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a b s t r a c t 

Skull-stripping and region segmentation are fundamental steps in preclinical magnetic resonance imaging (MRI) 
studies, and these common procedures are usually performed manually. We present Multi-task U-Net (MU-Net), 
a convolutional neural network designed to accomplish both tasks simultaneously. MU-Net achieved higher seg- 
mentation accuracy than state-of-the-art multi-atlas segmentation methods with an inference time of 0.35 s and 
no pre-processing requirements. 

We trained and validated MU-Net on 128 T2-weighted mouse MRI volumes as well as on the publicly available 
MRM NeAT dataset of 10 MRI volumes. We tested MU-Net with an unusually large dataset combining several 
independent studies consisting of 1782 mouse brain MRI volumes of both healthy and Huntington animals, and 
measured average Dice scores of 0.906 (striati), 0.937 (cortex), and 0.978 (brain mask). Further, we explored the 
effectiveness of our network in the presence of different architectural features, including skip connections and 
recently proposed framing connections, and the effects of the age range of the training set animals. 

These high evaluation scores demonstrate that MU-Net is a powerful tool for segmentation and skull-stripping, 
decreasing inter and intra-rater variability of manual segmentation. The MU-Net code and the trained model are 
publicly available at https://github.com/Hierakonpolis/MU-Net . 
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. Introduction 

Preclinical imaging studies serve a fundamental role in biological
nd medical research, relating research results at the molecular level
o clinical application in diagnosis and therapy. Magnetic Resonance
maging (MRI) represents approximately 23% of all small-animal imag-
ng studies providing the opportunity to monitor the development of
athological conditions and responses to treatment in a non-invasive
ay ( Cunha et al., 2014 ). Its unique qualities also include the availabil-

ty of different imaging contrasts, rendering MRI extremely useful in the
ontext of preclinical neuroscience with applications from drug develop-
ent ( Matthews et al., 2013 ) to basic research ( Febo and Foster, 2016 ).

Skull-stripping and region segmentation represent an integral part
f processing pipelines in murine MR imaging ( Anderson et al., 2019;
alabrese et al., 2015 ). Skull-stripping refers to the identification of the
rain within the MRI volume, and region segmentation refers to the la-
∗ Corresponding author at: Sapienza Università di Roma, 00184 Rome, Italy. 
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eling of specific anatomical regions of interest (ROIs) within the brain.
n preclinical MRI, these tasks are often performed manually. While
anual segmentation represents the gold standard and is employed as

he ground truth when evaluating automated segmentation algorithms,
t is time-consuming and depends on the expertise of the annotators
erforming the segmentation. Furthermore, manual segmentation suf-
ers from both intra- and inter-rater variability, both in small animal
 Ali et al., 2005 ) and human MRI ( Entis et al., 2012; Yushkevich et al.,
006 ). 

In preclinical MRI, state-of-the-art automated region segmentation
ipelines are based on atlas registration: individual MRI volumes are
ligned with a labeled template (atlas) and the labels propagated to the
ndividual volumes ( De Feo and Giove, 2019; Lerch et al., 2011; Pagani
t al., 2016; Schwarz et al., 2006; Sharief et al., 2008 ). The accuracy
f registration-based segmentation depends on both the suitability of
he template and the registration algorithm. The segmentation accuracy
an be improved by multi-atlas strategies, where multiple atlases are
nuary 2021 
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Table 1 

Summary characteristics of the three datasets employed in this study. BM 

refers to brain mask. The test dataset included various genotypes of both 
sexes (see Supplementary Table S1 for details). 

Dataset name # Animals # MRIs # ROIs Type 

Train and validation 32 128 4 + BM WT males 

Test 817 1,782 2 + BM various 

MRM NeAt 10 10 37 + BM WT males 
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egistered to the same volume and the so-resulting segmentation maps
re combined, for example, via majority voting. Regarding multi-atlas
trategies in mouse MRI, Bai et al. (2012) compared different single and
ulti-atlas methods for atlas-based segmentation of the mouse brain

nd reported that the combination of a diffeomorphic registration algo-
ithm and multi-atlas segmentation provided the most accurate results.
a et al. (2014) demonstrated that the multi-atlas methods are superior

o single-atlas methods and the STEPS procedure for combining seg-
entations ( Cardoso et al., 2013 ) brings advantages over earlier com-

ination methodologies. While multi-atlas segmentation accounts for
ndividual variability more effectively than single-atlas segmentation,
t also requires multiple labeled atlases and multiple registration steps,
ignificantly increasing the segmentation time. Multi-atlas segmentation
an be further combined with the construction of a Minimum Deforma-
ion Template (MDT) as an intermediate step in the processing pipeline
 Avants et al., 2010; De Feo and Giove, 2019; Kova čevi ć et al., 2004 ). An
DT minimizes the deformation required to adapt it to each individual

olume, thus reducing errors when its labels are propagated to each tar-
et scan. Instead of directly employing one or more manually segmented
tlases, deep neural networks (DNNs) ( LeCun et al., 2015 ) can use these
s training data to learn a mapping function from the images to the seg-
entation maps. In this way, the anatomical information is not explicitly

epresented in a set of maps but implicitly encoded in the trained net-
ork. DNNs, and in particular Convolutional Neural Networks (CNNs),
ave been successfully applied in a large number of computer vision
asks in medical imaging. For example, Wachinger et al. (2018) devel-
ped a region segmentation CNN significantly outperforming state-of-
he-art, registration-based methods for the healthy human brain MRI,
oth in terms of inference time and accuracy. Roy et al. (2018a) further
mproved on both aspects with a network based on the U-Net architec-
ure ( Ronneberger et al., 2015 ), with a reported segmentation time of 20
 per brain scan. However, within small-animal MRI, the applications of
NNs have been limited to skull-stripping: Roy et al. (2018b) trained a
NN algorithm based on Google Inception ( Szegedy et al., 2015 ) for the
kull-stripping in humans and mice after traumatic brain injury, achiev-
ng better performance than other state-of-the-art methods (3D Pulse
oupled Neural Networks (3D-PCNN) ( Chou et al., 2011 ) and Rapid Au-
omatic Tissue Segmentation (RATS) ( Oguz et al., 2014 )). 

A specific type of CNN architecture, U-Net, has proved to be valu-
ble in biomedical image segmentation. U-Net is based on the en-
oder/decoder structure, adding skip connections between the encoder
nd the decoder branches, allowing it to easily integrate multi-scale in-
ormation and better propagate the gradient during training. This ar-
hitecture has been shown to generalize even from a limited amount of
nnotated data ( Xie et al., 2015 ), and as such is well suited for medical
maging, where datasets as large as the ones commonly used for CNNs
re rare. Valverde et al. (2019) recently demonstrated the effectiveness
f U-Net-like architectures in preclinical research, designing the first
NN for the segmentation of ischemic lesions in rodents and achieving

egmentation accuracy comparable or better to inter-rater agreement in
anual segmentation. 

In this work, we introduce multi-task U-Net (MU-Net) to simulta-
eously perform skull-stripping and region segmentation of the mouse
rain, based on the U-Net architecture. We refer to our approach as
ulti-task as we consider skull-stripping and region segmentation as

eparate tasks, allowing for the complete delineation of the brain vol-
me regardless of the choice of ROIs. While these tasks are often con-
idered as separate in the context of murine brain segmentation, they
re strongly related. Therefore, our approach is not multi-task learning
n the stronger sense of providing two fundamentally different outputs,
.g., segmentation and classification ( Yang et al., 2017 ). 

Our main train and validation data consisted of 128 T 2 MRI volumes
rom 32 mice at 4 different ages as well as five manually annotated re-
ions (cortex, hippocampi, ventricles, striati and brain mask) from these
mages. This dataset represents MR images typically employed in drug
evelopment. We demonstrate that with this data MU-Net achieves a
2 
ignificantly higher accuracy than state-of-the-art multi-atlas segmenta-
ion methods ( Cardoso et al., 2013; Ma et al., 2014 ) in a fraction of the
egmentation time (approximately 0 . 35 s ). We trained MU-Net on 128
RI volumes and tested on an independent dataset of 1782 volumes

cquired over the course of four years from both wild type (WT) and
untington (HT) C57BL/6J mice, allowing us to evaluate MU-Net in
 variety of experimental conditions. Additionally, we trained MU-Net
or the segmentation of mouse brain MRI with isotropic voxels into 37
OIs and demonstrate that the segmentation accuracy of MU-Net was
qual or better than a state-of-the-art multi-atlas segmentation method
 Ma et al., 2014 ). 

. Materials and methods 

.1. Materials 

We utilized three different datasets in this work as summarized in
able 1 and detailed in the following subsections. 

.1.1. Animals: train, validation and test sets 

A total of 849 mice (Charles River Laboratories, Germany) were used:
2 mice for the train and validation set and 817 mice for the test set.
rain and validation set animals were scanned at four different ages (5
eeks, 12 weeks, 16 weeks, 32 weeks) resulting in 128 volumes. All

rain and validation set animals were WT males. 
The test set animals were part of 10 studies scanned at a single or

ultiple ages from 4 up to 60 weeks, and included both WT and several
T genotypes: R6/2, Q175, Q175DN, Q111, Q50 and Q20 (Supplemen-

ary Table S1), for a total of 1782 MRI scans. The groups included both
ales and females. These volumes were acquired as part of ten studies of
untington’s disease, kindly provided by the CHDI ’Cure Huntington’s
isease Initiative’ foundation. 

All mice were housed in groups of up to 4 per cage (single sex) in a
emperature (22 ± 1°C) and humidity (30–70%) controlled environment
ith a normal light-dark cycle (7:00–20:00). 

.1.2. MRI: train, validation and test sets 

Mice were anesthetized using isoflurane (5% for induction, 1.5–2%
aintenance) in 70%/30% mix of N 2 /O 2 carrying gas, fixed to a head
older and positioned in the magnet bore in a standard orientation rela-
ive to gradient coils. Respiration rate and temperature were monitored
sing PC-SAMS software and Model 1030 Monitoring & Gating System,
mall Animal Instruments, Inc., Stony Brook, NY. The temperature was
aintained at ∼ 37 ◦ C using Small Animal Instruments feedback water
eating system. 

All acquisitions were performed using a horizontal 11 . 7T magnet
ith a bore size of 160 mm , equipped with a gradient set capable of max-

mum gradient strength of 750 mT∕m and interfaced to a Bruker Avance
II console (Bruker Biospin GmbH, Ettlingen, Germany). A volume coil
Bruker Biospin GmbH, Ettlingen, Germany) was used for transmission
nd a surface phased array coil for receiving (Rapid Biomedical GmbH,
impar, Germany). T 2 weighted anatomical images were acquired us-

ng a TurboRARE sequence with effective TR/TE = 2500∕36 ms , 8 echoes,
2 ms inter-echo distance, matrix size 256x256, FOV 20.0x20.0 mm 

2 , 31
 . 6 mm thick coronal slices, −0 . 15 mm interslice gap, and 8 averages. Con-
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Fig. 1. General outline of the architectural features implemented and compared in the networks discussed, varying according to the presence or absence of the 
in-block dense connections (purple arrows in the convolutional block), presence or absence of the layer subtraction connections (black), and the use of 2D or 3D 

filters. 
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erning the test data, MRI experimental parameters only differed in ac-
uiring 19 0 . 7 mm thick contiguous coronal slices. 

Volumes within each study were manually segmented by an experi-
nced rater, who had received a training and passed the qualification
ests according to SOP (Standard Operating Procedure) for volumetric
nalysis in mice. Different studies were analyzed by different raters.
ach training volume was manually segmented by a single rater drawing
he brain mask and delineating 4 regions of interest: cortex, hippocampi,
triati and ventricles. The brain mask did not include the olfactory bulb
r the cerebellum. For the test set, only 3 regions were manually labeled:
rain mask, cortex and striati. As each image was only segmented once
y a single rater, intra- and inter-rater overlap statistics are not avail-
ble for our dataset. Manual segmentation required from 10 to 15 min
er ROI per image. 

.1.3. MRM NeAt dataset 

The MRM NeAt dataset includes atlases of 10 individual T 2 ∗ -
eighted in vivo brain MR images of 12–14 weeks old C57BL/6J mice;

ach with 37 labelled anatomical structures (listed in Fig. 4 ) in addition
o the brain mask ( Ma et al., 2008 ). This dataset was downloaded from
ttps://github.com/dancebean/mouse- brain- atlas , where an improved
tlas is available (bias correction has been applied, left and right labels
ave been separated and 4th ventricle label added). This dataset was
sed to evaluate the STEPS algorithm by Ma et al. (2014) and is used
ere for the purpose of comparing MU-Net and STEPS on a larger num-
er of ROIs on isotropic resolution MRI. As detailed in Ma et al. (2008) ,
 2 -weighted MR data with a voxel-size of 0 . 1 mm 

3 requiring about 2.8 h
f scan time were acquired with a 3D large flip angle spin echo sequence
sing a super-conducting 9.4T/210 mm horizontal bore magnet (Mag-
ex) controlled by an ADVANCE console (Bruker) and equipped with an
ctively shielded 11.6 cm gradient set (Bruker, Billerica, MA). 

.2. MU-Nets 

.2.1. Architectures 

MU-Net ( Fig. 1 ) presents an encoder-decoder U-Net-like architecture,
ith each branch articulated in four convolutional blocks. Unlike U-Net,

he final block of the decoder branch further bifurcates into two differ-
nt output maps representing our two tasks, sharing the same feature
3 
epresentation. Each convolutional block on the encoding path is fol-
owed by a 2x2 max-pooling layer. The last feature map feeds into the
ottleneck layer, a 64 channel 5x5 convolutional layer with batch nor-
alization ( Ioffe and Szegedy, 2015 ) connecting the deepest layer of the

ncoding path with the decoding path. 
The decoding path is composed of 4 more blocks alternating one

n-pooling layer ( Noh et al., 2015 ) and one convolutional block. Un-
ooling operations effectively replace up-convolution layers in U-Net
ithout any learnable parameters, while preserving spatial information.
hese layers operate by simply placing the elements of the un-pooled
eature maps in the position of the respective maximum activation from
he corresponding pooling operation, and setting the rest to zero. Skip
onnections concatenate the output of each dense layer in the encoding
ath with the respective un-pooled feature map of the same size before
eeding it as input to the decoding convolutional block. 

The output of the last decoding layer acts as the input of two different
lassification layers, which share the same feature representation up to
his point: a 1x1 single channel convolution with a sigmoid activation
unction, and a 1x1 5 channels layer followed by a softmax activation
unction, for the skull-stripping task and the region classification task,
espectively. 

Convolutional block 

Each convolutional block includes 3 convolutional layers preceded
y leaky ReLU activation ( Maas et al., 2013 ) layers and batch normaliza-
ion. All 3 convolutions are padded and result in 64 output channels, in
nalogy with Roy et al. (2018a) . The first and second convolutions em-
loy 5x5 filters, while the third uses a 1x1 filter. This becomes especially
elevant in the presence of dense connections, acting as a bottleneck for
he 64x3 channels of the concatenated inputs and compressing the size
f the feature maps. 

.2.2. Architectural variants 

We study several variations to the basic network architecture. 
Dense connections 

In the models including dense connections ( Huang et al., 2017 ) we
odify each convolutional block by concatenating to the input of each

onvolution the outputs of the previous convolutions within the same
lock ( Fig. 1 ). 

https://github.com/dancebean/mouse-brain-atlas
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Dual Framing connections 

Dual framing connections refer to additional skip connections in the
ual Frame U-Net model. Han and Ye (2018) proposed this architec-

ure for computed tomography reconstruction from sparse data based
n signal processing arguments to reduce artifacts and improve recov-
ry of high frequency edges. Dual framing connections consist in the
ubtraction of the input of each convolutional block on the encoding
ath from the output of the respective convolutional block of the same
ize on the decoding path, and as such the implementation of these con-
ections does not increase the number of model parameters. 

3D implementation 

A 3D implementation could, in principle, provide better results by
aking into account the features of the adjacent slices, whereas a 2D net-
orks evaluates each coronal slice independently. However, the larger
umber of parameters also increases the risk of overfitting, and the
ower resolution in the anterior-posterior axis compared to the in-plane
esolution might constitute confounding factors in the presence of 3D
ooling operations. 

For these reasons, we compared 2D and 3D implementations of
ur network, using 5x5x5 filters and 2x2x2 max-pooling layers, re-
lacing the filters and pooling layers described above. This results in
6,008,076 and 10,286,344 parameters for the 3D networks with and
ithout in-block skip connections, respectively. Corresponding 2D net-
orks contain 3,297,676 and 2,087,944 parameters, respectively. Thus,
pting for a 3D architecture increases the number of parameters by fac-
ors of 4.85 and 4.93 as compared to the 2D architectures. The total
umber of parameters was measured by using the PyTorch instruction
um(p.numel() for p in model.parameters()) . A com-
lete breakdown of model parameters for each network is available in
upplementary Table S2. 

.2.3. Loss function 

Recent literature suggests that Dice-based loss functions ( Milletari
t al., 2016; Roy et al., 2018a; Sudre et al., 2017 ) would constitute an
mprovement over cross-entropy losses for the segmentation of medical
mages ( Karimi and Salcudean, 2019 ). We optimized a joint loss function
, that is the sum of two Dice loss functions corresponding to the the

kull-stripping ( 𝐿 𝑆𝑆 ) and the region classification task ( 𝐿 𝑅𝑆 ). Let 𝑝 ( 𝑖 ) be
he predicted probability of voxel 𝑖 of belonging to the brain mask, and
( 𝑖 ) the ground truth for voxel 𝑖 ( 𝑔( 𝑖 ) = 1 if the voxel is in the brain mask).
urther, let 𝑝 𝑙 ( 𝑖 ) and 𝑔 𝑙 ( 𝑖 ) be the same quantities for label 𝑙 ( 𝑙 = 1 , … , 𝐾)
ncoding the ground truth as a one-hot vector. Then, the loss function
an be written as: 

 = 𝐿 𝑆𝑆 + 𝐿 𝑅𝑆 , (1)

 𝑆𝑆 = − 

2 
∑

𝑖 𝑝 ( 𝑖 ) 𝑔( 𝑖 ) ∑
𝑖 𝑝 

𝟐 ( 𝑖 ) + 

∑
𝑖 𝑔 

𝟐 ( 𝑖 ) 
, (2)

 𝑅𝑆 = − 

𝐾 ∑
𝑙=1 

2 
∑

𝑖 𝑝 𝑙 ( 𝑖 ) 𝑔 𝑙 ( 𝑖 ) ∑
𝑖 𝑝 

2 
𝑙 
( 𝑖 ) + 

∑
𝑖 𝑔 

2 
𝑙 
( 𝑖 ) 

, (3)

here 𝐾 is the number of labels (ROIs) plus the background class. 

.2.4. Training 

The networks were implemented using the PyTorch framework
nd trained with stochastic gradient descent using Adam optimizer
 Kingma and Ba, 2014 ) with the default parameters (the initial learning
ate of 0.001, 𝛽1 = 0 . 9 , 𝛽2 = 0 . 999 and no weight decay) on an NVIDIA
eForce GTX 1080 GPU for up to 12 h (train and validation) or on an
VIDIA Volta V100 GPU for up to 24 h (MRM NeAt). Each network was

rained with a batch size of one. Qualitatively, the training pace of 2D
nd 3D networks was substantially the same, as evidenced in supple-
entary Fig. S1. 

We augmented the data online each time an image was loaded by
caling the volumes by a factor 𝛼 randomly drawn from the interval
4 
0 . 95 , 1 . 01] and rotating them around each axis by a random angle be-
ween −5 ◦ and 5 ◦. Scaling factors smaller than one were preferred to
ecrease memory requirements. Each transformation was applied with
0% probability. To further decrease memory requirements, a bounding
ox was created for each volume using the annotated brain mask as a
eference. Each volume was individually normalized to 0 mean and unit
ariance. Hyperparameters, optimizer and data augmentation scheme
ere fixed before training ensuring that each architecture would fit into
emory, and applied to each network with no additional fine tuning. 

.2.5. Auxiliary bounding-box network 

As MU-Net was trained after cropping the volumes to a bounding
ox, we trained a lighter 2D network to run a first estimate for the brain
ask at inference time from the complete volume. This was then used to
raw a bounding box around the brain with one voxel margin. This aux-
liary network follows exactly the same architecture of MU-Net, omitting
ny framing or dense connections, and limiting the number of channels
o 4, 8, 16 and 32, from the shallowest to the deepest layer. This results
n a network with a total number of 122,455 trained parameters. 

.3. STEPS multi-atlas segmentation 

STEPS is a state of the art label fusion algorithm to combine multiple
egistered templates to label a target volume ( Cardoso et al., 2013 ).
t takes into account the local and global image matching, combining
n expectation-maximization approach with Markov Random Fields to
mprove on the segmentation based on the quality of the registration
tself. 

The registrations were performed as follows: before registration,
ach volume underwent non-parametric N3 bias field correction
 Sled et al., 1998 ) implemented within the ANTS toolset ( Avants et al.,
009 ). Taking each volume as reference, all other volumes were then
egistered with an affine transformation using FSL FLIRT ( Jenkinson and
mith, 2001 ) and then nonlinearly registered via FSL FNIRT ( Andersson
t al., 2007; Jenkinson et al., 2012 ) with the aid of the manually drawn
rain mask. Label fusion was achieved with the STEPS algorithm dis-
ributed in the NiftySeg package ( Cardoso et al., 2013; 2012 ). 

We used correlation ratio (corratio) as the cost function in FLIRT
nd FNIRT. We used the default FLIRT and FNIRT parameters with the
ollowing exceptions. The search range of angles in FLIRT was [−70 ◦,
0 ◦] instead of the default [−90 ◦, 90 ◦] , because the orientations of the
olumes were similar. In FNIRT, we used spline interpolation instead of
he default linear interpolation. 

STEPS depends on the number of templates employed and the stan-
ard deviation of its Gaussian kernel. We performed a grid search to se-
ect the optimal parameters, randomly selecting 10 volumes and labeling
hem using STEPS. We sampled the standard deviation of the Gaussian
ernels between 0.5 and 6 with a stride of 0.5, and the number of tem-
lates ranged between 1 and 20 randomly selected volumes. This same
rocess has been performed both using diffeomorphic registration and
sing affine registration only (supplementary Fig. S2), selecting 16 tem-
lates and kernel standard deviation of 1.5 for the diffeomorphic case,
nd 18 templates with kernel standard deviation of 2.5 for the affinely
egistered volumes. Exploring both grids required in total 287 h. 

Each volume was then segmented using these parameters, randomly
electing an appropriate number of mice as templates for the STEPS al-
orithm as emerged from the parameter grid search outlined above. We
epeated this procedure randomly selecting the same number of tem-
lates from mice of the same age only. The mice randomly selected as
eference atlases were selected from the training set associated to each
olume according to the same 5-fold cross validation scheme used to
rain the CNNs as outlined in Section 2.5 . 

When evaluating STEPS on MRM NeAt dataset, we used scripts
rovided by Ma et al. (2014) at https://github.com/dancebean/
ulti- atlas- segmentation as this implementation is optimized using this
ataset. 

https://github.com/dancebean/multi-atlas-segmentation
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The here described computations for the training and validation
ataset were executed on a workstation equipped with a 6-core, 12-
hread Intel Core i7-8700K CPU running at 3.70 GHz. To accelerate
he computations generating several intermediate file outputs, we used
AMdisk to reduce the number of the disk operations. For the NeAt
ataset, computations were performed on a 12-core, 24-thread AMD
yzen 9 3900X Processor. 

.4. Post-processing 

The only post-processing steps applied on the segmentation maps
ere the filling of holes in the resulting 3D volume, the selection of the

argest connected component as the brain mask for the skull-stripping
ask, and assigning all voxels predicted as non-brain to the background
lass. 

.5. Validation and metrics 

To assess the overlap between the ground truth and the predicted
egmentation masks, we used the Dice coefficient as the primary per-
ormance measure ( Dice, 1945 ). The Dice coefficient is defined as two
imes the size of the intersection over the sum of the sizes of the two
egions: 

 = 

2 ||𝑌 𝑡 ∩ 𝑌 ||||𝑌 𝑡 || + |𝑌 | , 
here by 𝑌 we indicate our prediction and by 𝑌 𝑡 the ground truth. This

oefficient ranges from 0, meaning no overlap, to 1, indicating a com-
lete overlap between the two regions. 

We further evaluated our results using the 95th percentile of the sym-
etric Hausdorff distance (HD95) ( Huttenlocher et al., 1993 ). HD95 in-
icates the magnitude of the largest segmentation error compared to the
round truth, expressed in millimeters. We additionally computed pre-

ision (defined as |𝑌 𝑡 ∩𝑌 ||𝑌 | ) and recall (defined as |𝑌 𝑡 ∩𝑌 ||𝑌 𝑡 | ). These measures

rovide complimentary information to the Dice overlap. 
Each experiment on the train and validation dataset as well as the

eAt dataset (see Table 1 ) was validated according to a 5-fold cross vali-
ation (CV) scheme. Volumes were distributed in each fold according to
he individual identity of each animal, preventing the use of the volumes
rom the validation animals for training. The animals were randomly
ssigned to each fold once, and the same animals remained assigned to
heir respective folds through all experiments. For train and validation
ataset, this resulted in a training set of 25 or 26 mice and a validation
et of 6 or 7 mice in each fold. For the MRM NeAt dataset, 5-fold CV
esulted in 8 volumes used for training (or as registration atlases) and 2
or testing in each fold. The test dataset was used as an external test set
o evaluate MU-Net trained on the train and validation dataset. 

Unless otherwise specified, we used a paired permutation test to eval-
ate the significance of differences between the Dice scores obtained by
ifferent methods, pairing the Dice scores obtained on the same MRI
olumes. The unpaired permutation test was used instead when compar-
ng results obtained on different volumes, for example, when comparing
he accuracy of a model on volumes from younger mice with that of the
ame model on older mice, and for all comparisons on the test set. We
erformed permutation tests using 100,000 iterations, and considered
verage differences to be significant when 𝑝 was smaller than 0.05. The
npaired permutation tests of Dice coefficients between different animal
roups were performed by permuting animals (not images) between the
wo groups. This ensures exchangeability when several images of the
ame animal existed due to longitudinal designs in the test set. 

. Results 

Using the train and validation dataset, we compared the perfor-
ance of different network architectures. Furthermore, we compared
U-Net with multi-atlas segmentation on both our data and the MRM
5 
eAt dataset, and evaluated the impact of mouse age on the accuracy
f our segmentation maps. The experiments reported in Sections 3.1 –
.3 are based on 5-fold CV on the train and validation set, and experi-
ents in Section 3.4 on 5-fold CV on the MRM NeAt dataset. Finally, in

ection 3.5 , we tested MU-Net trained on train and validation set on an
ndependent test set that included 1782 MRI volumes from 817 mice. 

.1. Architecture comparison 

We compared the performance of different networks trained with
nd without dense connections and dual framing connections, in both
D and 3D implementations. 

As shown in Table 2 , all MU-Nets achieved Dice scores with the
round truth comparable to or higher than the typical inter-rater vari-
bility of manual segmentation in the mouse brain (Dice scores from
.80 to 0.90 ( Ali et al., 2005 )). The skull-stripping task achieved an ex-
ellent Dice score of 0.984. The ventricles were characterized by the
owest segmentation performance (average Dice score 0.907), while the
ortex displayed the highest overlap with the ground truth (average Dice
core 0.966). Dice scores for each animal in all ROIs are provided as sup-
lementary Table S3. 

The network displaying the highest average Dice scores was, in fact,
he simplest one, including no in-block skip connections nor framing
onnections, and using 2D convolutions. The accuracy of this network
as significantly higher than the accuracy of other all other 2D networks
 𝑝 < 0 . 00003 ). Because of its excellent performance and simplicity this
etwork is our choice for the MU-Net architecture, which is the archi-
ecture we used for all experiments detailed in Sections 3.2 and 3.3 . 

The choice between 2D and 3D architectures was the most impor-
ant factor in increasing performance, resulting in a marked increase in
ean Dice scores for both tasks ( 𝑝 < 0 . 00001 ) between all 2D networks

ompared to the 3D ones. We further compared MU-Net with one fea-
uring less channels per filter (49, 49, 50, 50, from the shallowest to
he deepest convolutional block) to match the number of parameters to
he number of parameters of the simplest 2D network. We registered
 slightly (but not significantly, 𝑝 = 0 . 077 ) lower accuracy compared to
U-Net, indicated as 2D SLP in Table 2 . 

To test whether the increased performance of 2D architectures com-
ared to the 3D implementation depended on the reduced number of
arameters or on an excessive loss of information when pooling in the
nterior-posterior direction, we trained a network using 3D filters while
imiting pooling operations to the coronal plane. This network achieved
 segmentation accuracy in between the 3D and 2D implementations
 Table 2 ), suggesting that both above mentioned aspects were relevant
n increasing the algorithm’s performance. 

We studied the effect of bias field correction to the performance of
U-Net training it on images without bias-correction, and separately, on
3 bias-corrected MR images ( Sled et al., 1998 ). The validation accuracy
chieved with bias correction was indistinguishable from the accuracy
f MU-Net trained without bias correction (see Table 2 ). 

.2. Age stratified training sets 

We evaluated the performance of MU-Net when restricting the train-
ng set to mice of a specific age. Networks trained on data from mice of
2, 16 and 32 weeks achieved higher accuracy, both on their respective
alidation set and the overall ground truth, compared to the networks
rained on 5 weeks mice ( 𝑝 < 0 . 00001 ). As shown in Fig. 5 , while all
etworks trained on one specific age displayed a statistically significant
 𝑝 < 0 . 05 , unpaired) decrease in mean accuracy when validated on ani-
als of a different age, this difference was highest between the 5 weeks
ata and the other datasets. 

Limiting the training data to one specific age implies that these net-
orks were trained only on a quarter of the data used to train the net-
orks in Section 3.1 . Irrespective of that, these networks still achieved
verage Dice score on the mixed-age validation dataset comparable with
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Table 2 

CNN and STEPS accuracies measured using Dice coefficient across different methodological choices. Cross-validation 
results on the train and validation dataset. 

Dim SC FC Brain mask Cortex Hippocampi Ventricles Striati ROI mean 

2D 0.984 ± 0.005 0.966 ± 0.009 0.925 ± 0.017 0.907 ± 0.020 0.939 ± 0.010 0.935 ± 0.026 

2D x x 0.984 ± 0.006 0.963 ± 0.010 0.924 ± 0.016 0.905 ± 0.022 0.937 ± 0.009 0.932 ± 0.026 

2D x 0.984 ± 0.006 0.963 ± 0.011 0.924 ± 0.017 0.905 ± 0.022 0.938 ± 0.009 0.932 ± 0.026 

2D x 0.984 ± 0.005 0.964 ± 0.011 0.923 ± 0.018 0.905 ± 0.024 0.937 ± 0.010 0.932 ± 0.027 

3D x x 0.982 ± 0.007 0.956 ± 0.016 0.914 ± 0.033 0.900 ± 0.025 0.926 ± 0.045 0.924 ± 0.038 

3D x 0.982 ± 0.007 0.958 ± 0.016 0.916 ± 0.032 0.900 ± 0.025 0.928 ± 0.029 0.925 ± 0.034 

3D x 0.982 ± 0.006 0.957 ± 0.016 0.913 ± 0.041 0.899 ± 0.028 0.926 ± 0.042 0.924 ± 0.040 

3D 0.982 ± 0.007 0.957 ± 0.013 0.916 ± 0.033 0.899 ± 0.026 0.926 ± 0.039 0.924 ± 0.036 

3DConv 2DPool 0.983 ± 0.006 0.961 ± 0.010 0.919 ± 0.026 0.902 ± 0.026 0.934 ± 0.014 0.929 ± 0.030 

2D SLP 0.984 ± 0.005 0.965 ± 0.009 0.924 ± 0.016 0.907 ± 0.021 0.939 ± 0.010 0.934 ± 0.026 

2D + N3 0.984 ± 0.005 0.965 ± 0.009 0.924 ± 0.020 0.907 ± 0.020 0.939 ± 0.009 0.934 ± 0.026 

STEPS (affine) \ 0.920 ± 0.058 0.827 ± 0.079 0.761 ± 0.090 0.873 ± 0.062 0.845 ± 0.093 

STEPS (diffeo) \ 0.948 ± 0.036 0.844 ± 0.048 0.812 ± 0.090 0.871 ± 0.045 0.869 ± 0.070 

STEPS ∗ (affine) \ 0 . 936 ± 0 . 013 0 . 831 ± 0 . 029 0 . 781 ± 0 . 049 0 . 887 ± 0 . 019 0 . 859 ± 0 . 066 
STEPS ∗ (diffeo) \ 0 . 954 ± 0 . 009 0 . 848 ± 0 . 025 0 . 826 ± 0 . 039 0 . 885 ± 0 . 016 0 . 879 ± 0 . 055 
Majority Voting \ 0.889 ± 0.179 0.780 ± 0.232 0.677 ± 0.208 0.816 ± 0.245 0.791 ± 0.230 

Listed values are the average validation Dice scores between automatic and manual segmentation ± standard de- 
viations of these Dice scores in 5-fold CV. ROI mean column refers to the mean Dice coefficient of the cortex, the 
hippocampi, the ventricles and the striati. SC and FC indicate the presence of skip connection and framing connec- 
tions. MU-Net results are displayed in the first row. STEPS refers to STEPS using randomly selected templates; STEPS ∗ 

refers to STEPS runs using randomly selecting mice of the same age only; affine indicates that only affine registration 
was used, whereas diffeo indicates this was followed by a diffeomorphic registration step; Majority voting refers 
to the selection of the most occuring label after diffeomorphic registration; 3DConv 2DPool: network featuring no 
in-block skip connections or framing connections, with 3D filtering and 2D pooling in the coronal plane; 2D SLP: 
2D network with in-block skip connections and a limited number of parameters; 2D +N3: 2D network trained on 
data bias-corrected using the N3 algorithm. Boldface characters indicate the best performing network, achieving 
significantly higher Dice scores than all other networks for that ROI. 
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he accuracy of manual segmentation. The worst performing CNN was
he network trained on 5 weeks old mice. Training on the 12, 16 and 32
eeks data and validating on mice of the same age, we observed Dice

cores comparable with the overall performance of MU-Net trained on
he entire dataset ( 𝑝 > 0 . 15 , unpaired). However, we measured a lower
verall performance when including mice of all ages in the validation
ata ( 𝑝 < 0 . 00001 ), slightly overfitting for each specific age. 

.3. Comparison with multi-atlas segmentation 

We compared MU-Net with multi-atlas segmentation, applying the
tate-of-the-art STEPS ( Cardoso et al., 2013; 2012 ) label fusion method
o combine the labels obtained from the registration of multiple labeled
olumes. This was implemented using the Niftyseg package as described
n Section 2.3 . We repeated this procedure using both diffeomorphic and
ffine registration methods, with randomly-selected templates restricted
o same-age mice. The brain mask segmentation was not evaluated as the
anually drawn mask was used during the diffeomorphic registration
rocedure. 

MU-Net achieved higher Dice coefficients than all STEPS implemen-
ations ( 𝑝 < 0 . 00001 , Cohen’s 𝑑: 4.39, see Table 2 ). Also, there was a
arked qualitative difference between STEPS segmentation and MU-
et ( Fig. 2 ), the latter achieving results visually indistinguishable from
anual segmentation. We computed HD95 distances further confirmed

his difference, with an average of 0 . 084 ± 0 . 019 mm for MU-Net against
 . 251 ± 0 . 064 mm for STEPS ( 𝑝 < 0 . 00001 ). We measured a mean preci-
ion of 0 . 962 ± 0 . 008 (MU-Net) vs 0 . 820 ± 0 . 025 (STEPS) ( 𝑝 < 0 . 00001 )
nd a mean recall of 0 . 951 ± 0 . 011 (MU-Net) vs 0 . 952 ± 0 . 013 (STEPS)
 𝑝 = 0 . 65 ). 

MU-Net had an inference time of about 0 . 35s and a training time of 12
. STEPS segmentation procedure required total inference time of 117
in for each labeled volume (on average 440s for each pairwise diffeo-
orphic registration and 7 . 85s for label fusion). Implementing STEPS

egmentation using only templates of the same age led to a small but
ignificant improvement in Dice coefficients over randomly choosing
emplates of any age ( 𝑝 < 0 . 0007 , Cohen’s 𝑑: 0.296). The employment of
6 
iffeomorphic registration was the most important factor affecting the
erformance of STEPS, as displayed in Table 2 . A simple majority voting
trategy led to significantly lower performance in all ROIs compared to
ll other label fusion strategies ( 𝑝 < 0 . 003 ). 

Furthermore, we trained MU-Net on the outputs of the implemented
TEPS procedures featuring diffeomorphic registration, and measured
he Dice scores of each network’s output with the ground truth ( Table 3 ).
s evidenced in Tables 2 and 3 , and Fig. 3 , MU-Net trained on STEPS
egmentations achieved higher Dice score with the ground truth than
he same STEPS segmentations constituting the training sets of MU-Net
 𝑝 < 0 . 00001 ). With the exception of the network trained on 5 weeks old
ice, these hybrid networks were still under-performing compared to

raining on manually segmented data ( 𝑝 < 0 . 00001 ). 

.4. Evaluation on a large number of ROIs with MRM NeAt dataset 

We trained and evaluated MU-Net on the MRM NeAt datasets that
ncludes atlases of 10 individual T 2 ∗ -weighted in vivo brain MR im-
ges of 12–14 weeks old C57BL/6J mice; each with 37 manually la-
elled anatomical structures ( Ma et al., 2008 ). This same database was
elected by Ma et al. (2014) to evaluate the STEPS multi-atlas segmen-
ation algorithm on mouse brain MRI. To compare MU-Net with STEPS,
e followed the STEPS implementation by Ma et al. (2014) as released
y the authors. 

We used a 5-fold cross validation scheme for evaluation (8 templates
or training and 2 templates for testing in each fold). The only adapta-
ion required to train MU-Net on MRM NeAT dataset was to expand
he number of output channels to 37 (plus one for the brain mask) to
qual that of the number of ROIs. As displayed in Fig. 4 , Dice coefficient
f MU-Net was greater or comparable to STEPS: while in a majority
f regions MU-Net’s accuracy was higher than the accuracy of STEPS,
his was statistically significant only for the brain mask, external cap-
ule, hypothalamus and brain stem. In the left inferior colliculi, STEPS
chieved significantly higher Dice coefficient than MU-Net. Averaging
he Dice coefficients across all ROIs, we measured an average Dice score
f 0 . 820 ± 0 . 031 for MU-Net and 0 . 814 ± 0 . 023 for STEPS. While this aver-
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Fig. 2. Segmentation comparison in four slices from a single animal: (a) STEPS, (b) MU-Net, and (c) manual annotation. In (a)–(c), the regions highlighted are the 
cortex (blue), ventricles (green), striati (red), and hippocampi (yellow). Panel (d) shows the inferred brain mask by MU-Net. 

Table 3 

Mean and standard deviation of average Dice scores evaluating the accuracy of MU-Net trained 
on volumes segmented via STEPS. 

Training Set Cortex Hippocampus Ventricles Striatum ROI mean 

STEPS ∗ 0.954 ± 0.011 0.867 ± 0.027 0.866 ± 0.035 0.898 ± 0.017 0.896 ± 0.043 

STEPS 0.953 ± 0.009 0.872 ± 0.022 0.849 ± 0.041 0.885 ± 0.016 0.890 ± 0.046 

Fig. 3. Average Dice score comparison between different segmentation meth- 
ods, across all ROIs. MU-Net: MU-Net trained on the manually segmented data; 
MU-Net - STEPS: MU-Net trained on volumes segmented employing same-age 
diffeomorphic STEPS; STEPS: same-age diffeomorphic STEPS segmentation. The 
error bar represents standard deviation. 
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ge Dice coefficient for MU-Net was higher, the difference was not statis-
ically significant ( 𝑝 = 0 . 170 , Cohen’s 𝑑: 0.134). Similarly, we measured
n higher (but not statistically significant, 𝑝 = 0 . 07 ) average HD95 dis-
ance for MU-Net ( 0 . 360 ± 0 . 252 mm vs 0 . 240 ± 0 . 038 mm ). In contrast, we
easured a significantly higher average precision with MU-Net (0.823
 0.033 vs 0.786 ± 0.024, 𝑝 = 0 . 0009 ) and a significantly lower recall

0.815 ± 0.032 vs 0.853 ± 0.023, 𝑝 = 0 . 001 ). A full breakdown of these
etrics is available in supplementary Fig. S3. The computation time re-
7 
uired by STEPS to segment a single volume was of approximately 20
in while MU-Net required less than one second per volume. 

.5. Evaluation with a large test dataset 

We optimized the MU-Net model on the train and validation dataset
nd tested on a large test set of 1782 MRI volumes, acquired from 817
ice with ages ranging from 4 to 60 weeks, and including both WT

nd HT mice. As the 5-fold cross-validation experiment produced five
ifferent MU-Net models, the segmentation maps for the test set were
btained by averaging the five prediction maps produced by the five
odels. To outline the brain mask, we averaged sigmoid-activated pre-
ictions from five networks and thresholded them at 0.5. For region
egmentation, we averaged the softmax-activated output maps, and for
ach voxel, we selected the class yielding the maximal averaged value
s our predicted label. 

Out of the entire test set, segmentation failed completely on two
olumes, where no brain mask was detected. The remaining 1780 vol-
mes were successfully segmented with an average Dice score of 0.978
 0.012 for the brain mask, 0.906 ± 0.041 for the striati, and 0.937 ±
.035 for the cortex, distributed as illustrated in Fig. 7 . There was no
ignificant difference between the segmentation accuracy of male and
emale animals ( 𝑝 > 0 . 1 , unpaired). However, there was a significant dif-
erence in accuracy between HT and WT mice ( 𝑝 < 0 . 00001 , unpaired)
or all ROIs. Dice scores of WT animals were 0.4% higher for the brain
ask, 1.7% higher for the cortex, and 1.9% higher for the striati. Ap-
lying N3 bias correction on all volumes before segmentation did not
esult in a significant Dice score difference. A detailed list of Dice scores,
D95, precision and recall, for each animal and each ROI, is available

n supplementary Table S4. 



R. De Feo, A. Shatillo, A. Sierra et al. NeuroImage 229 (2021) 117734 

Fig. 4. Comparison between the average Dice coefficients of MU-Net and STEPS multi-atlas algorithm by Ma et al. Error bars correspond to standard deviation 
for the average accuracy. Permutation-test based p-values for each comparison are provided in parentheses after the ROI name, + indicates that the average Dice 
coefficient for MU-Net was higher and - indicates that the average Dice coefficient for STEPS was higher, ∗ indicates a statistically significant difference. 

8 
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Fig. 5. Mean accuracy ± standard deviation 
for the average accuracy of MU-Net trained 
and evaluated on different datasets according 
to mouse age. Networks exclusively trained on 
older animals achieved lower accuracy when at- 
tempting to generalize to the youngest animals, 
and vice-versa. 

Fig. 6. MU-Net segmentation compared to the manual segmentation in four slices of four volumes of the test set. Blue and red indicate, respectively, ground truth 
and inferred segmentation, purple their overlap (striati and cortex); yellow ROIs (ventricles and hippocampi) are inferred ROIs for which manual annotations were 
not available. Rows indicate (a) the highest performing volume (mean Dice 0.964, 8 weeks old R6/2 mouse); (b) the lowest performing volume (mean Dice 0.685, 
12 weeks old R6/2 mouse); (c) the volume displaying performance closest to the mean performance on the entire test set (Dice 0.923, 12 weeks old Q175DN mouse); 
(d) one randomly selected volume (Dice 0.919, 8 weeks old Q175DN mouse) 

 

R  

a  

p  

f  

t

4

 

t  

W  

t  
A visual inspection of the segmentation maps ( Fig. 6 ) revealed that
OIs were qualitatively similar to those obtained on the validation set
nd displayed in Fig. 2 . We observed, however, a visible decrease in
erformance in the presence of strong ringing artifacts ( Fig. 6 .b) This is
urther reflected in the higher average HD95 distances in the test dataset
han in the validation dataset ( Table 4 ). 
i  

c  

W  

9 
. Discussion 

We have presented a multi-task deep neural network, MU-Net, for
he simultaneous skull-stripping and segmentation of mouse brain MRI.

e selected the best performing network among a number of architec-
ures and found it to achieve better segmentation accuracy on the val-
dation set compared to state-of-the-art multi-atlas segmentation pro-
edures, with a markedly lower segmentation time ( 0 . 35s vs 117 min ).
e then evaluated the performance of MU-Net on a large and hetero-
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Fig. 7. Test set Dice score distribution for the brain mask, cortex and striati ROIs. Males and Females include all mice of each gender, both WT and TG. Likewise, 
WT and TG include both males and females. 

Table 4 

Average test set metrics (see Supplementary Table S4 for details). 

Metric Brain Mask Cortex Striati 

Dice 0.978 ± 0.012 0.937 ± 0.035 0.906 ± 0.041 

HD95 (mm) 0.345 ± 0.303 0.223 ± 0.231 0.180 ± 0.167 

Precision 0.989 ± 0.006 0.939 ± 0.050 0.929 ± 0.045 

Recall 0.969 ± 0.022 0.939 ± 0.054 0.888 ± 0.062 
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eneous test set of 1782 mice from 10 different studies of Huntington
isease, with varying ages and genetic backgrounds (WT as well as HT
175 and R6/2 variants). In this test set, we measured average Dice

cores of 0.978, 0.906 and 0.937 for the brain mask, striati and cortex,
ivaling human-level performance. We additionally trained MU-Net for
he segmentation of high resolution mouse MRIs of the MRM Neat atlas
nto 37 ROIs measuring an average Dice score of 0.820. Hence, we argue
hat the employment of deep neural networks for the segmentation of
nimal MRI is a promising strategy for the reduction of both rater bias
nd segmentation time. 

To put the Dice scores we have reported in context, Dice scores be-
ween two human experts have ranged from 0.80 to 0.90, depending
n ROI, for mouse brain MRI segmentation ( Ali et al., 2005 ). For dif-
erent segmentation tasks in brain MRI in general, including human
ata, inter- and intra-rater Dice score have ranged between 0.75 and
.96 ( Ali et al., 2005; Entis et al., 2012; Yushkevich et al., 2006 ).
he Dice scores of MU-Net exceeded the above mentioned scores be-
ween two human experts, suggesting human-level segmentation per-
ormance. In addition, the Dice score of MU-Net for skull-stripping was
10 
igher than Dice score from the skull-stripping CNN implemented by
oy et al. (2018b) (0.949). Obviously, comparing previously reported
ice scores to our segmentation accuracy measures must be done with
are as these vary across different studies, segmentation tasks, and
atasets, and the confounding factors include image resolution, pres-
nce of artifacts and noise, rater expertise, and the choice of ROIs. 

While Roy et al. (2018b) proposed a CNN for skull-stripping for
ouse MRI, to our knowledge this work represents the first CNN per-

orming both region segmentation and skull-stripping in mouse brain
RI. The advantages of CNNs with respect to atlas-based region seg-
entation ( Bai et al., 2012; De Feo and Giove, 2019; Ma et al., 2014 )

re clear. First, compared to atlas-based segmentation MU-Net is much
aster and produces accurate results without pre-processing. Second, we
ound MU-Net to be significantly more accurate than the state-of-the-
rt STEPS multi-atlas segmentation ( Ma et al., 2014 ) on anisotropic,
elatively quick to acquire MR images favored in pre-clinical drug and
iomarker discovery applications. Third, we found MU-Net to perform
etter than or equally well compared to STEPS on isotropic, high-
esolution MR images with relatively long acquisition times, favored in
asic research. 

We observed that the segmentation accuracy of atlas-based methods
an vary markedly, based on the specific use case depending on the
umber of manually drawn ROIs, voxel-size, and image quality. The best
erformance was achieved using advanced registration-based methods
 Ma et al., 2014 ) on the high resolution data ( Ma et al., 2008 ) with a
ensely labeled atlas of 37 ROIs, and the lowest using a majority voting
ule on a sparsely outlined atlas with a low resolution along the fronto-
audal direction. 
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With a dense segmentation of high resolution images (NEaT dataset),
e measured slightly higher average Dice coefficients with MU-Net than
ith STEPS, but the difference was not statistically significant. There-

ore, it appears that for this case the main advantage of MU-Net over
TEPS would be in terms of segmentation time. The performance of MU-
et on the NeAt dataset was likely hampered by the small number of

raining images available (8 images for training in each fold). This also
rovides an explanation for the higher standard deviation for HD95 dis-
ances for MU-Net compared to STEPS. Interestingly, MU-Net achieved
ice coefficients similar to STEPS with a larger average precision but
 lower average recall. This would indicate that STEPS prediction con-
ained more false positives, labeling background voxels as belonging to
OIs, and conversely MU-Net’s prediction favored false negatives. For
parsely segmented images, typical in drug development, where only
pecific structures are of interest, STEPS appears to be markedly less
ffective than MU-Net, and the time required for manual annotation is
otably decreased. This also means that it might be feasible to annotate
 small number of volumes as required by the specific study, and then
se MU-Net to automate the segmentation of the remaining data. 

Interestingly, MU-Nets trained on automatic STEPS multi-atlas seg-
entations achieved higher Dice score with the ground truth than

TEPS, highlighting the generalization ability of MU-Net. This supports
he use of atlas based segmentation methods to augment MRI segmenta-
ion datasets suggested in Roy et al. (2018a) , leveraging unlabeled data.
he results obtained by training on STEPS segmentations alone remain,
owever, of insufficient quality to eliminate the need for manual anno-
ations in the training data, as the CNN attempts to replicate any form
f systematic error present in the atlas-based labeling procedure. 

In literature both 3D and 2D implementations of CNNs are avail-
ble for different segmentation tasks ( Çiçek et al., 2016; Milletari et al.,
016; Roy et al., 2018a ), and other architectural variants have been
roposed: Roy et al. (2018a) added dense connections ( Huang et al.,
017 ) in the convolution blocks of U-Net while keeping the number of
utput channels constant; Han and Ye (2018) proposed two variants
ased on signal processing arguments for the reduction of artifacts in
 sparse image reconstruction task. We, however, found that a more
omplex model did not improve and in fact lowered the accuracy of our
esults, perhaps given the simplicity of the task. Thus, in agreement with
sensee et al. (2018) , we found that a 2D approach was preferable to 3D
pproach in the presence of anisotropic voxels. We also found the Dice
oss to be sufficient to effectively train our model without the addition
f a cross-entropy loss. As we did not perform any fine tuning of hyper-
arameters for any of our models, it is possible that after sufficient fine
uning the performance of one of these alternative approaches might be
mproved. 

Much like the human eye, MU-Net was not significantly affected by
he presence of the bias field, and did not benefit from N3 bias correc-
ion. Correcting for the bias field might still be beneficial as it depends
n the specific experimental setup, and thus N3 bias correction might
void specializing the network to one particular acquisition procedure.
or this reason, we release the trained parameters of the model for MU-
et trained on both the non-corrected and the N3-corrected data. 

To ensure the network generalizes to a wide age range, our results
ndicate that the distinctive features present before adulthood need to be
dequately represented in the training data. This is evidenced by the de-
raded performance observed when testing networks trained on 5-week
ld mice on the volumes acquired from older ones, and vice-versa. As
ice are typically weaned at 3–4 weeks and attain sexual maturity at 8–
2 weeks ( Dutta and Sengupta, 2016 ), 5-week old mice are not adults.
n contrast, training solely on male mice did not significantly influence
U-Net performance on female animals. We studied why the Dice co-

fficient distributions were bi-modal with the large test set (see Fig. 7 ).
he bi-modal nature of the distributions appears not to be explained by
ifferences between different studies, genders, or genotypes (see supple-
entary Figs. S4 and S5). We cannot offer a definitive explanation for

he cause of these bi-modal distributions, however, we speculate that it
11 
s a sum of several factors, including intra-rater segmentation variabil-
ty. 

An obvious limitation of our approach is its specialization for the
pecific MRI contrast the algorithm is trained on. Making MU-Net to
e more robust to marked changes in the image acquisition could be
chieved by expanding the training data to be more variable or/and uti-
izing techniques such as domain adaptation, transfer learning or image
ranslation to minimize the amount of new training data for the model
o generalize to new type of MRI acquisition ( Armanious et al., 2020;
huang et al., 2020 ). This research line is one of the most important
reas for future research in MRI segmentation with deep learning. How-
ver, MU-Net successfully generalized to a variety of transgenic mice in
n age range wider than that of the training set, thus offering a valuable
ay to automate segmentation tasks. Another limitation of this study

s the number of ROIs as mouse brain atlases with extremely detailed
egmentation featuring over 700 ROIs currently exist ( Nie et al., 2019 ).
owever, atlases such as ( Nie et al., 2019 ) are constructed by special-

zed procedures and do not contain manual segmentations of all images
sed in the atlas construction. Therefore, these atlases are not directly
pplicable for training segmentation neural networks. 

The employment of CNNs for the segmentation of mouse brain MRI
rovides a number of benefits for preclinical researchers. Beyond allow-
ng for the employment of large datasets in a time-efficient manner, the
bility to generalize and abstract from the training data results in more
obust and reproducible predictions. We can thus expect these methods
o reduce the confounding effect of intra- and inter-rater variability in-
erent in manual segmentation procedures while streamlining animal
RI experimental pipelines. 

eclarations 

ata availability statement 

MU-Net code and trained models are freely available at https://
ithub.com/Hierakonpolis/MU-Net . A tutorial of usage of MU-Net is
vailable at https://github.com/Hierakonpolis/NN4Kubiac The train-
ng and validation dataset is property of Charles River Discovery Ser-
ices, and the test dataset is property of CHDI ’Cure Huntington’s Dis-
ase Initiative’ foundation. The MRM NeAt dataset is freely available at
ttps://github.com/dancebean/mouse- brain- atlas . All the Dice scores
etween MU-Net and manual segmentations are available as supplemen-
ary files to this manuscript. 

thics statement 

All animal experiments were carried out according to the United
tates National Institute of Health (NIH) guidelines for the care and use
f laboratory animals, and approved by the National Animal Experiment
oard. 

redit authorship contribution statement 

Riccardo De Feo: Methodology, Software, Formal analysis, Writ-
ng - original draft. Artem Shatillo: Data curation. Alejandra Sierra:

ethodology, Formal analysis. Juan Miguel Valverde: Methodology.
lli Gröhn: Conceptualization. Federico Giove: Conceptualization.
ussi Tohka: Conceptualization, Software, Writing - original draft. 

cknowledgments 

R.D.F.’s work has received funding from the European Union’s
orizon 2020 Framework Programme under the Marie Sk ł odowska
urie grant agreement No # 691110 (MICROBRADAM) and J.M.V.’
ork was founded from Marie Sk ł odowska Curie grant agreement No
740264 (GENOMMED). The content is solely the responsibility of the

https://github.com/Hierakonpolis/MU-Net
https://github.com/Hierakonpolis/NN4Kubiac
https://github.com/dancebean/mouse-brain-atlas
https://doi.org/10.13039/501100007601


R. De Feo, A. Shatillo, A. Sierra et al. NeuroImage 229 (2021) 117734 

a  

r
 

l
 

(  

C  

v  

g

S

 

t

R

A  

 

A  

 

 

A  

 

A  

 

A  

A  

 

B  

 

C  

 

C  

 

 

C  

 

 

C  

 

Ç  

 

 

C  

 

D  

D  

D
E  

 

F  

H  

H  

 

H  

I  

I  

 

J  

J  

K  

K  

K  

 

L
L  

M  

 

M  

 

M  

M  

 

M  

 

N  

 

 

N  

 

O  

P  

 

R  

 

R  

R  

 

 

S  

 

 

S  

 

S  

 

S  

 

 

S  

 

V  

 

W  

X  

 

Y  

Y  

 

Z  
uthors and does not necessarily represent the official views of the Eu-
opean commission. 

The authors wish to acknowledge CSC - IT Center for Science, Fin-
and, for computational resources. 

We also extend our thanks to the Academy of Finland , grants
# 275453 to A.S. and # 298007 to O.G. #316258 to J.T.) and to the
HDI ’Cure Huntington’s Disease Initiative’ foundation, for kindly pro-
iding us with the test data employed in this work. We acknowledge a
rant S21770 from European Social Fund to J.T. 

upplementary material 

Supplementary material associated with this article can be found, in
he online version, at 10.1016/j.neuroimage.2021.117734 

eferences 

li, A.A. , Dale, A.M. , Badea, A. , Johnson, G.A. , 2005. Automated segmentation of neu-
roanatomical structures in multispectral mr microscopy of the mouse brain. Neuroim-
age 27 (2), 425–435 . 

nderson, R.J. , Cook, J.J. , Delpratt, N. , Nouls, J.C. , Gu, B. , McNamara, J.O. , Avants, B.B. ,
Johnson, G.A. , Badea, A. , 2019. Small animal multivariate brain analysis (samba)–a
high throughput pipeline with a validation framework. Neuroinformatics 17 (3),
451–472 . 

ndersson, J.L. , Jenkinson, M. , Smith, S. , et al. , 2007. Non-linear Registration AKA Spatial
Normalisation FMRIB Technial Report tr07ja2. FMRIB Analysis Group of the Univer-
sity of Oxford . 

rmanious, K. , Jiang, C. , Fischer, M. , Küstner, T. , Hepp, T. , Nikolaou, K. , Gatidis, S. ,
Yang, B. , 2020. Medgan: medical image translation using GANS. Comput. Med. Imag-
ing Graph. 101684 . 

vants, B.B. , Tustison, N. , Song, G. , 2009. Advanced normalization tools (ants). Insight J.
2, 1–35 . 

vants, B.B. , Yushkevich, P. , Pluta, J. , Minkoff, D. , Korczykowski, M. , Detre, J. , Gee, J.C. ,
2010. The optimal template effect in hippocampus studies of diseased populations.
Neuroimage 49 (3), 2457–2466 . 

ai, J. , Trinh, T.L.H. , Chuang, K.-H. , Qiu, A. , 2012. Atlas-based automatic mouse brain
image segmentation revisited: model complexity vs. image registration. Magn. Reson.
Imaging 30 (6), 789–798 . 

alabrese, E. , Badea, A. , Cofer, G. , Qi, Y. , Johnson, G.A. , 2015. A diffusion MRI tractogra-
phy connectome of the mouse brain and comparison with neuronal tracer data. Cereb.
Cortex 25 (11), 4628–4637 . 

ardoso, M.J. , Leung, K. , Modat, M. , Keihaninejad, S. , Cash, D. , Barnes, J. , Fox, N.C. ,
Ourselin, S. , Initiative, A.D.N. , et al. , 2013. Steps: Similarity and truth estimation for
propagated segmentations and its application to hippocampal segmentation and brain
parcelation. Med. Image Anal. 17 (6), 671–684 . 

ardoso, M.J. , Modat, M. , Ourselin, S. , Keihaninejad, S. , Cash, D. , 2012. Steps: multi-
-label similarity and truth estimation for propagated segmentations. In: Mathemati-
cal Methods in Biomedical Image Analysis (MMBIA), 2012 IEEE Workshop on. IEEE,
pp. 153–158 . 

hou, N. , Wu, J. , Bingren, J.B. , Qiu, A. , Chuang, K.-H. , 2011. Robust automatic rodent
brain extraction using 3-d pulse-coupled neural networks (PCNN). IEEE Trans. Image
Process. 20 (9), 2554–2564 . 

içek, Ö. , Abdulkadir, A. , Lienkamp, S.S. , Brox, T. , Ronneberger, O. , 2016. 3d u-net: learn-
ing dense volumetric segmentation from sparse annotation. In: International Con-
ference on Medical Image Computing and Computer-assisted Intervention. Springer,
pp. 424–432 . 

unha, L. , Horvath, I. , Ferreira, S. , Lemos, J. , Costa, P. , Vieira, D. , Veres, D.S. , Szigeti, K. ,
Summavielle, T. , Máthé, D. , et al. , 2014. Preclinical imaging: an essential ally in mod-
ern biosciences. Mol. Diagn. Ther. 18 (2), 153–173 . 

e Feo, R. , Giove, F. , 2019. Towards an efficient segmentation of small rodents brain: a
short critical review. J. Neurosci. Methods 323, 82–89 . 

ice, L.R. , 1945. Measures of the amount of ecologic association between species. Ecology
26 (3), 297–302 . 

utta, S. , Sengupta, P. , 2016. Men and mice: relating their ages. Life Sci. 152, 244–248 . 
ntis, J.J. , Doerga, P. , Barrett, L.F. , Dickerson, B.C. , 2012. A reliable protocol for the

manual segmentation of the human amygdala and its subregions using ultra-high res-
olution MRI. Neuroimage 60 (2), 1226–1235 . 

ebo, M. , Foster, T.C. , 2016. Preclinical magnetic resonance imaging and spectroscopy
studies of memory, aging, and cognitive decline. Front. Aging Neurosci. 8, 158 . 

an, Y. , Ye, J.C. , 2018. Framing u-net via deep convolutional framelets: application to
sparse-view ct. IEEE Trans. Med. Imaging 37 (6), 1418–1429 . 

uang, G. , Liu, Z. , Van Der Maaten, L. , Weinberger, K.Q. , 2017. Densely connected con-
volutional networks. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 4700–4708 . 

uttenlocher, D.P. , Klanderman, G.A. , Rucklidge, W.J. , 1993. Comparing images using
the hausdorff distance. IEEE Trans. Pattern Anal. Mach.Intell. 15 (9), 850–863 . 

offe, S., Szegedy, C., 2015. Batch normalization: accelerating deep network training by
reducing internal covariate shift. arXiv:1502.03167 . 

sensee, F., Petersen, J., Klein, A., Zimmerer, D., Jaeger, P. F., Kohl, S., Wasserthal, J.,
Koehler, G., Norajitra, T., Wirkert, S., et al., 2018. nnu-net: Self-adapting framework
for u-net-based medical image segmentation. arXiv:1809.10486 . 
12 
enkinson, M. , Beckmann, C.F. , Behrens, T.E. , Woolrich, M.W. , Smith, S.M. , 2012. Fsl.
Neuroimage 62 (2), 782–790 . 

enkinson, M. , Smith, S. , 2001. A global optimisation method for robust affine registration
of brain images. Med. Image Anal. 5 (2), 143–156 . 

arimi, D., Salcudean, S. E., 2019. Reducing the hausdorff distance in medical image
segmentation with convolutional neural networks. arXiv:1904.10030 . 

ingma, D. P., Ba, J., 2014. Adam: a method for stochastic optimization. arXiv:1412.6980 .
ova čevi ć, N. , Henderson, J. , Chan, E. , Lifshitz, N. , Bishop, J. , Evans, A. , Henkelman, R. ,

Chen, X. , 2004. A three-dimensional MRI atlas of the mouse brain with estimates of
the average and variability. Cereb. Cortex 15 (5), 639–645 . 

eCun, Y. , Bengio, Y. , Hinton, G. , 2015. Deep learning. Nature 521 (7553), 436 . 
erch, J.P. , Sled, J.G. , Henkelman, R.M. , 2011. Mri phenotyping of genetically altered

mice. In: Magnetic Resonance Neuroimaging. Springer, pp. 349–361 . 
a, D. , Cardoso, M.J. , Modat, M. , Powell, N. , Wells, J. , Holmes, H. , Wiseman, F. , Ty-

bulewicz, V. , Fisher, E. , Lythgoe, M.F. , et al. , 2014. Automatic structural parcellation
of mouse brain MRIusing multi-atlas label fusion. PLoS One 9 (1), e86576 . 

a, Y. , Smith, D. , Hof, P.R. , Foerster, B. , Hamilton, S. , Blackband, S.J. , Yu, M. , Ben-
veniste, H. , 2008. In vivo 3d digital atlas database of the adult c57bl/6j mouse brain
by magnetic resonance microscopy. Front. Neuroanat. 2, 1 . 

aas, A.L. , Hannun, A.Y. , Ng, A.Y. , 2013. Rectifier nonlinearities improve neural network
acoustic models. In: Proc. ICML, 30, p. 3 . 

atthews, P.M. , Coatney, R. , Alsaid, H. , Jucker, B. , Ashworth, S. , Parker, C. , Changani, K. ,
2013. Technologies: preclinical imaging for drug development. Drug Discov. Today
10 (3), e343–e350 . 

illetari, F. , Navab, N. , Ahmadi, S.-A. , 2016. V-net: Fully convolutional neural networks
for volumetric medical image segmentation. In: 2016 Fourth International Conference
on 3D Vision (3DV). IEEE, pp. 565–571 . 

ie, B. , Wu, D. , Liang, S. , Liu, H. , Sun, X. , Li, P. , Huang, Q. , Zhang, T. , Feng, T. , Ye, S. ,
et al. , 2019. A stereotaxic MRI template set of mouse brain with fine sub-anatomical
delineations: application to memri studies of 5xfad mice. Magn. Reson. Imaging 57,
83–94 . 

oh, H. , Hong, S. , Han, B. , 2015. Learning deconvolution network for semantic segmen-
tation. In: Proceedings of the IEEE International Conference on Computer Vision,
pp. 1520–1528 . 

guz, I. , Zhang, H. , Rumple, A. , Sonka, M. , 2014. Rats: rapid automatic tissue segmenta-
tion in rodent brain MRI. J. Neurosci. Methods 221, 175–182 . 

agani, M. , Damiano, M. , Galbusera, A. , Tsaftaris, S.A. , Gozzi, A. , 2016. Semi-automated
registration-based anatomical labelling, voxel based morphometry and cortical thick-
ness mapping of the mouse brain. J. Neurosci. Methods 267, 62–73 . 

onneberger, O. , Fischer, P. , Brox, T. , 2015. U-net: Convolutional networks for biomedical
image segmentation. In: International Conference on Medical image computing and
computer-assisted intervention. Springer, pp. 234–241 . 

oy, A. G., Conjeti, S., Navab, N., Wachinger, C., 2018a. Quicknat: segmenting MRI neu-
roanatomy in 20 seconds. arXiv:1801.04161 . 

oy, S. , Knutsen, A. , Korotcov, A. , Bosomtwi, A. , Dardzinski, B. , Butman, J.A. , Pham, D.L. ,
2018. A deep learning framework for brain extraction in humans and animals with
traumatic brain injury. In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th Interna-
tional Symposium on. IEEE, pp. 687–691 . 

chwarz, A.J. , Danckaert, A. , Reese, T. , Gozzi, A. , Paxinos, G. , Watson, C. , Mer-
lo-Pich, E.V. , Bifone, A. , 2006. A stereotaxic MRI template set for the rat brain with
tissue class distribution maps and co-registered anatomical atlas: application to phar-
macological MRI. Neuroimage 32 (2), 538–550 . 

harief, A.A. , Badea, A. , Dale, A.M. , Johnson, G.A. , 2008. Automated segmentation of the
actively stained mouse brain using multi-spectral mr microscopy. Neuroimage 39 (1),
136–145 . 

led, J.G. , Zijdenbos, A.P. , Evans, A.C. , 1998. A nonparametric method for automatic
correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 17 (1),
87–97 . 

udre, C.H. , Li, W. , Vercauteren, T. , Ourselin, S. , Cardoso, M.J. , 2017. Generalised dice
overlap as a deep learning loss function for highly unbalanced segmentations. In: Deep
Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision
Support. Springer, pp. 240–248 . 

zegedy, C. , Liu, W. , Jia, Y. , Sermanet, P. , Reed, S. , Anguelov, D. , Erhan, D. , Vanhoucke, V. ,
Rabinovich, A. , 2015. Going deeper with convolutions. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1–9 . 

alverde, J.M. , Shatillo, A. , De Feo, R. , Gröhn, O. , Sierra, A. , Tohka, J. , 2019. Automatic
rodent brain MRI lesion segmentation with fully convolutional networks. In: Interna-
tional Workshop on Machine Learning in Medical Imaging. Springer, pp. 195–202 . 

achinger, C. , Reuter, M. , Klein, T. , 2018. Deepnat: deep convolutional neural network
for segmenting neuroanatomy. NeuroImage 170, 434–445 . 

ie, L. , Qi, Y. , Subashi, E. , Liao, G. , Miller-DeGraff, L. , Jetten, A.M. , Johnson, G.A. ,
2015. 4d MRI of polycystic kidneys from rapamycin-treated glis3-deficient mice. NMR
Biomed. 28 (5), 546–554 . 

ang, X., Zeng, Z., Yeo, S. Y., Tan, C., Tey, H. L., Su, Y., 2017. A novel multi-task deep
learning model for skin lesion segmentation and classification. arXiv:1703.01025 . 

ushkevich, P.A. , Piven, J. , Hazlett, H.C. , Smith, R.G. , Ho, S. , Gee, J.C. , Gerig, G. , 2006.
User-guided 3d active contour segmentation of anatomical structures: significantly
improved efficiency and reliability. Neuroimage 31 (3), 1116–1128 . 

huang, F. , Qi, Z. , Duan, K. , Xi, D. , Zhu, Y. , Zhu, H. , Xiong, H. , He, Q. , 2020. A compre-
hensive survey on transfer learning. Proc. IEEE inpress . 

https://doi.org/10.13039/501100002341
https://doi.org/10.1016/j.neuroimage.2021.117734
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0012
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0012
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0012
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0012
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0012
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0012
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0021
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0021
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0021
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0021
http://arxiv.org/abs/1706.05394
http://arxiv.org/abs/1809.10486
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0025
http://arxiv.org/abs/1904.10030
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0029
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0029
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0029
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0029
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0033
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0033
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0033
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0033
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0039
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0039
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0039
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0039
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0039
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0039
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0040
http://arxiv.org/abs/1801.04161
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0050
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0050
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0050
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0050
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0050
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0050
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0050
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0050
http://arxiv.org/abs/1703.01025
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00011-2/sbref0053

	Automated joint skull-stripping and segmentation with Multi-Task U-Net in large mouse brain MRI databases
	1 Introduction
	2 Materials and methods
	2.1 Materials
	2.1.1 Animals: train, validation and test sets
	2.1.2 MRI: train, validation and test sets
	2.1.3 MRM NeAt dataset

	2.2 MU-Nets
	2.2.1 Architectures
	2.2.2 Architectural variants
	2.2.3 Loss function
	2.2.4 Training
	2.2.5 Auxiliary bounding-box network

	2.3 STEPS multi-atlas segmentation
	2.4 Post-processing
	2.5 Validation and metrics

	3 Results
	3.1 Architecture comparison
	3.2 Age stratified training sets
	3.3 Comparison with multi-atlas segmentation
	3.4 Evaluation on a large number of ROIs with MRM NeAt dataset
	3.5 Evaluation with a large test dataset

	4 Discussion
	Declarations
	Data availability statement
	Ethics statement

	Credit authorship contribution statement
	Acknowledgments
	Supplementary material
	References


