recycl. 107, 38–52. https:// 
doi.org/10.1016/j.resconrec.2015.11.012. 

Yazan, D.M., Fraccascia, L., 2020. Sustainable operations of industrial symbiosis: An 
enterprise input-output model integrated by agent-based simulation. Int. J. Prod. 
Res. 58, 392–414. https://doi.org/10.1080/00207543.2019.1590660. 

Yazan, D.M., Romano, V.A., Albino, V., 2016. The design of industrial symbiosis: An 
input–output approach. J. Clean. Prod. 129, 537–547. https://doi.org/10.1016/j. 
jclepro.2016.03.160. 

Yu, B., Li, X., Shi, L., Qian, Y., 2015. Quantifying CO2 emission reduction from industrial 
symbiosis in integrated steel mills in China. J. Clean. Prod. https://doi.org/10.1016/ 
j.jclepro.2014.08.015. 

Yuan, Z., Shi, L., 2009. Improving enterprise competitive advantage with industrial 
symbiosis: Case study of a smeltery in China. J. Clean. Prod. 17, 1295–1302. https:// 
doi.org/10.1016/j.jclepro.2009.03.016. 

Zeng, Y., Xiao, R., Li, X., 2013. A resilience approach to symbiosis networks of 
ecoindustrial parks based on cascading failure model. Math. Probl. Eng. 2013 
https://doi.org/10.1155/2013/372368. Article ID 372368.  

Zhang, Y., Zheng, H., Fath, B.D., 2015. Ecological network analysis of an industrial 
symbiosis system: A case study of the Shandong Lubei eco-industrial park. Ecol. 
Model. 306, 174–184. https://doi.org/10.1016/J.ECOLMODEL.2014.05.005. 

Zhu, J., Ruth, M., 2013. Exploring the resilience of industrial ecosystems. J. Environ. 
Manag. 122, 65–75. https://doi.org/10.1016/J.JENVMAN.2013.02.052. 

L. Fraccascia et al.                                                                                                                                                                                                                              

https://doi.org/10.1111/jiec.12267
https://doi.org/10.1007/s11356-014-3327-4
https://doi.org/10.1016/J.JCLEPRO.2017.04.087
https://doi.org/10.3390/su9091510
https://doi.org/10.3390/su9091510
https://doi.org/10.1016/j.enpol.2016.12.013
https://doi.org/10.1016/j.jclepro.2008.11.004
https://doi.org/10.1111/j.1530-9290.2011.00444.x
https://doi.org/10.1016/0959-6526(95)00045-G
https://doi.org/10.1162/jiec.2007.1029
https://doi.org/10.1162/jiec.2007.1029
https://doi.org/10.1111/jiec.12403
https://doi.org/10.1016/j.jclepro.2013.06.024
https://doi.org/10.1016/j.ecolecon.2018.04.012
https://doi.org/10.1111/j.1530-9290.2011.00443.x
http://refhub.elsevier.com/S0921-8009(21)00002-1/rf0355
http://refhub.elsevier.com/S0921-8009(21)00002-1/rf0360
http://refhub.elsevier.com/S0921-8009(21)00002-1/rf0360
http://refhub.elsevier.com/S0921-8009(21)00002-1/rf0360
https://doi.org/10.1016/j.jclepro.2004.02.031
https://doi.org/10.1162/108819802320971632
https://doi.org/10.1007/978-3-030-14973-4_15
https://doi.org/10.1016/j.ecolecon.2017.10.007
https://doi.org/10.1016/j.ecolecon.2017.10.007
http://refhub.elsevier.com/S0921-8009(21)00002-1/rf0385
http://refhub.elsevier.com/S0921-8009(21)00002-1/rf0385
http://refhub.elsevier.com/S0921-8009(21)00002-1/rf0385
http://refhub.elsevier.com/S0921-8009(21)00002-1/rf0385
https://doi.org/10.1016/J.JCLEPRO.2013.08.032
https://doi.org/10.1016/J.JCLEPRO.2013.08.032
https://doi.org/10.1016/J.JCLEPRO.2019.06.169
https://doi.org/10.1504/IJSD.2014.064181
https://doi.org/10.1016/j.jclepro.2019.119631
https://doi.org/10.1016/j.jclepro.2019.119631
https://doi.org/10.1016/j.jclepro.2006.08.019
https://doi.org/10.1016/j.jclepro.2006.08.019
https://doi.org/10.1016/j.jclepro.2020.121286
https://doi.org/10.1016/J.ECOLECON.2015.01.005
https://doi.org/10.1016/J.JCLEPRO.2018.05.058
https://doi.org/10.1016/j.resconrec.2016.06.007
https://doi.org/10.1016/j.resconrec.2016.06.007
https://doi.org/10.1016/J.ECOLECON.2017.04.006
https://doi.org/10.1021/acs.iecr.5b03205
https://doi.org/10.1016/j.ecolecon.2008.11.010
https://doi.org/10.1021/es803319r
https://doi.org/10.1016/J.JCLEPRO.2017.02.137
https://doi.org/10.1016/j.jclepro.2016.10.049
https://doi.org/10.1007/s11356-018-2753-0
https://doi.org/10.1016/J.JCLEPRO.2014.03.041
https://doi.org/10.1016/J.JCLEPRO.2014.03.041
https://doi.org/10.1016/J.JCLEPRO.2017.02.038
https://doi.org/10.1016/J.APENERGY.2018.03.003
https://doi.org/10.1016/J.APENERGY.2018.03.003
https://doi.org/10.1016/j.resconrec.2015.11.012
https://doi.org/10.1016/j.resconrec.2015.11.012
https://doi.org/10.1080/00207543.2019.1590660
https://doi.org/10.1016/j.jclepro.2016.03.160
https://doi.org/10.1016/j.jclepro.2016.03.160
https://doi.org/10.1016/j.jclepro.2014.08.015
https://doi.org/10.1016/j.jclepro.2014.08.015
https://doi.org/10.1016/j.jclepro.2009.03.016
https://doi.org/10.1016/j.jclepro.2009.03.016
https://doi.org/10.1155/2013/372368
https://doi.org/10.1016/J.ECOLMODEL.2014.05.005
https://doi.org/10.1016/J.JENVMAN.2013.02.052

	Ecosystem indicators for measuring industrial symbiosis
	1 Introduction
	2 Industrial symbiosis networks as ecosystems
	3 Methods
	3.1 Modeling the companies and waste flows among them
	3.2 Ecosystem-based ISN indicators
	3.2.1 Performance indicators for functions
	3.2.2 Contribution indicators for organisms to functions
	3.2.3 Impact indicators for services
	3.2.4 Performance indicators for services
	3.2.5 Contribution indicators for functions to services


	4 Numerical case example
	4.1 Case description
	4.2 Performance indicators for functions
	4.3 Contribution indicators for organisms to functions
	4.4 Impact indicators for services
	4.5 Performance indicators for services
	4.6 Contribution indicators for functions to services

	5 Discussion
	6 Conclusions
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Computation of indices and performance indicators
	References


