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Third harmonic generation from collective modes in disordered superconductors
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Recent experiments with strong THz fields in both conventional and unconventional superconductors have
clearly evidenced a marked third-harmonic generation below the superconducting temperature Tc. Its inter-
pretation challenged substantial theoretical work aimed at establishing the relative efficiency of quasiparticle
excitations and collective modes in triggering such a resonant response. Here we compute the nonlinear
current by implementing a time-dependent Bogoljubov–de Gennes approach, with the twofold aim to account
nonperturbatively for the effect of local disorder, and to include the contribution of all collective modes, i.e.,
superconducting amplitude (Higgs) and phase fluctuations, and charge fluctuations. We show that, in agreement
with previous work, already at small disorder the quasiparticle response is dominated by paramagnetic effects.
We further demonstrate that paramagnetic processes mediate also the response of all collective modes, with a
substantial contribution of charge/phase fluctuations. These processes, which have been overlooked so far, turn
out to dominate the third-order current at strong disorder. In addition, we show that disorder strongly influences
the polarization dependence of the nonlinear response, with a marked difference between the clean and the
disordered case. Our results are particularly relevant for recent experiments in cuprates, whose band structure is
in a first approximation reproduced by our lattice model.
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I. INTRODUCTION

In the last two decades the technological advances in the
generation and manipulation of intense light pulses opened
the way to a revolutionary tool for investigating complex ma-
terials [1]. As compared to ordinary spectroscopic methods,
the use of short and intense pump pulses offers two main
advantages. From one side, combining an external perturba-
tion faster than the typical relaxation times of the system
with a time-delayed weak probe has the potential to access a
genuine nonequilibrium condition, hence disclosing physical
phenomena not observable by standard spectroscopies. From
the other side, the high impulsive value of the electromagnetic
field triggers naturally a nonlinear optical response, with se-
lection rules in general complementary with respect to linear
response. The latter aspect becomes predominant in the case
of THz multicycle light pulses, whose duration is typically of
several ps. In this case, the frequency spectrum of the pump
pulses is rather narrow, so one has in principle the oppor-
tunity to detect in the field reflected or transmitted through
the sample higher harmonics of the central frequency of the
pump. This effect turns out to be particularly pronounced
when the pumping process excites resonantly a specific prop-
agating mode of the system. Indeed, the enhancement of the
high-harmonic generation intensity can be used to identify
the characteristic frequencies of the excitations under scrutiny,
and their dependence on external parameters such as the tem-
perature or the magnetic field.

A successful example of nonlinear THz driving of collec-
tive modes has been provided by the case of superconducting
(SC) systems, where pronounced third-harmonic generation

(THG) has been reported when the system is cooled below the
critical temperature Tc [2–8]. To understand how this effect
can be used to characterize collective electronic modes, and
to distinguish them from the particle-hole continuum, one
can start considering the general expansion of the current in
powers of the vector potential A(t ), so that

jα = χ
(1)
αβ Aβ + χ

(3)
αβγ δAβAγ Aδ, (1)

where the convolution in time has been omitted for simplicity,
and α denotes the spatial components. The THG is linked to
the properties of the χ

(3)
αβγ δ nonlinear optical kernel, which

can be computed starting from a given microscopic interact-
ing model in the presence of a gauge field A. Even though
the primary coupling of A is to the fermionic particle-hole
excitations, these can mediate the decay to an intermediate
collective mode �, which is then resonantly driven by the
electromagnetic field. In particular, dropping space indices for
simplicity, if the energy expanded in the fluctuation field δ�

acquires a term scaling as γ δ�A2, where γ if an effective
coupling, the nonlinear kernel acquires a term proportional to
the collective-mode fluctuations 〈δ�2〉,

χ (3)(ω) ∼ γ 2〈δ�2〉(ω), (2)

with ω frequency of an ideal monochromatic pump field. By
combining Eqs. (1) and (2) it is easy to show that the intensity
of the THG scales as

ITHG ∼ |χ (3)(2ω)|2. (3)

Assuming that the spectrum of � is resonant near a charac-
teristic frequency ω�, such as 〈δ�2〉(ω) ∼ 1/(ω2 − ω2

�), one
then obtains an enhancement of the THG (3) when the pump
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frequency matches half the value of the mode resonance, ω =
ω�/2. When the experiment is carried out with a pump-probe
setup, one can show [9,10] that the resonance of the nonlinear
kernel (2) manifests as oscillation of the differential probe
field at the characteristic frequency ω�, as a function of the
pump-probe delay time tpp. The theoretical understanding of
the nonlinear kernel resonances requires then to solve two
separate problems: (1) the identification of all the collective
modes � which exist besides the particle-hole continuum and
their spectrum near the corresponding resonance frequency
ω�; and (2) the computation of their effective nonlinear cou-
pling to light γ and its tensorial structure. Indeed, by changing
the polarization axis of A with respect to the crystallographic
axes one can access experimentally the various components of
the χ (3) tensor.

In the case of superconductors, the transition occurs due
to the spontaneous breaking of the continuous U (1) gauge
symmetry. The equilibrium value of the order parameter con-
trols the gap 	 in the single-particle excitation spectrum. In
clean systems this leads to a well-defined structure of the
quasiparticle continuum, which appears only at low temper-
atures above the threshold frequency ω = 2	. This effect
is manifest in the BCS response function describing density
fluctuations at long wavelength (q = 0) and finite frequency.
However, density fluctuations induced by an uniform potential
should vanish, so this result is a well-known demonstra-
tion that the BCS approximation violates charge conservation
[11–14], which can be restored only adding the contribution
of charge and phase fluctuations beyond BCS. Nonetheless,
the nonlinear optical response has a leading contribution con-
trolled by lattice-modulated charge fluctuations, which are
not constrained to any conservation rule, as it has been usu-
ally discussed within the context of the Raman response of
superconductors [12–14]. As a consequence, below Tc the
modification of the quasiparticle spectrum appears also in the
THG with a sharp enhancement at 2ω = 2	 [15].

In addition, two collective SC modes emerge below Tc,
connected to the amplitude and phase of the complex order
parameter [16,17]. The phase mode is the Goldstone excita-
tion connecting energetically equivalent ground states of the
system, and the corresponding phase rigidity against nonuni-
form phase fluctuations is connected to the superfluid density
[18]. The phase fluctuations are conjugated to the density
ones, whose spectrum is dominated in a charged system by
plasma excitations, usually occurring at hundreds of THz.
The amplitude mode, also named Higgs mode for the analogy
with the massive Higgs boson of the Standard model, has a
characteristic mass frequency of the same order of the quasi-
particle threshold, i.e., ωH = 2	, which is about few THz in
conventional superconductors [16,17]. In these systems it has
been proven experimentally by means of both pump-probe
protocols [2,19,20] and THG measurements [2,3,5] that the
nonlinear optical kernel presents a marked resonance at ω� =
2	. Since this coincides with the Higgs-mode frequency,
these results have been initially naturally linked to fluctua-
tions of the Higgs mode [2,21]. However, subsequent work
[15] highlighted the importance of the BCS response, which
is resonant at the same 2	 frequency and is much larger
than the Higgs response, since for clean superconductors
one finds that χ

(3)
BCS � χ

(3)
Higgs. More specifically, this results

follows from the fact that the Higgs mode is weakly coupled
to light, γHiggs � 0, so the overall intensity of the Higgs signal
is too small to be detected. On the other hand, the analysis
of Ref. [15] for a two-dimensional square lattice showed also
that the two signals can be distinguished by their tensorial
structure. Indeed, while the Higgs response is fully isotropic,
the BCS one is strongly anisotropic. By decomposing χ (3) in
terms of the irreducible representation of the square lattice,
χ

(3)
Higgs has A1g symmetry, while χ

(3)
BCS has B1g symmetry, so the

THG is expected to almost vanish when the field is applied
along the diagonal of the square lattice [15]. Interestingly,
subsequent analysis [3] of the polarization dependence of the
THG in NbN showed a marked A1g signal, challenging again
the interpretation of the experimental results. Indeed, by using
a microscopic multiband SC model appropriate for NbN, both
χ

(3)
Higgs and χ

(3)
BCS have a sizable nonsymmetric component [22].

A considerable step forward in the theoretical interpreta-
tion of the THG in conventional superconductors has been
provided by the inclusion of disorder effects [23,24]. In-
deed, these works have shown that pointlike impurities can
reverse the order of the Higgs and BCS contributions, making
χ

(3)
Higgs � χ

(3)
BCS by increasing disorder. Within a minimal-

couping approach A couples microscopically to the fermionic
particle-hole excitations, via two terms named diamagnetic
and paramagnetic. The former one is a coupling of A2 to the
inverse mass tensors, which reduces to n/m for a parabolic
band dispersion, with n electron density and m electron mass.
The latter is a coupling of A to the electronic current. Because
of current conservation, in clean superconductors paramag-
netic terms are completely ineffective to mediate a finite
coupling of the Higgs to the light, so γHiggs � γdia, and γdia �
0 as mentioned above. However, in the presence of even small
disorder the paramagnetic processes become finite and the
resulting γHiggs � γpara � γdia, triggering a strong response of
the Higgs mode [17,23,24].

While these results can help understanding some of the
experimental findings, several open issues still need to be
addressed. So far, the analysis of Refs. [23,24] focused only
on the effects of disorder on the Higgs-light coupling, neglect-
ing completely the role of SC phase and charge fluctuations.
This is, however, dangerous within continuum models as
the ones considered in Refs. [23,24], where the inclusion
of phase/charge fluctuations is crucial in order to preserve
the gauge invariance of the theory [11], as indeed discussed
within the context of Raman spectroscopy [12–14]. In addi-
tion, as disorder increases the mixing between the amplitude,
phase, and charge fluctuations becomes unavoidable [25,26].
As a consequence, a crucial open question is the nature of the
full nonlinear optical response in a disordered superconductor,
obtained by including also phase and charge fluctuations. A
further issue concerns the possibility to treat disorder exactly,
going beyond the approximated schemes employed so far
[23,24]. For example, the approaches used in Refs. [23,24]
provide different analytical estimates for the disorder-induced
modifications of χ

(3)
Higgs and χ

(3)
BCS as a function of the dimen-

sionless quantity 2	τ , τ being the quasiparticle scattering
rate. Finally, a crucial issue for the comparison with the ex-
periments is the evaluation of the polarization dependence
of χ

(3)
Higgs and χ

(3)
BCS tensors with the inclusion of disorder.

Once more, this question cannot be answered within the
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simplified continuum model considered in Refs. [23,24], since
it requires one to introduce a proper lattice structure. A recent
[27] theoretical calculation done using a lattice model appro-
priate for NbN suggests indeed a considerable change of the
polarization dependence of the nonlinear optical kernel χ (3)

as disorder is included.
In this work we investigate the THG response for a

disordered superconducting system by including amplitude,
phase, and charge collective modes. We use a time-domain
approach where we compute the nonlinear current within
the time-dependent Bogoljubov–de Gennes (BdG) theory. As
compared to previous work, where disorder has been included
in the self-consistent Born approximation [23,27] or by im-
plementing an approximate Mattis-Bardeen limit [24], our
method has the advantage to treat disorder exactly, and to
include all possible self-energy and vertex corrections to the
kernel describing the nonlinear response within BCS. This
approach has been shown to be crucial in the intermediate-
and strong-disorder regime [25,26,28–31], where a nonper-
turbative treatment of disorder is required to account for the
emergent inhomogeneity of the SC background, that has a
direct impact on the collective-mode behavior. We focus on
the same two-dimensional lattice structure considered in the
clean case in Ref. [15], since it can be relevant for recent
experiments in cuprate superconductors [4,6,7]. Our approach
confirms that disorder enhances BCS paramagnetic contribu-
tions to the current, and it simultaneously triggers a sizable
contribution from all collective modes. By considering only
Higgs fluctuations we recover the results of previous work,
i.e., that in the strong-disorder regime the Higgs contribution
overcomes the BCS one. However, when adding charge and
phase fluctuations we find that their contribution is immedi-
ately present even for very small disorder, and it becomes the
dominant one at large disorder. This result is directly linked
to what observed in previous work within the context of the
optical conductivity of strongly disordered superconductors,
where it has been shown that disorder triggers a finite para-
magnetic subgap absorption due to charge and phase modes
[30–32]. In addition, we analyze the polarization dependence
of the THG, showing that the BCS contribution changes radi-
cally from the clean to the dirty case. In the homogenous case,
where diamagnetic processes rule out the THG, the response
is maximum for a field applied along the crystallographic
directions, and it almost vanishes for a field applied along
the diagonal, as already found in previous work by means
of the perturbative expansion [15]. Conversely, in the pres-
ence of even weak disorder the paramagnetic BCS processes
have opposite anisotropy, with a shallow minimum for a field
applied along the crystallographic axis, while all collective
modes give rise to an almost isotropic contribution. As we
shall discuss below, these results are particularly relevant for
recent experiments in cuprate superconductors [4,6,7].

The paper is organized as follows: in Sec. II we outline
the model and we present the time-dependent Bogoljubov–
de Gennes formalism from which we extract the nonlinear
dynamics. In Sec. III we first check the formalism to compute
the linear response in the presence of disorder, that will be
also used to characterize the disorder level via the quasipar-
ticle transport scattering time τ . In Sec. IV we compute the
third-order response, first in the clean case, where we recover

the results obtained previously by means of a perturbative
diagrammatic expansion, and then in the disordered case, for
several disorder levels. In Sec. V we present the results at
various disorder levels and for different field polarization. In
Sec. VI we discuss our outcomes on the light of previous the-
oretical and experimental work, and we present a summary of
the results. The technical details are reported in various appen-
dices. In Appendix A we show in details the equivalence, in
the homogeneous case, between our time-dependent approach
and previous theoretical approaches based on the so-called
Anderson pseudospin dynamics or on the effective-action
formalism. Appendix B contains additional technical details
on the numerical procedure used to extract the third-order
current. In Appendix C we show explicitly the subleading
contributions to the third-order currents triggered by disor-
der. Finally in Appendix D we detail the procedure used
to estimate the transport scattering rate from the optical
conductivity.

II. FORMALISM

A. Definition of the third-order current

Previous work for clean systems has shown that the
THG including collective modes can be easily computed
in frequency space by means of a diagrammatic expansion
[3,15,21], that is fully equivalent to a perturbative solution
by using the so-called pseudospin dynamics [2,21]. Within
the same scheme in the presence of disorder one should also
include self-energy and vertex corrections due to disorder
[23,24,27] and resort to some approximation to compute the
response. Here we employ a different procedure, and we com-
pute the nonlinear current in the time domain by using the
time evolution of the density matrix, where all the collective
modes can be included. The components of the density ma-
trix, which correspond to normal and anomalous average of
fermionic operators in the SC state, are expressed by means
of the elements of the Bogoljubov–de Gennes (BdG) trans-
formation, which in turn includes the effects of disorder. By
averaging over several disorder configurations we are able to
treat disorder at a nonperturbative level. As a consequence,
while SC properties are still treated at mean-field level, the
disorder is treated exactly. This implies in principle to include
all possible self-energy and vertex corrections to the fermionic
susceptibilities controlling the nonlinear response, allowing us
to provide results ranging from the weak-disorder limit, where
the self-consistent Born approximation used in Refs. [23,27]
is expected to hold, to the strong-disorder limit, implemented
in an approximated way in Ref. [24].

As a starting point we consider the attractive Hubbard
model on the two-dimensional square lattice, with local
disorder

H = −t
∑
i jσ

c†
iσ c jσ − |U |

∑
i

ni↑ni↓ +
∑

iσ

Viniσ , (4)

where the local potential Vi is taken from a flat distribu-
tion −V0 � Vi � +V0. Only the nearest neighbor hopping t
is considered so that the parameters |U |/t and V0/t spec-
ify the energy scales of the problem. As already discussed
in the clean case in Ref. [15], this SC model represents a
good prototype model to study the polarization dependence
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of the THG induced by the lattice structure, as encoded in the
electronic band dispersion. In addition, its disordered version
(4) has been already proven [26,28–31] to contain the main
ingredients needed to discuss the effects of disorder in the
equilibrium optical response, as we shall discuss below.

Equation (4) admits a SC ground state, where the SC order
parameter is defined as 	n = −|U |〈cn,↓cn,↑〉. The resulting
mean-field quadratic Hamiltonian can be diagonalized by us-
ing the BdG transformation

ciσ =
∑

k

[ui(k)γk,σ − σv∗
i (k)γ †

k,−σ
], (5)

which yields the eigenvalue equations

ωkun(k) =
∑

j

tn ju j (k) +
[
Vn − |U |

2
〈nn〉 − μ

]
un(k)

+ 	nvn(k), (6)

ωkvn(k) = −
∑

j

t∗
n jv j (k) −

[
Vn − |U |

2
〈nn〉 − μ

]
un(k)

+ 	∗
nun(k). (7)

From the eigenvalue problem (6) and (7) one can iteratively
determine the ground state density matrix R with the follow-
ing elements:

ρi j = 〈c†
i,↑c j,↑〉

=
∑

k

{vi(k)v∗
j (k)[1 − f (Ek )] + u∗

i (k)u j (k) f (Ek )},

ρ̄i j = 〈ci,↓c†
j,↓〉

=
∑

k

{ui(k)u∗
j (k)[1 − f (Ek )] + v∗

i (k)v j (k) f (Ek )},

κi j = 〈ci,↓c j,↑〉
=

∑
k

{−ui(k)v∗
j (k)[1 − f (Ek )] + v∗

i (k)u j (k) f (Ek )}.

Here f (E ) is the Fermi function, which reduces to a step
function in the T = 0 limit considered below. In a compact
notation the density matrix can be written as

R =
(

ρ κ†

κ ρ̄

)
. (8)

The BdG energy can then be expressed via the elements of the
density matrix as

EBdG = −t
∑

i j

(ρi j − ρ̄i j ) + −|U |
∑

i

[ρii(1 − ρ̄ii ) + κ∗
iiκii]

+
∑

i

Vi[ρii − ρ̄ii + 1],

and the elements of the BdG Hamiltonian are defined as

HBdG
i j = ∂EBdG

∂R ji
. (9)

Finally, the dynamics of the density matrix can be com-
puted from

i
d

dt
R = [R,HBdG]. (10)

In the absence of an external field the density matrix R
and the Hamiltonian HBdG commute, so it simply follows
from Eq. (10) that the density matrix has no time evolu-
tion. The dynamics of R(t ) is induced via the coupling
to the electromagnetic field 
E (t ) = −∂ 
A(t )/∂t . Let us first
consider the case of a (spatially constant) field along the x
direction. Ax(t ) is coupled to the system via the Peierls sub-
stitution c†

i+x,σ ci,σ → eiAx (t )c†
i+x,σ ci,σ , where for simplicity we

will drop form the equations all the constant by putting the
lattice spacing, the electronic charge e, the light velocity c, and
the Planck constant h̄ equal to one. Since we are interested in
computing the current up to the third order in the gauge field
[see Eq. (1)], we need to expand the Peierls phase factor in the
Hamiltonian up to fourth order:

HBdG = HBdG
0 −

∑
n

jp(Rn)Ax(t ) − 1

2

∑
n

jdia (Rn)A2
x (t )

+ 1

6

∑
n

jp(Rn)A3
x (Rn) + 1

24

∑
n

jdia (Rn)A4
x (t ), (11)

with para- and diamagnetic currents defined as

jpara (Rn) = it[ρi+x,i − ρ̄i,i+x − H.c.], (12)

jdia (Rn) = −t[ρi+x,i − ρ̄i,i+x + H.c.], (13)

where the explicit time dependence of the density-matrix ele-
ments in Eqs. (12) and (13) has been omitted. The diamagnetic
term jdia (Rn) is different from zero also when Ax = 0, in
which case it coincides with the kinetic energy tx(Rn) on the
bond between sites Rn and Rn+x. In a continuum model the last
two terms of the expansion (11) are absent, since the minimal-
coupling substitution admits only linear and quadratic terms
in the gauge field. In Eqs. (12) and (13) the paramagnetic
and diamagnetic currents depend explicitly on the gauge field
via the elements of the density matrix ρ and ρ̄. The total
resulting current up to third order in Ax can be obtained from
the derivative of Eq. (11) with respect to Ax, so that

j(t ) = − 1

N

∂HBdG

∂Ax

=
(

1 − 1

2
A2

x

)
jpara (A) +

(
Ax − 1

6
A3

x

)
jdia (A), (14)

where we introduced the total para- and diamagnetic currents
jpara/dia (A) = 1/N

∑
n jpara/dia (Rn), and we made explicit their

dependence on time via the applied vector potential Ax(t ).
Here N denotes the number of lattice sites.

To build a power expansion in the applied gauge field
we will consider a monochromatic case where Ax(t ) =
A0 sin(�t ). To obtain j at a given order in A0 we should
consider the explicit dependence on Ax in Eq. (14), along
with a power expansion of the paramagnetic and diamagnetic
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currents as a power series in A0:

jpara/dia (t ) = j (0)
para/dia + A0 j (1)

para/dia (t )

+ A2
0 j (2)

para/dia (t ) + A3
0 j (3)

para/dia (t ) + · · · (15)

with j (0)
para = 0 and by definition the Fourier components of

j (m)
para/dia are independent on A0. Notice that since A0 has to be

taken as a small number, i.e., A0 ∼ 10−3, it is not affordable
to read off the third-harmonic term | j(3�)| from the Fourier
transformation of j(t ). In contrast, the various terms j (m)

para/dia
can be determined by computing j(t ) for different values of
the prefactor A0, as detailed in Appendix B.

The linear response limit of Eq. (14) is obtained from

j1th(t ) = A0 j (1)
para + A0T 0

x , (16)

where we used the fact that j (0)
dia ≡ T 0

x , and T 0
x =

1/N
∑

n tx(Rn) is the total kinetic energy along the x direction,
with the naught superscript indicating the evaluation in the
BCS ground state. In a continuum model, this would reduce
to the familiar n/m diamagnetic term. In linear-response
theory one can also write A0 j (1)

para (t ) = ∫
dt ′χ j j (t − t ′)Ax(t ′)

where χ j j (t − t ′) = −i〈T jp(t ), jp(t ′)〉 is the current-current
correlation function within the standard Kubo formalism.
As we shall see in the next section, the resulting optical
conductivity obtained from the present time-dependent
approach coincides with the corresponding result obtained
previously [30,31] within the Kubo formalism.

For the third harmonic contribution to the current Eq. (14)
gives

j3rd(t ) = A3
0 j (3)

para (t ) − 1
2 A0A2

x (t ) j (1)
para (t )

+ Ax (t )A2
0 j (2)

dia (t ) − 1
6 T 0

x A3
x (t ). (17)

As discussed above, the second and last term are present only
in a lattice model, since they originate from the last two terms
of the expansion (11).

The present approach allows us to investigate the influ-
ence of collective modes on j3rd(t ) by selectively including
the corresponding dynamics in the equations of motion (10).
In fact, the BdG Hamiltonian (9) is a function of the local
density ρnn(t ) and the Gorkov function κnn(t ) = |κnn(t )|eiϕn (t ),
which have to be computed at each instant of time. The time
dependence of these quantities corresponds to the dynamics of
charge [ρnn(t )], amplitude [|κnn(t )|], and phase [ϕn(t )] modes,
which affect the paramagnetic and diamagnetic currents (12)
and (13). The BCS approximation, i.e., the neglect of collec-
tive excitations, corresponds instead to the evaluation of R
by keeping the initial values (at t = t0) of the local density
and the Gorkov function in the BdG hamiltonian Eq. (9), i.e.,
by setting ρnn(t ) = ρ (0)

nn (t0) and κnn(t ) = κ (0)
nn (t0). Similarly,

one can selectively include only the amplitude modes by
setting ρnn(t ) = ρ (0)

nn (t0) and ϕn(t ) = ϕ(0)
n (t0), but keeping the

dynamics of |κnn(t )|. Below we also investigate the effect of
including only charge and phase modes, by setting κnn(t ) =
κ (0)

nn (t0) while keeping the dynamics of ρnn(t ) and ϕn(t ).
Notice that in the presence of a momentum-dependent pair-
ing interaction one could have in principle multiple pairing
channels, with typically a dominant and several subdominant
ones. In this case, one should also include fluctuations in the

secondary pairing channels, that give rise in the SC state to the
so-called Bardasis-Schrieffer modes [33]. However, for the
model (4) considered here only the s-wave pairing channel
is admitted, and no Bardasis-Schrieffer mode is present, so
the charge, phase, and amplitude sectors cover all the relevant
fluctuations channels for the SC state.

B. Contributions to the third-order current

In the absence of disorder it is easy to recover the equiv-
alence between the dynamical-matrix equations of motions
(10) and the standard perturbative approach discussed in
previous work, within either the so-called Anderson pseu-
dospin approach [2,21], or the effective-action formalism
[10,15,22]. A nonperturbative solution has been also recently
discussed in Refs. [34,35] within either a kinetic equation
or density-matrix approach in relation to the observation of
second-harmonic generation in a superconductor in the pres-
ence of a finite dc component of the THz field [5,36]. As
shown in details in Appendix A, the equations of motion
(10) are fully equivalent to the equations of motions of the
so-called Anderson pseudospins [2,21], that just represent a
specific combinations of the density-matrix components. For
the homogeneous case the equations can be solved explicitly
in momentum and frequency space, to obtain the coefficients
of the expansion of the current (14) in powers of the gauge
field; see Eq. (1). Such an expansion is the same obtained in
Refs. [10,15,22] by means of an effective-action formalism,
where after integrating out the fermionic degrees of freedom
the coefficients of the effective action for the gauge field corre-
spond to fermionic loops. These can be represented by means
of Feynman diagrams, with “bare” terms representing the
BCS response in the absence of collective-mode fluctuations,
and “dressed” diagrams which include vertex corrections due
to collective modes computed at RPA level. To make a closer
connection between the two approaches, we report in Fig. 1
the Feynman diagrams corresponding to the various terms
of Eq. (17) in the absence of collective modes, by denoting
with a dotted red line the field with respect to which the
derivative has been performed in Eq. (14). Diagrams with only
two vertexes will be denoted as “Kubo” contributions, since
they can be expressed as correlations functions either for the
current, χ j j , or for the kinetic energy, χkk , where

χ j j/kk (t − t ′) = −i〈T jpara/dia (t ), jpara/dia (t ′)〉. (18)

The logical construction of the terms is always the same. A
contribution j (m)

para/dia is obtained by considering the response
of jpara/dia as given by Eqs. (12) and (13) to a combinations
of terms from the Hamiltonian (11) leading to a power Am.
To distinguish a paramagnetic-like from a diamagnetic-like
coupling between the gauge field and the fermions we use
full/empty circles in Fig. 1. The various vertexes are con-
nected by electronic Green’s functions, and the average over
disorder guarantees that all diagrams are dressed by self-
energy and vertex corrections due to disorder. The various
contributions to Eq. (17) can then be classified as follows:

A3
0 j (3)

para (t ): We have three contributions, labeled as a, b, c
in Fig. 1. The first one is a Kubo-like contribution that can
be written as 1

6

∫
dt ′χ j j (t − t ′)A3(t ′), and it is obtained as

the response of jpara to the term 1
6

∑
n jpara (Rn)A3

x (Rn) in the
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Dynamical-matrix Diagrammatic approach

JPara(t) ≡ A3
0j

(3)
para(t)

(a)                       (b) 

(a)                         (b)   

(c) 

J̃Para(t) ≡ −1
2
A0A

2(t)j(1)
para(t)

JDia(t) ≡ A(t)A2
0j

(2)
dia(t)

JInst(t) ≡ −1
6
T 0

xA3
x(t)

FIG. 1. Classification of the BCS response to the third-order
current in terms of the diagrammatic representation used in previous
work [3,15,22–24,27]. Here solid black lines denote the Green’s
function of electrons. In our time-domain approach each contribution
to the third-order current has an explicit dependence on the field,
that we highlighted in red both in the definitions (left column) and
in the diagrammatic representation (red wavy lines in Feynman’s
diagrams). The remaining field dependence comes from the response
of j (m)

para/dia to the field, which is denoted with black wavy lines. In
part of the previous work the diagrammatic representation has been
used for the quartic action in the gauge field, whose derivative with
respect to A defines the current [3,15,22,27]. To help to establish
the analogies with the same processes discussed before, we then
denoted with a dotted red line the A field with respect to which the
derivative has been performed in Eq. (14) to compute the current. In
the presence of disorder all self-energy and vertex corrections due to
disorder (not shown) are automatically included.

Hamiltonian (11). This term is absent in a continuum model.
We will denote this contribution JPara in what follows.

− 1
2 A0A2(t ) j (1)

para (t ): This term contains only a Kubo-like
contribution, i.e., 1

2 A2(t )
∫

dt ′χ j j (t − t ′)A(t ′), which arises
from the response of the third term of Eq. (14) to the lin-
ear term −∑

n jpara (Rn)Ax(Rn) in the Hamiltonian (11). This
term, absent in the continuum model, is shown in Fig. 1. We
will denote it J̃Para in what follows.

A(t )A2
0 j (2)

dia (t ): Here we have a Kubo-like contribution,
− 1

2 A(t )
∫

dt ′χkk (t − t ′)A2(t ′), coming from the response of
jdia to the term − 1

2

∑
n kx(Rn)A2

x (Rn) in the Hamiltonian, so
it is determined by the kinetic-energy correlation function
(see diagram labeled a in Fig. 1). This is the only Kubo-like
contribution which is also present in a continuum model. A
non-Kubo-like term is also present, diagram b in Fig. 1. We
will denote this contribution JDia in what follows.

− 1
6 T 0

x A3
x (t ): This term is again absent in a continuum

model. As discussed in Ref. [22], in the clean case such an
instantaneous third-order response to the gauge field must be
properly included in the lattice model to correctly capture
the polarization dependence of the THG. We will denote this
contribution JInst in what follows.

In summary, we will then use the following definitions to
identify the various contributions to the third-order current:

JPara ≡ A3
0 j (3)

para (t ),

J̃Para ≡ − 1
2 A0A2(t ) j (1)

para (t ),
(19)

JDia ≡ A(t )A2
0 j (2)

dia (t ),

JInst ≡ − 1
6 T 0

x A3
x (t ).

As mentioned above, whereas in the time-dependent
approach collective modes are included via their time depen-
dence in the corresponding elements of the dynamical matrix,
in the diagrammatic approach this is achieved by including
all possible vertex corrections due to amplitude, charge and
phase fluctuations to the diagrams of Fig. 1. In Fig. 2 we show
the response obtained by including SC fluctuations to, e.g.,
J (a)

Dia and J (b)
Para. The diamagnetic process J (a)

Dia and its collective-
mode corrections are the only processes present in the clean
limit, while disorder can trigger a paramagnetic contribution
from all collective modes, as we will show explicitly in the
next sections. As a consequence, the dashed line of Fig. 2
represents fluctuations in all the amplitude, phase, and charge
channels, and also the relative mixing between the various
modes, that becomes particularly importantly at strong dis-
order [25,26,30,31]. The advantage of the present approach
based on the density matrix is that all these effects can be
automatically included by adding the dynamical evolution
of the ρnn(t ) and κnn(t ) functions. Previous work [23,24,27]
highlighted the importance of disorder to trigger the Higgs
response. In the following we will show that disorder trig-
gers also a nontrivial response from charge and phase modes,
which at all disorder levels contribute to the resonant THG at
� = 	.

A second advantage of the present method is that it allows
us to study how disorder affects the polarization dependence
of the THG, i.e., how the THG changes when the applied
field A is aligned along an arbitrary direction with respect
to the main crystallographic axes. Its relevance to distinguish
the various contributions has been already highlighted both in
the clean [3,15,22] and in the disordered [27] case. On very
general grounds, for a field applied at an angle θ with the x
direction the Fourier transform of the nonlinear current has a
simple decomposition in a component j3rd

‖ parallel to the field
and one j3rd

⊥ , perpendicular to it, with

j3rd
‖ (θ ) = α − β sin2(2θ ), (20)

j3rd
⊥ (θ ) = −(β/2) sin(4θ ), (21)

where α, β are functions of the field frequency �. The decom-
position (20) and (21) just relies on the fact that for the band
structure we are considering, the third-order current along,
e.g., the x direction can scale only as ∼A3

x or ∼AxA2
y , where

the explicit dependence in frequency has been omitted. In
the clean case, where only Kubo-like diamagnetic processes
are relevant, the α, β functions can be further decomposed
in correlation functions which distinguish the spatial-indexes
permutations. Indeed, since for Kubo-like diagrams each ver-
tex carries two components AiAj of the field, one can express
the spectral component of the third-order current along the
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Vertex corrections due to collective-mode fluctuations

=                      +                                       +                                      +J
(b)
Para,full

J
(a)
Dia,full =                       + 

FIG. 2. Vertex corrections due to collective-mode fluctuations to selected third-order processes shown in Fig. 1. Top panel: vertex
corrections to J (a)

Dia, that is the only process present in the clean limit. Left: bare-bubble contribution. Right: vertex correction due to a
given collective mode (Higgs/phase/charge), where the dashed line denotes the RPA resummation of the potential in the corresponding
amplitude/phase/charge sector. In the presence of disorder the three modes become mixed. Bottom panel: vertex corrections to J (b)

Para, that
would be zero in the clean limit. Left: bare-bubble contribution. Right: vertex corrections, with the same notation as before.

ith direction as ji = χ
(3)
i j;kmAjAkAm, without any ambiguity in

the definition of the tensor components. This further allows
one to decompose the nonlinear current using the irreducible
representation of the D4h group for our lattice structure, so that

j3rd
‖ (θ )/A3

0 = χ (3)
xx;xx(cos4 θ + sin4 θ )

+ 2
[
χ (3)

xx;yy + χ (3)
xy;xy + χ (3)

xy;yx

]
sin2 θ cos2 θ

= KA1g + KB1g cos2(2θ ) + KB2g sin2(2θ ), (22)

where we introduced the usual definitions:

KA1g/B1g = χ (3)
xx;xx ± χ (3)

xx;yy

2
, (23)

KB2g = χ (3)
xy;xy + χ (3)

xy;yx. (24)

For the lattice structure used in the present paper only χ (3)
xx;xx

and χ (3)
xx;yy are different from zero in the clean case, so

that KB2g = 0. By comparing Eqs. (22) and (20) one can
also identify KA1g = α − β and KB1g = β. As discussed in
Ref. [15], in the absence of disorder j3rd(θ = π/4) ∝ KA1g

almost vanishes, since the THG response mediated by J (a)
Dia

is almost purely B1g, with a small A1g contribution due to
the Higgs. However, in the presence of disorder the tensor
components χ

(3)
i j;km becomes ill-defined, since also non-Kubo

like diagrams as those contributing to JPara are present; see
Fig. 1. Nonetheless, the third-order current still admits the
general decomposition (20) and (21). In what follows, for
each disorder level and for each third-order contribution to
the current we will compute the full frequency dependence of
the current in the field direction j3rd

‖ for the two cases θ = 0
and θ = π/4, in order to highlight the differences with respect
to the clean case. In addition, we will compute the current at
zero frequency by diagonalizing the BCS hamiltonian in the
presence of a finite vector potential, similar to the approach
used in Ref. [37] for the evaluation of the superfluid stiffness
in disordered systems. This allows us to investigate the full
angular dependence of the j3rd

‖ spectrum at � = 0, showing
how the polarization dependence is affected by the presence
of disorder.

In the paper we present results for |U | = 2, n = 0.875
and various levels of disorder V0/t on 16 × 16 lattices with
periodic boundary conditions. Notice that due the smallness

of the lattice, required to carry out the numerical simulations,
we used a rather large value of the pairing interaction, in order
to have a coherence length smaller than the system size. As a
consequence, the gap values in the clean limit are rather large
as compared to experiments in conventional superconductors
[2,3,5,8]. On the other hand, we will also tune the disorder
level in order to explore the regime where the 2	τ parameter
(with τ electronic scattering rate) attains values relevant for
the experiments. In all the figures, the black dashed line will
denote the BCS results, i.e., the response in the absence of
collective modes. The results obtained by including only the
Higgs or the charge/phase fluctuations will be denoted with
blue and green dashed lines, respectively. The red solid line
will denote the full results including amplitude, phase, and
charge fluctuations. For each ploarization we will show the
result of j3rd

‖ , i.e., the third-order current in the field direction.
Details of the numerical simulations implemented in the paper
are given in Appendix B.

III. LINEAR RESPONSE AND OPTICAL CONDUCTIVITY

To check the validity of the method, we start considering
the linear current, as given by Eq. (16), and we extract from
it the real part of the optical conductivity. The latter can be
compared to the one obtained by means of the linear-response
theory, whose implementation in the presence of disorder by
including collective modes as been discussed in previous work
[30,31,38]. To make a closer connection with the standard
Mattis-Bardeen (MB) theory [39], we plot in Fig. 3 the op-
tical conductivity σs(ω) normalized to its value σn(ω) in the
non-SC state, obtained by setting the anomalous correlations
κ = 0 in Eq. (8).

The BCS result (balck dashed line) for σ (ω), obtained
without inclusion of collective modes, follows the prediction
of MB theory, with an absorption threshold located at the
spectral gap Egap, which is indicated in Fig. 3 by the vertical
gray line. It is worth noting that in a clean superconductor
Egap should just coincide with twice the SC order parameter
2	. For finite and weak disorder the local order parameter
	n becomes spatially inhomogeneous, but Egap still scales
with twice the average order parameter, i.e., Egap � 2〈	n〉.
However, as discussed in previous work [25,26,28–31], as
disorder increases further Egap is only slightly suppressed
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FIG. 3. Optical conductivity σ (ω) for different degrees of disor-
der V0/t , as labeled in the various panels. The black line denotes the
BCS results, i.e., the response in the absence of collective modes.
The red solid line is the full result including amplitude, phase, and
charge fluctuations, while blue and green lines denote the results ob-
tained by including only the Higgs or the phase/charge fluctuations,
respectively. Vertical gray bars denote the range of variation of the
spectral gap.

(eventually increasing again at strong disorder), while the av-
erage order parameter tends progressively to vanish, signaling
a boson-like superconductor-insulator transition induced by
the localization of Cooper pairs [25,26,28–31]. For simplicity
of notation, in what follows we will denote the spectral gap
Egap = 2	, since the energy scale which sets the enhancement
of the THG is always half of the spectral gap. However, one
should keep in mind that 	 coincides with the average order
parameter only for weak or zero disorder. Due to the presence
of a van Hove singularity (vHs) in our band dispersion, a
pronounced absorption peak above 2	 appears for weak and
intermediate disorder, at the location of the DOS maximum;
see Figs. 3(a) and 3(b). This is consistent with the recent
analysis of Ref. [31], where it has been shown how the an-
alytical results from standard MB theory [39], formulated for
a prototypical parabolic band dispersion, get slightly modified
when the DOS significantly varies on the scale of the SC gap,
as indeed is the case when the chemical potential is close to
a vHs. When the collective-mode contribution is taken into
account the results get modified (see red lines in Fig. 3), and a
substantial subgap absorption appears below the 2	 edge. As
discussed previously [30–32,38], the extra absorption can be
ascribed to charge and phase modes, which become optically
active for increasing disorder. This is evidenced by the dashed
green line in Fig. 3, obtained by including only the dynamics

of the phase and charge modes. Clearly, the corresponding
result is very close to the full σ (ω) (red solid line), which
includes also the coupling to the Higgs mode. As has been
discussed in previous work [30,31,38], such extra absorption
reflects in a further suppression of the zero-frequency su-
perfluid response as compared to what expected within the
BCS approximation. Such enhanced fragility of the super-
fluid response is in turn connected to the emergent real-space
inhomogeneity of the SC background. Indeed, as shown in
Refs. [30,37], the SC phase adjusts locally in order to form
percolative SC patterns among SC islands with a relatively
large value of the local SC order parameter. As a consequence,
such an effective filamentary structure is less phase rigid than
a uniformly suppressed SC background [37], and carries on a
finite effective dipole moment [30,31,38], explaining the sup-
pression of superfluid density and the extra finite-frequency
absorption. The emergence of subgap absorption in strongly
disordered thins films has been observed experimentally in
several systems [40–44], showing that a substantial deviation
from the MB paradigm can also be used experimentally to
estimate the level of disorder in the sample.

The analysis of the linear response allows us to extract an
effective scattering time τ for the electrons, that can be used
to make a quantitative comparison with previous theoretical
work [23,24,27] and with the experiments. The procedure is
described in detail in Appendix D. It is worth noting that
our approach includes also Hartree corrections to the local
chemical potential. Since the local electron density is itself
inhomogeneous, this leads to an effective disorder potential
that is larger than V0. On the other hand, to make a comparison
with the experiments what matters is only the final value of the
scattering time τ , as it manifests in observable quantities like
the optical conductivity. In Appendix D we then provide an
estimate of τ for each value of V0, based on a MB analysis of
the computed optical conductivity.

IV. THIRD HARMONIC RESPONSE

A. Clean system

To check the validity of our approach we will first compare
the results for the clean case, where the THG for the present
band dispersion has been derived analytically in Ref. [15],
and reviewed in Appendix A. In the clean case, the BCS
response admits only the Kubo-like kinetic contribution χkk

and the instantaneous response, given by diagrams J (a)
Dia and

JInst in Fig. 1, respectively. Indeed, one can show that all dia-
grams with current-like coupling between the gauge field and
the fermions vanish [15,21–23], as a consequence of current
conservation. The JInst contribution is constant in frequency
and it is also present above Tc, so it cannot contribute to
an enhancement of the THG in the SC state. Nonetheless, it
should be included to correctly account for the polarization
dependence in the clean case, as observed in Ref. [22]. As
we shall see, in the presence of disorder it becomes rapidly
subleading, so we report only its behavior for the sake of
completeness in Appendix C. The J (a)

Dia diagram represents
the Kubo response for lattice-modulated charge fluctuations,
and it has a resonance at � = 2	. As a consequence, since
in computing the nonlinear current each vertex carries an A2
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FIG. 4. Fourier transform at 3� of the diamagnetic contribution
JDia to the third-order current for a clean system at (a) θ = 0 (vector
potential along the x direction) and (b) θ = π/4 (vector potential
along the diagonal direction). The color code for the black, blue,
green, and red lines is the same of Fig. 3. In panel (a) we also show
for comparison the DOS ρ(2�) in the SC state (gray line), with a
clear signature of the vHs at �/t = 0.45. The vertical dashed line
indicates half of the spectral gap, while the vertical dotted line de-
notes the SC order parameter. The small difference between the two
is due to finite-size effects. (c) Angular dependence of JDia (� = 0)
as a function of the polarization angle θ .

insertion, its contribution to the THG is maximum at � = 	

[15]. The same diamagnetic coupling mediates also the exci-
tation of the Higgs mode, as shown by the second diagram in
the top panel of Fig. 2. This process can be overall written as
in Eq. (2), where the mixed bubble containing a diamagnetic
vertex and a Higgs vertex correspond to γdia for the Higgs.
As shown in Ref. [15], γdia is extremely small, suppressing
the Higgs contribution to the THG in a clean superconductor.
These findings are fully confirmed by the numerical results
shown in Fig. 4.

In Fig. 4, as in all the following figures, we show the
modulus of the Fourier transform of the third-order current
in the field direction. In Figs. 4(a) and 4(b) we show the 3�

component, i.e., |JDia(3�, θ )|, as a function of frequency for
a fixed polarization θ = 0, π/4, while in Fig. 4(c) we show
|JDia(� = 0, θ )| as a function of the polarization angle θ . The
spectrum of JDia for θ = 0, shown in Fig. 4(a), displays a clear
resonance at � = 	, while the secondary maximum visible
at � ∼ 0.45 is due to the vHs in the DOS, which is also
reported for comparison (gray line). The inclusion of collec-
tive modes barely changes these results. Indeed, as mentioned
above, the Higgs mode is weakly coupled to the diamagnetic

current, and near half-filling the coupling to charge/phase
mode is also negligible in the clean limit [15]. This is better
seen for θ = π/4; see Fig. 4(b). Here the response is one
order of magnitude smaller, and the resonance at � = 	 is
entirely due the Higgs contribution. The same information
is encoded in the full angular dependence of JDia(� = 0)
shown in Fig. 4(c). At θ = π/4, where only the Higgs mode
contributes, the response is negligible with respect to the one
at θ = 0. By using the decomposition (22), that is allowed
for such a Kubo-like response, this is equivalent to state that
in the clean case KA1g � 0 and the response is fully dominated
by the B1g diamagnetic response JDia, with a marked minimum
at θ = π/4. Finally, in Appendix A we compare the present
time-dependent results with the one obtained by computing
the THG within the diagrammatic approach, showing the full
quantitative agreement among the two techniques in the clean
limit.

V. DISORDERED SYSTEM

1. Diamagnetic response

Figure 5 shows the results for the diamagnetic response
JDia for finite disorder. Focusing first on the θ = 0 config-
uration (top row) one sees that weak disorder leaves the
diamagnetic response almost unchanged. At V0/t = 0.5 dis-
order starts to smear out both the peak at � = 	 and the
one at the vHs. For large disorder (V0/t = 2) the response
is dominated by the phase/charge modes, and even though
a residual enhancement at � = 	 is present, a substantial
amount of spectral weight is spread out in the whole frequency
range. At θ = π/4 the response remains substantially smaller
at all disorder levels, as also evidenced by the polarization
dependence of the � = 0 component, shown in the bottom
row of Fig. 5. However, as we shall see below the overall re-
sponse is much smaller than in the paramagnetic sector, which
becomes one order of magnitude larger than the diamagnetic
one already at intermediate disorder.

2. Paramagnetic response

As outlined in Sec. II B there are two paramagnetic-current
contributions to the nonlinear response, JPara and J̃Para. As
we checked, at all disorder levels J̃Para is largely subdom-
inant, as shown explicitly in Appendix C. The results for
JPara as a function of the disorder strength and the polar-
ization are shown in Fig. 6. As one can see, already at the
lowest disorder level V0/t = 0.1 the paramagnetic nonlinear
response is comparable to the one due to the diamagnetic cur-
rent shown in Fig. 5, in agreement with previous theoretical
work [23,24,27]. As disorder increases further the paramag-
netic response largely overcomes the diamagnetic one, with
a substantial contribution coming from the collective modes.
For intermediate disorder levels V0/t = 0.5 and V0/t = 1
the inclusion of amplitude fluctuations gives quantitatively
the largest effect, even though a direct comparison between
the blue (BCS + Higgs) and the red (full response) lines
shows that the inclusion of charge/phase fluctuations is not
simply additive, and it generally tends to move the maximum
towards smaller frequencies. This result can be ascribed to the
fact that disorder has also nontrivial effects on the mixing be-
tween the Higgs and the phase/charge sectors [25,26,30,31],
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FIG. 5. Fourier transform at 3� of the diamagnetic contribution JDia to the third-order current at various disorder levels at θ = 0 (top row)
and θ = π/4 (middle row). In each panel vertical bars denote the range of variation of half the spectral gap. As one can see, the results are
qualitatively similar to the clean case, shown in Fig. 4, even though disorder progressively washes out the � = 	 resonance present at θ = 0.
Bottom row: polarization dependence of the � = 0 component of the spectrum. Also in this case the third-order current preserves a minimum
at θ = π/4, as found without disorder.

questioning an estimate of the THG with disorder made
without including all the fluctuation channels. Finally, at the
strongest disorder level V0/t = 2 the charge/phase fluctua-
tions dominate the response in a broad range of frequencies
around 	, in analogy with what already observed for the
diamagnetic response. By comparing the two configurations
at θ = 0 and θ = π/4 one sees that at low and intermediate
disorder the response increases in the diagonal direction, with
a progressive softening of the anisotropy, and eventually a
reverse of it, as disorder increases. This trend is confirmed by
the polarization dependence of the � = 0 response shown in
the bottom row of Fig. 6. In particular, when charge/phase
modes dominate, the � = 0 response is slightly larger at
θ = 0 than at θ = π/4, in contrast with the result found for
smaller disorder.

VI. DISCUSSION AND CONCLUSIONS

To directly compare the various results as a function
of disorder we summarize in Fig. 7(a) the value of the
third-order current (for θ = 0) at � = 0, as roughly rep-
resentative of the strength of the various contributions. To
make easier the connection with previous theoretical work
and with the experiments, we show the results as a function
of 1/(2	τ ), where for each value of V0 the corresponding
τ is our estimate of the transport scattering rate based on a
fit on the Drude formula (D3) for the normal-state optical

conductivity, and its Mattis-Bardeen counterpart in the SC
state; see Appendix D for further details. Since previous theo-
retical work already provided some analytical estimates of the
� = 0 BCS and BCS + Higgs paramagnetic contribution, it
is worth comparing such estimates with the present results.
In particular, in Ref. [23] the BCS paramagnetic contribu-
tion JPara (� = 0) has been estimated to scale linearly with
1/(2	τ ) at low disorder, while Refs. [17,24] suggested that
it increases initially as 1/(2	τ )2. The results reported in
Fig. 7(a) are compatible with a linear increase of JPara (� =
0) in the regime 1/(2	τ ) � 1, taking into account that we
keep fixed U so 	 also varies slightly with disorder. For
what concerns the slope, Ref. [23] provides an estimate for
a parabolic band dispersion JPara � 0.06(v4

F NF /	2)1/(2	τ ).
By using v4

F NF � t3 and the order-of-magnitude 	 � 0.3t for
the SC order parameter, we obtain JPara � 0.8/(2	τ ), that is
roughly in agreement with our numerical results for the BCS
contribution.

Adding the collective modes has a sizable quantitative ef-
fect on the � = 0 response, with a pronounced contribution
of charge/phase fluctuations at very small disorder. By fo-
cusing only on the Higgs fluctuations, its contribution starts
to be relevant around 1/(2	τ ) ∼ 0.5, as already observed in
Ref. [23], and it becomes comparable to the phase/charge one
as 1/(2	τ ) � 1. These trends are confirmed by analyzing the
behavior of the total spectral weight reported in Fig. 7(b).
Here we show the spectral weight of the third-order current
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FIG. 6. Fourier transform at 3� of the paramagnetic contribution JPara to the third-order current at various disorder levels at θ = 0 (top
row) and θ = π/4 (middle row). In each panel vertical bars denote the range of variation of half the spectral gap. By comparing the scale
of the y axis with the one of Fig. 5 one sees that already at low disorder V0/t = 0.5 the paramagnetic response around � = 	 is one order
of magnitude larger than the diamagnetic one. At all disorder levels, the collective-mode fluctuations give a substantial contribution, with a
nonmonotomic dependence of the relative intensities as a function of disorder. Bottom row: polarization dependence of the � = 0 component
of the spectrum. In contrast to the diamagnetic case, here the response is maximum at θ = π/4, except for the largest disorder level where
phase/charge modes tend to restore a very shallow minimum at θ = π/4.

for the configuration θ = 0, integrated between � = 0 and
	. In the strong disorder regime shown in Fig. 7(c) the BCS
response is largely subdominant and the collective modes
dominate the THG. While the effect in the Higgs channel
has been already noticed before [23,24,27], the contribution
of the phase/charge modes has been overlooked so far, even
though it clearly dominates the response at very large disor-
der, which is the one relevant for films of conventional NbN
superconductors. On this respect, a detailed analysis including
also phase/charge modes for the specific band structure of
NbN would be required to finally assess the origin of the THG
reported experimentally [2,3] for this system.

It is worth noting that here we always report the collective-
mode contribution along with the BCS part. Instead in
previous work [17,23,24,27] the Higgs contribution refers to
the resummation in the amplitude channel only, i.e., what
corresponds to the difference between BCS + Higgs and BCS
in our notation. For the � = 0 response, which is real, this
corresponds to just subtracting the values already reported
in the previous figures. The result, shown in Fig. 8(a) shows
that the THG due only to charge/phase or Higgs fluctuations
is still lower than the BCS one up to intermediate disorder
levels, in agreement with previous work [23,27]. At finite
frequency the subtraction procedure appears less meaningful,
since the j3rd(�) is in general a complex quantity, so the

Fourier spectrum of the total response is not necessarily the
sum of the Fourier spectra of the separate components. This is
evidenced by the Fourier spectra of the separate contributions
to JPara shown in Fig. 9, at the same disorder levels shown in
Fig. 6. For what concerns the Higgs-only contribution, it has
similar spectral components of the BCS one, and it overcomes
the latter at strong disorder V0/t � 1 [i.e., 1/(2	τ ) � 3]. On
the other hand, the charge/phase mode has a substantial con-
tribution from spectral components below the gap, in analogy
with what found within the context of the optical conductivity
[30–32]. As a consequence, when charge/phase modes are
included the subtraction procedure highlights an enhancement
of the THG towards a value slightly smaller than 	. It is worth
noting that in the present model we did not include explicitly
long-range Coulomb forces, so the phase mode preserves a
sound-like dispersion in the homogeneous case. As it is well
known, Coulomb interactions modify the spectrum of the
phase/charge mode, pushing it towards the plasma frequency.
Nonetheless, the Goldstone theorem is still preserved, since
in the long wavelength limit q = 0 phase fluctuations are still
costless [18], and in addition in a strictly two-dimensional
systems the plasmon mode will still start from zero with a√

q dependence. On the other hand, the effect of Coulomb
interactions on phase fluctuations at large q could be ex-
pected to be small. In the presence of disorder one mixes to
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FIG. 7. Summary of the results of JPara as a function of disorder,
parametrized by 1/(2	τ ), with τ determined from the optical con-
ductivity as outlined in Appendix D. The correspondence between
V0/t and 1/(2	τ ) is reported in Table I. Vertical bars denote the
values of V0/t shown in Figs. 5 and 6, that are also reported on
the upper x axis. (a) � = 0 component of JPara. Here we also report
for comparison the � = 0 component of JDia. (b) Integrated spectral
weight of JPara (�) between � = 0 and half of the average spectral
gap (i.e., the gray vertical bars in Figs. 5 and 6). (c) Same as panel
(b) on a larger disorder range.

some extent the fluctuations at different momenta, so it is not
evident a priori how the present results will be quantita-
tively and qualitatively modified in the presence of long-range
forces. This is an interesting issue that will be deserved for
future investigation.

Finally, we would like to comment on the results for the
polarization dependence of the signal in connection to re-
cent observations in unconventional cuprate superconductors
[4,6,7]. As mentioned at the beginning, our tight-binding
model on the square lattice is a first approximation for the
band structure of cuprates. Even though we did not consider
explicitly a d-wave symmetry for the SC order parameter,
as appropriate for cuprates, we expect that it will not affect
significantly our results for what concerns the effect of dis-
order on the polarization dependence of the THG. Indeed,
as shown by previous work [3,22,27], this is mainly con-
trolled by the band-structure effect, while the gap symmetry
influences the spectrum of the Higgs mode itself, making
it possible excitations also below twice the gap maximum
[45]. As detailed in Sec. IV, even small disorder immediately

FIG. 8. (a) Comparison between the BCS response and the
collective-modes-only response at � = 0 as a function of disorder.
(b) Polarization dependence of the separate contributions at a given
disorder level. As one can see, the largest polarization dependence
comes from the BCS part, while the collective modes give a rather
isotropic contribution.

triggers a large paramagnetic response with a polarization
dependence opposite to the one found in the clean system.
The cuprate films investigated experimentally so far [4,6,7]
are expected to be in the relatively clean limit 1/(2	τ ) ∼
0.85, as evidenced by the linear decrease of the superfluid
density at low temperature and by the small scattering rate
τ � 0.2 ps obtained by fitting the THz optical conductivity
[7]. In this regime, our results show that the nonlinear optical
response is still dominated by the BCS part of the Jpara current,

FIG. 9. (a) Comparison between the BCS response and the
collective-modes-only response at finite frequency as a function of
disorder.
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even though all collective modes contribute to enhance the
response. However, the experimentally observed polarization
dependence is still puzzling. Indeed, recent results in various
families of cuprates, obtained either by directly measuring the
THG [6] or the pump-probe signal [4,7] showed a marked
isotropic contribution, with a residual angular dependence
that, especially in overdoped Bi2212 samples [4], gives a
minimum of the response at θ = π/4. The estimated disorder
level corresponds roughly to V0/t = 0.5 in Fig. 6. In this case
one would expect a signal that is weakly angle dependent, but
with a maximum of the response at θ = π/4; see Fig. 6(f).
These findings suggest that additional effects beyond disorder,
specific to cuprates, could be relevant. One possibility is the
THG due to collective-mode contributions beyond RPA, such
as the one due to two-plasmon processes, recently discussed in
Ref. [46]. Indeed, as shown in Ref. [46], these processes have
a sizable B1g component that can compensate the modulation
due to paramagnetic processes shown in Fig. 6. A quantitative
estimate of the relative strength of the various processes would
be certainly interesting, even though it represents a nontrivial
extension of our approach that goes well beyond the scope of
the present paper.

In summary, we have investigated the third harmonic re-
sponse of disordered superconductors within a real-space
time-dependent BdG approach. This method allows us to
treat disorder exactly, and to add the effects of all collective-
mode fluctuations in the superconducting state, i.e., the Higgs,
phase, and charge modes. In addition, by considering explic-
itly a lattice band structure we have been able to highlight
the effects of disorder on the polarization dependence of the
third-order current. For weak and intermediate disorder we
find that the BCS response still provides the main contribu-
tion to the THG. However, in agreement with previous work
[23,24], we found that it is driven by paramagnetic instead of
diamagnetic contributions, which dominate instead the clean
limit [15]. A first consequence is that the polarization de-
pendence of the signal changes drastically with respect to
the homogeneous case. For the band structure considered in
the present paper, which is in first approximation appropriate
for cuprate superconductors, the BCS response changes from
having a marked maximum at θ = 0 in the homogeneous case
to having an almost isotropic behavior with a small relative
maximum at θ = π/4 in the disordered case. A second crucial
observation is that paramagnetic electronic processes mediate
a contribution from all collective modes, not only the Higgs
one studied so far. In our model the effect of phase/charge
modes is always as large as the Higgs one. In the regime
1/(2	τ ) � 1 the full response including all fluctuations re-
mains peaked around 	, i.e., half of the spectral gap, while in
the strong disorder limit 1/(2	τ ) � 1 charge/phase modes
tend to contribute to a wide spectral range below 	. The finite
contribution of charge/phase modes to the nonlinear current
is reminiscent of the same result already established for the
linear current [30–32], that has been invoked to explain the
anomalous subgap absorption in strongly disordered films of
conventional superconductors [40–44]. In the case of cuprate
superconductors, which belong to the low-disorder limit, our
results suggest that the paramagnetic BCS response gives
the largest contribution, even though all collective modes
cooperate to the THG enhancement below Tc. Interestingly,

the polarization dependence of the signal is still partly in
disagreement with the available experimental data, which also
show a nontrivial dependence on the cuprate family and on the
doping level [4,6,7]. Whether this discrepancy can be solved
by a more realistic band structure, and a doping-dependent
effective disorder, or by including fluctuation effect beyond
RPA [46], is an open question that certainly deserves further
theoretical and experimental investigation.
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APPENDIX A: HOMOGENOUS CASE: COMPARISON
WITH THE ANDERSON PSEUDOSPIN FORMALISM

AND THE EFFECTIVE-ACTION APPROACH

Let us first show the equivalence between our approach
and the Anderson pseudospin description in the clean case.
For a homogeneous system the lattice momentum k is a good
quantum number and by introducing the Fourier transform
of the electron creation and annihilation operators c†

k, ck,
such that ckσ = ∑

i e−ik·Ri ciσ one can express also the BdG
transformations (5) with the usual BCS u2

k and v2
k coherence

factors:

u2
k = 1

2

(
1 + ξk

Ek

)
, (A1)

v2
k = 1

2

(
1 − ξk

Ek

)
, (A2)

such that the eigenvalues ωk in Eqs. (6) and (7) correspond

to the BCS energies Ek =
√

ξ 2
k + 	2, where ξk = εk − μ,

εk = −2t (cos kx + cos ky) is the band structure corresponding
to Eq. (4) for nearest-neighbor hopping t only, and the SC
order parameter 	 is given by

	 = −|U |
∑

k

〈c−k↓ck↑〉 = −
∑

k

ukvk. (A3)

For the translationally invariant case it is convenient to express
also the elements of the density matrix R in momentum space,
by introducing the variables

R(k) =
( 〈c†

k,↑ck,↑〉 〈c†
k,↑c†

−k,↓〉
〈c−k,↓ck,↑〉 〈c−k,↓c†

−k,↓〉

)
. (A4)

The corresponding equations of motion have then the same
structure of Eq. (10), as given by

i
d

dt
R(k) = [R(k), HBCS(k)], (A5)

where HBCS(k) = 〈ψ†
kĤkψk〉 is the average value over the

BCS ground state |BCS〉 of the standard BCS Hamiltonian Ĥk,

014512-13



SEIBOLD, UDINA, CASTELLANI, AND BENFATTO PHYSICAL REVIEW B 103, 014512 (2021)

written in the basis of the Nambu spinor ψ
†
k = (c†

k↑, c−k↓):

Ĥk =
(

ξk 	

	∗ −ξ−k

)
. (A6)

Equation (A5) also can be expressed in a completely equiva-
lent form by introducing the vector

bk =
⎛
⎝	x

	y

ξk

⎞
⎠, (A7)

where 	 = 	x − i	y, and by using suitable combinations of
the elements of R(k) by defining a vector Sk as

Sk = 1
2 〈ψ†

k 
σψk〉 (A8)

with 
σ = (σx, σy, σz ) denoting the Pauli matrices. By using
the dynamical variables (A8) the HBCS(k) can be expressed
as

HBCS(k) = 2bk · Sk, (A9)

and the equations of motion (A5) assume the compact form

d

dt
Sk = 2bk × Sk (A10)

that reminds one of the precession of a pseudospin Sk
around an external fictitious magnetic field bk. This is the
so-called Anderson pseudospin formalism employed in previ-
ous work [2,21] to study the THG for clean superconductors.
Once that a homogeneous gauge field A is introduced by
minimal-coupling substitution to the fermionic operator, the
z component of the bk vector in Eq. (A7) gets replaced by
(ξk−eA + ξk+eA)/2, and the solution of the equation of motion
(A10) at finite A can be used to compute the current. In
particular, for a field Ax(t ) in the x direction the total current
up to third order in Ax is defined by Eq. (14) above, that we
report here for convenience:

j(t ) = (
1 − 1

2 A2
x

)
jpara (A) + (

Ax − 1
6 A3

x

)
jdia (A). (A11)

For the translationally invariant case the total paramagnetic
and diamagnetic current can be expressed using either the
components of R(k) or the pseudospin components Sk:

jpara (t ) = −2t
∑

k

sin kx(R11(k) + R22(k))

= −4t
∑

k

sin kxS0(t ), (A12)

jdia (t ) = −2t
∑

k

cos kx(R11(k) − R22(k))

= −4t
∑

k

cos kxSz(t ), (A13)

where we introduced a fourth component S0 ≡ 1
2 〈ψ†

kψk〉 to
describe the paramagnetic current. In Eqs. (A12) and (A13)
the time dependence of the pseudospin operators is induced
by the applied gauge field Ax(t ). Indeed, when Ax = 0 one
can easily see that choosing, e.g., a real order parameter 	 the
pseudospin vector Sk(0) = −(	, 0, ξk )/2Ek and the fictitious
field bk = (	, 0, ξk ) are parallel, so that bk × Sk = 0 and
from Eq. (A10) one obtains Sk(t ) = Sk(0). As a consequence,

only the diamagnetic current (A13) is different from zero
and constant, with jdia = 2t

∑
k(cos kx )ξk/2Ek. In this case

the linear term in Ax of Eq. (A11) gives the usual superfluid
response, while the third-order current admits only the instan-
taneous response. When a finite gauge field is present bk(A) ×
Sk �= 0, and the pseudospin Sk(t ) acquires a finite dynamics.
By expanding the bk(A) fictitious field at quadratic order in
Ax one can derive analytically for the homogeneous case the
various contributions to the third-order current. When the fre-
quency of A(t ) is in resonance with the gap, the energy trans-
fer of the external field to the SC system induces a singular
growth of the third-order current response. We have therefore
supplemented Eq. (A10) with a phenomenological damping

d

dt
Sk = 2bk × Sk − γ̃

(
Sk − S(0)

k

)
, (A14)

which constraints the dynamics and allows us for a better
comparison with the diagrammatic approach, where
the analogous divergence can be also regularized by a
phenomenological damping parameter (see below). Further
details on the third-order current derivation within a perturba-
tive pseudospin approach can be found in Refs. [2,15,21].

A second possible way to derive the third-order current
is to follow a diagrammatic approach based on the effective-
action formalism, as done in Refs. [10,15,22]. In this case one
builds up by means of the Hubbard-Stratonovich decoupling
an effective action for the collective SC degrees of freedom
(i.e., amplitude, phase, and charge fluctuations). After in-
troducing the gauge field and integrating out the collective
modes one can derive an effective action S(4)(A) up to fourth
order in A. Diagrammatically, this corresponds to compute
the third-order current by including the BCS response and
the contribution of all collective modes at RPA level. This
procedure is completely equivalent to compute the dynamical
response within the Anderson pseudospin model. Indeed, both
approaches confirm the results of Sec. IV A, i.e., that for the
clean system only the diamagnetic response is present, and
Higgs fluctuations give a negligible contribution. The initial
suggestion of Ref. [2] of a predominant Higgs contribution
was indeed motivated by an incorrect evaluation of the total
current within the Anderson pseudospin approach, as shown
in details in the supplementary paper of Ref. [15].

Once established the full equivalence between the time-
dependent approach based on the density matrix, used in
the present paper, and previous work based either on the
Anderson pseudospin description or on the effective-action
formalism, we can now compare our numerical results for the
clean case with the analytical expressions derived previously.
For the sake of definitiviness, we will use the same notation
of Ref. [15], where the same band structure was investigated.
For a gauge field A applied at a generic angle θ with respect
to the x axis the 3� component of the Fourier transform of the
third-order current can be written as

j (3)
BCS(3�, θ )/A3

0 = 1
2

[
χBCS

xx (2�)(cos4 θ + sin4 θ )

+ 2χBCS
xy (2�) sin2 θ cos2 θ

]
, (A15)

where we defined

χBCS
i j (�) = −	2

N

∑
k

∂2
i εk∂

2
j εkFk(�), (A16)
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and we put

Fk(�) = 1

Ek
[
4E2

k − (� + iγ )2
] . (A17)

From Eqs. (A16) and (A17) one clearly sees the divergence
of the BCS response function at � = 2	, that corresponds to
the enhancement of the THG at � = 	, since the diamagnetic
current (A15) is computed at twice the field frequency. As
mentioned above, we added in Eq. (A17) a finite damping γ

to regularize such a divergence. The contribution of the ampli-
tude, phase, and charge collective modes (CM) is independent
on the polarization angle θ and it can be expressed as

j (3)
CM(3�, θ )/A3

0 = −
χ2

A2ρ

2χρρ

− (χA2	 − χA2ρχρ	/χρρ )2

2X		 − 2χ2
ρ	/χρρ

,

(A18)

where, in analogy with Eq. (A15), all the susceptibilities are
computed at 2�, and we defined the following:

χρρ (�) = −4	2

N

∑
k

Fk(�),

χρ	(�) = −4	

N

∑
k

ξkFk(�),

χA2ρ (�) = −2	2

N

∑
k

∂2
i εkFk(�),

χA2	(�) = −2	

N

∑
k

∂2
i εkξkFk(�). (A19)

Here χρρ is the BCS charge susceptibility, χρ	 is the coupling
between the phase/charge and amplitude fluctuations, and
χA2	 and χA2ρ denote the coupling between the gauge field
and the Higgs or phase/charge sector, respectively. Finally,
the amplitude fluctuations are described by the inverse of X		,
where

X		(�) = 1

N
[(2	)2 − �2]

∑
k

Fk(�). (A20)

One can easily see that at half-filling χρ	 = χA2ρ = 0 by sym-
metry, so that amplitude and phase sectors are decoupled, and
only the Higgs fluctuations contribute to the THG. Eq. (A18)
can then be simplified as

j (3)
Higgs = − χ2

A2	

2X		

(A21)

so that the total third-order current is given by j (3)
full = j (3)

BCS +
j (3)
Higgs. At the doping n = 0.875 we are considering in the

present paper one can still approximate χρ	 � χA2ρ � 0, and
only the BCS + Higgs contribution survives. In Fig. 10 we
compare the results obtained numerically in the clean case
by our density-matrix approach and the analytical expression
(A15)–(A18) computed for a system of the same size N × N
of our simulations, with N = 16. As one can see, the quan-
titative agreement between the two procedures is excellent.
As mentioned in the caption of Fig. 4, for small systems
as the one we considered there can be a difference in the
clean case between the SC order parameter and half of the
spectral gap, identified by the maximum of the DOS. This is

FIG. 10. Comparison between the numerical results obtained by
the numerical solution of the density-matrix equations of motion,
shown also in Fig. 4, and the analytical expressions (A15)–(A18)
for the same system size, labeled as BCS analytic and full analytic.
As one can see, there is an excellent quantitative agreement for both
polarizations. As in Fig. 4, the vertical dashed line indicates half
of the spectral gap, while the vertical dotted line denotes the SC
order parameter. Here we used γ̃ /	 = 0.05 for the time-dependent
approach and γ /	 = 0.07 for the analytical one.

due to the fact that for finite systems the chemical potential
μ, computed self-consistently for the same lattice, does not
necessarily coincide with an energy state εk . As a consequence
the spectral gap, which is given by definition by the mini-
mum value of 2Ek = 2

√
	2 + (εk − μ)2, does not necessarily

coincides with 2	. Such a difference is also present in the
analytical formula computed at small N , and we checked that
it disappears as expected at large N . In the disordered case the
spectral gap becomes intrinsically inhomogeneous, washing
out the relevance of such finite-size effects.

APPENDIX B: ADDITIONAL DETAILS
ON THE NUMERICAL PROCEDURE

To obtain the full current in Eq. (17) we need to compute
the various orders j (m)

dia/para of the diamagnetic/paramagnetic
current. This decomposition can be obtained by evaluating
jpara/dia for different numerical values of A0. In fact, comput-
ing Eq. (15) for a vector potential A′

0 and A′′
0 one finds

j (1)
para/dia (t ) =

[
jfull
para/dia (t )

A0

]
− A0 j (2)

para/dia − A2
0 j (3)

para/dia + · · · ,

(B1)

j (2)
para/dia (t ) = 1

A0 − A′
0

{[
jfull
para/dia (t )

A0

]
−

[
jfull
para/dia (t )

A′
0

]}

− (A0 + A′
0) j (3)

para/dia + · · · , (B2)
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FIG. 11. BCS (dashed black line) and full (solid red line) contri-
bution to the third-order current J̃Para. As usual, the BCS result is the
one obtained without including any collective-mode fluctuation.

j (3)
para/dia (t ) = 1

(A0 − A′
0)(A0 − A′′

0 )

[
jfull
para/dia (t )

A0

]

− 1

(A0 − A′
0)(A′

0 − A′′
0 )

[
jfull
para/dia (t )

A′
0

]

+ 1

(A0 − A′′
0 )(A′

0 − A′′
0 )

[
jfull
para/dia (t )

A′′
0

]

+ O(A0) j (4)
para/dia + · · · , (B3)

and the current in the square brackets is evaluated with the
A0 as denoted in the corresponding denominator. Thus for
small enough values of A0, A′

0, A′′
0, . . . one can extract the

various orders in this way and check whether the extracted
Fourier components are independent of the specific choice of
the vector potential amplitudes.

By using the above procedure we computed the various
contributions to the third-order current in Eq. (17) at various
disorder strength for a 16 × 16 lattice, by fixing the particle
density n = 0.875 and the local attraction −|U | = −2t . The
time-dependent current is calculated over 10 periods of the
applied vector potential Ax(t ) = A0 sin(�t ) and three values
of A0 = 10−3, 10−4, 10−5, which then are used to calculate
j (1,2,3)
para/dia from Eqs. (B1)–(B3). The results are averaged over

20 disorder configurations.

APPENDIX C: SUBLEADING CONTRIBUTIONS
TO THE THIRD-ORDER CURRENT

As we mentioned in Sec. IV, in the presence of disorder the
two contributions J̃Para and JInst are subleading with respect
to the paramagnetic response JPara. For what concerns J̃Para,
it originates from the same Kubo-like current-current corre-
lation function responsible for the finite optical absorption in
a disordered superconductor; see second row in Fig. 1. This
term, as emphasized before, is present only in a lattice model.
In Fig. 11 we show as an example the results of J̃Para for dis-
order strength V/t = 0.5. As one can see, this contribution is

FIG. 12. (a) Total kinetic energy along the x direction as a func-
tion of the disorder strength. (b) Polarization dependence of the
instantaneous response JInst (C1). Here we used the value T 0

x obtained
in the clean case.

smaller by almost two orders of magnitude than Jpara as shown
in Fig. 6. Similarly to the optical conductivity, we have also
checked that J̃Para is identical, within the numerical accuracy,
to the result obtained directly with the Kubo approach [30,31].

For what concerns the instantaneous response it gives a
constant contribution to the Fourier transform of the third-
order current. For a field applied at an arbitrary angle θ its
polarization dependence reads

JInst,‖/A3
0 = T 0

x

24
[cos4 θ + sin4 θ ], (C1)

JInst,⊥/A3
0 = T 0

x

96
sin(4θ ), (C2)

where T 0
x is the average kinetic energy along the x direction.

For a given disorder level JInts,‖ has then a shallow minimum
at θ = π/4, and in the homogeneous case it is of the same
order of the diamagnetic response at π/4, as one can see
by comparing Figs. 12(b) and 4(b). As disorder increases
the kinetic energy has negligible variation [see Fig. 12(a)],
so overall the instantaneous term remains of the same order,
resulting in a largely subleading contribution to the THG in
the presence of disorder.

APPENDIX D: ESTIMATE OF THE SCATTERING RATE

Our estimate of the scattering rate is based on the spectral-
weight conservation for the optical conductivity, which can be
expressed for a lattice system as [47]∫ ∞

0
dωσ ′

s/n(ω) = −π

2
T 0

α , (D1)

where α indicates the direction of the applied vector potential
and T 0

α is the kinetic energy along α. In the parabolic-band
approximation 〈tα〉 simply reduces to n/m and one recovers
the so-called f-sum rule. When the system enters the SC state
all the spectral weight which disappears at finite frequency
must be recollected in the superfluid δ-like response at ω =
0, in order to still satisfy Eq. (D1). We can then separate in
full generality the SC optical conductivity into the δ-function
contribution, determined by the superfluid stiffness Ds, and
the regular part [30,47]

σ ′
s (ω) = πDsδ(ω) + σ ′

s,reg(ω), (D2)
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TABLE I. Disorder strength V0/t [as specified below Eq. (4)],
half of the spectral gap 	, superfluid stiffness Ds and resulting
scattering parameter 2	τ as obtained from Eq. (D7).

V0/t 	 Ds/t 2	τ 1/(2	τ )

0.1 0.359 0.76 28.7 0.035
0.2 0.343 0.714 8.4 0.12
0.5 0.3003 0.51 1.46 0.68
0.7 0.28 0.39 0.75 1.33
1.0 0.243 0.255 0.35 2.86
1.5 0.21 0.12 0.12 8.33
2.0 0.24 0.06 0.053 18.87

whereas the normal state is described by the Drude formula

σ ′
n(ω) = Dc

τ

1 + ω2τ 2
(D3)

with the scattering time τ and the charge stiffness Dc = 〈tα〉 =
0.781t for the present doping level n = 0.875.

As a first step we consider the case of weak disorder where
all the contribution to Ds stems from the gap region with
σ ′

s (0 < ω � 2	) = 0.
Since we work at zero temperature from Eq. (D1) one

finds ∫ ∞

2	

dωσ ′
s (ω) =

∫ ∞

2	

dωσ ′
n(ω), (D4)

π

2
Ds = Dc atan(2	τ ), (D5)

which results in the following equation for the scattering
strength:

2	τ = tan

(
π

2

Ds

Dc

)
. (D6)

Thus, Eq. (D6) allows for the estimate of the scatter-
ing rate once the superfluid stiffness Ds is known. For the

FIG. 13. Estimate of the transport scattering rate τ as a function
of V0. The data points denote the values of V0 = t reported in Table I.
The solid line is a polynomial fit that has been used to infer τ for
different values of V0 investigated in the present work.

parameter values and disorder levels considered here Ds has
been computed in previous work; see Refs. [30,38]. For the
clean system, where Ds = Dc, Eq. (D6) yields τ → ∞.

Clearly, for arbitrary disorder the δ-function in σ ′
s (ω) also

gets weight from excitations above the gap. Then Eq. (D5) has
to be generalized to

Ds

Dc
= 2

π
atan(2	τ ) + 2

πDc

∫ ∞

2	

[σ ′
n(ω) − σ ′

s (ω)], (D7)

where the integral on the rhs also depends on τ via σ ′
n,s(ω).

In order to evaluate Eq. (D7) we have adopted an expres-
sion for σ ′

s (ω) [48] which is valid for arbitrary disorder and
thus can be used to estimate 2	τ for a given disorder strength
V0/t . Corresponding results are summarized in Table I and
shown in Fig. 13.
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