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(Dated: March 8, 2019)

A deep exploration of the parameter space that relates the interacting equation of state with the
bag constant B, and the interaction parameter a, is fundamental for the construction of diverse
models of quark stars. In particular, the anisotropy of quark stars with a well motivated quantum
chromodynamics (QCD) equation of state is presented here. The contribution of the fourth order
corrections parameter (a) of the QCD perturbation on the radial and tangential pressure generate
significant effects on the mass-radius relation and the stability of the quark star. An adequate set
of solutions for several values of the bag factor and the interaction parameter are used in order
to calculate the relation between the mass, radius, density, compactness, and consequently the
maximum masses and the stability. Therefore, while the more interactive quark solution lead to
higher masses, the weak interaction among quarks give solutions similar to the widely known MIT
bag model.

I. INTRODUCTION

Anisotropy of compact objects [1, 2] is one of the main
topics that have been studied in several astrophysical sys-
tems like boson stars [3], gravastars [4] and neutron stars
[5]. Essentially, the anisotropy is presented as the dif-
ference between the radial and the tangential pressure
(P − P⊥) in the hydrostatic equilibrium equation which
is obtained solving the Einstein field equations for the
interior of the star.

The ongoing knowledge about anisotropy could not
have been possible without the statements settled by pre-
vious studies. For example, Ruderman [6] theoretically
showed that anisotropic effects could arise in stellar mod-
els, where nuclear matter reaches densities larger than
1015g/cm3 due to the interactions that at this level are
relativistic. Likewise, phase transitions [7],[8] between
the inner core and the outer crust occur when the mat-
ter goes to a superfluid and superconductive state gener-
ating significant changes in the interior of a star. Also,
the pion phase configuration [1], [9], and solid state con-
figurations at densities of 1014 − 1015 orders of magni-
tude [10],[11], and in other cases strong magnetic fields
[12] - [13] may produce anisotropies with observable con-
sequences. These and other mechanisms producer of
anisotropies can be found in [14], and in the recent pub-
lication [1].

In order to measure the possible anisotropic effects,
compact objects like neutron stars are taken as astro-
physical laboratories to check how they are affected by
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this phenomena. In a pioneering work by Bowers & Liang
[15], the Einstein field equations for anisotropic spheres
and incompressible matter were solved, and the effects of
the anisotropy in the resulting maximum mass and red
shift were discussed. Afterwards, Cosenza et al. [16] pre-
sented a set of solutions with anisotropic sources based
on known solutions for an isotropic matter. Later, nu-
merical solutions [2] exhibited a good agreement with the
mass-radius relations, but also calculated the upper limit
mass of a stable neutron star by taking an arbitrarily high
value of the anisotropy [5].

Motivated by the current achievements in order to un-
derstand the processes that produce anisotropies, and
the advances in nuclear physics that have shown the be-
havoiur of matter in the outer layers of a neutron star
interior at certain densities, and in spite of the lack of
knowledge about matter interactions at higher densities
than the saturation nuclear matter density value, many
theories have suggested that the neutron star core has ex-
otic [17] constituents like hyperons, kaon condensates, or
a deconfined phase of strange matter. Other theories sug-
gest [18] the existence of hybrid stars made of hadronic
matter mixed with quarks and a core purely made of
quarks. However, quark stars (QS) can be generated by
different processes, for instance, a core collapse after a
supernova explosion [19], where the conversion of ordi-
nary matter to quark matter in a deconfined core [20],
[21] takes place. Other theories avocate for phase transi-
tions that occur as consequence of the mass accretion in
a low mass x- ray (LMXR) binary system [22]. There-
fore, there is no reason to ignore the existence of another
type of compact objects apart from neutron stars.

The usual EOS utilized to obtain solutions for quark
stars is the well known MIT bag model [23, 24] since it
seems to be adequate to describe the behaviour of mat-
ter that is not governed by gravity but instead by the
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strong nuclear force. However, this EOS is not suffi-
ciently powerful to characterize a system with interacting
quarks or more complex structures. It is to expect that
interactions among quarks must generate changes at the
interior of the shell generating anisotropies that change
the mass-radius relation and the gravitational redshift.
Therefore, this also suggest that the equation of state can
be constrained by considering the anisotropies at its inte-
rior produced by the mechanisms previously mentioned.
So, in order to model anisotropic quark stars, several
methods have been proposed. In [25], the anisotropy
is modeled by taking two different expressions for the
pressure, while the radial pressure is written as a lin-
eal EOS, the tangential pressure is taken as a complex
expression dependent of the radial coordinate, as a re-
sult this model yields to a mass-radius relation that ex-
hibits values up to 3M�. On the other hand, a different
approach given by a deterministic model [20] used the
MIT bag EOS, for this case observational evidence that
contemplate the existence of strange stars is considered
in order to make an interpolation function of the mass
m(r), where the obtained solutions are in agreement with
Buchdahl model, which is explained with more detail in
[26]. Another complementary work for the anisotropy
of non-rotating strange stars and its effect in the usual
physical observables is calculated in [27], its aim is to
test the stability of the model with a generalization of
the Tolman-Oppenheimer-Volkoff equation and using the
Herrera’s cracking concept [28]. Meanwhile, other mod-
els are focused in the attempt to find a singularity-free
solution of the Einstein equations [29], [30] through the
MIT bag model to obtain the mass-radius relation for
different values of the bag constant. Additionally, in [29]
the authors took the density profile given in [25] and ad-
dressed their computations to obtain the total mass of
the quark star. In this case, a general expression for
the TOV equation was calculated, the stability of the
system was evaluated with the Herrera’s cracking con-
cept, while the energy condition was satisfied. Another
method [30], suggested a new model that uses the Ho-
motopy Perturbation Method (HPM), in order to find
a solution for spherically symmetric quark stars whose
results were compared with quark stars candidates like
CenX-3, VelaX-1 [31], 4U1820 − 30 [32], J1903 + 0327
[33], 4U1820− 30 [34], PSRJ1614− 2230 [35].

It is clear that following the current knowledge on the
neutron stars and their layers, one should not discard the
existence of more exotic objects, and although compact
objects appear to be isotropic and homogeneous from the
observations, it is impossible to think that their interi-
ors are perfectly arranged to be considered as isotropic,
since the nuclear phenomena that occur in the crust
and the core are highly intense that certainty generate
anisotropies and consequently produce changes on the
mass-radius relation, as we shall see henceforth. In sec-
tion (II) a QCD motivated EOS is introduced and the
Tolman-Oppenheimer-Volkoff equations are obtained. In
section (III) the numerical details to obtain the mass-

radius relation and the full set of solutions presented in
section (IV) are explained. Finally, the highlight results
and further research are proposed in section (VI).

II. THE MODEL

A. Quark Matter Equation of State

In spite the fact that strange stars have not been di-
rectly observed yet, there are some candidates [36], [17],
[37] that could fit the EOS associated with this type
of objects. Those candidates seem not to adjust their
masses and radius to the neutron stars models, but by
mean of a semi-empirical relation that calculates the
strength of the magnetic field of a pulsar [37], a range
for the mass-radius relation is obtained giving a good de-
scription of strange star composers. A widely accepted
quark star model is the MIT bag model that character-
izes a degenerated Fermi gas of quarks up, down and
strange [24], [23, 38, 39]. This is the simplest and more
frequently used form to illustrate the interior a quark
star [23]. Nevertheless, quark stars are not such a simple
objects that only depend on the bag constant B, indeed,
this led to the construction of several models based on
quantum chromodynamics (QCD) corrections of second
and fourth order with the aim of giving an approximate
characterization of confined quarks, like the presented in
[40]. This model not only includes the interactions among
quarks, but also suggest the possibility of the existence
of new matter states analogous to the superconductivity
state BSC, that is a phase known as colour flavour locked
phase (CFL).

Following the EOS mentioned above [40], we consider
homogeneously confined matter inside the star with 3-
flavour neutral charge and a fixed strange quark mass
ms. But for simplicity, the superconductivity generated
in the CFL phase is not taken into account, thus the EOS
reduces to the expression [41]

P =
1

3
(ε− 4B)− m2

s

3π

√
ε−B

a

+
m4
s

12π2

[
1− 1

a
+ 3 ln

(
8π

3m2
s

√
ε−B

a

)]
,

(1)

where ε is the energy density of the homogeneously dis-
tributed quark matter, the quark strange mass is ms =
100 MeV [42], B is Bag constant whose values run be-
tween B > 57 MeV/fm3 and B < 92 MeV/fm3 which
are determined by the stability condition with respect
to iron nuclei for two-flavour and the three-flavour quark
matter respectively. This implies that strange quark mat-
ter is absolutely stable for a range of energy densities of
57 < B < 92 MeV/fm3 [38]. Finally, a is the parameter
that comes from the QCD corrections on the pressure
of the quark free Fermi sea, this parameter is related to
the maximum mass of the star with values of ≈ 2M� for
a ≈ 0.7 [43].
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B. Tolman-Oppenheimer-Volkoff Equations

Let us consider an anisotropic fluid and a spherically
symmetric spacetime, whose line element is given in
terms of the components of the metric gαβ by

ds2 = −c2α2dt2 +

(
1− 2Gm

c2r

)−1
dr2 + r2dΩ, (2)

being α = α(r), m = m(r), dΩ = dθ2 + sin2 θ dφ2, G
the gravitational constant and c the speed of light. The
energy momentum tensor can be written as

Tαβ = (ε+ P⊥)uαuβ + P⊥gαβ + (P − P⊥)nαnβ , (3)

where P is the radial pressure and P⊥ is the tangential
pressure, which is explicitly expressed as follows

P⊥ =Pc +
1

3
(ε− 4B⊥)− m2

s

3π

√
ε−B⊥

a⊥

+
m4
s

12π2

[
1− 1

a⊥
+ 3 ln

(
8π

3m2
s

√
ε−B⊥

a⊥

)]

− 1

3
(εc − 4B⊥) +

m2
s

3π

√
εc −B⊥

a⊥

− m4
s

12π2

[
1− 1

a⊥
+ 3 ln

(
8π

3m2
s

√
εc −B⊥

a⊥

)]
,

(4)

with Pc and εc the radial pressure (1) and the energy
density, respectively, at the center of the star. From this
expression it can be seen that the radial and tangen-
tial pressures are the same at r = 0, that is the fluid
is isotropic there. It is worth mentioning that B⊥ and
a⊥ parameters are the contributions on the tangential
component of the pressure, and run in the same range of
values as B and a.

On the other hand, uαuα = −1 and nαnα = 1 such
that

uα =

[
1

cα
, 0, 0, 0

]
, (5)

nα =

[
0,

(
1− 2Gm

c2r

)1/2

, 0, 0

]
. (6)

By solving the Einstein field equations and matter equa-
tions, a general expression for an anisotropic spherically
symmetric compact star is obtained

dm

dr
= 4πr2ε, (7)

dP

dr
= −

(
ε+

P

c2

)(
m+

4πr3P

c2

)
r2

G

(
1− 2Gm

rc2

) − 2

r
(P − P⊥),(8)

1

α

dα

dr
=

G

c2r2

(
m+

4πr3P

c2

)(
1− 2Gm

rc2

)−1
. (9)

Notice that the Eq.(8) is the only one that contains the
contribution of the radial and tangential pressure by the
difference P − P⊥.

III. NUMERICAL DETAILS

The numerical calculations presented in this paper
were carried out by using the CAFE astrophysical code
[44]. All the simulations are computed using a fourth or-
der Runge-Kutta integrator in a 1D spherical grid, which
extends from r = 0M to the outer domain boundary,
rmax = 100M . In order to avoid the singular behavior at
r = 0, we follow the procedure showed in [45], in which
a Taylor expansion is made around this point. The re-
sulting approximate regular equations are programmed
for at least the first mesh point located at r = ∆r, being
∆r the uniform spatial resolution of the grid. It is worth
mentioning that the numerical simulations were carried
out by using geometrised units, see appendix A.

IV. MASS-RADIUS RELATION OF AN
ANISOTROPIC QUARK STAR

The mass-radius relation for spherically symmetric
anisotropic quark star solutions were calculated for the
case where the difference in the hydrostatic equation be-
tween the tangential and the radial pressure is non zero.
From Eq.(1) and Eq.(4) the anisotropy occurs at the level
of the tangential component of the pressure due to the
spherical symmetry, so the radial composers a and B are
being fixed, while the tangential a⊥ and B⊥ are varied.

The first solution for the anisotropic quark star is
displayed in Fig.(1) presenting the mass-radius relation
where the bag constant is set to B = 92 MeV/fm3.
The parameters a = a⊥ = 0.7 and B⊥ take several val-
ues that cover a range among the isotropic solution [46]
i.e. B⊥ = 92 MeV/fm3, and the smallest value that
the bag parameter can take, B⊥ = 57 MeV/fm3. As
it is expected, B⊥ do not produce any significant effect
with respect to the isotropic case and all the solutions
are overlapped in a unique curve. Furthermore, these so-
lutions fall in the gravitational waves observation range
1.17 M� < M < 1.6 M� [47] (green region), and also in
the upper limit mass 2.01 M� < M < 2.16 M� (orange
region) recently found in [48].

In Fig. (2a) the domain of solutions are around the
static observational limit for neutron stars [49] (orange
region), although the solutions do not exhibit a mono-
tonic behavior, the maximum mass of the solution with
anisotropic factor a⊥ = 0.2 fits with the line of the ob-
served pulsar J0348+0432 [49], which has a mass ∼ 2M�.
By varying a⊥ it is evident that the maximum mass and
radius increase their values up to approximately a 15%
and 4.5%, respectively. This is a crucial result because
it is possible to restrict the EOS for a fixed value of the
bag parameter. Notice that similar results are achieved
for the intermediate (see Fig. 2b) and the upper limit
(see Fig. 2c) of B. On the other hand, for B = B⊥ = 77
the anisotropic parameter a⊥ = 0.3 (green solid line) fits
with the observational mass for the pulsar J1903+0327,
moreover, the increment of the mass is approximate of
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Figure 1. Mass-radius relation for anisotropic quark stars
with a = a⊥ = 0.7.

a 12% and the radius is around a 4.2%. Meanwhile, for
B = B⊥ = 92, most of the solutions are found in the re-
gion corresponding to pulsars J1903+0327 and J11441-
6545. Such masses are in agreement with estimations
of gravitational waves from binary neutron star observa-
tions [47].

Likewise, the mass-central density relation is plotted
in Fig.(3). It is evident that lowering the parameter a⊥,
the solutions tend to be more stable, even though, they
are not monotonically growing. In the same way, as the
anisotropic factor is decreasing (i.e the interactions be-
tween quarks become stronger) the system is more stable.
Notice that the stability is also influenced by the bag con-
stant, in particular for B = B⊥ = 57 MeV/fm3 a saddle
point seems to appear, although it does not happen for
B = B⊥ = 77 MeV/fm3 and B = B⊥ = 92 MeV/fm3.
In a word, the anisotropy stabilizes the quark star.

On the other hand, a profile of solutions that covers
the full range of values for a⊥ and B⊥ is presented in
Fig. (4). Although it is clear that B do not generate
anisotropies, it has a significant influence on the maxi-
mum masses and radius, since the increment of B = B⊥
contributes to the diminution of these two observables,
similar to the outcomes obtained for the isotropic case
(cyan dashed line). It is evident that for less interact-
ing quarks the maximum masses and their correspond-
ing maximum radius have larger values, but note that
for highly interacting quarks the maximum masses do
not even reach the 2M� constraint. Equally important,
there is a sector where the solutions never reach solutions
with a⊥ = 1.0, in fact, for B⊥ below 72MeV/fm3 there
are no maximum masses that reach the non-interacting
quark limit. Certainly, this may be considered a strong
restriction for the EOS.

Another key point are the results obtained to roughly
describe the interior of quark stars candidates taking into
account the maximum mass and maximum radius obser-
vations (white solid lines). Due to, it is possible to de-
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Figure 2. Mass-radius curve for anisotropic quark stars for (a)
B⊥ = 57, (b) B⊥ = 77, and B⊥ = 92 MeV/fm3. The mass
constriction (orange region) [48] and, the estimated mass from
gravitational waves (green region) [47], respectively.



5

1 2 3 4 5 6 7 8
ρ/ρn [g/cm3]

1.2

1.5

1.8

2.1

M
[M

⊙
]

B=B⟂ =57 MeV/fm3⊙and⊙a=0.7

a⟂ =0.07⊙
a⟂ =0.1⊙

a⟂ =0.2⊙
a⟂ =0.3⊙

a⟂ =0.5⊙
a⟂ =0.7⊙

a⟂ =0.9⊙
a⟂ =1.0⊙

Figure 3. Mass-density relation for anisotropic quark star in
where ρn = 2.4× 1014 g/cm3.

termine how much the quarks interact by restricting B⊥,
a⊥, and a for a given maximum mass and its correspond-
ing radius. Nevertheless, it is not clear how does the
anisotropy mechanism is produced by a⊥.

V. BINDING-ENERGY AND COMPACTNESS

The compactness C = 2MG/Rc2 is sketched for a par-
ticular value of the bag parameter and a fixed a in Figure
(5), while the perpendicular contribution of the interact-
ing term a⊥ run from 1.0 (blue solid line) to 0.07 (pink
solid line). The comparison with respect to the isotropic
case a⊥ = 0.7 (brown solid line), showst that the largest
deviation of the compactness reaches up to a 14%. Addi-
tionally, we checked that the behaviour of the compact-
ness is essentially the same for all the allowed values of
B = B⊥, i.e. it decreased as long as the quarks are less
confined.

On the other hand, the binding energy is explored for
all the permitted values of the bag constant and the in-
teracting parameter. It is evident from Fig. (6) that the
binding energy is larger for the lowest bag parameter B
and small values of anisotropic factor a⊥. We have ob-
served that the binding energy decreases monotonically,
but also it is not linear from a = 0.9 to a = 0.1. Al-
though, the difference is not significantly large, the less
interacting quarks have larger binding energy.

VI. DISCUSSIONS AND CONCLUSIONS

From the EOS (1), it is clear that if the quark mass is
zero, this reduces to the MIT bag model. On the other
hand, the corrections introduced by the coefficient a pro-
duce similar results when there is no interaction among
quark matter, but this is not clear at first sight due to

the fact that a [50] has a parametrization that depends
on the corrections of the pressure of the free-quark Fermi
sea. In consequence, this leads to the condition that if
a = 1, then matter is made of free non-interacting quarks.
For values between 0 < a < 1 the quark interactions play
a significant role because they can increase the neutron
stars mass up to 3−times and this can explain the impor-
tance of considering a strange or exotic matter EOS in
the neutron stars cores, supporting the idea that quark
stars may have masses (0.7M�) smaller than the cur-
rently calculated for neutron stars[51]. Furthermore, the
values of the interaction parameter that generate the ob-
servational contraint of 2M� are over a = 0.5, as it can
be seen in the green-yellow region of the figures (6 (a),
(c)).

Considering only the simple MIT bag model to study
the anisotropy may be a naive approximation, since many
models agree with the idea of the existence of the inter-
acting matter in the strange and quark stars interiors.
Generally speaking, the value of a⊥ is a parameter asso-
ciated to the QCD of quark stars, but also is a cut off
of for their maximum and minimum masses. Therefore,
these values can automatically restrict the quark star
EOS through the anisotropy for a given B constrained by
the range of energies at which it runs (57−92MeV/fm3).

The results obtained above show that the effect of the
bag parameter on the anisotropy is neglectable, this may
be due to the geometry of the stellar structure itself,
because it is restricted to be spherically symmetric and
any change on B will not affect this configuration. How-
ever, due to the interactions of the interior components of
the quark stars are governed by the strong nuclear force,
hence by the value of the interaction parameter, the ma-
jor contribution to the anisotropy must come from a⊥.
As larger a⊥ becomes the anisotropy produces less effect
on the physical observables, since the quarks are almost
free of interactions. However, for smaller values of a⊥,
the interaction among quarks becomes larger, in conse-
quence, the anisotropy generates significant changes of
up to 15% in the mass-radius relation.
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in which the maximum mass and radius has the same value, and the cyan coulored lines are the isotropic cases (a = a⊥).
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Figure 5. Compactness C of anisotropic QS with B = 57.

Appendix A

In order to use the adequate units for the calculations
presented here, we utilize geometrised units (G = c =
1) [52] for the parameters of the equation of the state.
Starting with the expression that relates de geometrised
pressure and the c.g.s units

Pcgs = 5.55173× 1038
(
M�
M

)2

Pgeo,

and

1
MeV

fm3
= 1.602176565× 1033

ergios

cm3
[=]

din

cm2
,

the conversion factor for the bag constant given in by

Bgeo =

(
1.60218× 1033

5.55173× 1038

)
B[Mev/fm3].

Notice that the energy density ε has the same units as
the bag constant. Additionally the mass of the quark
strange is

msgeo =

(
1

5.55173× 1038

)
mscgs .
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