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Abstract

General metric spaces satisfying weak and synthetic notions of upper and lower
curvature bounds will be studied. The relations between upper and lower bounds
will be pointed out, especially the interactions between a packing condition and
different forms of convexity of the metric. The main tools will be a new and flexible
definition of entropy on metric spaces and a version of the Tits Alternative for
groups of isometries of the metric spaces under consideration. The applications can
be divided into classical and new results: the former consist in generalizations to a
wider context of the theory of negatively curved Riemannian manifolds, while the
latter include several compactness and continuity results.
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Chapter 1

Introduction

The purpose of this thesis is to study geometric properties of metric spaces satisfying
weak and synthetic notions of upper and lower curvature bounds. The introduction is
divided into sections according to the different chapters: we will present the setting,
we will describe the main results comparing them to the literature and we will try
to explain why the packing condition is the right one to consider in order to obtain
a good control on the geometry of metric spaces with upper curvature bounds.

1.1 Upper and lower curvature bounds

Usually limits of Riemannian manifolds are no more Riemannian manifolds, even
when the geometry of the manifolds is uniformly bounded. Several notions of upper
and lower curvature bounds on arbitrary metric spaces have been developed during
the years in order to overcome this problem and to describe the limits of sequences
of Riemannian manifolds. The hope is to find large enough classes of metric spaces
to contain every limit of sequences of Riemannian manifolds with bounded geometry
(for instance: bounds on the sectional curvature, the diameter, the injectivity radius,
etc.) but still with good local and global geometric properties.

1.1.1 Upper bounds

Locally CAT(κ) metric spaces, where κ is a real number, are currently one of the
main topics in metric geometry. They have been studied from various points of
view during the last decades. We will recall the CAT(κ) condition in Chapter 2. In
general these metric spaces can be very wild and the local geometry can be difficult
to understand. Under basic additional assumptions (local compactness and local
geodesic completeness) it is possible to control much better the local and asymptotic
properties of these spaces, as proved by Kleiner and Lytchak-Nagano. In particular,
under these assumptions, the topological dimension coincides with the Hausdorff
dimension, the local dimension can be detected from the tangent cones and there exist
a decomposition of X in k-dimensional subspaces Xk (containing dense open subsets
locally bilipschitz equivalent to Rk and admitting a regular Riemannian metric),
and a canonical measure µX , coinciding with the restriction of the k-dimensional
Hausdorff measure on each Xk, which is positive and finite on any open relatively
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compact subset (cp. the foundational works [Kle99] , [LN19], [LN18]). Following
[LN19] we will call for short GCBA-spaces the locally geodesically complete, locally
compact and separable metric spaces satisfying some curvature upper bound, i.e.
which are locally CAT(κ) for some κ. When we want to emphasize in a statement
the role of κ we will write GCBAκ.
It is a standard fact that a complete Riemannian manifold is GCBAκ if and only
if its sectional curvature is bounded from above by κ. In particular GCBA-spaces
arise in a natural way as generalizations and limits of Riemannian manifolds with
sectional curvature bounded from above.

Usually the geometry of Riemannian manifolds is studied at level of universal covers,
especially when the sectional curvature is non-positive. It is classical that universal
covers of GCBA0 spaces exist and are complete, geodesically complete, CAT(0)
metric spaces. A second notion of upper bound on the curvature, that is implied
by the CAT(0) assumption, is the convexity (or Busemann) condition. Convex
metric spaces are simply connected, so they should be thought as generalization
of universal covers of Riemannian manifolds with non-positive sectional curvature:
indeed again the universal cover of a complete Riemannian manifold is a complete,
convex and geodesically complete metric space if and only if its sectional curvature is
non-positive. The main aspects of convex metric spaces will be discussed in Chapter
2.

The third kind of synthetic notion of upper bound on the curvature is the so-called
Gromov-hyperbolicity condition, see Chapter 2. This is a widely studied property
due to its relations with geometric group theory, dynamics, number theory, etc. (cp.
[DSU17] for an overview).
There is a qualitative difference between the Gromov-hyperbolic condition and the
other two: indeed the former is a sort of large scale version of negative curvature
but it does not give information on the local structure at scales smaller than the
hyperbolicity constant δ, while both CAT(κ) and convexity control the local geometry
of the space. That is why it is difficult to use local estimates (or estimates at a fixed
scale) to study the geometry of Gromov-hyperbolic spaces.
In large parts of the thesis we will consider metric spaces that are both Gromov-
hyperbolic and convex: combining these two assumptions we will be able to link the
local estimates given by the convexity to the large scale properties implied by the
Gromov-hyperbolicity. Convex, Gromov-hyperbolic metric spaces should be thought
as generalizations of Riemannian manifolds with negative sectional curvature.

1.1.2 Lower bounds

We recall here some notions of synthetic lower bound on the curvature for a metric
space:
– curvature bounded from below in the sense of Alexandrov (cp. for instance [BGP92]).
It is the analogue of the CAT(κ) condition, but the geometry of an Alexandrov metric
space is simpler (for example the dimension is constant). A complete Riemannian
manifold has curvature bounded from below by κ in the sense of Alexandrov if and
only if its sectional curvature is at least κ;
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– the RCD(K,N) condition, that is defined for metric measure spaces (X, d, µ) (cp.
for instance [LV09]). Here N should be thought as an upper bound on the dimension
of X, while K is a synthetic version of lower bound on the Ricci curvature. Indeed a
Riemannian manifold (M, g, volg) of dimension n satisfies the RCD(K,n) condition
if and only if its Ricci curvature is at least K;
– doubling condition on a metric measure space (X, d, µ): X satisfies a D0-doubling
condition up to scale r0 > 0 if for any 0 < r ≤ r0 and for all x ∈ X it holds

µ(B(x, 2r))
µ(B(x, r)) ≤ D0.

– upper bound to the entropy: in [BCGS17] it is considered the case of δ-hyperbolic
metric spaces X admitting a discrete group of isometries Γ with compact quotient.
It is natural to consider the entropy hΓ of the counting measure of an orbit (that is
the critical exponent of Γ, see Section 1.6.2). Their version of lower bound on the
curvature is then given by the condition hΓ ≤ H for some fixed H ≥ 0. We will see
in a minute why this is a lower bound on the curvature.

The synthetic notion of lower bound we will use throughout the thesis, that is the
packing condition, is extremely simple and natural. We say that a metric space (X, d)
satisfies the P0-packing condition at scale r0 > 0 if all balls of radius 3r0 contain
at most P0 points that are 2r0-separated from each other (this can be equivalently
expressed in terms of coverings with balls, see Chapter 2).
We observe that by Bishop-Gromov’s Theorem every Riemannian manifold (M, g)
with Ricci curvature bounded below by κ satisfies the P0-packing condition, where
P0 depends only on κ and the dimension of M , at least at scales smaller than the
injectivity radius of M . Notice however that for Riemannian manifolds a doubling
or a packing condition at some scale r0 > 0 are much weaker assumptions than a
lower bound of the Ricci curvature (see [BCGS17], Sec.3.3, for different examples
and a comparison of Ricci, packing and doubling conditions).
From a metric-geometry perspective the original interest in studying metric spaces
satisfying a packing condition at arbitrarily small scales is Gromov’s famous Precom-
pactness Theorem [Gro81]. Another major outcome involving packing is Gromov’s
celebrated result on groups with polynomial growth, as extended by Breuillard-
Green-Tao [BGT11] (cp. also the previous results [Kle10] and [ST10]), which shows
that a uniform bound of the packing or doubling constant for X at arbitrarily large
scale (or even at fixed, sufficiently large scale with respect to the diameter) yields
an even stronger limitation on the complexity of the fundamental group of X, that
is almost-nilpotency.
We can now come back to the bounded entropy condition given in [BCGS17]. Indeed
one of the main results of that paper is that if (X, d) is a geodesically complete,
δ-hyperbolic space admitting a discrete group of isometries Γ with compact quotient
then X is P0-packed at scale r0, where P0, r0 depend only on δ and an upper bound
on the diameter of the quotient and the critical exponent of Γ. That is why the
upper bound on the entropy can be thought as a lower bound on the curvature
condition.
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1.1.3 Relations between upper and lower bounds

The packing condition alone is not enough: it is true that the packing at the fixed
scale r0 gives a control of the packing function at bigger scales (Lemma 2.4.2), but
it does not give geometric information at scales smaller than r0 (see Example 2.4.3).
The fundamental lemma of the thesis affirms that if in addition we have an upper
bound on the curvature (either convexity or the GCBA condition) and the locally
geodesically completeness assumption then it is possible to propagate the packing
estimate at scales smaller than r0: this is the statement of Lemma 2.4.5, whose proof
is almost trivial. However it is the starting point for all the results of the thesis. The
idea is that a control of the packing function of X at a fixed scale gives a control of
the local geometry of the metric space, provided X has an upper curvature bound
and is geodesically complete. We report here this fact in case of convex metric space
for simplicity.

Theorem A (Proposition 2.4.4, Packing Propagation Theorem). Let X be a convex
and geodesically complete metric space that is P0-packed at scale r0. Then for every
0 < r ≤ R it holds:

Pack(R, r) ≤ P0(1 + P0)
R
r
−1, if r ≤ r0;

Pack(R, r) ≤ P0(1 + P0)
R
r0
−1, if r > r0.

Moreover if X is complete then it is proper.

The quantity Pack(R, r) is the packing function of X at scale 0 < r ≤ R, that is
defined as the supremum among x ∈ X of the maximal cardinality of a 2r-separated
subset inside the closed ball B(x,R). A related quantity is the covering function
Cov(R, r) of X, which is defined as the supremum among x ∈ X of the minimal
cardinality of a r-dense subset of B(x,R). We notice that the packing condition can
be stated as Pack(3r0, r0) ≤ P0.

1.2 Packing in locally CAT(κ) spaces
In Chapter 3 we will study the case of GCBA spaces, where more local structure is
known as explained in Section 1.1.1.
The first key-result of Chapter 3 is a Croke-type local volume estimate for GCBA-
spaces of dimension bounded above for balls of radius smaller than the almost-
convexity radius:

Theorem B (Theorem 3.1.1). For any complete GCBA space X of dimension ≤ n0
and any ball of radius r < min{ρac(X), 1} it holds:

µX(B(x, r)) ≥ cn0 · rn0 (1)

where cn0 is a constant depending only on the dimension n0.

The almost-convexity radius ρac(x) of a geodesic space X at a point x is defined
as the supremum of the radii r such that for all y, z ∈ B(x, r) and all t ∈ [0, 1] it
holds:
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d(yt, zt) ≤ 2t · d(y, z),

where yt, zt denote points along geodesics [x, y] and [x, z] at distance t · d(x, y) and
t · d(x, z) respectively from x. The almost-convexity radius of X is correspondingly
defined as ρac(X) = infx∈X ρac(x). It is not difficult to show that every GCBA-space
X always has positive almost-convexity radius at every point: namely if X is locally
CAT(κ) and x ∈ X then ρac(x) is always greater than or equal to the CAT(κ)-radius
ρcat(x) (see Section 2.2 for all details and the relation with the contraction and the
logarithmic maps). However the almost-convexity radius is a more flexible geometric
invariant than the CAT(κ)-radius, much alike the injectivity radius for Riemannian
maniolds, since a space X might have a large curvature κ concentrated in a very
small region around x, so that it may happen that ρac(x) is much larger than the
CAT(κ)-radius at x.
We stress the fact that no explicit upper bound on the curvature is assumed for the
estimate (1); the condition GCBA is only needed to ensure sufficient regularity of
the space (and the existence of a natural measure to compute volumes). Notice that
the above theorem is a generalization of the original Croke’s result on manifolds
([Cro80], Proposition 14) at least for radii smaller than the almost-convexity radius:
indeed on a manifold the curvature is bounded above on any compact ball. The
differences are in the proofs: Croke’s original proof is based on differential analysis,
while our methods are purely metric.

For all subsequent results of this section we will consider, as standing assumption,
GCBA-spaces with a uniform upper bound on the packing constant at some fixed
scale r0 smaller than the almost-convexity radius, or a doubling condition up to an
arbitrary small scale. These classes of metric spaces are large enough to contain
many interesting examples besides Riemannian manifolds and small enough to be,
as we will see in Section 1.7, compact in the Gromov-Hausdorff sense.
There are a lot of non-manifolds examples in these classes of metric spaces. The
simplest ones are simplicial complexes with locally constant curvature (also called
Mκ-complexes, cp. [BH13]) and "bounded geometry" in an appropriate sense:
they will be studied in detail in Section 3.4.1. Another interesting class of spaces
satisfying a uniform packing condition at fixed scale is the class of (universal coverings
of) compact, non-positively curved manifolds with bounded entropy admitting
acylindrical splittings (see [CS]).

The first application of the Packing Propagation Theorem A is the characterization
of the packing condition on GCBA spaces in terms of volume and dimension.

Theorem C (Extract from Theorem 3.2.1). Let X be a complete, geodesic, GCBA-
space with almost-convexity radius ρac(X) ≥ ρ0 > 0. The following conditions are
equivalent:

(a) there exist P0 and r0 ≤ ρ0/3 such that X satisfies the P0-packing condition at
scale r0;

(b) there exist n0 and V0, R0 > 0 such that X has dimension ≤ n0 and µX(B(x,R0)) ≤
V0 for all x ∈ X;
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For Riemannian manifolds of dimension n the measure µX coincides with the n-
dimensional Hausdorff measure, so (b) corresponds simply to a uniform upper bound
on the Riemannian volume of balls of some fixed radius R0, a condition that it is
sometimes easier to verify than the bounded packing.
The proof of this theorem is essentially based on universal estimates from below
and from above of the volume of small balls of X in terms of dimension and of
the packing constants: the estimate from below is exactly given by (1). We want
to remark out that many of the ideas behind these results are already implicitely
present in [LN19].

In Section 3.3 we investigate the relation between the local doubling condition1 with
respect to the natural measure µX and the local structure of GCBA-spaces. It is easy
to show that a local doubling condition implies the packing. However it turns out
that the doubling property is much stronger and characterizes GCBA-spaces which
are purely dimensional spaces, i.e. those whose points have all the same dimension.
Indeed we prove:

Theorem D (Extract from Corollary 3.3.5 & Theorem 3.3.2). Let X be a complete,
geodesic, GCBA-space with almost-convexity radius ρac(X) ≥ ρ0 > 0. The following
conditions are equivalent:

(a) there exists D0 > 0 such that the natural measure µX is D0-doubling up to
some scale r0 > 0;

(b) X is purely n-dimensional for some n and there exist constants P0 and r0 ≤
ρ0/3 such that X satisfies the P0-packing condition at scale r0.

Finally in Section 3.4.1 of Chapter 3 we specialize our results to Mκ-complexes
with bounded geometry. We will first establish some basic relations relating the
injectivity radius to the size and valency of the complexes. Recall that the valency
of a Mκ-complex X is the maximum number of simplices having a same vertex in
common and the size of the simplices of X is defined as the smallest radius R > 0
such that any simplex contains a ball of radius 1

R and is contained in a ball of radius
R; we refer to Section 3.4.1 for further definitions and details. Then we prove:

Theorem E (Proposition 3.4.12). Let X be a Mκ-complex whose simplices have
size bounded by R, with valency at most N and no free faces. Then the following
conditions are equivalent:

(a) X is a complete GCBA-space with curvature ≤ κ;

(b) X satisfies the link condition at all vertices;

(c) X is locally uniquely geodesic;

(d) X has positive injectivity radius;

(e) X has injectivity radius ≥ ι0, for some ι0 depending only on R and N .
1Beware that the doubling constant which is used in [LN19] is a different notion, which is purely

metric and does not depend on the measure.
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The equivalence of the first four conditions is well-known for Mκ-complexes with
finite shapes (that is whose geometric simplices, up to isometry, vary in a finite
set), see [BH13], while the last condition is new and we will use it to exhibit other
examples of compact families of GCBA-spaces as explained in Section 1.7. We
remark that the class of complexes satisfying the assumptions of Theorem E is made
of locally CAT(κ) metric spaces with uniform lower bound on the almost-convexity
radius and satisfying a uniform packing condition at the same scale (see Proposition
3.4.13).

1.3 Entropies

Chapter 4 is devoted to the investigation of different asymptotic quantities associated
to a metric space, some of them classical and widely studied. The attention will
be held on convex (and sometimes Gromov-hyperbolic) metric spaces satisfying a
uniform covering (or packing) condition. We remark that convex metric spaces are
the natural setting for the study of the geodesic flow, see Chapter 2. We are going
to present the different notions of entropies we are interested in, starting from the
Lipschitz-topological entropy.

1.3.1 Lipschitz-topological entropy of the geodesic flow

The topological entropy of the geodesic flow has been intensively studied in case of
Riemannian manifolds, especially in the negatively curved setting. If such a manifold
is denoted by M̄ = M/Γ, where M is its universal cover and Γ is its fundamental
group, then the set of parametrized geodesic lines is identified with the unit tangent
bundle SM̄ and the non-wandering set of the geodesic flow is the set of unit tangent
vectors whose lift to M generate a geodesic with endpoints in the limit set of Γ: we
denote it by SM̄nw. Two cornerstones of the theory of the geodesic flow are the
works of Eberlein ([Ebe72]), who proved that the geodesic flow restricted to SM̄nw

is topologically transitive, and Sullivan [Sul84], who proved the ergodicity of the
geodesic flow when M is the 3-dimensional hyperbolic space and Γ is geometrically
finite.

Probably the most important invariant associated to the geodesic flow is the topolog-
ical entropy of its restriction to the non-wandering set, denoted hnw

top(M̄). It equals
the Hausdorff dimension of the limit set of Γ and the critical exponent of Γ (see
[Sul84], [OP04]). Moreover if M̄ is compact then it coincides also with the volume
entropy of M ([Man79]), while this is no more true in general, even when M̄ has
finite volume (cp. [DPPS09]): we will come back to these examples later. The
topological entropy of the non-wandering set of the geodesic flow characterizes the
hyperbolic metrics among Riemannian manifolds with pinched, negative curvature
and with finite volume ([PS19]).

When X is a convex metric space the topological entropy of the geodesic flow is
defined as the topological entropy (in the sense of Bowen, cp. [Bow73], [HKR95]) of
the dynamical system (Geod(X),Φt), where Geod(X) is the space of parametrized
geodesic lines, endowed with the topology of uniform convergence on compact subsets,
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and Φt is the reparametrization flow. It is:

htop(Geod(X)) = inf
â

sup
K⊆Geod(X)

lim
r→0

lim
T→+∞

1
T

log CovâT (K, r),

where the infimum is taken among all metrics on Geod(X) inducing its topology,
the supremum is taken among all compact subsets of Geod(X), âT is the distance
âT (γ, γ′) = maxt∈[0,T ] â(Φt(γ),Φt(γ′)) and CovâT (K, r) is the minimal number of
balls (with respect to the metric âT ) of radius r needed to cover K.
For this flow the non-wandering set is empty and applying the variational principle
(cp. [HKR95]) it is straightforward to conclude that its topological entropy is zero
since there are no flow-invariant probability measures (Lemma 4.2.1). Looking
carefully at the proof of the variational principle it turns out that the metrics on
Geod(X) almost realizing the infimum in the definition of the topological entropy
are restriction to Geod(X) of metrics on its one-point compactification. In particular
they are no the natural ones to consider: indeed the general idea behind the
topological entropy is to compute the number of geodesic lines needed to stay at
small distance r from any other geodesic line for a long time T . But a general metric
â on Geod(X) does not take into account this information. That is why, in Section
4.2, we will restrict the attention to the class of geometric metrics â: those with the
property that the evaluation map E : (Geod(X), â)→ (X, d) defined as E(γ) = γ(0)
is Lipschitz. Notice that for a geometric metric two geodesic lines are not close
if they are distant at time 0. Accordingly the Lipschitz-topological entropy of the
geodesic flow is defined as

hLip-top(Geod(X)) = inf
â

sup
K⊆Geod(X)

lim
r→0

lim
T→+∞

1
T

log CovâT (K, r),

where now the infimum is taken only among the geometric metrics of Geod(X).
Although the definition of the Lipschitz-topological entropy is quite complicated, its
computation can be remarkably simplified. Indeed one of the most used metric on
Geod(X) (see for instance [BL12]) is:

dGeod(γ, γ′) =
∫ +∞

−∞
d(γ(s), γ′(s)) 1

2e|s|
ds

that induces the topology of Geod(X) and is geometric, and it turns out that it
realizes the infimum in the definition of the Lipschitz-topological entropy.

Theorem F (Extract from Theorem 4.2.2 & Proposition 4.2.3). Let X be a complete,
convex, geodesically complete metric space that is P0-packed at scale r0. Then

hLip-top(Geod(X)) = lim
T→+∞

1
T

log CovdTGeod
(Geod(x), r0),

where Geod(x) is the set of geodesic lines passing through x at time 0.

Therefore the infimum in the definition of the Lipschitz topological entropy is actually
realized by the metric dGeod and the supremum among the compact sets can be
replaced by a fixed (relative small) compact set. Moreover also the scale r can be
fixed to be r0 (or any other positive real number).
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1.3.2 Volume and Covering entropy

The second definition of entropy we consider (see Section 4.1.2) is the volume entropy.
If X is a metric space equipped with a measure µ it is classical to consider the
exponential growth rate of the volume of balls, namely:

hµ(X) := lim
T→+∞

1
T

logµ(B(x, T )).

It is called the volume entropy of X with respect to the measure µ and it does not
depend on the choice of the basepoint x ∈ X by triangular inequality. This invariant
has been studied intensively in case of complete Riemannian manifolds with non
positive sectional curvature, where µ is the Riemannian volume on the universal
cover. It is related to other interesting invariants as the simplicial volume of the
manifold (see [Gro82]), [BS20]), a macroscopical condition on the scalar curvature
(cp. [Sab17]) and the systole in case of compact, non-geometric 3-manifolds (cp.
[CS19]). Moreover the infimum of the volume entropy among all the possible
Riemannian metrics of volume 1 on a fixed closed manifold is a subtle homotopic
invariant (see [Bab93], [Bru08] for general considerations and [BCG95], [Pie19] for
the computation of the minimal volume entropy in case of, respectively, closed
n-dimensional manifolds supporting a locally symmetric metric of negative curvature
and 3-manifolds).

Another example, besides the Riemannian setting, is the counting measure of the
orbit of a discrete, cocompact group of isometries of a convex, geodesically complete,
Gromov-hyperbolic metric space (as studied in [BCGS17]). Both this case and the
Riemannian one (at least when the curvature of the Riemannian manifold considered
is pinched) share the following property: the measure µ under consideration satisfies

1
H
≤ µ(B(x, r)) ≤ H

for every x ∈ X, where r,H are positive real numbers. A measure with this
property is called H-homogeneous at scale r. Among homogeneous measure there is
a remarkable example: the volume measure µX of a complete, geodesically complete,
CAT(0) metric space X that is P0-packed at scale r0 (see Section 1.2). We recall
once again that if X is a Riemannian manifold of non-positive sectional curvature
then µX coincides with the Riemannian volume, up to a universal multiplicative
constant.

A more combinatoric and intrinsic version of the volume entropy of a generic metric
space is the covering entropy, defined as:

hCov(X) := lim
T→+∞

1
T

log Cov(B(x, T ), r),

where x is a point of X and Cov(B(x, T ), r) is the minimal number of balls of radius
r needed to cover B(x, T ). It does not depend on x but it can depend on the choice
of r. This is not the case when X is a geodesically complete, convex metric space
that is P0-packed at scale r0, as proved in Proposition 4.1.1. Moreover it is always
finite (cp.Lemma 4.1.3). These results are again direct applications of the Packing
Propagation Theorem A.
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1.3.3 Shadow and Minkowski dimension of the boundary

The explicit computation of the Lipschitz-topological entropy suggests the possibility
to relate that invariant to some property of the boundary at infinity of X. Once
fixed a basepoint x ∈ X we define the shadow dimension of the boundary ∂X of X
as

Shad-D(∂X) = lim
T→+∞

1
T

log Shad-Covr(∂X, e−T ),

where Shad-Covr(∂X, e−T ) is the minimal number of points y1, . . . , yN at distance
T from x such that every geodesic ray issuing from x passes through one of the
balls of radius r and center yi. The limit above does not depend neither on x nor
on r. It describes the asymptotic behaviour of the number of shadows casted by
points at distance T from x needed to cover ∂X, when T goes to +∞. The shadows,
and especially their relations with other properties of the boundary at infinity, have
been intensively studied during the years (starting from [Sul79]). In particular if
X is Gromov-hyperbolic the boundary at infinity can be equipped with a metric
and it turns out that the metric balls are approximately equivalent to the shadows.
This equivalence remains true when we consider the generalized visual balls. If we
denote by (·, ·)x the Gromov product based on x then the generalized visual ball of
center z ∈ ∂X and radius ρ is B(z, ρ) = {z′ ∈ ∂X s.t. (z, z′)x > log 1

ρ}. The visual
Minkowski dimension of ∂X is:

MD(∂X) = lim
T→+∞

1
T

log Cov(∂X, e−T ),

where Cov(∂X, e−T ) is the minimal number of generalized visual balls of radius
e−T needed to cover ∂X. If the generalized visual balls are metric balls for some
visual metric Dx,a then we refind the usual definition of Minkowski dimension of
the metric space (∂X,Dx,a), once the obvious change of variable ρ = e−T is made.
These invariants are presented in Section 4.3.

1.3.4 Equality of the entropies

One of the main results of this thesis is:

Theorem G. Let X be a complete, convex, geodesically complete metric space that
is P0-packed at scale r0. Then

hLip-top(Geod(X)) = hµ(X) = hCov(X) = Shad-D(∂X),

where µ is every homogeneous measure on X. Moreover if X is also δ-hyperbolic
then they coincide also with MD(∂X).

Actually something more is true but in order to state it we need to introduce
the notion of equivalent asymptotic behaviour of two functions.
Given f, g : [0,+∞)→ R we say that f and g have the same asymptotic behaviour,
and we write f � g, if for all ε > 0 there exists Tε ≥ 0 such that if T ≥ Tε then
|f(T )− g(T )| ≤ ε. The function Tε is called the threshold function.
Usually we will write f �

P0,r0,δ,...
g meaning that the threshold function can be
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expressed only in terms of ε and P0, r0, δ, . . . In particular if g is constantly equal
to g0 and f �

P0,r0,δ,...
g0 then the function f tends to g0 when T goes to +∞ and

moreover the rate of convergence to the limit can be expressed only in terms of
P0, r0, δ, . . .

Theorem H. Let X be a complete, convex, geodesically complete metric space that
is P0-packed at scale r0. Then the functions defining the quantities of Theorem G
have the same asymptotic behaviour and the threshold functions depend only on
P0, r0, δ and the homogeneous constants of µ.

Therefore not only all the introduced quantities define the same number, but all
of them also have the same asymptotic behaviour. This means that if one can control
the rate of convergence to the limit of one of these quantities then also the rate of
convergence of all the other quantities is bounded. We remark that, differently from
many of the papers in the literature, we do not require any group action on our
metric spaces for the moment. The case of group actions will be studied in Chapter
7.

1.4 The Tits Alternative
The classical Tits alternative, proved by J. Tits [Tit72] says that any finitely generated
linear group Γ over a commutative field K either is virtually solvable or contains a
non-abelian free subgroup. This result has been extended to other classes of groups
during the years. For instance, without intending to be exhaustive, it is now known
that all the following classes of groups satisfy the Tits Alternative:

• any discrete, non-elementary group of isometries of a Gromov-hyperbolic space,
• any discrete group of isometries a proper CAT(0)-space containing a rank one

element,
• any group acting properly and freely by isometries on a finite dimensional

CAT(0)-cube complex,
• any acylindrical hyperbolic group,
• any subgroup of the mapping class group

(see respectively [Gro87], [Ham09], [SW05], [Osi16] [McC85]; also notice that the
second class is a particular case of the fourth one, by [Sis18]).

Also, the original result has been improved by quantifying the depth in Γ of the free
subgroup with respect to some fixed generating set S of Γ. E. Breuillard proved that
there exists a universal function N(d) such that for any finite subset S ⊂ GL(d,K)
either the group Γ generated by S is virtually solvable or there exist two words
a, b on S of S-length less than N(d) which generate a non-abelian free group (see
[Bre08], and previous quantifications in this direction [BG08], [EMO05]). Similar
forms of quantification of the Tits Alternative for Gromov hyperbolic groups were
proved by T. Delzant [Del96], by M. Koubi [Kou98] (for Gromov hyperbolic groups
with torsion) and by G. Arzantsheva and I. Lysenok [AL06] (for subgroup of a given
hyperbolic group), for a constant N depending however always on the group Γ under
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consideration. A quantititative Tits Alternative for finitely generated subgroups of
the mapping class group Mod(S) of any compact, orientable surface S was proved
by J. Mangahas in [Man10].

A weaker form of the alternative, generally easier to establish, which we will call
weak Tits Alternative, asks for the existence of free semigroups in Γ instead of free
subgroups, provided that Γ is not virtually solvable2. For instance, it is known that
there exists a universal constant N such that for any finitely generated group Γ
acting properly without global fixed points on a CAT(0) square complex and for any
generating set S of Γ, there always exist two elements a, b ∈ Γ with S-norm smaller
than N , generating a free semigroup, provided that Γ is not virtually abelian (which
is the same as non-virtually solvable, for groups acting properly on finite-dimensional
CAT(0)-cube complexes), cp. [KS19], [GJN20].
The same is true for finitely generated torsionless groups acting on d-dimensional
cube complexes with isolated flats admitting a geometric group action, for a function
N(d) only depending on the dimension of the complex, see [GJN20], Theorem B).

Within the realm of negatively curved spaces very general quantifications of the
weak Tits Alternative for discrete groups of isometries of Gromov-hyperbolic spaces
were recently proved independently by Breuillard-Fujiwara [BF18], and by Besson-
Courtois-Gallot-Sambusetti [BCGS17]. Namely they show that there exists a uni-
versal function N(C) such that for any finite, symmetric subset S of isometries of a
Gromov hyperbolic space X, either the group G generated by S is elementary or SN
contains two elements a, b which generate a free semigroup, provided that X satisfies
a packing condition at scale δ with constant C or, better, if the counting measure
of G satisfies a doubling condition at some scale r0 with constant C. Less general
forms of quantifications of the weak Tits Alternative for Gromov hyperbolic spaces
were previuosly proved by C. Champetier and V. Guirardel [CG00], for δ-hyperbolic
groups Γ (for some N depending on the hyperbolicity constant and on the cardinality
of the generating set S) and by Besson-Courtois-Gallot [BCG03], for fundamental
groups of pinched, negatively curved manifolds X (for some N depending on the
injectivity radius of X and on a lower bound of the sectional curvature).

For discrete isometry groups of pinched, negatively curved manifolds S. Dey, M.
Kapovich and B. Liu [DKL18] recently improved [BCG03], proving a quantitative,
true Tits Alternative: there exists N = N(k, d) such that for any couple of isometries
a, b of a complete, simply connected, d-dimensional Riemannian manifold X with
pinched, negative sectional curvature −k2 ≤ KX ≤ −1 which generate a discrete 3

non-elementary group, with a not elliptic, one can find an isometry w, which can
be written as a word w = w(a, b) on {a, b} of length less than N , such that {aN , w}
generate a non-abelian free subgroup. Noticably the authors not only find a true

2Notice that, in this weaker form, the Tits Alternative is no longer a dichotomy for linear groups,
since it is well known that there exist solvable groups of GL(n,R) which also contain free semigroups
(and actually, any finitely generated solvable group which is not virtually nilpotent contains a
free semigroup on two generators [Ros74]). It remains a dichotomy for those classes of groups for
which “virtually solvable” implies sub-exponential growth, e.g. hyperbolic groups, groups acting
geometrically on CAT(0)-spaces etc.

3We are not able to understand the proof in [DKL18] without the torsionless assumption, which
seems to be used at page 14, below Lemma 4.5.
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free subgroup with quantification, but they also specify that one of the generators of
the free group can be prescribed a-priori (provided it is chosen not elliptic). This
motivates the following definition:

Definition. We say that a discrete group Γ satisfies the quantitative Tits Alternative
with specification Tws(N) (respectively, the quantitative weak Tits Alternative with
specification T +

ws(N)) if for every couple a, b ∈ Γ which generates a non-virtually
solvable group, with a of infinite order, there exists w ∈ Γ which can be written as
a word w = w(a, b) in {a, b} of length at most N , such that the subgroup 〈aN , w〉
(resp. the semigroup 〈aN , w〉+) generated by {aN , w} is free.

The aim of Chapter 5 is two-fold:
(a) to generalise Dey-Kapovich-Liu’s result, proving the property Tws(N) for a large
class of sufficiently mild, negatively curved metric spaces, and
(b) to extend the range of applications of the quantitative free sub-(semi)group
theorem proved in [BCGS17] to non-cocompact actions 4.

With this in mind we recall that the lower sectional curvature bound can be replaced,
in the metric setting, by the condition of bounded packing at some scale r0 > 0. By
Breuillard-Green-Tao’s work, the packing condition provides sufficient information
to deduce an analogue for metric spaces of the celebrated Margulis Lemma for
Riemannian manifolds: there exists a constant ε0, only depending on (P0, r0), such
that for every discrete group of isometries Γ of a space X which is P0-packed at
scale r0, the ε0-almost stabilizer Γε0(x) of any point x ∈ X is virtually nilpotent (cp.
[BGT11], Corollary 11.17); that is, the elements of Γ which displace x less than ε0
generate a virtually nilpotent group. This result allows us to mimick most of the
arguments used in [DKL18].

On the other hand Gromov-hyperbolicity is the most natural metric replacement for
the classical hypothesis of negative curvature. However we were not able to recover
Dey-Kapovich-Liu’s result without the additional assumption of the convexity of the
space. This additional assumption gives much more regularity at scales smaller than
the hyperbolicity constant, in particular it allows, using the Packing Propagation
Theorem A, to obtain precise estimates of the ε-Margulis’ domains of isometries for
values of ε smaller than δ:

Theorem I (Proposition 2.5.6). Let X be a complete, convex, geodesically complete,
δ-hyperbolic metric space that is P0-packed at scale r0 and let 0 < ε1 ≤ ε2. Then
there exists K0, only depending on P0, r0, δ, ε1 and ε2, such that for every non-elliptic
isometry g of X with `(g) ≤ ε1 it holds:

sup
x∈Mε2 (g)

d(x,Mε1(g)) ≤ K0.

Here `(g) denotes the translation length of g and Mε(g) is the generalized
Margulis domain of g of displacement ε, see Chapter 2 for the definitions. This
result is a key-tool for the proof of the following:

4Non-cocompact actions of a group Γ on general metric spaces are also considered in [BCGS17],
especially in Chapter 6, but always with the underlying assumption that the group Γ also admits a
cocompact action or a “well-behaved” action on some Gromov-hyperbolic space X0, e.g. with some
prescribed, lower bound of the minimal asymptotic displacement ‖g‖ on X0, for all g ∈ Γ.
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Theorem J (Quantitative free subgroup theorem with specification).
Let P0, r0 and δ be fixed positive constants. Then there exists an integer N(P0, r0, δ),
only depending on P0, r0, δ, satisfying the following properties. Let X be any complete,
convex, geodesically complete, δ-hyperbolic metric space that is P0-packed at scale r0:

(a) for any couple of isometries S = {a, b} of X, where a is non elliptic, such that
the group 〈a, b〉 is discrete and non-elementary, there exists a word w(a, b) in a, b
of length ≤ N such that one of the semigroups 〈aN , w(a, b)〉+, 〈a−N , w(a, b)〉+
is free;

(b) for any couple of isometries S = {a, b} of X such that the group 〈a, b〉 is
discrete, non-elementary and torsion-free, there exists a word w(a, b) in a, b of
length ≤ N such that the group 〈aN , w(a, b)〉 is free.

Therefore any discrete group of isometries Γ of a complete, convex, geodesically
complete, packed δ-hyperbolic space satisfies property T +

ws(N), and also property
Tws(N) if Γ is torsionless, for N depending only on δ and on the packing constants
(P0, r0).

The first part of the theorem precises Proposition 5.18 in [BCGS17] and Theorem
5.11 of [BF18], showing the specification property under the additional hypothesis
of convexity. The difficulty here is that there is no a apriori bounded power N such
that `(aN ) is greater than a specified constant (for instance, when a is parabolic
this is false for every N). To avoid changing a with a bounded word in {a, b} (as in
[BCGS17] and [BF18]) we follow the strategy of [DKL18], which however requires
the convexity property.
For the second part of Theorem J, it should be remarked that the torsionless
assumption is actually necessary, as shown by some examples of groups acting on
simplicial trees (with bounded valency, hence packed) produced in Proposition 12.2
of [BF18].
Finally notice that, in our setting, elementary is the same as virtually nilpotent
because of the bounded packing assumption (see Section 2.6.2 for a proof of this fact;
notice however that, without the packing assumption, there exist elementary groups
of negatively curved manifolds which are even free non-abelian, cp.[Bow93]).

We want also to stress that the proof we give of this theorem heavily draws from
techniques developed in [DKL18] and [BCGS17]. However some ideas are new, such
as the bound of the distance between different levels of the Margulis domains of a
single isometry, as well as the use of the free subgroup for some of the applications
(estimate of the diastole and structure group of the thin subsets), which we will
discuss in the next section.

1.5 Applications of the Tits Alternative
The motivation for us behind the quantification and the specification property, as well
as for looking for true free subgroups (not only semigroups), is geometric. Actually
the aim of Chapter 6 is to develop a geometric analysis for actions of discrete groups
on packed, convex, Gromov hyperbolic spaces, and the Tits Alternative (in the
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sharp, quantitative form stated in Section 1.4) is a key-tool which is essential for
many of the applications we will present. For instance a weak Tits alternative is not
enough to properly describe the group structure of the connected components of the
thin subsets for the action of Γ on a hyperbolic space X, as we will do in Section
6.4 (which is more precise than in [BCGS17]). On the other hand the specification
property will be used to bound from below the systole of the action in terms of the
upper nilradius thus yielding a new version of the classical Margulis’ Lemma in our
context. Some applications we will describe do not need the specification property
or the quantitative Tits Alternative, but the packing assumption remains almost
everywhere essential, in particular for Breuillard-Green-Tao’s generalized Margulis
Lemma.

A first, direct consequence of a quantitative free group or semigroup theorem
is a uniform estimate from below of the algebraic entropy of the groups under
consideration and of the entropy of the spaces they act on (from Theorem G we know
that it can be computed in different ways, for simplicity we will refer to the covering
entropy). On the other hand given any group Γ with a finite system of generators
S one defines Ent(Γ, S) as the volume entropy of the Cayley graph of the couple
(Γ, S). The algebraic entropy of a finitely generated group, denoted EntAlg(Γ), is
accordingly defined as the infimum, over all possible finite generating sets S, of the
exponential growth rates Ent(Γ, S). We record here two estimates for the entropy of
the groups and the spaces under consideration, which stem from the simple weak
quantified Tits Alternative (as previously proved in [BF18], Theorem 13.9, or in
[BCGS17], Proposition 5.18(i)), combined with the packing assumption:

Theorem K. Let X be a complete, convex, geodesically complete, δ-hyperbolic
metric space that is P0-packed at scale r0. Assume that X admits a non-elementary,
discrete group of isometries Γ. Then:

(a) EntAlg(Γ) ≥ C0,

(b) hCov(X) ≥ C0 · nilrad(Γ, X)−1,

where C0 = C0(P0, r0, δ) is a constant depending only on P0, r0 and δ.

The invariant nilrad(Γ, X) appearing here is the nilradius of the action of Γ on X,
defined as the infimum over all x ∈ X of the largest radius r such that the r-almost
stabilizer Γr(x) of x is virtually nilpotent. By definition it is always bounded below
by Breuillard-Green-Tao’s generalized Margulis constant ε0. On the other hand the
nilradius can be arbitrarily large, if the orbits of Γ are very sparse in X. However if
Γ is non-elementary (which in our case means non-virtually nilpotent), it is always a
finite number.

A second geometric consequence of Theorem J is a lower bound of the systole of the
action of Γ on X, that is the smallest non-trivial displacement of points of X under
the action of the group. Namely let Xε0 ⊆ X be the subset of points which are
displaced less than the generalized Margulis constant ε0 by some nontrivial element
of the group Γ: this is classically called the ε0-thin subset of X (we will come back
to it later). We define the upper nilradius of Γ, as opposite to the nilradius, as the
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supremum over x ∈ Xε0 of the largest r such that Γr(x) is virtually nilpotent. In
other words the upper nilradius, denoted nilrad+(Γ, X), measures how far we need
to travel from any x of Xε0 to find two points g1x, g2x of the orbit such that the
subgroup 〈g1, g2〉 is non-elementary. A natural bound of the upper nilradius is given,
for cocompact actions, by the diameter of the quotient Γ/X. However the upper
nilradius can well be finite even for non-compact actions, for instance when Γ is a
quasiconvex-cocompact group, or a subgroup of infinite index of a cocompact group
of X (see Examples 6.2.3, 6.2.4 and Section 1.6 for details on quasiconvex-cocompact
groups). The specification property in the quantitative Tits Alternative yields a
lower bound of the systole of the action in terms of the geometric parameters P0, r0, δ
and of an upper bound of the upper nilradius:

Theorem L. Let X be a complete, convex, geodesically complete, δ-hyperbolic metric
space that is P0-packed at scale r0. Then for any torsionless, non-elementary discrete
group of isometries Γ of X it holds:

sys(Γ, X) ≥ min
{
ε0,

1
H0

e−H0·nilrad+(Γ,X)
}

where H0 = H0(P0, r0, δ) is a constant depending only on P0, r0, δ and ε0 = ε0(P0, r0)
is the generalized Margulis constant introduced before.

Remark that without any bound of the upper nilradius of Γ there is no hope of
estimating sys(Γ, X) from below in terms of δ and the packing parameters. This
is clear for groups acting with parabolics (cp. Example 6.2.2), but also fails for
groups without parabolics. It is enough to consider compact hyperbolic manifolds
X possessing very small periodic geodesics γ of length ε, much smaller than the
Margulis’ constant: by the classical theory of Kleinian groups, γ has a very long
tubular neighbourhood and, consequently, Γ has arbitrarily large upper nilradius.
This is a general fact for actions of discrete groups on complete, convex, geodesically
complete, Gromov-hyperbolic, packed metric spaces, as we will see in a minute.

Even without any a-priori bound of the upper nilradius of the action of Γ, one
can always find a point x where the minimal displacement is bounded below by a
universal function of the geometric parameters P0, r0 of X. Recall that the diastole
of Γ acting on X, denoted dias(Γ, X), is defined as the supremum over all x ∈ X of
the minimal displacement of x under all non trivial elements of the group. When X
is a nonpositively curved manifold it corresponds to (twice) the greatest value of
the cut radius for points of the quotient manifold Γ\X. The next result generalizes
one of the classical versions of the Margulis Lemma for negatively curved, pinched,
Riemannian manifolds:

Theorem M. Let X be a complete, convex, geodesically complete, δ-hyperbolic
metric space that is P0-packed at scale r0. Then for any torsionless, discrete, non-
elementary group of isometries Γ of X we have:

dias(Γ, X) = sup
x∈X

inf
g∈Γ∗

d(x, gx) ≥ ε0

(where ε0 = ε0(P0, r0) is the generalized Margulis constant).
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Notice that the estimate, which holds also for cocompact groups, does not depend
on the diameter (in contrast with Proposition 5.25 of [BCGS17]; also notice that our
groups do not belong to any of the classes considered in [BCGS17], as they do not
have a-priori a cocompact action on a convex, Gromov-hyperbolic space or an action
on a Gromov-hyperbolic space with asymptotic displacement uniformly bounded
below).

A consequence of the above estimates is an analogue of the classical thick-thin
decomposition for Kleinian groups or isometry groups of pinched, negatively curved
Riemannian manifolds (see [Thu97], [Bow95]) for discrete torsionless groups Γ acting
on any complete, CAT(0), geodesically complete, Gromov-hyperbolic, packed metric
space. Namely we show that for any ε > 0 smaller than the generalized Margulis
constant ε0 the connected components Xi

ε of the ε-thin subset of X are precisely
invariant subsets whose stabilizer in Γ is a maximal, elementary subgroup Γiε (the
subgroup generated by all the ε-almost stabilizers of points in Xi

ε): see Proposition
6.4.1 for a precise statement. This allows us to talk of hyperbolic and parabolic
components of the ε-thin subset of the quotient space X̄ = Γ\X, according to the
type of the elementary subgroups Γiε, and opens the road to the notion of geometrical
finiteness in our setting (whose study will be pursued elsewhere).
Propositions 6.4.2 & 6.4.4 in Section 6.4 resume the geometric picture of these
components. Namely each component Xi

ε contains:
– in the hyperbolic case, a tubular neighbourhood Cε(γ) of any axis γ of the cyclic
subgroup Γiε, which projects into a neighbourhood Cε(γ̄) of a periodic geodesic γ̄ in
X̄ ;
– in the parabolic case, a connected, geodesic cone Cε(γ) for any geodesic ray γ
with endpoint in the parabolic fixed point z of Γiε, which projects into a cone-
neighbourhood Cε(γ̄) of the quotient ray γ̄ in X̄ containing definitely all rays
asymptotic to γ̄.
Moreover there exist universal functions Lε(r), Rε(r) (only depending on the geo-
metric parameters P0, r0, δ), tending to ∞ as r → 0, such that if the above axis /
rays γ are included in Xi

r ⊆ Xi
ε, for some r < ε, then the components Xi

r are:

• the thinner, the longer : the Lε(r)-neighbourhood of Cr(γ) is entirely contained
in Xi

ε (thus Xi
ε contains a long tube around γ in the hyperbolic case and a

large cone around any ray γ with endpoint z in the parabolic one);

• have simple topology: the Rε(r)-neighbourhood in X̄ of the periodic geodesic
γ̄ or of the geodesic cone Cr(γ̄) are, respectively, isometric to the Rε(r)-
neighbourhood of γ in X modulo the cyclic group Γiε (in the hyperbolic case),
and to the Rε(r)-neighbourhood of the cone Cr(γ) in X modulo the virtually
nilpotent group Γiε (in the parabolic case).

The CAT(0) assumptions is needed to find a true invariant cone Cε(γ) in the parabolic
case, since in this case the horospheres are preserved by the isometries of the group
Γiε. This good description of the parabolic components opens the possibility to the
study of geometrically finiteness in this setting. This topic will be investigated in
further works.



18 1. Introduction

1.6 Entropies and groups

In Chapter 7 we will introduce a variant of the different notions of entropies presented
in Chapter 4 in order to study the critical exponent of groups acting on complete,
convex, geodesically complete, δ-hyperbolic, packed metric spaces.

1.6.1 Entropies of the closed subsets of the boundary

In case X is a complete, convex, geodesically complete, δ-hyperbolic metric space
that is P0-packed at scale r0 it is possible to define the version of all the different
notions of entropies of Section 1.3 relative to subsets of the boundary at infinity ∂X
(notice that in Section 1.3 the hyperbolicity assumption was not needed).
For every subset C ⊆ ∂X we denote by Geod(C) the set of parametrized geodesic
lines with endpoints belonging to C and with QC-Hull(C) the union of the points
belonging to the geodesics of Geod(C). Actually the hyperbolicity assumption (or at
least a visibility assumption on ∂X) is necessary since otherwise the sets Geod(C)
and QC-Hull(C) could be empty. The numbers

hCov(C) = lim
T→+∞

1
T

log Cov(B(x, T ) ∩QC-Hull(C), r0)

hLip-top(Geod(C)) = inf
â

sup
K⊆Geod(C)

lim
r→0

lim
T→+∞

1
T

log CovâT (K, r)

Shad-D(C) = lim
T→+∞

1
T

log Shad-Covr0(C, e−T )

MD(C) = lim
T→+∞

1
T

log Cov(C, e−T )

are called, respectively, covering entropy of C, Lipschitz-topological entropy of
Geod(C), shadow dimension of C and visual Minkowski dimension of C. The volume
entropy of C with respect to a measure µ is

hµ(C) = sup
σ≥0

lim
T→+∞

1
T

logµ(B(x, T ) ∩B(QC-Hull(C), σ)),

where B(Y, σ) means the closed σ-neighbourhood of Y ⊆ X. If µ is H-homogeneous
at scale r then the volume entropy can be computed putting σ = r instead of the
supremum over σ ≥ 0 (Proposition 7.1.6). For instance when M is a Riemannian
manifold with pinched negative curvature and µM is the Riemannian volume then it
is H(r)-homogeneous at every scale r > 0, so the definition does not depend on σ at
all. Most of the relations of Theorem G remain true for subsets of the boundary,
but the asymptotic behaviour of the different functions involved in the definitions of
the entropies depend also on the choice of the basepoint x ∈ X. The best possible
choice, x ∈ QC-Hull(C), allows us to give again uniform asymptotic estimates.

Theorem N. Let X be a complete, convex, geodesically complete, δ-hyperbolic
metric space that is P0-packed at scale r0 and let C ⊆ ∂X. Then

hCov(C) = Shad-D(C) = MD(C) = hµ(C)
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for every homogeneous measure µ on X. All the functions defining the quantities
above have the same asymptotic behaviour and the threshold functions can be expressed
only in terms of P0, r0, δ and the homogeneous constants of µ, if the basepoint x
belongs to QC-Hull(C).

The proof of this result does not follow by the same arguments of Theorem G,
indeed it will be based heavily on the Gromov-hyperbolicity of X. The relation
between the Lipschitz-topological entropy of Geod(C) and the other definitions of
entropy is more complicated. We have:

Theorem O. Let X be a complete, convex, geodesically complete, δ-hyperbolic
metric space that is P0-packed at scale r0 and let C ⊆ ∂X. Then

(a) if C is closed then hLip-top(Geod(C)) = hCov(C) and the functions defining
these two quantities have the same asymptotic behaviour with thresholds function
depending only on P0, r0, δ.
Moreover if x ∈ QC-Hull(C) then

hLip-top(Geod(C)) = lim
T→+∞

1
T

log CovdTGeod
(Geod(B(x, L), C), r0),

where Geod(B(x, L), C) is the set of geodesic lines with endpoints in C and
passing through B(x, L) at time 0 and L is a constant depending only on δ.

(b) if C is not closed then

hLip-top(Geod(C)) = sup
C′⊆C

hLip-top(Geod(C ′)) ≤ hCov(C),

where the supremum is taken among the closed subsets of C.

In the forthcoming paper [Cav21] we will see how the inequality in (b) can be strict.

1.6.2 Critical exponent of discrete groups of isometries

When C is the limit set Λ(Γ) of a discrete group of isometries Γ of X there is another
largely studied invariant: the Γ-entropy of X defined as

hΓ(X) = lim
T→+∞

1
T

log #Γx ∩B(x, T ),

which is precisely, when x ∈ QC-Hull(Λ(Γ)), the volume entropy of the set Λ(Γ) with
respect to the counting measure µΓ

x of the orbit Γx. It equals the critical exponent
of Γ, whose definition will be recalled in Section 7.2. The critical exponent of Γ has
a dynamical and a measure-theoretical counterpart. Indeed when M̄ = M/Γ is a
complete Riemannian manifold with pinched negative sectional curvature then it
equals the topological entropy of the non-wandering set of the geodesic flow, hnw

top(M̄),
as showned in [OP04]. The same result will be generalized in case of discrete and
torsion-free group of isometries of convex, geodesically complete, Gromov-hyperbolic,
packed metric spaces in [Cav21]. On the other hand, by Bishop-Jones’ Theorem, it
equals the Hausdorff dimension of the radial limit set of Γ ([BJ97], [DSU17]).
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We recall that a group Γ is said quasiconvex-cocompact if the action of Γ on
QC-Hull(Λ(Γ)) is cocompact. In this case the codiameter of the action is the
diameter of the compact space QC-Hull(Λ(Γ))/Γ. Quasiconvex-cocompact groups
have been extensively studied, due to their regularity. For instance in [Coo93] is
shown that the limit set of a quasiconvex cocompact group of isometries of a proper
Gromov-hyperbolic metric space is Ahlfors-regular. Our main result of Chapter 7
is a refinement of this result, in terms of quantification of the Ahlfors-regularity
constants. In the following the Γ-entropy of X will be denoted simply by hΓ.

Theorem P. Let X be a complete, convex, geodesically complete, δ-hyperbolic metric
space that is P0-packed at scale r0 and let Γ be a discrete, quasiconvex-cocompact
group of isometries of X with codiameter ≤ D. Then the Patterson-Sullivan measure
µPS on Λ(Γ) is (A, hΓ)-Ahlfors regular, i.e. for every z ∈ Λ(Γ) and every 0 < ρ ≤ 1
it holds

1
A
ρhΓ ≤ µPS(B(z, ρ)) ≤ AρhΓ ,

where A is a constant depending only on P0, r0, δ and D. Moreover

1
T

log Cov(Λ(Γ), e−T ) �
P0,r0,δ,D

hΓ.

If Γ is elementary the proof is trivial, while in the non-elementary case it depends
heavily on a uniform estimate of the critical exponent. Indeed by Theorem L in this
case we have 0 < h− ≤ hΓ ≤ h+, where h− and h+ depend only on P0, r0, δ and D
(see Remark 7.2.3 and Example 6.2.3).
Theorem P, together with its proof, has two main consequences: the first one is
a quantified equidistribution of the orbit (see again [Coo93] for a non quantified
version).

Theorem Q. Let X be a complete, convex, geodesically complete, δ-hyperbolic
metric space that is P0-packed at scale r0, let Γ be a discrete, quasiconvex-cocompact
group of isometries of X with codiameter ≤ D and let x ∈ QC-Hull(Λ(Γ)). Then
there exists K > 0 depending only on P0, r0, δ and D such that for all T ≥ 0 it holds

1
K
· eT ·hΓ ≤ Γx ∩B(x, T ) ≤ K · eT ·hΓ .

The second one is the continuity of the critical exponent as we will see in the last
part of the introduction.

1.6.3 Differences of the invariants for geometrically finite groups

Theorem P affirms that for quasiconvex-cocompact groups the critical exponent
equals the Minkowski dimension of the limit set (and so all the other relative notions
of entropy, by Theorem N and Theorem O). We present here the situtation for
geometrically finite groups in case of Riemannian manifolds, trying to give several
interpretations of the possible difference between the critical exponent and the
entropy of the limit set.
So we restrict the attention to the case of Riemannian manifolds M̄ = M/Γ with
pinched negative sectional curvature. If Γ is geometrically finite then the limit set
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of Γ is the union of the radial limit set Λr(Γ) and the bounded parabolic points.
The latter is a countable set, therefore the Hausdorff dimension of the limit set
coincides with the Hausdorff dimension of the radial limit set and so by Bishop-Jones’
Theorem it holds:

HD(Λ(Γ)) = HD(Λr(Γ)) = hΓ. (2)

We remark that this is not true if Γ is not geometrically finite, even when M is the
hyperbolic space.

Example 1.6.1. In general it can happen HD(Λr(Γ))) < HD(Λ(Γ)). Indeed let Γ
be a cocompact group of H2 and let Γ′ be a normal subgroup of Γ such that Γ/Γ′
is non amenable. Let F ⊆ Λ(Γ′) be the subsets of points z that are fixed by some
g ∈ Γ′. For every z ∈ F and every h ∈ Γ we have hz = hgz = g′hz for some g′ ∈ Γ′
since Γ′ is normal. Then hz is fixed by g′ and so it belongs to F , i.e. F is Γ-invariant.
By minimality of Λ(Γ) we get Λ(Γ′) = Λ(Γ), so HD(Λ(Γ′)) = HD(Λ(Γ)). But by the
growth tightness of Γ (cp. [Sam02]) we have

HD(Λr(Γ′)) = hΓ′ < hΓ = HD(Λ(Γ)) = HD(Λ(Γ′)).

However ifM is the hyperbolic space and Γ is geometrically finite then even something
more is true, indeed by [SU96]:

hΓ = HD(Λ(Γ)) = MD(Λ(Γ)). (3)

This equality fails to be true for geometrically finite (actually of finite covolume)
groups of manifolds with pinched, but variable, negative curvature. Indeed we have:

Example 1.6.2. In [DPPS09] it is presented an example of a smooth Riemannian
manifold M with pinched negative sectional curvature admitting a (non-uniform)
lattice (i.e. a group of isometries Γ with Vol(M/Γ) < +∞) such that hΓ < hµM (X).
We observe that since Γ is a lattice then Λ(Γ) = ∂M , so hµM (M) = MD(Λ(Γ)) by
Theorem G, while hΓ = HD(Λr(Γ)) = HD(Λ(Γ)) by (2).

The example above is due to a relevant variation of the curvature of M . Indeed in
[DPPS19] is shown that for non-uniform lattices Γ of asymptotically 1/4-pinched
manifolds with negative curvature M it holds hµM (M) = hΓ. The general situation
in the geometrically finite case is:

HD(Λ(Γ)) = hΓ = hnw
top(M/Γ)

hLip-top(Geod(Λ(Γ))) = hCov(Λ(Γ)) = hµM (Λ(Γ)) = MD(Λ(Γ)),
(4)

where the equalities follow by Theorem N, Theorem O and (2). Moreover it is clear
that the first line is always less than or equal to the second one, since the Hausdorff
dimension is always smaller than the Minkowski dimension.

The relations in (4) allow us to give new interpretations of the phenomena occurring
in Example 1.6.2, i.e. the possible difference between the critical exponent of the
group and the volume entropy of Λ(Γ):

• measure-theoretic interpretation: it can be seen as the difference between the
Hausdorff and the Minkowski dimension of the limit set Λ(Γ), so it is related
to the fractal structure of the limit set;
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• dynamical interpretation: it can be seen as the difference between the topolog-
ical entropy of the non-wandering set of the geodesic flow and the Lipschitz-
topological entropy of Geod(Λ(Γ)).

• combinatoric interpretation: it can be seen as the difference between hΓ and
hCov(Λ(Γ)), where the former counts the exponential growth rate of an orbit
while the latter counts the exponential growth rate of the cardinality of r-nets,
for some (any) r > 0. Here the difference arises in terms of sparsity of the
orbit.

1.7 Compactness and continuity

The last part of the thesis, Chapter 8, is focused on stability results under (pointed)
Gromov Hausdorff convergence and ultralimits. The main properties of ultralimits
will be recalled in Chapter 2, as well as their relation with Gromov-Hausdorff limit.
For the purpose of the introduction we will expose the results in terms of Gromov-
Hausdorff convergence when possible. In this chapter will be considered only CAT(κ)
(or locally CAT(κ)) metric spaces since this condition is stable under limit, while
the convexity assumption is not. In particular all the results of the previous section
should be thought in terms of CAT(0) spaces instead of convex ones.

1.7.1 Compact classes

The families of spaces with uniformly bounded diameter, satisfying a packing
condition for some universal function P = P (r) and all 0 < r ≤ r0, are classically
called uniformly compact; actually one can always extract from them convergent
subsequences for the Gromov-Hausdorff distance (see [Gro81]). Moreover it is
classical that an upper bound on the curvature is stable under Gromov-Hausdorff
convergence, provided that the corresponding CAT(κ)-radius is uniformly bounded
below (see also Proposition 2.7.9). Starting from the Packing Propagation Theorem
A it is possible to decline Gromov’s Precompactness Theorem for GCBA-spaces as
follows. Consider the classes 5

GCBAκpack(P0, r0; ρ0), GCBAκvol(V0, R0; ρ0, n0)

of complete, geodesic, GCBA-spaces with curvature ≤ κ, almost-convexity radius
ρac(X) ≥ ρ0 > 0 and satisfying, respectively, condition (a) or (b) of Theorem C. Let
also denote by

GCBAκvol(V0; ρ0, n
=
0 )

the class of complete, geodesic, GCBA-spaces with curvature ≤ κ, total measure
µX(X) ≤ V0, almost-convexity radius ρac(X)≥ρ0>0 and dimension precisely equal
to n0. Then:

5Mnemonically we write before the semicolon the parameters which are relative to the packing
condition or to the condition on the natural measure µX
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Theorem R (Theorem 8.1.1, Corollary 8.1.9 & 8.1.7).

(a) The classes GCBAκpack(P0, r0; ρ0) and GCBAκvol(V0, r0; ρ0, n0) are compact with
respect to the pointed Gromov-Hausdorff convergence;

(b) the class GCBAκvol(V0; ρ0, n
=
0 ) is compact with respect to the Gromov-Hausdorff

convergence and contains only finitely many homotopy types.

As our spaces are locally CAT(κ) with CAT(κ)-radius uniformly bounded below
(see inequality (6) in Sec. 2.2), it is not surprising that the limit space is again
locally CAT(κ). Less trivially, as a part of the proof of the compactness, we need to
show that the conditions on the measure, on the almost-convexity radius and on
the dimension are stable under Gromov-Hausdorff limits. So let us highlight the
following results which are consequence of the estimates in Theorems B and C and
are part of the compactness theorem.

Theorem S (Proposition 8.1.2 & Proposition 8.1.5). Let (Xn, xn) be GCBAκ-spaces
converging to (X,x) with respect to the pointed Gromov-Hausdorff topology. Then:

(a) ρac(X) ≥ lim supn→∞ ρac(Xn);

(b) if ρac(Xn) ≥ ρ0 > 0 for all n then dim(X) ≤ limn→+∞ dim(Xn) and the
equality holds if and only if the distance from xn to the maximal dimensional
subspace Xmax

n of Xn stays uniformly bounded when n→∞.
(The second assertion refines Lemma 2.1 of [Nag18], holding for CAT(κ)-spaces).

Therefore GCBA spaces with curvature uniformly bounded from above and almost
convexity radius uniformly bounded below can collapse only if the maximal di-
mensional subspaces go to infinity. We will see such an example in Section 8.1.1.

On the other hand the lower-semicontinuity of the natural measure of balls and of
the total volume will follow from [LN19], where it is proved that if (Xn)n≥0 is a
sequence of GCBA-spaces converging to X then the natural measures µXn converge
weakly to the natural measure µX (see Lemma 2.2.7 and the proof of Corollary 3.3.7
for details). We will see in Section 3.3 that, under the stronger assumptions that
the natural measure is doubling up to some arbitrarily small scale, the volume of
balls is actually continuous (cp. Corollary 3.3.7).
Once proved that the bound on the total volume is stable under Gromov-Hausdorff
convergence and that this implies the uniform boundedness of the spaces in our class,
the homotopy finiteness stated in (b) is a particular case of Petersen’s finiteness
theorem [Pet90]; actually, as the CAT(κ)-radius is uniformly bounded below, these
spaces have a common local geometric contractibility function LGC(r) = r for
r ≤ ρ0.

It is not difficult (see Section 8.1.1) to check that also the doubling property is stable
under pointed Gromov-Hausdorff convergence and so is the property of being pure
dimensional. Namely let us also consider the classes (with the same conventions as
before)

GCBAκdoub(D0, r0; ρ0), GCBAκvol(V0; ρ0, n
pure
0 )



24 1. Introduction

of complete, geodesic, GCBA-spaces X with curvature ≤ κ, almost-convexity radius
ρac(X) ≥ ρ0 > 0 and which are, respectively, either D0-doubling up to scale r0 or
purely n0-dimensional with total measure µX(X) ≤ V0.
We then deduce the following additional compactness results:

Theorem T (Extract from Corollaries 8.1.9 & 8.1.7).
The classes GCBAκdoub(D0, r0; ρ0), GCBAκvol(V0; ρ0, n

pure
0 ) are compact with respect

to pointed and unpointed Gromov-Hausdorff convergence respectively. Moreover
GCBAκvol(V0; ρ0, n

pure
0 ) contains only finitely many homotopy types.

These theorems can be specialized to the case of Mκ-complexes with bounded
geometry. Namely let

Mκ(R0, N0), Mκ(R0;V0, n0)

be the class of Mκ-complexes K without free faces, with positive injectivity radius
(but nor a-priori uniformly bounded below), simplices of size bounded by R0 and,
respectively, valency bounded by N0 or total volume bounded by V0 and dim(K) ≤
n0. It is immediate to check that, for suitable N0 = N0(R0, V0, n0), the class
Mκ(R0;V0, n0) is a subclass ofMκ(R0, N0), made of compactMκ-complexes, namely
with a uniformly bounded number of simplices (cp. proof of Theorem 8.1.12); hence
it contains only finitely many Mκ-complexes up to simplicial homeomorphism. On
the other hand we prove:

Theorem U (Extract from Theorem 8.1.10 & Corollary 8.1.12). The classes
Mκ(R0, N0) and Mκ(R0;V0, n0) are compact, respectively, under pointed and un-
pointed Gromov-Hausdorff convergence. Moreover there are only finitely many
Mκ-complexes of diameter ≤ ∆ in Mκ(R0, N0), up to simplicial homeomorphisms.

The proof is based on Theorem E and Proposition 3.4.13 that imply that the
class Mκ(R0, N0) is contained in GCBAκpack(P0, r0; ρ0) for suitable P0, r0, ρ0. The
remaining part is to show that the limit of a sequence of spaces in Mκ(R0, N0) has
again the structure of a Mκ-complex with bounded geometry.
All the assumptions in this result are necessary. Indeed we will see how dropping
the bounds on the valency or on the size of the simplices we do not have neither
finiteness nor compactness (see Example 8.1.13).

1.7.2 Ultralimit groups

In Section 8.2 we introduce the notion of ultralimit groups: given a sequence of triples
(Xn, xn,Γn), where (Xn, xn) is a pointed metric space and Γn is a group of isometries
of Xn, and a non-principal ultrafilter ω we set Γω as the set of admissible sequences
(gn), with gn ∈ Γn for every n. It acts naturally by isometries on the ultralimit
space (Xω, xω). By Theorem R (and by the classical stability of the δ-hyperbolicity
condition) the class CAT0

pack(P0, r0, δ) of complete, geodesically complete, CAT(0),
δ-hyperbolic metric spaces that are P0-packed at scale r0 is closed under ultralimits.
Moreover for all P0, r0, δ,∆ > 0 we denote by CAT0

nil(P0, r0, δ; ∆) the class of triples
(X,x,Γ) where (X,x) ∈ CAT0

pack(P0, r0, δ) and Γ is a discrete and torsion-free group
of isometries of X satisfying nilrad+(Γ, X) ≤ ∆. We have:
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Theorem V (Theorem 8.2.4, Theorem 8.2.6 & Corollary 8.2.7).
Let (Xn, xn) ⊆ CAT0

pack(P0, r0, δ). Let Γn be a sequence of torsion-free, discrete
groups of isometries of Xn. Let ω be a non-principal ultrafilter and Γω be the
ultralimit group of isometries of Xω. Then:

(a) Γω is either discrete and torsion-free, or elementary;

(b) Γω is not elementary if and only if there exist admissible sequences (gn), (hn)
such that 〈gn, hn〉 is not elementary for ω-a.e.(n);

(c) the class CAT0
nil(P0, r0, δ; ∆) is compact under pointed Gromov-Hausdorff

convergence.

Notice that the two conditions in (a) are not mutually exclusive: the group
Γω can be discrete, torsion-free and elementary. But if it is not discrete then it is
elementary.

1.7.3 Continuity of the entropy

In general the entropy is not continuous under Gromov-Hausdorff convergence or
ultralimits. However a control of the asymptotic behaviours of the function defining
the different notions of entropies gives continuity, indeed:

Theorem W. Let (Xn, xn) be a sequence of complete, geodesically complete, CAT(0)
metric spaces that are P0-packed at scale r0 converging in the pointed Gromov-
Hausdorff sense to (X∞, x∞). If for every n it holds

1
T

log Cov(B(xn, T ), r0) � hn

and the threshold functions do not depend on n, then hCov(X∞) = limn→+∞ hn.

Under the assumptions of Theorem W we have that X∞ is a proper, geodesically
complete, CAT(0) metric space and moreover for every n the covering entropy of
Xn is exactly hn, so it states exactly the continuity of the covering entropy. Clearly
by Theorem H, the assumption on the asymptotic behaviour of the covering entropy
can be replaced by an equivalent assumption on the asymptotic behaviour of any
other notion of entropy. This continuity result can be compared with [Rev05], where
a continuity of the volume entropy is established in case of special classes of compact
metric spaces. A similar result holds for the relative versions of the entropies, so for
subsets of the boundaries (see Theorem 8.4.4). Theorem W and its relative version,
are interesting if there is a family of metric spaces whose asymptotic behaviour
of the covering entropy (or any other notion of entropy) is uniformly controlled.
This is exactly the statement of Theorem P: namely if CAT0

qc(P0, r0, δ;D) denotes
the class of triples (X,x,Γ) where (X,x) ∈ CAT0

pack(P0, r0, δ), Γ is a discrete, non-
elementary, quasiconvex-cocompact group of isometries of X with codiameter ≤ D
and x ∈ QC-Hull(Λ(Γ)) then we have a universal bounded asymptotic behaviour of
the function defining the Minkowski dimension of Λ(Γ).
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Theorem X (Theorem 8.3.2). The class CAT0
qc(P0, r0, δ;D) is compact with respect

to the pointed Gromov-Hausdorff convergence and with respect to this convergence the
critical exponent is continuous, i.e. if (Xn, xn,Γn) ⊆ CAT0

qc(P0, r0, δ;D) converges
to (X∞, x∞,Γ∞) then hΓ∞ = limn→+∞ hΓn .

Remark that the lower semicontinuity of the critical exponent is known in some
cases (see [BJ97] and [Pau97]) but several restrictions on the class of groups are
made.
In the proof of the compactness part we will show the interesting fact that under
the assumptions of the theorem the boundary at infinity of the limit space is
homeomorphic (and actually isometric for a suitable choice of a metric) to the limit
space of the boundaries (Theorem 8.3.1). Moreover in the quasiconvex-cocompact
case with bounded codiameter we will see that the limit sets Λ(Γn) converge to the
limit set Λ(Γ∞) (Theorem 8.3.2).
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Chapter 2

Preliminaries on metric spaces

We fix the notation. The open and the closed ball of radius R centered at x in
a metric space X will be denoted by BX(x,R) and BX(x,R) respectively; if the
metric space is clear from the context we will simply write B(x,R) and B(x,R). The
closed annulus with center at x and radii r1 < r2 will be denoted by A(x, r1, r2). If
(X, d) is a metric space and λ is a positive real number we denote by λX the metric
space (X,λd), where (λd)(x, y) = λd(x, y) for any x, y ∈ X, i.e. the rescaled metric
space. We denote with BλX(x, r) the ball of center x and radius r with respect to
the metric λd. The identity map from (X, d) to (X,λd) is denoted by dilλ.

A geodesic is a curve γ : I → X, where I is an interval of R, such that for any
t, s ∈ I it holds d(γ(t), γ(s)) = |t− s|. If I = [a, b] we say that γ is a geodesic joining
x = γ(a) to y = γ(b). A generic geodesic joining two points x, y ∈ X will be denoted
by [x, y], even if there are more geodesics joining x and y. A curve is a local geodesic
if it is a geodesic around any point in its interval of definition.
A geodesic ray is an isometric embedding from [0,+∞) to X, while a geodesic line
(or, simply, a geodesic) is an isometric embedding from R to X. The space X is
called geodesic if for all x, y ∈ X there exists a geodesic segment joining x to y.

A metric space is complete if every Cauchy sequence has a limit point, while it is
proper if every closed and bounded set is compact. Every proper metric space is
complete.

X is said locally geodesically complete if any local geodesic in X defined on an
interval [a, b] can be extended, as a local geodesic, to a bigger interval [a− ε, b+ ε].
It is said geodesically complete if any local geodesic can be extended, as a local
geodesic, to the whole R.
A complete, locally geodesically complete metric space is geodesically complete.

Let X be a metric space and γ : [a, b]→ X be a curve. The length of γ is

`(γ) = sup
a=t0<t1,...,tn<tn+1=b

n∑
j=0

d(γ(tj), γ(tj+1)),

where the supremum is among every possible finite partitions of [a, b]. A metric
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space X is a length space if for all x, y ∈ X it holds

d(x, y) = inf
γ
`(γ),

where the infimum is taken among all the curves joining x to y. If X is a proper
length space then it is geodesic.

Finally we stress the fact that we consider pointed Gromov-Hausdorff convergence
only for complete metric spaces: so every time we write (Xn, xn) → (X,x) in the
pointed Gromov-Hausdorff sense we mean that Xn and X are complete. This
condition is not restrictive; indeed if (Xn, xn) converges to (X,x) then it converges
also to the completion (X̂, x̂). As a consequence if (Xn, xn) is a sequence of proper
metric spaces converging to (X,x) then X is proper (see Corollary 3.10 of [Her16]).

2.1 Convex metric spaces

A metric space X is convex (or Busemann) if it is geodesic and for every couple of
geodesic segments γ, γ′ such that γ(0) = γ′(0) = x the function t 7→ d(γ(t), γ′(t)) is
convex from the common maximal interval of definition to R. Every convex metric
space X is uniquely geodesic, i.e. for every two points x, y ∈ X there exists exactly
one geodesic segment joining them ([Pap05], Corollary 8.2.2). Moreover any local
geodesic is a global geodesic ([Pap05], Corollary 8.2.3). Furthermore:

Lemma 2.1.1. A complete, convex metric space is locally geodesically complete if
and only if every geodesic segment can be extended to a geodesic line.

The radius of a bounded subset Y ⊆ X, denoted by rY , is the infimum of
the positive numbers r such that Y ⊆ B(x, r) for some x ∈ X. The following
fact is well-known for CAT(0)-spaces and will be used later to characterize elliptic
isometries:

Lemma 2.1.2. For any bounded subset Y of a proper, convex metric space X there
exists a unique point x ∈ X such that Y ⊆ B(x, rY ). Such a point is called the center
of Y .

Proof. The existence of such a point is easy: just take a sequence of points xn
almost realizing the infimum in the definition of rY , i.e. B(xn, rY + 1

n) ⊇ Y . Since
Y is bounded then the sequence xn is bounded. We may suppose, up to taking
a subsequence, that the sequence xn converges to a point x∞. We then have
d(x∞, y) = limn→+∞ d(xn, y) ≤ rY for any y ∈ Y .
Assume now that there exist two points x 6= x′ satisfying the thesis, that is Y ⊆
B(x, rY ) ∩B(x′, rY ). We take the midpoint m between x and x′ and we claim that
there exists ε > 0 such that B(m, rY − ε) ⊇ B(x, rY ) ∩B(x′, rY ). Otherwise there
exist a sequence of points xn ∈ B(x, rY ) ∩B(x′, rY ) with xn /∈ B(m, rY − 1

n), that
is d(xn, x) ≤ rY , d(xn, x′) ≤ rY and d(xn,m) > rY − 1

n . Then again we may assume
that the xn’s converge to a point x∞ satisfying

d(x∞, x) ≤ rY , d(x∞, x′) ≤ rY , d(x∞,m) ≥ rY .
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So, by convexity (see Example 8.4.7.(iii) of [Pap05]), the distance from x∞ to any
point of [x, x′] is constant; this is impossible as the projection of x∞ on [x, x′] is
unique ([Pap05], Corollary 8.2.6). We have therefore proved that there exists ε > 0
such that

B(m, rY − ε) ⊇ B(x, rY ) ∩B(x′, rY ).
which contradicts with the definition of rY . Then x = x′.

When X is a convex, geodesically complete metric space then for all x ∈ X and
0 < r ≤ R it is well defined the contraction map:

ϕRr : B(x,R)→ B(x, r)

by sending a point y ∈ B(x,R) to the unique point y′ along the geodesic [x, y]
satisfying d(x, y′)/r = d(x, y)/R. By the geodesically completeness of X we conclude
that the map ϕRr is surjective. Moreover it is r

R -Lipschitz as follows directly from
the definition of convexity of X.

2.1.1 Space of geodesic lines

The space of parametrized geodesic lines of a proper, convex, geodesically complete
metric space is

Geod(X) = {γ : R→ X isometry},
endowed with the topology of uniform convergence on compact subsets of R. There
is a natural action of R on Geod(X) defined by reparametrization:

Φtγ(·) = γ(·+ t)

for every t ∈ R. It is easy to see it is a continuous action, i.e. Φt ◦ Φs = Φt+s for
all t, s ∈ R and for every t ∈ R the map Φt is a homeomorphism of Geod(X). This
action is called the geodesic flow on X. The evaluation map E : Geod(X) → X,
which is defined as E(γ) = γ(0), is continuous and proper ([BL12], Lemma 1.10).
Moreover it is surjective since X is assumed geodesically complete. The topology on
Geod(X) is metrizable. Indeed we can construct a family of metrics on Geod(X)
with the following method.
Let F be the class of continuous functions f : R→ R satisfying

(a) f(s) > 0 for all s ∈ R;

(b) f(s) = f(−s) for all s ∈ R;

(c)
∫+∞
−∞ f(s)ds = 1;

(d)
∫+∞
−∞ 2|s|f(s)ds = C(f) < +∞.

For every f ∈ F we define the distance on Geod(X):

f(γ, γ′) =
∫ +∞

−∞
d(γ(s), γ′(s))f(s)ds. (5)

We remark that the choice of f = 1
2e|s| gives exactly the distance dGeod of the

introduction.
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Lemma 2.1.3. The expression defined in (5) satisfies these properties:

(a) it is a well defined distance on Geod(X);

(b) for all γ, γ′ ∈ Geod(X) it holds f(γ, γ′) ≤ d(γ(0), γ(0)) + C(f);

(c) for all γ, γ′ ∈ Geod(X) it holds d(γ(0), γ′(0)) ≤ f(γ, γ′);

(d) it induces the topology of Geod(X).

Proof. For all γ, γ′ ∈ Geod(X) we have

d(γ(s), γ′(s)) ≤ d(γ(s), γ(0)) + d(γ(0), γ′(0)) + d(γ′(0), γ′(s))
≤ 2|s|+ d(γ(0), γ′(0)),

so ∫ +∞

−∞
d(γ(s), γ′(s))f(s)ds ≤ d(γ(0), γ′(0)) +

∫ +∞

−∞
2|s|f(s)dt < +∞.

This shows (b) and that the integral in (5) is finite. From the properties of the
integral and the positiveness of f it is easy to prove that f is actually a distance.
The proof of (c) follows from the convexity of the metric on X and the symmetry of
f . Indeed for all γ, γ′ ∈ Geod(X) the function g(s) = d(γ(s), γ′(s)) is convex. This
means that for all S, S′ ∈ R and for all λ ∈ [0, 1] it holds

g(λS + (1− λ)S′) ≤ λg(S) + (1− λ)g(S′).

We take s ≥ 0 and we use the inequality above with S = s, S′ = −s and λ = 1
2 ,

obtaining

d(γ(0), γ′(0)) = g(0) ≤ 1
2g(−s) + 1

2g(s) = d(γ(s), γ′(s)) + d(γ(−s), γ′(−s))
2 .

We can now estimate the distance between γ and γ′ as

f(γ, γ′) =
∫ 0

−∞
d(γ(s), γ′(s))f(s)ds+

∫ +∞

0
d(γ(s), γ′(s))f(s)ds

=
∫ +∞

0

(
d(γ(−s), γ′(−s)) + d(γ(s), γ′(s))

)
f(s)ds ≥ d(γ(0), γ′(0)),

where we used the symmetry of f . This concludes the proof of (c).
If a sequence γn converges to γ∞ uniformly on compact subsets then it is clear that
for every T ≥ 0 it holds

lim
n→+∞

∫ +T

−T
d(γn(s), γ∞(s))f(s)ds = 0.

For every ε > 0 we pick Tε ≥ 0 such that
∫+∞
Tε

2|s|f(s) < ε. Then it is easy to
conclude, using the properties of f , that

lim
n→+∞

∫ +∞

−∞
d(γn(s), γ∞(s))f(s)ds ≤ 2ε.
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By the arbitrariness of ε we conclude that the sequence γn converges to γ∞ with
respect to the metric f .
Now suppose the sequence γn converges to γ∞ with respect to f and suppose it does
not converge uniformly on compact subsets to γ∞. Therefore there exists T ≥ 0,
ε0 > 0 and a subsequence γnj such that d(γnj (tj), γ∞(tj)) > 6ε0 for every j, where
tj ∈ [−T, T ]. We can suppose tj → t∞ and so d(γnj (t∞), γ∞(t∞)) > 4ε0 for every
j. For all t ∈ [t∞ − ε0, t∞ + ε0] we get d(γnj (t), γ∞(t)) > 2ε0. Therefore, if we set
m = mint∈[t∞−ε0,t∞+ε0] f(s) > 0, we obtain

∫ +∞

−∞
d(γnj (s), γ∞(s))f(s)ds > 4ε2

0m

for every j, which is a contradiction.

A metric â on Geod(X) inducing the topology of uniform convergence on compact
subsets is said geometric if the evaluation map E is Lipschitz with respect to this
metric. Any metric induced by f ∈ F is geometric by Lemma 2.1.3.(c).

Similar definitions can be given for the space of geodesic rays, Ray(X), which is

Ray(X) = {ξ : [0,+∞)→ X isometry},

endowed with the topology of uniform convergence on compact subsets of [0,+∞).
Any f ∈ F defines a distance on Ray(X) by

f(ξ, ξ′) =
∫ +∞

0
d(ξ(s), ξ′(s))f(s)ds

that induces the topology of Ray(X). The evaluation map E : Ray(X) → X that
sends ξ to ξ(0) is again continuous, surjective and proper. A metric â on Ray(X)
inducing its topology is geometric if the evaluation map is Lipschitz with respect
to â. The reparametrization flow on Ray(X) is defined only for positive times and
therefore it is a semi-flow called the geodesic semi-flow.

2.1.2 Boundary at infinity

The boundary at infinity of X is defined as the set Ray(X) modulo the equivalence
relation ξ ∼ ξ′ if and only if

sup
t∈[0,+∞)

d(ξ(t), ξ′(t)) < +∞.

Since X is proper then for every geodesic ray ξ and every point x ∈ X there exists
a unique geodesic ray ξ′ which is equivalent to ξ and with ξ′(0) = x. A point of
∂X is denoted by z and the unique geodesic ray ξ in the class of z with ξ(0) = x is
denoted by ξz = [x, z]. There exists a topology on X ∪ ∂X that induces the original
metric topology on X and the quotient topology on ∂X (as quotient of Ray(X)).
With this topology the space X ∪ ∂X is compact.
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2.2 GCBA metric spaces

We recall the definition of locally CAT(κ) metric space. We fix κ ∈ R. We denote by
Mκ

2 the unique simply connected, complete, 2-dimensional Riemannian manifold of
constant sectional curvature equal to κ and by Dκ the diameter ofMκ

2 . So Dκ = +∞
if κ ≤ 0 and Dκ = π√

κ
if κ > 0.

A metric space X is CAT(κ) if any two points at distance less than Dκ can be
connected by a geodesic and if the geodesic triangles with perimeter less than 2Dκ

are thinner than their comparison triangles in the model space Mκ
2 . This means the

following. For any three points x, y, z ∈ X such that d(x, y)+d(y, z)+d(z, x) < 2Dκ

a geodesic triangle with vertices x, y, z is the choice of three geodesics [x, y], [y, z]
and [x, z], denoted by ∆(x, y, z). For any such triangle there exists a unique triangle
∆κ(x̄, ȳ, z̄) inMκ

2 , up to isometry, with vertices x̄, ȳ and z̄ satisfying d(x̄, ȳ) = d(x, y),
d(ȳ, z̄) = d(y, z) and d(x̄, z̄) = d(x, z); such a triangle is called the κ-comparison
triangle of ∆(x, y, z). The comparison point of p ∈ [x, y] is the point p̄ ∈ [x̄, ȳ] such
that d(x, p) = d(x̄, p̄). The triangle ∆(x, y, z) is thinner than ∆κ(x̄, ȳ, z̄) if for any
couple of points p ∈ [x, y] and q ∈ [x, z] we have d(p, q) ≤ d(p̄, q̄).

A metric space X is called locally CAT(κ) if for any x ∈ X there exists r > 0 such
that B(x, r) is a CAT(κ) metric space. The supremum among the radii r < Dκ

2
satisfying this property is called the CAT(κ)-radius at x and it is denoted by ρcat(x).
The infimum of ρcat(x) among the points x ∈ X is called the CAT(κ)-radius of X
and it is denoted by ρcat(X); therefore, by definition, ρcat(X) ≤ Dκ

2 .

A metric space X is GCBA if there exists a κ such that X is locally CAT(κ), locally
compact, separable and locally geodesically complete. In some case we will write
GCBAκ, if we want to emphasize the role of κ. This class of metric spaces is the
one studied in [LN19].

A tiny ball, according to [LN19], is a metric ball B(x, r) such that r < min{1, Dκ100}
and B(x, 10r) is compact.

2.2.1 Contraction maps and almost-convexity radius

We suppose X is a complete, locally geodesically complete, locally CAT(κ), geodesic
metric space. If x, y ∈ X satisfy d(x, y) < ρcat(x) then there exists a unique geodesic
joining them. Hence for any x ∈ X and 0 < r ≤ R < ρcat(x) it is well defined the
contraction map:

ϕRr : B(x,R)→ B(x, r)

by sending a point y ∈ B(x,R) to the unique point y′ along the geodesic [x, y]
satisfying d(x, y′)/r = d(x, y)/R. Moreover any local geodesic starting at x which
is contained in B(x, ρcat(x)) is a geodesic. This fact, together with the locally
geodesically completeness and the completeness of X, shows that the map ϕRr is
surjective also in this setting. It is also 2r

R -Lipschitz as stated in [LN19]. We skecth
here the computation.

Lemma 2.2.1. Any contraction map is 2r
R -Lipschitz.
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Proof. By the CAT(κ) condition it is enough to prove the thesis on the model space
Mκ

2 . The result is clearly true when κ ≤ 0, so we can assume κ = 1. In this case
Mκ

2 is the standard sphere S2.
Step 1. For any x ∈ S2 and for any 0 ≤ R ≤ π

2 the inverse of the exponential map,
the logarithmic map logx : B(x,R)→ BTxS2(O,R), is R

sinR -Lipschitz. So for any R
in our range we have that the logarithmic map is 2-Lipschitz. Thus we can conclude
that, for any y, z ∈ B(x, π2 ),

d(y, z) ≤ d(logx(y), logx(z)) ≤ 2d(y, z)

where the first inequality follows by standard comparison results.
Step 2. We fix 0 < r ≤ R ≤ π

2 and y, z ∈ B(x,R). Let y′ and z′ be the contractions
of y and z. We observe that the contraction of logx(y), on the tangent space, from
the radius R to r coincides with the point logx(y′) and the same holds for z; this
contraction map is a dilation of factor r

R . Therefore

d(y′, z′) ≤ d(logx(y′), logx(z′)) = r

R
d(logx(y), logx(z)) ≤ 2r

R
d(y, z).

The natural set of scales where the contraction map is defined is not bounded
from above by the CAT(κ)-radius but rather from the almost-convexity radius. The
almost-convexity radius at a point x ∈ X is defined as the supremum of the radii r
such that for any two geodesics [x, y], [x, z] of length at most r and any t ∈ [0, 1] it
holds:

d(yt, zt) ≤ 2td(y, z),

where yt, zt are respectively the points along [x, y] and [x, z] satisfying d(x, yt) =
t·d(x, y) and d(x, zt) = t·d(x, z). The almost-convexity radius at x does not depend on
κ and is denoted by ρac(x). Then, by definition, for any point y ∈ B(x, ρac(x)) there
exists a unique geodesic joining x to y (the existence follows from the assumptions
on X), so the contraction map is well defined for any 0 < r ≤ R < ρac(x). A
straightforward modification of Corollary 8.2.3 of [Pap05] shows that any local
geodesic joining x to a point y at distance d(x, y) < ρac(x) is actually a geodesic.
This fact and the geodesic completeness of X imply again that any contraction map
within the almost-convexity radius is surjective and 2r

R -Lipschitz, by definition.
The (global) almost-convexity radius of the space X, denoted by ρac(X), is corre-
spondingly defined as the infimum over x of the almost-convexity radius at x. Clearly
we always have ρac(X) ≥ ρcat(X). The inequality can be partially reversed when X
is proper: indeed in this case it holds

ρcat(X) ≥ min
{
Dκ

2 , ρac(X)
}
, (6)

therefore a lower bound on the almost-convexity radius and the knowledge of the
upper bound κ yield a lower bound on the CAT(κ)-radius. The proof of (6) follows
directly from Corollary II.4.12 of [BH13] once observed that any two points of X at
distance less than ρac(X) are joined by a unique geodesic.
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2.2.2 Tangent cone and the logarithmic map

We fix a complete, geodesic, GCBA-space X.
Given two local geodesics γ, γ′ starting at the same point x ∈ X we can consider
the geodesic triangle ∆(x, γ(t), γ′(t)) for any small enough t > 0. The comparison
triangle ∆κ(x̄, γ(t), γ′(t)) has an angle αt at x̄. By the CAT(κ) condition the angle
αt is decreasing when t → 0, see [BH13]. Hence it is possible to define the angle
between γ and γ′ at x as limt→0 αt: it is denoted by ∠x(γ, γ′) and it takes values in
[0, π].
For any x ∈ X the space of directions of X at x is defined as

ΣxX = {γ local geodesic s.t. γ(0) = x}/∼
where ∼ is the equivalence relation γ ∼ γ′ if and only if ∠x(γ, γ′) = 0. The function
∠x(·, ·) defines a distance which makes of ΣxX a compact, geodesically complete,
CAT(1) metric space with diameter π (see [LN19]). The tangent cone of X at the
point x is the metric space

TxX = ΣxX × [0,+∞)
up to the equivalence relation (v, 0) ∼ (w, 0) for every v, w ∈ ΣxX. The point
corrisponding to t = 0 is called the vertex of the tangent cone, denoted by O. The
metric on TxX is given by the following formula: given two points V = (v, t) and
W = (w, s) of TxX we define dT (V,W ) as the unique positive real number satisfying:

dT (V,W )2 = t2 + s2 − 2ts cos(∠x(v, w)). (7)

In other words TxX is the euclidean cone over ΣxX. With this metric TxX is a
proper, geodesically complete, CAT(0) metric space ([LN19]).

Remark 2.2.2. Let Y = Sn−1 be the euclidean standard sphere of radius 1. Then
the euclidean cone over Y is isometric to Rn.

For any point x ∈ X the logarithmic map at x is defined as:

logx : B(x, ρac(x))→ TxX, y 7→ ([x, y], d(x, y)),

where [x, y] is the unique geodesic from x to y (uniqueness is due to the definition
of almost-convexity radius).

The logarithmic map can be recovered by the contraction maps as follows. First
notice that if X is a GCBA-space and λ > 0 then the space λX is GCBA. Now, let
the logarithmic map on the space λX at dilλ(x) be denoted by

logdilλ(x) : BλX(dilλ(x), λρac(x))→ Tdilλ(x)(λX).

The spaces Tdilλ(x)(λX) and TxX are canonically isometric since the respective space
of directions are canonically isometric. Let R < ρac(x): we consider a sequence of
real numbers rn → 0, we set λn = R

rn
and we define the maps

gn = logdilλn (x) ◦ dilλn ◦ ϕRrn : BX(x,R)→ TxX

where we are using the natural identification Tdilλn (x)(λnX) ∼= TxX. By the CAT(κ)
condition the map logdilλn (x) is (1 + εn)-Lipschitz with εn → 0 for rn → 0. So, by
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Lemma 2.2.1, the map gn is 2(1 + εn)-Lipschitz and for any non-principal ultrafilter
ω this sequence defines a ultralimit map gω between the ultralimit spaces (cp.
Proposition 2.7.5). Since TxX is proper we can apply Proposition 2.7.3 and find
that the target space of gω is TxX, i.e.

gω : ω- limBX(x,R)→ TxX.

Using the definition of the logarithmic map and the natural identification between the
tangent cones Tdilλn (x)(λnX) ∼= TxX as metric spaces, it is straightforward to check
that gω, restricted to the standard isometric copy of BX(x,R) in ω- limBX(x,R)
given by Proposition 2.7.3, coincides with logx.

In general the logarithmic map of a GCBA space is not injective, due to the possible
branching of geodesics. We summarize its properties in the following lemma:

Lemma 2.2.3. Let x ∈ X be a point of a complete, geodesic, GCBA space. Then
the logarithmic map logx has the following properties:

(a) logx(B(x, r)) = B(O, r) for any r < ρac(x);

(b) d(O, logx(y)) = d(x, y) for any y ∈ B(x, ρac(x));

(c) it is 2-Lipschitz on B(x, ρac(x)).

Proof. Let y ∈ B(x, ρac(x)). By definition we have logx(y) = ([x, y], d(x, y)), where
[x, y] is the unique geodesic from x to y. From (7) we immediately infer that
dT (logx(y), O) = d(y, x). This proves (b) and that logx(B(x, r)) is included in
B(O, r) for any r < ρac(x). Now let V = (v, t) ∈ B(O, r), for r < ρac(x). We take a
geodesic γ in the class of v. Since X is locally geodesically complete, there exists an
extension of γ as a geodesic to the interval [0, r] (this follows from the completeness
of X and the fact that any local geodesic is a geodesic if it is contained in a ball
of radius smaller than the almost-convexity radius). Then, using the definition of
the logarithmic map, we deduce that logx(γ(r)) = V . Now d(x, γ(r)) = r, which
concludes the proof of (a). Finally we have seen that the logarithmic map is obtained
as the restriction of the limit map gω : ω- limBX(x,R)→ TxX to BX(x,R). It is
2-Lipschitz for all R < ρac, therefore it is 2-Lipschitz on B(x, ρac(x)).

The logarithmic map gives a good local approximation of X by the tangent cone,
as expressed in the following result.

Lemma 2.2.4 ([LN19], Lemma 5.5). Let x ∈ X be a point of a complete, geodesic,
GCBA space. For any ε > 0 there exists δ > 0 such that for all r < δ and for every
y1, y2 ∈ B(x, r) it holds

|d(y1, y2)− dT (logx(y1), logx(y2))| ≤ εr.

As a consequence of this fact, Lytchak and Nagano proved that the tangent cone
at x can be seen as the Gromov-Hausdorff limit of a rescaled tiny ball around x. We
explicit the proof of this fact because in the following we will need to write who are
the maps realizing the Gromov-Hausdorff approximations.
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Lemma 2.2.5 ([LN19], Corollary 5.7). Let x ∈ X be a point of a complete, geodesic,
GCBA space. For any sequence λn →∞ consider the sequence of CAT(κ), pointed
spaces Yn = (λnB(x, r), x), for any r < ρcat(x). Then:

(a) Yn → (TxX, dT , O) in the pointed Gromov-Hausdorff convergence;

(b) the approximating maps fn : Yn → TxX are given by fn = logdilλn (x) (using
again the natural identification Tdilλn (x)(λnX) ∼= TxX)

Proof. Fix R > 0 and any ε > 0. Let δ be as in Lemma 2.2.4 and set rn = 1/λn.
We may assume that rn · R < δ. Then for all y1, y2 ∈ BYn(x,R) we have y1, y2 ∈
BX(x, rnR) and we can apply the Lemma 2.2.4, which yields

|d(y1, y2)− dT (logx(y1), logx(y2))| ≤ εrnR.

We have dYn(y1, y2) = d(y1,y2)
rn

and, by (7) and by the definition of the logarithmic
map,

dT (fn(y1), fn(y2)) = 1
rn
dT (logx(y1), logx(y2)).

In conclusion we get
|dYn(y1, y2)− dT (fn(y1), fn(y2))| ≤ εR.

Since this is true for any ε > 0 the thesis follows from Lemma 2.2.3.

Finally we observe that this characterization of TxX has another consequence.
Fix any v ∈ ΣxX, which can be naturally seen as an element of TxX, and take any
geodesic γ starting at x defining v: then for any sequence rn → 0 we have that the
sequence γ(rn) ∈ Yn defines v in the limit (indeed, fn(γ(rn)) = v for any n).

2.2.3 Dimension and natural measure

We recall some fundamental properties of GCBA-spaces proved in [LN19]. For any
point x ∈ X there exists an integer number k ∈ N such that any sufficiently small
ball around x has Hausdorff dimension k. This number is called the dimension of
X at the point x and it is denoted by dim(x). It is possible to show that dim(x) is
equal to the geometric dimension of the tangent cone to X at x as defined in [Kle99].
The dimension of X is the (possibly infinite) quantity dim(X) = supx∈X dim(x) ∈
[0,+∞].
There exists a natural stratification of X into disjoint subsets Xk, where Xk is the
set of points of dimension k, for k ∈ N. In other words X =

⊔
k∈NX

k. Moreover
the k-dimensional Hausdorff measure Hk is locally positive and locally finite on Xk.
Hence it is defined a measure on X as

µX =
∑
k∈N
HkxXk.

The measure µX is locally positive and locally finite: we call it the natural measure
of X.

Example 2.2.6. If X is a n-dimensional Riemannian manifold with sectional
curvature ≤ κ then X is a locally geodesically complete, locally compact, separable,
locally CAT(κ) metric space. In this case µX is the n-dimensional Hausdorff measure
and it coincides with the Riemannian volume measure, up to a multiplicative constant.
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This stratification of X has good local properties, as shown in [LN19]. For any
k ∈ N it is possible to define the set of regular points Regk(X) of the k-dimensional
part Xk of X. We do not present here the definition of regular points (they are
those points that are (k, δ)-strained for a suitable small δ, according to [LN19], Sec.
11.4). Instead we recall the main properties of the set of k-dimensional and regular
k-dimensional points we will need. For every S ⊆ X we will denote Sk = S ∩Xk

and Regk(S) = Sk∩Regk(X).
Then:

• the set Regk(X) is open in X and dense in Xk (Cor. 11.8 of [LN19]);

• for any tiny ball B(x, r) there exists k such that B(x, r) does not contain points
of dimension > k (Corollary 5.4 of [LN19]);

• for any tiny ball B(x, r) there exists a constant C, only depending on the maximal
number of r-separated points in B(x, 10r), such that:

Hk
(
B(x, r)k

)
≤ C · rk (8)

Hk−1
(
B̄(x, r)k \ Regk(B(x, r))

)
≤ C · rk−1 (9)

(Corollary 11.8 of [LN19]; see Sec.2.4 for the definition of r-separated points).

2.2.4 Gromov-Hausdorff convergence

We recall here some facts about the behaviour of the natural measures and the
dimension under pointed Gromov-Hausdorff convergence.
Consider a proper GCBA-space X and its natural measure µX=

∑n
k=0HkxXk, where

n = dim(X) is assumed to be finite. The k-dimensional Hausdorff measure Hk
restricted to the k-dimensional part is a Radon measure (indeed it is Borel regular
and locally finite on the proper metric space X), so it is µX . In particular for any
open subset U ⊂ X it holds:

µX(U) = sup{µX(K) s.t. K is a compact subset of U}.

Now suppose to have a sequence of proper GCBA-spaces Xn converging in the
pointed Gromov-Hausdorff sense to some (proper) GCBA-space X. Arguing as in
the first part of the proof of Theorem 1.5 of [LN19] we deduce that the natural
measures µXn converge in the weak sense to the natural measure of the limit, µX .
This means that for any compact subsets Kn ⊂ Xn converging to a compact subset
K ⊂ X it holds:

lim
ε→0

lim inf
n→+∞

µXn(B(Kn, ε)) = lim
ε→0

lim sup
n→+∞

µXn(B(Kn, ε)) = µX(K) (10)

where we denote by B(Kn, ε) the ε-neighbourhood of Kn. As a consequence:

Lemma 2.2.7. Let Xn be a sequence of proper, GCBA-spaces converging in the
pointed Gromov-Hausdorff sense to a proper, GCBA-space X. Let xn ∈ Xn be a
sequence of points converging to x ∈ X. Then for any R > 0 it holds:

µX(B(x,R)) ≤ lim sup
n→+∞

µXn(B(xn, R)). (11)
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Proof. The natural measure µX is Radon and any compact subset contained in
B(x,R) is contained in B(x,R− 2η) for some η > 0, therefore

µX(B(x,R)) = sup
η>0

µX(B(x,R− 2η)).

On the other hand for any η > 0 we have by (10)

µX(B(x,R−2η))≤ lim sup
n→+∞

µXn(B(xn, R−η)) ≤ lim sup
n→+∞

µXn(B(xn, R)).

The equality in (11) would follow from a uniform estimate on the volumes of the
annulii of a given thickness. Indeed this is the case when the metric spaces satisfy a
uniform doubling condition, as we will see in Section 3.3.

We end the preliminaries about GCBA spaces recalling some facts about the stability
of the dimension under Gromov-Hausdorff convergence. In [LN19] (Def. 5.12),
Lytchak and Nagano introduce the notion of standard setting of convergence. This
means considering a sequence of tiny balls

B(xn, r0) ⊂ B(xn, 10r0)

in a sequence of GCBA-spaces Xn satisfying the following assumptions:

• the closed balls B(xn, 10r0) have uniformly bounded r0
2 -covering number (i.e.

∃C0 such that the ball B(xn, 10r0) can be covered by C0 closed balls of radius
r0
2 with centers in B(xn, 10r0) for all n , cp. Sec.2.4)

• the balls B(xn, 10r0) converge to a compact ball B(x, 10r0) of a GCBA-space X
in the Gromov-Hausdorff sense;

• the closures B(xn, r0) converge to the closure B(x, r0) of a tiny ball in X.

We then have:

Lemma 2.2.8 (Lemma 11.5 & Lemma 11.7 of [LN19]).
Let B(xn, r0) be a sequence of tiny balls in the standard setting of convergence. Let
yn ∈ B(xn, r0) be a sequence converging to y ∈ B(x, r0). Then:

(a) dim(y) ≥ lim supn→+∞ dim(yn);

(b) if y is k-regular then dim(y) = dim(yn) for all n large enough.

For non-compact spaces the following general result is known:

Lemma 2.2.9 (Lemma 2.1 of [Nag18]).
Let (Xn, xn) be a sequence of pointed, proper, geodesically complete, CAT(κ) spaces
converging to some (X,x) in the pointed Gromov-Hausdorff sense. Then dim(X) ≤
lim infn→+∞ dim(Xn).
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2.3 Gromov-hyperbolic metric spaces

Let X be a geodesic space. Given three points x, y, z ∈ X, the Gromov product of y
and z with respect to x is defined as

(y, z)x = 1
2
(
d(x, y) + d(x, z)− d(y, z)

)
.

The space X is said δ-hyperbolic if for every four points x, y, z, w ∈ X the following
4-points condition hold:

(x, z)w ≥ min{(x, y)w, (y, z)w} − δ (12)

or, equivalently,

d(x, y) + d(z, w) ≤ max{d(x, z) + d(y, w), d(x,w) + d(y, z)}+ 2δ. (13)

The space X is Gromov hyperbolic if it is δ-hyperbolic for some δ ≥ 0.
The above formulations of δ-hyperbolicity are convenient when interested in taking
limits (since they are preserved under ultralimits). However we will also make use of
other classical characterizations of δ-hyperbolicity, depending on which one is more
useful in the context.
Recall that a geodesic triangle in X is the union of three geodesic segments
[x, y], [y, z], [z, x] and is denoted by ∆(x, y, z). For every geodesic triangle there
exists a unique tripod ∆ with vertices x̄, ȳ, z̄ such that the lengths of [x̄, ȳ], [ȳ, z̄], [z̄, x̄]
equal the lengths of [x, y], [y, z], [z, x] respectively. There exists a unique map f∆̄
from ∆(x, y, z) to the tripod ∆ that identifies isometrically the corresponding edges,
and there are exactly three points cx ∈ [y, z], cy ∈ [x, z], cz ∈ [x, y] such that
f∆̄(cx) = f∆̄(cy) = f∆̄(cz) = c, where c is the center of the tripod ∆. By definition
of f∆̄ it holds:

d(x, cz) = d(x, cy), d(y, cx) = d(y, cz), d(z, cx) = d(z, cy).

The triangle ∆(x, y, z) is called δ-thin if for every u, v ∈ ∆(x, y, z) such that f∆̄(u) =
f∆̄(v) it holds d(u, v) ≤ δ; in particular the mutual distances between cx, cy and cz
are at most δ. It is well-known that every geodesic triangle in a geodesic δ-hyperbolic
metric space (as defined above) is 4δ-thin, and moreover satisfies the Rips’ condition:

[y, z] ⊂ B([x, y] ∪ [x, z], 4δ). (14)

Furthermore these last conditions are equivalent to the above definition of hyperbolic-
ity, up to slightly increasing the hyperbolicity constant δ in (12). As a consequence of
the δ-thinness of triangles we have the following: let x, y, z ∈ X, f∆̄ : ∆(x, y, z)→ ∆̄
the tripod approximation and cx, cy, cz as before. Then

(y, z)x = d(x, cz) = d(x, cy) and d(x, cx) ≤ d(x, cy) + 4δ (15)

All Gromov-hyperbolic spaces, in this thesis, will be supposed proper; we will however
stress this assumption in the statements where it is needed.
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2.3.1 Gromov boundary

We fix a δ-hyperbolic metric space X and a base point x of X.
The Gromov boundary of X is defined as the quotient

∂GX = {(yn)n∈N ⊆ X | lim
n,m→+∞

(yn, ym)x = +∞} /∼,

where (yn)n∈N is any sequence of points in X and ∼ is the equivalence relation
defined by (yn)n∈N ∼ (zn)n∈N if and only if limn,m→+∞(yn, zm)x = +∞. We will
write y = [(yn)] ∈ ∂GX for short, and we say that (yn) converges to y. Clearly this
definition does not depend on the basepoint x.
There is a natural topology on X ∪ ∂GX that extends the metric topology of X.
The Gromov product can be extended to points y, z ∈ ∂GX by

(y, z)x = sup
(yn),(zn)

lim inf
n,m→+∞

(yn, zm)x

where the supremum is over all sequences such that (yn) ∼ y and (zn) ∼ z. For any
x, y, z ∈ ∂GX it continues to hold

(x, y)x ≥ min{(x, z)x, (y, z)x} − δ. (16)

Moreover, for all sequences (yn), (zn) converging to y, z respectively it holds

(y, z)x − δ ≤ lim inf
n,m→+∞

(yn, zm)x ≤ (y, z)x. (17)

In a similar way is defined the Gromov product between a point y ∈ X and a point
z ∈ ∂GX. This product satisfies conditions analogue of (16) and (17).
Any geodesic ray ξ defines a point ξ+ = [(ξ(n))n∈N] of the Gromov boundary ∂GX:
we say that ξ joins ξ(0) = y to ξ+ = z, and we denote it by [y, z]. Notice that any
point y ∈ X can be joined to any point z = [(zn)] ∈ ∂GX: in fact the sequence (zn)
must be unbounded (as (zn, zn)x is unbounded), so the geodesic segments [y, zn]
converge uniformly on compact sets, by properness of X, to a geodesic ray ξ = [y, z].
A geodesic ray connecting the basepoint x to z is denoted by ξz = [x, z], even if
it is not unique. If X is also convex then ξz is unique for all z ∈ ∂GX. This fact
defines a natural identification between ∂X and ∂GX: indeed, a base point x ∈ X
being fixed, for every geodesic ray ξ starting at x one defines a point in the Gromov
boundary as ξ+ = [(ξ(n)n∈N]. This formula provides a well defined homeomorphism
between ∂X and ∂GX.

Analogously, given different points z = [(zn)], z′ = [(z′n)] ∈ ∂GX there always exists
a geodesic line γ joining z to z′, i.e. such that γ|[0,+∞) and γ|(−∞,0] join γ(0) to
z, z′ respectively (just consider the limit γ of the segments [zn, z′n]; notice that
all these segments intersect a ball of fixed radius centered at x, since (zn, z′m)x is
uniformly bounded above). We call z and z′ the positive and negative endpoints of
γ, respectively, denoted γ±. We will also write, for short, ∂γ := {γ+, γ−}.

The Busemann function at z ∈ ∂GX can be defined as

Bz(x, y) = sup
ξ

lim
t→+∞

d(x, ξ(t))− d(ξ(t), y) for x, y ∈ X,
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where the supremum is over all geodesic rays ξ with ξ+ = z. It is clear from the
definition that the Busemann function Bz(x, y) satisfies

(y, z)x − (x, z)y − δ ≤ Bz(x, y) ≤ (y, z)x − (x, z)y.

We remark that the formula (y, z)x − (x, z)y is used in [DSU17] to define Busemann
functions in arbitrary Gromov hyperbolic metric spaces.
The level set Bz(x, y) = 0 is called the horosphere of X centered at z passing
through x, while the subset Bz(x, y) ≥ 0 is the horoball through x; they are denoted,
respectively, Hz(x) and H+

z (x). Since Bz(x, y) = Bz(x′, y) for x, x′ lying on the same
horosphere Hz centered at z, we will also often write Bz(Hz, y), which should be
thought of as a signed distance from Hz.

Lemma 2.3.1. For all x ∈ X and z ∈ ∂GX the function Bz(x, ·) : X → R is
1-Lipschitz.

Proof. We fix y, y′ ∈ X. For all ε > 0 we take a geodesic ray ξ̄ that ε-almost realizes
the supremum in the definition of Bz(x, y). Then

Bz(x, y)− Bz(x, y′) ≤ lim
t→+∞

−d(ξ̄(t), y) + d(ξ̄(t), y′) + ε ≤ d(y, y′) + ε.

In the same way Bz(x, y′) − Bz(x, y) ≤ d(y, y′) + ε. By the arbitrariness of ε we
achieve the result.

As X is not uniquely geodesic it may happen that there are several geodesic rays
joining a point of X to some point z ∈ ∂GX, or several geodesic lines joining two
points of the boundary. However the following standard uniform estimates hold:

Lemma 2.3.2 (Prop. 8.10 of [BCGS17]). Let X be a δ-hyperbolic space.

(a) Let ξ1, ξ2 be two geodesic rays with ξ+
1 = ξ+

2 and ξ1(0) = ξ2(0): then we have
d(ξ1(t), ξ2(t)) ≤ 8δ, ∀t ≥ 0;

(b) let ξ1, ξ2 be two geodesic rays with ξ+
1 = ξ+

2 : then there exist t1, t2 ≥ 0 with
t1 + t2 = d(ξ1(0), ξ2(0)) such that d(ξ1(t+ t1), ξ2(t+ t2)) ≤ 8δ, ∀t ≥ 0; moreover,
if ξ1(0) and ξ2(0) lie on the same horosphere centered at the common endpoint,
then |t1 − t2| ≤ 8δ;

(c) let γ1, γ2 be two geodesic lines with γ+
1 = γ+

2 and γ−1 = γ−2 : then for all t ∈ R
there exists s ∈ R such that d(γ1(t), γ2(s)) ≤ 8δ.

2.3.2 Visual metrics

When X is a proper, δ-hyperbolic metric space it is known that the boundary
∂GX is metrizable. A metric Dx,a on ∂GX is called a visual metric of parameter
a ∈

(
0, 1

2δ·log2 e

)
and center x ∈ X if there exists V > 0 such that for all z, z′ ∈ ∂GX

it holds
1
V
e−a(z,z′)x ≤ Dx,a(z, z′) ≤ V e−a(z,z′)x . (18)
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A visual metric is said standard if for all z, z′ ∈ ∂GX it holds

(3− 2eaδ)e−a(z,z′)x ≤ Dx,a(z, z′) ≤ e−a(z,z′)x .

For all a as before and x ∈ X there exists always a standard visual metric of
parameter a and center x, see [Pau96]. We remark that the constants involved in
the definition of a standard visual metric depend only on δ. As in [Pau96] we define
the generalized visual ball of center z ∈ ∂GX and radius ρ ≥ 0 as

B(z, ρ) =
{
z′ ∈ ∂GX s.t. (z, z′)x > log 1

ρ

}
.

It is comparable to the metric balls of the visual metrics on ∂GX.

Lemma 2.3.3. Let Dx,a be a visual distance of center x and parameter a on ∂GX.
Then for all z ∈ ∂GX and for all ρ > 0 it holds

BDx,a

(
z,

1
V
ρa
)
⊆ B(z, ρ) ⊆ BDx,a(z, V ρa).

Proof. For all z′ ∈ B(z, ρ) by definition it holds (z, z′)x > log 1
ρ and therefore

Dx,a(z, z′) ≤ V e−a(z,z′)x < V ρa.
If z′ ∈ BDx,a(z, 1

V ρ
a) then 1

V e
−a(z,z′)x ≤ Dx0,a(z, z′) < 1

V ρ
a. This easily implies

z′ ∈ B(z, ρ).

A compact metric space Z is (A, s)-Ahlfors regular if there exists a probability
measure µ on Z such that

1
A
ρs ≤ µ(B(z, ρ)) ≤ Aρs

for all z ∈ Z and all 0 ≤ ρ ≤ Diam(Z), where Diam(Z) is the diameter of Z. In case
Z = ∂GX we say that Z is visual (A, s)-Ahlfors regular if there exists a probability
measure µ on ∂GX such that

1
A
ρs ≤ µ(B(z, ρ)) ≤ Aρs

for all z ∈ Z and all 0 ≤ ρ ≤ 1, where B(z, ρ) is the generalized visual ball of center
z and radius ρ. From Lemma 2.3.3 it follows immediately the following.

Lemma 2.3.4. If ∂GX is (A, s)-Ahlfors regular with respect to a visual metric of
center x and parameter a, then it is visual (AV s, as)-Ahlfors regular, where V is the
constant of (18).

2.3.3 Projections

Recall that a subset C ⊆ X ∪ ∂GX is said convex if for every x, y ∈ C there exists
at least one geodesic (segment, ray, line) joining x to y that is included in C. Given
any closed, convex subset C of X and a point x ∈ X, a projection of x to C is a
point c ∈ C such that d(x,C) = d(x, c). Since C is closed and X is proper, it is
clear that there exists at least a projection.
A fundamental tool in the study of projections in δ-hyperbolic spaces is the following:
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Lemma 2.3.5 (Projection Lemma, cp. Lemma 3.2.7 of [CDP90]).
Let X be a δ-hyperbolic space, and let x, y, z ∈ X. For any geodesic segment [y, z]
we have:

(y, z)x ≥ d(x, [y, z])− 4δ.

Therefore if C is a convex subset and x0 is a projection of x on C then (x0, c)x ≥
d(x, x0)− 4δ for all c ∈ C. This easily implies that the projection x0 satisfies, for all
c ∈ C:

(x, c)x0 ≤ 4δ (19)

One can then extend the definition of projection to boundary points, using this
relation, as follows: we say that x0 is a projection of x ∈ ∂GX on C if

(x, c)x0 ≤ 5δ for all c ∈ C.

In the next lemma we summarize the properties of projections we need. Recall that
since C is convex and closed then it is naturally a geodesic, δ-hyperbolic, proper
metric space; furthermore the Gromov boundary ∂GC of C canonically embeds into
∂GX.

Lemma 2.3.6. Let X be a proper, δ-hyperbolic metric space and C be a closed,
convex subset of X. Let x, x′ ∈ X ∪ ∂GX \ ∂GC. The following facts hold:

(a) there exists at least one projection of x on C;

(b) if x1, x2 are two projections of x on C then d(x1, x2) ≤ 10δ;

(c) if x0 and x′0 are respectively projections of x and x′ on C, then
d(x0, x

′
0) ≤ d(x, x′) + 12δ.

Proof. We first show the existence of a projection for points x ∈ ∂GX \ ∂GC. Let
(xn) be a sequence converging to x and let cn be a projection of xn on C. First of
all we claim that the sequence (cn) is bounded. As the sequence (cn) is in C and
x /∈ ∂GC, then (cn) is not equivalent to (xn). In particular (xn, cn)c0 ≤ D for some
0 ≤ D < +∞ and some c0 ∈ C. This means

d(c0, xn) + d(c0, cn)− d(cn, xn) ≤ 2D.

As x0 ∈ C and cn is a projection of xn on C, we have d(c0, xn) ≥ d(cn, xn) and
therefore d(c0, cn) ≤ 2D for all n. Therefore the sequence cn converges, up to a
subsequence, to a point c ∈ C. Notice that for any n and any c′ ∈ C we have
(xn, c′)cn ≤ 4δ. Applying (17) we get for all c′ ∈ C

(x, c′)c ≤ lim sup
n→+∞

(xn, c′)c + δ ≤ lim sup
n→+∞

(xn, c′)cn + d(cn, c) + δ ≤ 5δ.

This proves (a). Assertion (b) is an easy consequence of the definition, as

(x, x1)x2 ≤ 5δ, (x, x2)x1 ≤ 5δ,

so d(x1, x2) = (x, x1)x2 + (x, x2)x1 ≤ 10δ.
Finally the proof of (c) can be found in [CDP90], Corollary 10.2.2.
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Remark 2.3.7. We record here a consequence of the proof above: if (xn) is a
sequence of points converging to a point x ∈ ∂GX \ ∂GC and cn is a projection of
xn on C for all n, then, up to a subsequence, the limit point of the sequence cn is a
projection of x on C.

We now recall the Morse property of geodesic segments in a Gromov-hyperbolic
space. A map α : [0, l]→ X is a (1, ν)-quasigeodesic segment if for any t, t′ ∈ [0, l] it
holds

|t− t′| − ν ≤ d(α(t), α(t′)) ≤ |t− t′|+ ν.

The points α(0) and α(l) are called the endpoints of α.

Proposition 2.3.8 (Morse Property). Let X be a δ-hyperbolic space and let α be a
(1, ν)-quasigeodesic segment. The following facts hold:

(a) for any geodesic segment β joining the endpoints of α we have dH(α, β) ≤ ν+12δ,
where dH is the Hausdorff distance;

(b) for any (1, ν)-quasigeodesic segment β with the same endpoints of α and for any
time t where both α and β are defined it holds d(α(t), β(t)) ≤ 6ν + 48δ.

The proof of the first part can be found in [Bow06], while the second part is classical
and follows from a straightforward computation.

As an immediate consequence of Lemma 2.3.5 and the previous proposition we get:

Lemma 2.3.9. Let X be a δ-hyperbolic metric space, x ∈ X and ξ be a geodesic
ray such that ξ(0) is a projection of x on ξ. Then

(a) for all T ≥ 0 the curve α = [x, ξ(0)] ∪ [ξ(0), ξ(T )] is a (1, 4δ)-quasigeodesic and
d(α(t), γ(t)) ≤ 72δ for all possible t, where γ = [x, ξ(T )];

(b) the curve α = [x, ξ(0)] ∪ [ξ(0), ξ+] is a (1, 4δ)-quasigeodesic and d(α(t), ξ′(t)) ≤
72δ for all t ≥ 0, where ξ′ = [x, ξ+];

Now we state the contracting property of projections:

Proposition 2.3.10 (Contracting Projections). Let X be a proper, δ-hyperbolic
space, C ⊆ X any closed convex subset and Y ⊆ X another convex subset. The
following facts hold:

(a) suppose that the projections c, c′ on C of, respectively, y, y′ ∈ Y satisfy d(c, c′) >
9δ: then, [y, c] ∪ [c, c′] ∪ [c′, y′] is a (1, 18δ)-quasigeodesic segment;

(b) if d(Y,C) > 30δ then any two projections on C of points of Y are at distance at
most 9δ;

(c) if α, β are geodesic with ∂α∩∂β = ∅, then any projection b+ of β+ on α satisfies
d(b+, β) ≤ max{49δ, d(α, β) + 19δ}.
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Proof. By assumption we have (y, c′)c ≤ 4δ and (y′, c)c′ ≤ 4δ, i.e.

d(y, c′) ≥ d(y, c) + d(c, c′)− 8δ, d(y′, c) ≥ d(y′, c′) + d(c, c′)− 8δ. (20)

We apply the four-points condition (13) to (y, c′, y′, c) obtaining

d(y, c′) + d(y′, c) ≤ max{d(y, y′) + d(c, c′), d(y, c) + d(y′, c′)}+ 2δ.

Assuming d(c, c′) > 9δ we get by (20)

d(y, c′)+d(y′, c) ≥ d(y, c)+d(c, c′)+d(y′, c′)+d(c, c′)−16δ > d(y, c)+d(y′, c′)+2δ.

Therefore the four-point condition becomes

d(y, c′) + d(y′, c) ≤ d(y, y′) + d(c, c′) + 2δ.

Using again (20) we get

d(y, c) + d(c, c′) + d(y′, c′) + d(c, c′)− 16δ ≤ d(y, y′) + d(c, c′) + 2δ

which proves (a). We suppose now d(Y,C) > 30δ and that there are two points
y, y′ ∈ Y with projections c, c′ on C such that d(c, c′) > 9δ. Then the path
[y, c]∪ [c, c′]∪ [c′, y′] is a (1, 18δ)-quasigeodesic segment by (a) and it is at Hausdorff
distance at most 30δ from any geodesic segment [y, y′], by Lemma 2.3.8. As Y is
convex, one of these geodesic segments is included in Y , so c is at distance at most
30δ from Y . This contradiction proves (b).
In order to prove (c) we observe that α and β are two closed, convex subsets of X.
We divide the proof in two cases.
Case 1: d(α, β) > 30δ. Then let x0 ∈ α and y0 ∈ β be points minimizing the distance
between α and β; in particular x0 is a projection of y0 on α. By Remark 2.3.7 and
by (b) there exists a projection b+ of β+ on α that falls at distance at most 9δ from
x0. Therefore we have d(b+, β) ≤ d(b+, x0) + d(x0, β) ≤ 9δ + d(α, β). The thesis for
all possible projections of β+ on α follows from Lemma 2.3.6.(b).
Case 2: d(α, β) ≤ 30δ. In this case we parameterize β in such a way that β(0) is at
distance at most 30δ from α. Then let

t0 = max{t ∈ [0,+∞) s.t. d(β(t), α) ≤ 30δ},

let y0 = β(t0) and let x0 be any projection of y0 on α. The convex subset [β(t0), β+]
of β is at distance > 30δ from α, so arguing as before we have that any projection b+
of β+ on α is at distance at most 19δ from x0. Then, again d(b+, β) ≤ d(b+, x0) +
d(x0, y0) ≤ 49δ.

2.3.4 Helly’s Theorem

A subset C ⊆ X ∪ ∂GX is said λ-quasiconvex, where λ ≥ 0, if for every x, y ∈ C
there exists at least one geodesic (segment, ray or line) joining x to y that is included
in B(C, λ). The subset C is called starlike with respect to a point x0 ∈ C if for
all x ∈ C there exists at least one geodesic (segment, ray or line) [x0, x] entirely
included in C. For instance a convex set is starlike with respect to all of its points.
The proof of the following lemma can be found in [DKL18] and [CDP90]:
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Lemma 2.3.11 (Lemma 3.3 of [DKL18] and Proposition 10.1.2 of [CDP90]).
Let X be δ-hyperbolic and let C ⊆ X ∪ ∂GX be starlike with respect to x0. Then C
is 12δ-quasiconvex and B(C, λ) is 20δ-quasiconvex for all λ ≥ 0.

We state now the version of Helly’s Theorem which we will need. The proof we
give here follows the one given by [BF18], with the minor modifications needed to
deal with quasiconvex subsets instead of convex ones.

Proposition 2.3.12 (Helly’s Theorem). Let X be a δ-hyperbolic space and let
(Ci)i∈I be a family of λ-quasiconvex subsets of X such that Ci ∩ Cj 6= ∅ ∀i, j. Then:⋂

i∈I
B(Ci, 119δ + 15λ) 6= ∅.

The proof is a direct consequence of the following lemma.

Lemma 2.3.13. Let X be a δ-hyperbolic space, let C1, C2 ⊆ X be two λ-quasiconvex
subsets with non-empty intersection and let x0 ∈ X be fixed. Assume that we have
points x1 ∈ C1 and x2 ∈ C2 which satisfy:

d(x0, xi) ≤ d(x0, Ci) + δ for i = 1, 2

d(x0, x1) ≥ d(x0, x2)− δ

Then, d(x1, C2) ≤ 119δ + 15λ.

Proof. Let u ∈ C1 ∩ C2. By the Projection Lemma 2.3.5 we have

(u, x1)x0 ≥ d(x0, [u, x1])− 4δ.

Moreover

d(x0, [u, x1]) ≥ d(x0, B(C1, λ)) ≥ d(x0, C1)− λ ≥ d(x0, x1)− λ− δ.

So (u, x1)x0 ≥ d(x0, x1)− λ− 5δ. Computing the Gromov product we get

d(u, z) + 10δ + 2λ ≥ d(x1, z) + d(x1, u).

The same conclusion holds for x2. Hence the two paths α = [u, x1] ∪ [x1, x0] and
β = [u, x2] ∪ [x2, x0] are (1, 10δ + 2λ)-quasigeodesic segments with same endpoints.
Applying Proposition 2.3.8 we conclude that for any t where the two paths are
defined it holds:

d(α(t), β(t)) ≤ 108δ + 12λ.

We estimate now the distance between x1 and the geodesic segment [u, x2]. Let
t1, t2 be such that α(t1) = x1 and β(t2) = x2. If t1 ≤ t2 then β(t1) ∈ [u, x2] and
in particular t1 is a common time for both geodesic segments. Therefore we can
conclude that d(x1, [u, x2]) ≤ 108δ + 12λ. We consider now the case t1 ≥ t2. Since
d(x0, x1) ≥ d(x0, x2)− δ we know that

t1 = d(u, x1) ≤ d(x0, u)− d(x0, x1) + 10δ + 2λ
≤ d(x0, u)− d(x0, x2) + 11δ + 2λ
≤ d(x0, x2) + d(x2, u)− d(x0, x2) + 11δ + 2λ
= t2 + 11δ + 2λ.
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Therefore we get

d(x1, x2) = d(α(t1), β(t2)) ≤ d(α(t1), α(t2)) + d(α(t2), β(t2))
≤ 11δ + 2λ+ 108δ + 12λ = 119δ + 14λ.

In any case we have d(x1, [u, x2]) ≤ 119δ + 14λ. In conclusion

d(x1, C2) ≤ d(x1, B(C2, λ)) + λ ≤ d(x1, [u, x2]) + λ ≤ 119δ + 15λ.

Proof of Proposition 2.3.12. We choose a point x0 ∈ X. Let xi ∈ Ci be as in the
previous lemma, say with d(x0, x1) ≥ d(x0, xi)− δ for all i ∈ I. Applying the lemma
to any couple C1, Ci we find that the point x1 belongs to the intersection of all the
desired neighbouroods of Ci.

Finally we recall the definition of quasiconvex hull of a subset C of ∂GX: it
is the union of all the geodesic lines joining two points of C and it is denoted by
QC-Hull(C).

2.4 Packing and covering
Let Y ⊂ X be any subset of a metric space:
– a subset S of Y is called r-dense if ∀y ∈ Y ∃z ∈ S such that d(y, z) ≤ r;
– a subset S of Y is called r-separated if ∀y, z ∈ S it holds d(y, z) > r.
The r-packing number of Y is the maximal cardinality of a 2r-separated subset of Y
and is denoted by Pack(Y, r). The r-covering number of Y is the minimal cardinality
of a r-dense subset of Y and is denoted by Cov(Y, r). These two quantities are
classically related by the following relations:

Pack(Y, 2r) ≤ Cov(Y, 2r) ≤ Pack(Y, r). (21)

On a given spaceX the numbers Pack(B(x,R), r) and Cov(B(x,R), r), for 0 < r ≤ R,
depend in general on the chosen point x. We are interested in the case where these
numbers can be bounded independently of x ∈ X. Therefore consider the functions

Pack(R, r) = sup
x∈X

Pack(B(x,R), r), Cov(R, r) = sup
x∈X

Cov(B(x,R), r)

called, respectively, the packing and covering functions of X. They take values on
[0,+∞]; moreover, as an immediate consequence of (21), we have

Pack(R, 2r) ≤ Cov(R, 2r) ≤ Pack(R, r). (22)

Definition 2.4.1. Let X be a metric space and let C0, P0, r0 > 0.
We say that X is P0-packed at scale r0 if Pack(3r0, r0) ≤ P0, that is every ball of
radius 3r0 contains no more than P0 points that are 2r0-separated.
Analogously we say that X is C0-covered at scale r0 if Cov(3r0, r0) ≤ C0, i.e. every
ball of radius 3r0 can be covered by at most C0 balls of radius r0.

The packing property can always be propagated at larger scales.



48 2. Preliminaries on metric spaces

Lemma 2.4.2. Let X be a geodesic metric space that is P0-packed at scale r0. Then
for any R ≥ 3r0 it holds:

Pack(R, r0) ≤ P0(1 + P0)
R
r0
−1
.

Proof. We prove the thesis by induction on k, where k is the smallest integer
such that R ≤ 3r0 + kr0. The case k = 0 clearly holds as for R = 3r0 we have
Pack(R, r0) ≤ P0 ≤ P0(1+P0)2. Let now k ≥ 1 and R ≥ 3r0 such that R ≤ 3r0 +kr0.
We consider the sphere S(x,R− r0) of points at distance exactly R− r0 from x. We
observe that R− r0 ≤ 3r0 + (k − 1)r0, so by induction we can find a 2r0-separated
subset y1, . . . , yn of S(x,R−r0) of maximal cardinality, where n ≤ P0(1+P0)

R−r0
r0
−1.

Moreover
n⋃
i=1

B(yi, 3r0) ⊇ A(x,R− r0, R).

Indeed for any y ∈ A(x,R− r0, R) we take a geodesic [x, y] and we call y′ the point
on the geodesic [x, y] at distance R− r0 from x. Then y ∈ B(y′, r0). Moreover there
exists yi such that d(y′, yi) ≤ 2r0, because of the maximality of the set {y1, . . . , yn}.
Hence d(y, yi) ≤ 3r0. Therefore we get:

Pack(B(x,R), r0) ≤ Pack(B(x,R− r0), r0) + Pack(A(x,R− r0, R), r0)

≤ Pack(B(x,R− r0), r0) +
n∑
i=1

Pack(B(yi, 3r0), r0).

Since Pack(B(yi, 3r0), r0) ≤ P0, we obtain

Pack(B(x,R), r0) ≤ Pack(B(x,R− r0), r0) + P0 · n
≤ Pack(B(x,R− r0), r0) + P0 · Pack(B(x,R− r0), r0)

≤ (1 + P0)P0(1 + P0)
R−r0
r0
−1 = P0(1 + P0)

R
r0
−1
.

In general a control of the packing function at some fixed scale does not imply
any control at smaller scales, as shown in the following example.

Example 2.4.3. Let Dn ⊂ Rn be the closed Euclidean disk of radius 1. Let Xn

be the space obtained gluing a Euclidean ray [0,+∞) to a point of the boundary
of Dn. Fix r0 = 1. Any 2r0-separated subset S of Xn contains at most one point
of Dn. Hence Pack(3r0, r0) ≤ 2, in other words Xn is 2-packed at scale 1 for every
n. However at smaller scales, for example at scale r = 1

4 , we can easily show that
Pack(3r, r)→ +∞ when n→ +∞. Notice that the spaces Xn in this example are
complete and CAT(0) but they fail to be geodesically complete.

2.4.1 Packing in convex spaces

The next result states that in a convex and geodesically complete metric space, the
packing function Pack(R, r) is well controlled by the packing condition at any fixed
scale r0:
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Proposition 2.4.4. Let X be a convex and geodesically complete metric space that
is P0-packed at scale r0. Then:

(a) for all r ≤ r0, the space X is P0-packed at scale r;

(b) for every 0 < r ≤ R it holds:

Pack(R, r) ≤ P0(1 + P0)
R
r
−1, if r ≤ r0;

Pack(R, r) ≤ P0(1 + P0)
R
r0
−1, if r > r0.

Moreover if X is complete then it is proper.

The proof follows by the next easy but fundamental lemma.

Lemma 2.4.5 (Packing propagation). Let X be a convex, geodesically complete
metric space that is P0-packed at scale r0. Then X is P0-packed at scale r for any
r ≤ r0.

Proof. We fix x ∈ X and r ≤ r0. We take a 2r-separated subset {x1, . . . , xN} of
B(x, 3r). We consider the contraction map ϕ3r0

3r which is surjective and r
r0
-Lipschitz.

For any i we fix a preimage yi of xi under ϕ3r0
3r . We have 2r < d(xi, xj) ≤ r

r0
d(yi, yj)

for any i 6= j. This means that the set {y1, . . . , yN} is 2r0-separated in B(x, 3r0),
hence N ≤ P0.

Proof of Proposition 2.4.4. By Lemma 2.4.5 we know that X is P0-packed at scale
r for all 0 < r ≤ r0. Therefore, for these values of r, Lemma 2.4.2 yields

Pack(R, r) ≤ P0(1 + P0)
R
r
−1

∀R ≥ 3r; but this also holds for R ≤ 3r since then Pack(R, r) ≤ Pack(3r, r). On
the other hand if r ≥ r0 the thesis follows directly from Lemma 2.4.2. Indeed when
R ≥ 3r0 then Pack(R, r) ≤ Pack(R, r0) and Lemma 2.4.2 concludes. If R < 3r0 we
get

Pack(R, r) ≤ Pack(R, r0) ≤ Pack(3r0, r0) ≤ P0

and P0(1 + P0)
R
r
−1 ≥ P0.

Finally we assume that X is also complete. For all x ∈ X and R ≥ 0 the ball
B(x,R) is complete since it is closed and X is complete. Moreover for all ε > 0 the
maximal cardinality of a ε-separated subset of B(x,R) is finite, hence this ball is
totally bounded and so compact.

We can read this result in terms of the covering functions instead of the packing
functions using (22).

Corollary 2.4.6. Let X be a convex, geodesically complete metric space that is
P0-packed at scale r0. Then for every 0 < r ≤ R it holds:

Cov(R, r) ≤ P0(1 + P0)
2R
r
−1, if r ≤ 2r0;

Cov(R, r) ≤ P0(1 + P0)
2R
r0
−1, if r > 2r0.



50 2. Preliminaries on metric spaces

Proof. We have

Cov(R, r) ≤ Pack
(
R,

r

2

)
≤ P0(1 + P0)

2R
r
−1, if r

2 ≤ r0

Cov(R, r) ≤ P0(1 + P0)
2R
r0
−1
, if r

2 > r0.

2.4.2 Packing in GCBA spaces

The proof of the packing propagation lemma is based on two properties of the
contraction maps ϕRr : they are surjective and r

R -Lipschitz. In case of GCBA spaces
the contraction maps are again surjective but 2r

R -Lipschitz. However we can mimic
the proofs above in this setting, up to a factor 2. Indeed the next proposition affirms
that the packing functions can be well controlled for complete, locally CAT(κ)-spaces
which are locally geodesically complete (notice that no local compactness is assumed,
since it will follow from the packing condition):

Proposition 2.4.7. Let X be a complete, locally CAT(κ), locally geodesically
complete, geodesic metric space with ρac(X) > 0. Suppose that X satisfies

Pack
(

3r0,
r0
2

)
≤ P0 for 0 < r0 < ρac(X)/3.

Then X is proper and geodesically complete; so it is a GCBA metric space. Moreover
for any 0 < r ≤ R it holds:

Pack(R, r) ≤ P0(1 + P0)
R
r
−1, if r ≤ r0;

Pack(R, r) ≤ P0(1 + P0)
R
r0
−1, if r > r0.

We remark that a packing condition to scales bigger than the almost-convexity
radius does not propagate to smaller scales:

Example 2.4.8. Let Xn be the graph with one vertex and n loops of length 1. For
any n we glue an half-line to the vertex obtaining a complete, GCBA, geodesic
metric space Yn. As in Example 2.4.3 it is easy to show that at big scales the spaces
Yn satisfy a uniform packing condition, while at small scales they do not.

The proof of Proposition 2.4.7 is based again on the adapted version of Lemma
2.4.5

Lemma 2.4.9. Let X be a space satisfying the assumptions of Proposition 2.4.7.
Then X is P0-packed at scale r for any r ≤ r0.

The proof is exactly the same given for Lemma 2.4.5. The difference is the factor
2 in the Lipschitz constant of the contraction maps: the packing assumption on X
is made especially to overcome this fact.

Proof of Proposition 2.4.7. The estimates on the packing functions can be made
exactly as in the proof of Proposition 2.4.4, as well as the proof of the properness of
X. Moreover a complete, locally geodesically complete metric space is geodesically
complete.
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Also in this case we have:
Corollary 2.4.10. Let X be a complete, locally CAT(κ), locally geodesically com-
plete, geodesic metric space with ρac(X) > 0. Suppose that X satisfies

Pack
(

3r0,
r0
2

)
≤ P0 for r0 < ρac(X)/3.

Then for any 0 < r ≤ R it holds:
Cov(R, r) ≤ P0(1 + P0)

2R
r
−1, if r ≤ 2r0;

Cov(R, r) ≤ P0(1 + P0)
2R
r0
−1, if r > 2r0.

2.5 Isometries of Gromov-hyperbolic spaces
When X is a Gromov-hyperbolic space then its isometries are classified into three
types according to the behaviour of their orbits (cp. for instance [CDP90]):
• an isometry g is elliptic if it has bounded orbits; when g acts discretely this is

the same as asking that it is a torsion element, cp. [BCGS17];

• an isometry g is parabolic if there exists a point g∞ ∈ ∂GX such that for all
x ∈ X the sequences (gkx)k≥0 and (gkx)k≤0 converge to g∞;

• an isometry g is hyperbolic if the map k 7→ gkx is a quasi-isometry ∀x ∈ X, i.e.
there exist L,C > 0 such that for any k, k′ ∈ Z it holds

1
L
|k − k′| − C ≤ d(gkx, gk′x) ≤ L|k − k′|+ C.

In this case there exist two points g− 6= g+ in ∂GX such that for any x ∈ X the
sequence (gkx)k≥0 converges to g+ and the sequence (gkx)k≤0 converges to g−.

Also recall that the asymptotic displacement of an isometry g is defined as the limit
(which exists and does not depend on the choice of x ∈ X):

‖g‖ = lim
n→+∞

d(x, gnx)
n

.

It is well known that for any isometry g of X and for any k ∈ Z∗ it holds ‖gk‖ = k‖g‖
and that g is hyperbolic if and only if ‖g‖ > 0 (see [CDP90]). The following lemma
is well known and will be used to bound the displacement of an isometry by its
asymptotic displacement:
Lemma 2.5.1 ([BCGS17], [CDP90]). For any isometry g and every x ∈ X we have:
d(x, gnx) ≤ d(x, gx) + (n− 1) · ‖g‖+ 4δ · log2 n. for all n > 0.

Any isometry of X acts naturally by homeomorphisms on ∂GX. If g is parabolic then
g∞ is the unique fixed point of the action of g on X ∪ ∂GX, while if g is hyperbolic
then g−, g+ are the only fixed points of the action of g on X ∪∂GX. The set of fixed
points of an isometry g on the Gromov boundary is denoted by Fix∂(g). For any
k ∈ Z∗ = Z \ {0} we have that an isometry g is elliptic (resp.parabolic, hyperbolic)
if and only if gk is elliptic (resp.parabolic, hyperbolic); moreover if g is parabolic or
hyperbolic it holds Fix∂(gk) = Fix∂(g).
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2.5.1 Isometries of Gromov-hyperbolic and convex spaces

The displacement function of an isometry g is defined as dg(x) = d(x, gx), and the
minimal displacement of g is

`(g) = inf
x∈X

d(x, gx).

In general the asymptotic displacement always satisfies ‖g‖ ≤ `(g). However on a
convex metric space we always have ‖g‖ = `(g) (cp. [BGS13]). In particular if X is
convex and Gromov-hyperbolic all parabolic isometries have zero translation length
(notice that this is false for arbitrary convex spaces, cp. [Wu18]) and `(g) > 0 if and
only if g is of hyperbolic type. Moreover by Lemma 2.1.2 every elliptic isometry g
of X has a fixed point (the center of any bounded orbit gnx of g, which is clearly
invariant by g); reciprocally every isometry with a fixed point is clearly elliptic.
We can therefore restate the classification of isometries of a proper, convex, Gromov-
hyperbolic space as follows:

• an isometry g is elliptic if and only if `(g) = 0 and the value of minimal
displacement is attained for some x ∈ X;

• an isometry g is parabolic if and only if `(g) = 0 and the minimal displacement
is not attained;

• an isometry g is hyperbolic if and only if `(g) > 0 and the minimal displacement
is attained.

In the last case there exists a geodesic line joining g− to g+ on which g acts as a
translation by `(g); any such geodesic line is called an axis of g (see [Pap05]).

It is classical that in CAT(0), Gromov-hyperbolic spaces the Busemann function
Bz(x, y) can be computed using any geodesic ray ξ with endpoint ξ+ = z, cp.
[BH13], [DPS12] (observe that this is false in convex metric spaces, see [And08]).
As a consequence, under these assumptions, every parabolic isometry preserves the
horospheres centered at its unique fixed point:

Lemma 2.5.2. Let g be a parabolic isometry of a CAT(0), Gromov-hyperbolic metric
space X with fixed point z. Then Bz(x, gx) = 0 for every x ∈ X. In particular g
preserves the horospheres centered at z and passing through x.

Proof. The metric derivative of a parabolic isometry g is equal to g′(z) = 1 (cp.
[DSU17]), then by Proposition 4.2.16 of [DSU17] we conclude there exists C > 0
such that |Bz(x, gnx)| ≤ C for all n ∈ Z. However by the cocycle condition satisfied
by the Busemann function on CAT(0) metric spaces we have

Bz(x, gnx) = Bz(x, gx) + Bz(gx, gnx) = n · Bz(x, gx)

which is larger than C for n� 0, unless Bz(x, gx) = 0.
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2.5.2 The Margulis domain of an isometry

In this part X will be a proper, convex, Gromov-hyperbolic space.
From the convexity of the metric it follows that the displacement function dg of an
isometry g of X is convex. We are interested in the sublevel sets of dg. Given ε > 0,
the subset

Mε(g) = {x ∈ X s.t. d(x, gx) ≤ ε}

is called the Margulis domain of g with displacement ε. As dg is convex, the Margulis
domain is a closed and convex subset of X. Finally we denote by

Min(g) = M`(g)(g)

the subset of points of X where dg attains its minimum (which is empty for a
parabolic isometry g).

Lemma 2.5.3. The Margulis domain Mε(g) of any isometry g of X, if non-empty,
is starlike with respect to any point z ∈ Fix∂(g) ∪Min(g).

Proof. Fix a point x ∈Mε(g) and z ∈ Fix∂(g). Assume that the geodesic ray [x, z] is
not contained inMε(g). Then there exists a point y ∈ [x, z] such that d(y, gy) ≥ ε+η
for some η > 0. Let L = d(x, y) and consider the points yn along [x, z] at distance
nL from x. By convexity of the displacement function, we have d(yn, gyn) ≥ ε+ nη.
We observe that the points gyn belong to the geodesic ray [gx, gz], defining the
point gz of the boundary. The two rays [x, z] and [gx, gz] are not parallel, hence
gz 6= z which is a contradiction since z ∈ Fix∂(g). The case where z ∈ Min(g)
follows directly from the convexity of the displacement function and the minimality
of z.

The generalized Margulis domain of g at level ε is the set

Mε(g) =
⋃
i∈Z∗

Mε(gi).

It clearly is a g-invariant subset of X. We remark that for all ε > 0 the union is
finite when g is elliptic (and 〈g〉 is discrete) or hyperbolic, while it is infinite when g
is of parabolic type.

Lemma 2.5.4. The generalized Margulis domain Mε(g) is 12δ-quasiconvex and
connected.

Proof. As a consequence of Lemma 2.5.3, the domainMε(g) is starlike with respect
to any x ∈ Min(g) ∪ Fix∂(g). So, by Lemma 2.3.11, it is 12δ-quasiconvex.
The last assertion is trivial if g is elliptic or hyperbolic: in that case Mε(g) is a
finite union of connected sets with a common point. If g is parabolic we fix a point
x ∈Mε(g) and any y ∈Mε(g), so y ∈Mε(gi) for some i 6= 0. Since `(g) = 0 we can
take a point x′ ∈Mε/|i|(g). By convexity we have that the geodesic segment [x, x′]
is entirely contained in Mε(g). Moreover d(x′, gix′) ≤ ε, so the geodesic segment
[y, x′] is contained in Mε(gi). As a consequence the curve [x, x′]∪ [x′, y] is contained
in Mε(g). We conclude that Mε(g) is connected since every of its points can be
connected to the fixed point x.
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One of the key ingredients in the proof of Theorem J and in the applications
(notably, the existence of long tubes around small closed geodesics) are the following
lower and upper uniform estimates of the distance between the boundaries of two
different generalized Margulis domains. Hyperbolicity in used only in the upper
estimate, while the packing condition is essential to both.

Proposition 2.5.5. Let X be a complete, convex, geodesically complete,
δ-hyperbolic metric space that is P0-packed at scale r0, and let 0 < ε1 ≤ ε2. Let g be
any non-elliptic isometry, x ∈ X \Mε2(g) and assumeMε1(g) 6= ∅. Then:

(a) d(x,Mε1(g)) ≥ 1
2(ε2 − ε1);

(b) if ε2 ≤ r0 then d(x,Mε1(g)) > Lε2(ε1) =
log

(
2
ε1
− 1

)
2 log(1 + P0) · ε2 −

1
2 .

Notice that the estimate (b) is significative only for ε2 small enough, and has
a different geometrical meaning from (a): it says that theMε2(g) contains a large
ball around any point x ∈Mε1(g), of radius which is larger and larger as ε1 tends
to zero.

Proof. The first estimate is simple and does not need any additional condition on the
metric space X. Let x̄ be a projection of x on the closureMε1(g) of the generalized
Margulis domain. By definition for all η > 0 there exists some nontrivial power gη
of g such that d(x̄, gηx̄) ≤ ε1 + η. So:

ε2 ≤ d(x, gηx) ≤ d(x, x̄) + d(x̄, gηx̄) + d(gηx̄, gηx) ≤ 2d(x,Mε1(g)) + ε1 + η.

The estimate follows from the arbitrariness of η.
Let us now prove (b). Let again x̄ ∈Mε1(g) with d(x, x̄)=d(x,Mε1(g))=R. For any
η > 0 let gη be some nontrivial power of g satisfying d(x̄, gηx̄) ≤ ε1 + η. Then again

d(x, gkηx) ≤ 2R+ d(x̄, gkη x̄) ≤ 2R+ |k|(ε1 + η)

so d(x, gkηx) ≤ 2R + 1 for all k such that |k| ≤ 1/(ε1 + η). Therefore we have at
least n(ε1, η) = 1 + 2b1/(ε1 + η)c points in the orbit Γx inside the ball B(x, 2R+ 1).
We deduce that if n(ε1, η) > Pack(2R+ 1, ε2) two of these points stay at distance
less than ε2 one from the other, which implies that x ∈ Mε2(g), a contradiction.
Therefore,

n(ε1, η) = 1 + 2b1/(ε1 + η)c ≤ Pack(2R+ 1, ε2) ≤ P0(1 + P0)
2R+1
ε2
−1

by Proposition 2.4.4 (since ε2 ≤ r0), which implies that R = d(x, x̄) is greater than
the function Lε2(ε1) in (b) by the arbitrariness of η.

The upper bound is more tricky:

Proposition 2.5.6. Let X be a complete, convex, geodesically complete, δ-hyperbolic
metric space that is P0-packed at scale r0 and let 0 < ε1 ≤ ε2. Then there exists K0,
only depending on P0, r0, δ, ε1 and ε2, such that for every non-elliptic isometry g of
X with `(g) ≤ ε1 it holds:

sup
x∈Mε2 (g)

d(x,Mε1(g)) ≤ K0.
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The condition `(g) ≤ ε1 is necessary to guarantee that the setMε1(g) is non-empty.

Proof of Proposition 2.5.6. Let x ∈ Mε2(g), so by definition there exists i0 such
that d(x, gi0x) ≤ ε2. If x ∈ Mε1(g) there is nothing to prove. Otherwise we can
find a point x̄ of ∂Mε1(g) such that d(x, x̄) = d(x,Mε1(g)). We set τ = max{ε1, δ}
and N0 = Pack

(
42τ, ε12

)
, which is a number depending only on P0, r0, δ and ε1, by

Proposition 2.4.4.

Step 1: we prove that there exists an integer k ≤ 2N0+1 such that

d(x̄, gk·i0 x̄) > 42τ and d(x, gk·i0x) ≤ K := ε2 + 84τ + 2(N0 + 1)δ (23)

If this was not true, then for all k ≤ 2N0+1 such that d(x, gk·i0x) ≤ K we would have
d(x̄, gk·i0 x̄) ≤ 42τ . Let p0 be the largest integer such that d(x̄, g2p·i0 x̄) ≤ 42τ for all
0 ≤ p ≤ p0. We affirm that p0 ≥ N0 + 1.
Actually p0 ≥ 0 because d(x, gi0x) ≤ ε2 ≤ K, hence d(x̄, gi0 x̄) ≤ 42τ by assumption.
Also, by Lemma 2.5.1, we get

d(x, g2i·i0x) ≤ d(x, g2i−1·i0x) + `(g2i−1·i0) + 2δ = d(x, g2i−1·i0x) + 2i−1i0`(g) + 2δ.
and, iterating,

d(x, g2p·i0x) ≤ d(x, gi0x) + (2p − 1)i0`(g) + 2pδ ≤ (2p − 1)i0`(g) + 2pδ + ε2

for every 0 ≤ p ≤ N0 + 1. So, if p0 ≤ N0 we would have:

d(x, g2(p0+1)·i0x) ≤ d(x, g2p0 ·i0x) + 2p0 · i0`(g) + 2δ
≤ d(x, g2p0 ·i0x) + d(x̄, g2p0 ·i0 x̄) + 2δ
≤ (2p0 − 1)i0`(g) + 2p0δ + ε2 + 42τ + 2δ
≤ 84τ + 2(p0 + 1)δ + ε2 < K

since 2p0i0`(g) ≤ d(x̄, g2p0 ·i0 x̄) ≤ 42τ by definition. Hence by assumption
d(x̄, g2(p0+1)·i0 x̄) ≤ 42τ and p0 would not be maximal.
Moreover since x̄ is in the boundary of ∂Mε1(g) then

inf
i∈Z∗

d(x̄, gix̄) ≥ ε1.

Indeed if d(x̄, gix̄) = ε1 − η for some i ∈ Z∗ and some η > 0 then it is easy to show
that for any y ∈ B(x̄, η/2) we would have d(y, giy) < ε1; hence B(x̄, η/2) ⊆Mε1(g)
and x̄ would not belong to ∂Mε1(g).
Then the points g2p·i0 x̄, for p = 1, . . . , N0 + 1, are ε1-separated. But, as they belong
all to the ball B(x̄, 42τ), they should be at most N0 and this is a contradiction. This
proves the first step.

Step 2: for any k0 ≤ 2N0+1 satisfying the conditions (23), we have:

d(x, gk0·i0x) ≥ d(x, x̄) + d(gk0·i0x, gk0·i0 x̄) (24)

Indeed let us write y = gk0·i0x and ȳ = gk0·i0 x̄. By definition the point x̄ satisfies
d(x, x̄) = d(x,Mε1(g)); so, from the 12δ-quasiconvexity ofMε1(g) (Remark 2.5.4),
we deduce that

d(x, [x̄, ȳ]) ≥ d(x,B(Mε1(g), 12δ)) = d(x, x̄)− 12δ.
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Moreover from the Projection Lemma 2.3.5 we have

d(x, [x̄, ȳ]) ≤ (x̄, ȳ)x + 4δ.

Combining these estimates and expanding the Gromov product we obtain

d(x, ȳ) ≥ d(x, x̄) + d(x̄, ȳ)− 20δ. (25)

Similarly, using that d(y, ȳ) = d(y,Mε1(g)) (asMε1(g) is g-invariant), we obtain

d(y, x̄) ≥ d(y, ȳ) + d(ȳ, x̄)− 20δ. (26)

Adding these last two inequalities and using that d(x̄, ȳ) > 42τ ≥ 42δ we deduce

d(x, ȳ) + d(y, x̄) > d(x, x̄) + d(y, ȳ) + 2δ.

Therefore applying the four-points condition (13) to x, ȳ, x̄, y we find

d(x, ȳ) + d(x̄, y) ≤ max{d(x, x̄) + d(y, ȳ); d(x, y) + d(x̄, ȳ)}+ 2δ
= d(x, y) + d(x̄, ȳ) + 2δ

It follows:

d(x, y) ≥ d(x, ȳ) + d(x̄, y)− d(x̄, ȳ)− 2δ
≥ d(x, x̄) + d(x̄, ȳ)− 20δ + d(y, ȳ) + d(ȳ, x̄)− 20δ − 2δ
≥ d(x, x̄) + d(y, ȳ),

where we have used again (25), (26) and that d(x̄, ȳ) > 42τ ≥ 42δ (the first condition
in (23)). Moreover the second condition in (23) now yields

d(x, x̄) + d(y, ȳ) ≤ K

The conclusion follows observing that d(y, ȳ) = d(x, x̄), so that

d(x,Mε1(g)) ≤ d(x, x̄) ≤ K/2

which is the announced bound, depending only on P0, r0, δ, ε1 and ε2.

The distance between two Margulis domains (not generalized) of a non-elliptic
isometry can be bounded uniformly in CAT(0), δ-hyperbolic metric spaces, but the
implied constant is not explicit. We will use this estimate in order to study the limit
of sequences of isometries in Chapter 8.

Proposition 2.5.7. Let ε, δ > 0. There exists a constant c(ε, δ) that satisfies the
following. Let X be a CAT(0), δ-hyperbolic space and g be a non-elliptic isometry
of X with Mε(g) 6= ∅. Then for all x ∈ X it holds

d(x, gx) ≥ c(ε, δ) · d(x,Mε(g)).

In particular for all 0 < ε1 ≤ ε2 we get

sup
x∈Mε2 (g)

d(x,Mε1(g)) ≤ ε2
c(ε1, δ)

=: K1(ε1, ε2, δ).
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Proof. Suppose by contradiction that this is not true. Then for every n ∈ N there
exist a CAT(0), δ-hyperbolic space Xn, a non-elliptic isometry gn of Xn such that
Mε(gn) 6= ∅ and a point xn ∈ Xn such that

0 < d(xn, gnxn) ≤ 1
n
d(xn,Mε(gn)),

where the first inequality follows from the hypothesis that gn is not elliptic.
All the translation lengths `n = `(gn) belong to the interval [0, ε]. We fix a non-
principal ultrafilter ω and we put ` = ω-lim `n. We divide the proof into two cases:
` > 0 and ` = 0.

Case ` > 0. Clearly for ω-a.e.(n) we have `(gn) > `
2 > 0. As a consequence gn is

hyperbolic for ω-a.e.(n). Let yn be the projection of xn on the minimal set of gn. Let
Xω be the ultralimit of the sequence of spaces (Xn, yn). Xω is a CAT(0), δ-hyperbolic
space (the stability of the δ-hyperbolicity condition follows from (12), while the
stability of the CAT(0) condition is classical, Proposition 2.7.9. The sequence of
isometries (gn) is admissible, i.e. for every n it holds d(gnyn, yn) = `(gn) ≤ ε. Then
it defines a limit isometry gω = ω-lim gn of Xω, see Proposition 2.7.5.
First of all we show that gω is hyperbolic by proving that `(gω) > 0. Indeed for all
wω = ω-limwn ∈ Xω it holds d(gωwω, wω) = ω-lim d(gnwn, wn) ≥ ω-lim `(gn) = ` >
0, so gω is hyperbolic with `(gω) ≥ `.
Now we consider the sequence of geodesic segments [yn, xn]. The claim is that this
sequence converge to a geodesic ray of Xω. By Proposition 2.7.5 and Lemma 2.7.6
it is enough to show that the ω-limit of the sequence d(yn, xn) is +∞. For ω-a.e.(n)
we have

d(yn, xn) ≥ n · d(xn, gnxn) ≥ n · `(gn) ≥ n · `2 ,

where the first inequality follows from the fact that yn ∈Mε(gn) since yn is in the
minimal set of gn. So the ultralimit of the geodesics γn = [yn, xn] is a geodesic ray
γω. The next step is to show that gω acts on γω by translation of length `, i.e. for
every T ≥ 0 it holds d(gωγω(T ), γω(T )) = `. We fix T ≥ 0 and, as shown before, for
ω-a.e. n there exists a point along γn = [yn, xn] at distance T from yn. We denote
this point by wTn . Clearly the sequence of points (wTn ) defines the point γω(T ) of
Xω. We fix η > 0 and we claim that if n ≥ nη then d(wTn , gnwTn ) ≤ `n + η. This
would imply that d(γω(T ), gωγω(T )) ≤ `+ η for every η > 0, hence that the point
γω(T ) is translated exactly by ` since `(gω) ≥ `.
We fix an integer n and we suppose that d(wTn , gnwTn ) > `n + η. We want to find an
upper bound nη for n. Let m ∈ N be the smallest integer such that mT ≥ d(xn, yn).
For every integer k ∈ {0, . . . ,m− 1} let wkTn be the point along γn at distance kT
from yn. From the convexity of the metric it holds

d(wkTn , gnw
kT
n ) > `n + kη.

In particular, again by convexity of the displacement function, we get

mT ≥ d(xn, yn) ≥ n · d(xn, gnxn) ≥ n · d(w(m−1)T
n , gnw

(m−1)T
n )

≥ n(`n + (m− 1)η).
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We deduce n ≤ m
m−1

T
η ≤

2T
η =: nη.

Finally we consider the geodesic rays γω and gωγω of Xω. They are two geodesic
rays whose distance is constant, hence applying the Flat Quadrilateral Theorem (see
[BH13]) it is possible to find a strip in Xω isometric to [0,+∞)× [0, `].
Notice that `(gNω ) = N` for every N ∈ N. Moreover for every x ∈ γω it holds
d(gNω x, x) ≤ N`, so d(gNω γω(T ), γω(T )) = N` for every T > 0 and for every N ∈ N.
Arguing as before one can find a strip in Xω isometric to [0,+∞)× [0, N`]. If N is
big enough we get a contradiction since Xω is δ-hyperbolic.

Case ` = 0. This case is similar to the previous one, but we cannot project on the
minimal set of gn. The projection will be done on a suitable Margulis domain. For
ω-a.e. n it holds `(gn) < ε

2 . For ω-a.e.(n) let y′n be the projection of xn on the
nonempty level set M ε

2
(gn) and let yn be the point along [y′n, xn] whose displacement

by gn is exactly ε.
Once again we consider the sequence of spaces (Xn, yn) and its ultralimit Xω, which
is CAT(0) and δ-hyperbolic. Moreover also in this case the sequence of isometries
(gn) is admissible since d(gnyn, yn) = ε for every n. Then it defines a limit isometry
gω of Xω. We will show that the isometry gω is hyperbolic by proving `(gω) > ε

3 > 0.
We start studying how the isometries gn act on the geodesic segments [yn, xn].
Arguing exactly as in the previous case, replacing `n with ε (that is the displacement
of yn in this case), we find that ω-lim d(xn, yn) = +∞ and that for every T > 0 and
for every η > 0 it is possible to find nη such that for n ≥ nη it holds

d(gnwTn , wTn ) < ε+ η.

Here we are using the notation wTn with the same meaning of the previous case.
We apply this for any fixed T > 0 and η = ε

2 . Then for n big enough we have
d(yn, wTn ) = T and d(gnwTn , wTn ) < ε+ ε

2 . From the convexity of the displacement
function of gn along the geodesic [y′n, xn] we conclude necessarily d(y′n, yn) ≥ T for
all such n’s and so for ω-a.e.(n).
Suppose now that there exists a point pω = ω-lim pn ∈ Xω whose displacement under
gω is less than ε

3 . Since pω is a point of Xω then by definition there exists L ≥ 0 such
that d(pn, yn) ≤ L for ω-a.e.(n). Moreover for ω-a.e. n we have d(gnpn, pn) < ε

2 and
since y′n is the projection of yn on the level set M ε

2
(gn) we obtain, for all fixed T ≥ 0,

d(pn, yn) ≥ d(y′n, yn) ≥ T for ω-a.e.(n). Choosing T > L we find a contradiction, so
`(g) > ε

3 .
Now we observe that the geodesic segments γn = [y′n, xn] defined on the intervals
[−d(y′n, yn), d(yn, xn)] form a sequence of admissible geodesics and then define a
limit geodesic γω, that is actually defined on the whole R. Moreover every point of
this geodesic line is displaced by gω of exactly ε. Indeed arguing as in the first case
we conclude that for every T ∈ R it holds ε

3 < d(γω(T ), gωγω(T )) ≤ ε. By convexity
of the displacement function we conclude that d(γω(T ), gωγω(T )) is constant and
equals ε, since this is its value at T = 0 by construction. Arguing as in the previous
case we conclude again that for all N ∈ N we have d(γω(T ), gNω γω(T )) = Nε and we
find the contradiction applying once again the Flat Strip Theorem (see [BH13]).
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2.6 Discrete groups of isometries
If X is any proper metric space we denote by Isom(X) its group of isometries,
endowed with the uniform convergence on compact subsets of X. A subgroup Γ of
Isom(X) is called discrete if the following (equivalent) conditions (see [BCGS17])
hold:
(a) Γ is discrete as a subspace of Isom(X);
(b) ∀x ∈ X and R ≥ 0 the set ΣR(x) = {g ∈ Γ | gx ∈ B(x,R)} is finite.

We will denote by Γ∗ the subset of nontrivial elements of Γ, while Γ� ⊆ Γ will denote
the subset of elements with finite order.

We register here a number of invariants associated to the action of Γ on X we will
be interested in later. For every r > 0 and every point x ∈ X the r-almost stabilizer
of x in Γ is the subgroup

Γr(x) = 〈Σr(x)〉.
The r-thin subset of X (with respect to the action of Γ) is the subset

Xr = {x ∈ X | ∃g ∈ Γ∗ s.t. d(x, gx) < r}

and the free r-thin subset X�r is obtained by replacing Γ∗ in the definition above
with Γ \ Γ�. Some numerical invariants associated to the action of Γ we will be
interested in are:

• the minimal displacement of g ∈ Γ, defined as `(g) = infx∈X d(x, gx);

• the asymptotic displacement of g ∈ Γ, defined as ‖g‖ = limn→+∞
d(x,gnx)

n ;

• the minimal displacement of Γ at x, defined as sys(Γ, x)=infg∈Γ∗d(x, gx);

• theminimal free displacement of Γ at x, defined as sys�(Γ, x) = infg∈Γ\Γ� d(x, gx);

• the nilpotence radius of Γ at x, defined as

nilrad(Γ, x) = sup{r ≥ 0 s.t. Γr(x) is virtually nilpotent};

and their corresponding global versions:

• the systole and the free systole, defined respectively as:

sys(Γ, X) = inf
x∈X

sys(Γ, x), sys�(Γ, X) = inf
x∈X

sys�(Γ, x)

• the diastole and the free diastole, defined as:

dias(Γ, X) = sup
x∈X

sys(Γ, x), dias�(Γ, X) = sup
x∈X

sys�(Γ, x)

• the nilradius: nilrad(Γ, X) = infx∈X nilrad(Γ, x).

Moreover, for convex, packed metric spaces we can define an upper analogue of the
nilradius (like the diastole for the systole):

• the upper nilradius: nilrad+(Γ, X) = supx∈Xε0 nilrad(Γ, x)

where the constant ε0 appearing in the definition is the generalized Margulis constant,
which will be introduced in the next section.
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2.6.1 Margulis constant

Consider a proper metric space X and a discrete group of isometries Γ of X. In
general the nilradius of the action can well be zero. However, under the packing
assumption it is always bounded away from zero:
Theorem 2.6.1 (Corollary 11.17 of [BGT11]).
Let X be a proper metric space such that Cov(B(x, 4), 1) ≤ C0 for all x ∈ X. Then
there exists a constant εM = εM (C0) > 0, only depending on C0, such that for every
discrete group of isometries Γ of X one has nilrad(Γ, X) ≥ εM .
In analogy with the case of Riemannian manifolds, the constant εM is called the
(generalized) Margulis constant of X. Combining with Proposition 2.4.4, we immedi-
ately get a Margulis contant for the class of complete, convex, geodesically complete,
metric spaces which are P0-packed at some scale r0:
Corollary 2.6.2. Given P0, r0 > 0 there exists ε0 = ε0(P0, r0) > 0 such that for
any complete, convex, geodesically complete metric space X which is P0-packed at
scale r0 and for any discrete group of isometries Γ of X one has nilrad(Γ, X) ≥ ε0.
Proof. By Proposition 2.4.4 X is proper. We rescale the metric by a factor 1

2r0 .
As the packing property is invariant under rescaling, we have Pack(3

2 ,
1
2) ≤ P0 by

assumption. Hence Cov(4, 1) ≤ Pack(4, 1
2) ≤ P0(1 + P0)7, as follows from (22) and

from Proposition 2.4.4. Applying Theorem 2.6.1 we find a Margulis constant εM
for the space 1

2r0X, only depending on P0; then the constant ε0(P0, r0) = 2r0 · εM
satisfies the thesis.

2.6.2 Limit set and elementary groups

When X is a proper and δ-hyperbolic metric space then the limit set Λ(Γ) of a
discrete group of isometries Γ is the set of accumulation points of the orbit Γx on
∂GX, where x is any point of X; it is the smallest Γ-invariant closed set of the
Gromov boundary (cp. [Coo93], Theorem 5.1).

The set Λ(Γ) is Γ-invariant, so is its quasiconvex hull. A discrete group of isometries
Γ is called quasiconvex-cocompact if its action on QC-Hull(Λ(Γ)) is cocompact, i.e. if
there exists D ≥ 0 such that for all x, y ∈ QC-Hull(Λ(Γ)) it holds d(gx, y) ≤ D for
some g ∈ Γ. The smallest D satisfying this property is called the codiameter of Γ.
A quasiconvex-cocompact group Γ is said cocompact if Λ(Γ) = ∂X or equivalently
QC-Hull(Λ(Γ)) = X.
The radial limit set of a discrete group of isometries Γ is defined as follows. Once
fixed x ∈ X a point z ∈ ∂GX is said σ-radial if there exists a sequence {gn} of
elements of Γ such that {gnx} is unbounded and d(gnx, [x, z]) ≤ σ for some geodesic
ray [x, z] and for all n ∈ N. We denote the set of σ-radial points by Λr,σ(Γ) and the
set of radial points by

Λr(Γ) =
⋃
σ≥0

Λr,σ(Γ).

The set Λr(Γ) is Γ-invariant, so its closure is Λ(Γ).

The group Γ is called elementary if #Λ(Γ) ≤ 2. For an elementary discrete group Γ
there are three possibilities (cp. [Gro87], [CDP90], [DSU17], [BCGS17]):
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• Γ is elliptic, i.e. #Λ(Γ) = 0; then d(x,Γx) <∞ for all x ∈ X, so the orbit of Γ
is finite by discreteness;

• Γ is parabolic, i.e. #Λ(Γ) = 1; then in this case Γ contains only parabolic or
elliptic elements and all the parabolic elements have the same fixed point at
infinity;

• Γ is lineal, i.e. #Λ(Γ) = 2; in this case Γ contains only hyperbolic or elliptic
elements and all the hyperbolic elements have the same fixed points at infinity.

So if two non-elliptic isometries a, b generate a discrete elementary group then they
are either both parabolic or both hyperbolic and they have the same set of fixed
points in ∂GX; conversely if a, b are two non-elliptic isometries of X generating a
discrete group 〈a, b〉 such that Fix∂(a) = Fix∂(b), then 〈a, b〉 is elementary. We also
recall the following property of elementary subgroups of general Gromov-hyperbolic
spaces:

Lemma 2.6.3. Let X be a Gromov-hyperbolic space and let Γ be a discrete group
of isometries of X. Then for any non-elliptic g ∈ Γ there exists a unique maximal,
elementary subgroup of Γ containing g.

Proof. The maximal, elementary subgroup of Γ containing g is:

{g′ ∈ Γ | g′ · Fix∂(g) = Fix∂(g)}.

It is well known that any virtually nilpotent group of isometries Γ of X is
elementary (since any non-elementary group Γ contains a free subgroup). Conversely
if Γ is elliptic it is virtually nilpotent since it is finite. Also any lineal group is
virtually cyclic (cp. Proposition 3.29 of [Cou16]), hence virtually nilpotent. On
the other hand there are examples of non-virtually nilpotent, even free non abelian,
parabolic groups acting on simply connected Riemannian manifolds with curvature
≤ −1 (see [Bow93], Sec. 6). However under a mild packing assumption it is possible
to conclude that any parabolic group is virtually nilpotent. Some version of this fact
is probably known to the experts and we present here the proof for completeness;
we thank S. Gallot for explaining it to us.

Proposition 2.6.4. Let X be a proper, geodesic, Gromov hyperbolic space that is
P0-packed at some scale r0. Then any finitely generated, discrete, parabolic group of
isometries Γ of X is virtually nilpotent.

Hence, we deduce:

Corollary 2.6.5 (Elementary groups are virtually nilpotent).
Let X be a proper, geodesic, Gromov hyperbolic space, P0-packed at scale r0. Then a
discrete, finitely generated group of isometries of X is elementary if and only if it is
virtually nilpotent.

We remark that the scale of the packing is not important: it plays the role of
an asymptotic bound on the complexity of the space. The proof is based on the
following fundamental result proved in [BGT11]:
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Theorem 2.6.6 (Corollary 11.2 of [BGT11]). For every p ∈ N there exists N(p) ∈ N
such that the following holds for every group Γ and every finite, symmetric generating
set S of Γ: if there exists some A ⊆ Γ such that SN(p) ⊆ A and # (A ·A) ≤ p ·#A
then Γ is virtually nilpotent.

Proof of Proposition 2.6.4. Let S be a finite, symmetric generating set of Γ. More-
over let Λ(Γ) = {z} and let γ be any geodesic ray such that γ+ = z. Finally set
ΣR(x) := {g ∈ Γ s.t. d(gx, x) ≤ R}.

Step 1. Setting R0 = max{2r0, 30δ} and p = P0(1 + P0)
9R0
r0
−1, we have for any

x ∈ X:
#
(
ΣR0(x) · ΣR0(x)

)
≤ p ·#ΣR0(x)

Actually by Lemma 2.4.2 we have

Pack
(

9R0,
R0
2

)
≤ Pack(9R0, r0) ≤ P0(1 + P0)

9R0
r0
−1
.

Then it easily follows (cp. Lemma 3.12 of [BCGS17]) that

#
(
ΣR0(x) · ΣR0(x)

)
#ΣR0(x) ≤ #Σ2R0(x)

#ΣR0(x) ≤ P0(1 + P0)
9R0
r0
−1

which is our claim. Remark that p does not depend on the point x.
Step 2. There exists T = T (S, γ, p) such that d(γ(T ), gγ(T )) ≤ 30δ for all g ∈ SN(p)

(where N(p) is the value associated to p given by Theorem 2.6.6).
Let ρ0 = maxs∈S d(γ(0), sγ(0)). So we have d(γ(0), gγ(0)) ≤ N(p)ρ0 for all g ∈ SN(p).
Let g ∈ SN(p). By definition we have gz = z, so (gγ)+ = z. Then by Lemma 2.3.2
there exist t1, t2 ≥ 0 such that t1+t2 = d(γ(0), gγ(0)) and d(γ(t+t1), gγ(t+t2)) ≤ 8δ
for all t ≥ 0. Therefore,

d(γ(s+ t1 − t2), gγ(s)) ≤ 8δ (27)

for all s ≥ T := max{t1, t2} ≤ N(p)ρ0. In the following we may assume t1 ≥ t2 and
call ∆ = t1 − t2. If ∆ ≤ 9δ, we apply the previous estimate to s = T and we get
d(γ(T ), gγ(T )) ≤ 17δ, so the claim is true. Otherwise, we have ∆ > 9δ, and we
consider the triangle with vertices A = γ(T + ∆), B = γ(T + 2∆) and C = gA. Let
(Ā, B̄, C̄) be the corresponding tripod with center ō with edge lengths ρ = `([Ā, ō]),
σ = `([C̄, ō]) and τ = `([B̄, ō]). We therefore have:

ρ+ τ = ∆, σ + τ ≤ 8δ and σ + ρ = d(A, gA).

This implies that ρ − σ = (ρ + τ) − (σ + τ) ≥ ∆ − 8δ ≥ 0. In particular if m
is the midpoint of [A, gA] and m̄ the corresponding point on the tripod we have
d(m̄, Ā) ≤ d(ō, Ā), so there exists a point m′ ∈ [A,B] such that d(m,m′) ≤ 4δ.
Applying Lemma 8.21 of [BCGS17] we deduce

d(m′, gm′) ≤ d(m, gm) + 8δ ≤ 14δ

(as g is elliptic or parabolic). Moreover, as m′ = γ(s + ∆) for some s ≥ T (since
∆ ≥ 0), we have by (27) that d(m′, gγ(s)) ≤ 8δ. By the triangle inequality we deduce

∆ = d(gγ(s), gm′) ≤ 22δ.
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Therefore also in this case we get d(γ(T ), gγ(T )) ≤ 30δ.
Conclusion. We have SN(p) ⊂ ΣR0(γ(T )), where T is the constant of step 2. So we
apply Theorem 2.6.6 and conclude that Γ is virtually nilpotent.

2.7 Ultralimits
An ultrafilter on N is a subset ω of P(N) such that:

(a) ∅ /∈ ω;

(b) if A,B ∈ ω then A ∩B ∈ ω;

(c) if A ∈ ω and A ⊆ B then B ∈ ω;

(d) for any A ⊆ N then either A ∈ ω or Ac ∈ ω.

We recall that there is a one-to-one correspondence between the ultrafilters ω on
N and the finitely-additive measures defined on the whole P(N) with values on
{0, 1} such that ω(N) = 1. Indeed given an ultrafilter ω we define the measure
ω(A) = 1 if and only if A ∈ ω; conversely given a measure ω as before we define the
ultrafilter as the set ω = {A ⊆ N s.t. ω(A) = 1} (it is easy to show it actually is an
ultrafilter). In the following ω will denote both an ultrafilter and the measure that
it defines. Therefore we will write that a property P (n) holds ω-a.s. when the set
{n ∈ N s.t. P (n)} ∈ ω.
There is an easy example of ultrafilter: fix n ∈ N and consider the set ω of subsets
of N containing n. An ultrafilter of this type is called principal. The interesting
ultrafilters are the non-principal ones; it turns out that an ultrafilter is non-principal
if and only if it does not contain any finite set. The existence of non-principal
ultrafilters follows from Zorn’s lemma. The interest on non-principal ultrafilters is
due to the fact that they can define a notion of limit of a bounded sequence of real
numbers:

Lemma 2.7.1. Let (an) ⊆ [a, b] be a bounded sequence of real numbers. Let ω be a
non-principal ultrafilter. Then there exists a unique point x in [a, b] such that for all
η > 0 the set {n ∈ N s.t. |an − x| < η} belongs to ω. The real number x is said the
ω-limit of the sequence (an) and it is denoted by x = ω-lim an. Moreover if an and
bn are two bounded sequence of real numbers, it holds:

(a) ω- lim(an + bn) = ω- lim an + ω- lim bn;

(b) if λ ∈ R then ω- lim(λan) = λ · ω- lim an;

(c) if an ≤ bn then ω- lim an ≤ ω- lim bn;

(d) if a = ω-lim an and f is continuous at a then ω- lim f(an) = f(ω- lim an).

(The proof of the main part can be found in [DK18], Lemma 7.23, while properties
(a)-(d) are trivial.)
The ultralimit of unbounded sequences of real numbers can be defined in the
following way. Given an unbounded sequence of real numbers an the following
mutually exclusive situations can occur:
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• there exists L > 0 such that an ∈ [−L,L] for ω-a.e.(n).
In this case the ultralimit of (an) can be defined using Lemma 2.7.1.

• for any L > 0 the set {n ∈ N s.t. an ≥ L} belongs to ω.
In this case we set ω-lim an = +∞.

• for any L < 0 the set {n ∈ N s.t. an ≤ −L} belongs to ω.
In this case we set ω-lim an = −∞.

We remark that the limit depends strongly on the non-principal ultrafilter ω. The
ultralimit of a sequence of metric spaces is defined as follows.

Definition 2.7.2. Let (Xn, xn) be a sequence of pointed metric spaces and ω be a
non-principal ultrafilter. We set:

X = {(yn) : yn ∈ Xn and ∃L > 0 s.t. d(yn, xn) ≤ L for every n}.

and, for (yn), (zn) ∈ X, we define the distance as:

d((yn), (zn)) = ω- lim d(yn, zn).

The space Xω = (X, d)/d=0 is a metric space and it is called the ω-limit of the
sequence of spaces (Xn, xn). The fact that (X, d) is a metric space follows immediately
from the properties of the ultralimit of a sequence of real numbers and from the fact
that dn is a distance for any n. In general the limit depends on the non-principal
ultrafilter ω and on the basepoints.

A basic example is provided by the ultralimit of a constant sequence.

Proposition 2.7.3. Let (X,x) be a metric space and ω a non-principal ultrafilter.
Consider the constant sequence (X,x) and the corresponding ultralimit (Xω, xω),
where xω is the constant sequence of points (x). Then

(a) The map ι : (X,x)→ (Xω, xω) that sends y to the constant sequence (yn = y) is
an isometric embedding;

(b) if X is proper then ι is surjective and (Xω, xω) is isometric to (X,x).

Proof. The first part is obvious by the definitions. If X is proper and (yn) is an
admissible sequence defining a point of Xω then it is contained in a closed ball of X,
that is compact. By Lemma 7.23 of [DK18] we find y ∈ X such that for all ε > 0
the set

{n ∈ N s.t. d(y, yn) < ε}

belongs to ω. Therefore it is clear that the constant sequence (yn = y) defines the
same point as the sequence (yn) in Xω, which proves (b).

An interesting consequence of the definition is that the ultralimit of pointed
metric spaces is always complete (the proof is given in [DK18], Proposition 7.44):

Proposition 2.7.4. Let (Xn, xn) be a sequence of pointed metric spaces and let ω
be a non-principal ultrafilter. Then Xω is a complete metric space.
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Once defined the limit of pointed metric spaces it is useful to define limit of
maps. We take two sequences of pointed metric spaces (Xn, xn) and (Yn, yn). A
sequence of maps fn : Xn → Yn is said admissible if there exists M ∈ R such that
d(fn(xn), yn) ≤M for any n ∈ N. In general an admissible sequence of maps does
not define a limit map, but it is the case if the maps are equi-Lipschitz. A sequence of
maps fn : Xn → Yn is equi-Lipschitz if there exists λ ≥ 0 such that fn is λ-Lipschitz
for any n.

Proposition 2.7.5. Let (Xn, xn), (Yn, yn) be two sequences of pointed metric spaces.
Let fn : Xn → Yn be an admissible sequence of equi-Lipschitz maps. Let ω be a
non-principal ultrafilter. Let Xω and Yω be the ω-limits of (Xn, xn) and (Yn, yn)
respectively. Define f = fω : Xω → Yω as f((zn)) = (fn(zn)). Then:

(a) f is well defined;

(b) f is Lipschitz with the same constant of the sequence fn.

In particular if for any n the map fn is an isometry then f is an isometry, while if
fn is an isometric embedding for any n then f is again an isometric embedding.

The map f = fω is called the ω-limit of the sequence of maps fn and we denote it
by fω = ω-lim fn. The proof in case of isometric embeddings is given in [DK18],
Lemma 7.47; the general case is analogous.

This result can be applied to the special case of geodesic segments since they are
isometric embeddings of an interval into a metric space X. However we first need to
explain what is the ultralimit of a sequence of intervals:

Lemma 2.7.6. Let In = [an, bn] ⊂ R be a sequence of intervals containing 0 (possibly
with an = −∞ or bn = +∞). Let ω be a non-principal ultrafilter. Then ω-lim(In, 0)
is isometric to I, where I = [ω- lim an, ω- lim bn] = [a, b] (possibly with a = −∞ or
b = +∞) contains 0.

Proof. We define a map from Iω to I as follows. Given an admissible sequence (xn)
such that xn ∈ In then xn is ω-a.s. bounded, so it is defined ω-lim xn by Lemma
2.7.1. We define the map as (xn) 7→ ω-lim xn. It is easy to check it is surjective.
Moreover it is an isometry, indeed:

|ω- lim xn − ω- lim yn| = ω- lim |xn − yn| = d((xn), (yn)).

In particular the limit of geodesic segments is a geodesic segment.

Lemma 2.7.7. Let (Xn, xn) be a sequence of pointed metric spaces and let ω
be a non-principal ultrafilter. Let Xω be the ultralimit of (Xn, xn) and let z =
ω-lim zn, w = ω-limwn ∈ Xω. Suppose that for all n there exists a geodesic
γn : [0, d(zn, wn)] → Xn joining zn and wn: then there exists a geodesic joining z
and w in Xω. In particular if Xn is a geodesic space for all n then the ultralimit Xω

is a geodesic space.
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Proof. We denote by In the interval [0, d(zn, wn)]. Since z and w belongs to Xω

then the distance between them is uniformly bounded. Hence from the previous
lemma it follows that the ultralimit of the spaces (In, 0) is Iω = [0, ω-lim d(zn, wn)] =
[0, d(z, w)]. The maps γn define an admissible sequence of isometric embedding,
so in particular they define a limit isometric embedding γω : Iω → X. So γω is a
geodesic and clearly γω(0) = ω-lim γn(0) = ω-lim zn = z and γω(d(z, w)) = w.

In order to prove stability results for classes of metric spaces we also need to
establish the convergence of balls under ultralimits:

Lemma 2.7.8. Let (Xn, xn) be a sequence of geodesic metric spaces and ω be a
non-principal ultrafilter. Let Xω be the ultralimit of the sequence (Xn, xn). Let
y = ω-lim yn be a point of Xω. Then for any R ≥ 0 it holds

B(y,R) = ω- limB(yn, R).

Proof. First of all ω- limB(yn, R) ⊆ B(y,R). Indeed z = ω-lim zn belongs to
ω- limB(yn, R) if and only if d(zn, yn) ≤ R for ω-a.e.(n). Then d(z, y) ≤ R, i.e.
z ∈ B(y,R). The next step is to show that the set ω- limB(yn, R) is closed. We
take a sequence zk = ω-lim zkn of points of ω-limB(yn, R) that converges to some
point z = ω-lim zn of Xω. This implies that d(y, z) ≤ R. We consider a geodesic
segment of Xn between yn and zn and we denote by wn the point along this geodesic
at distance exactly R from yn, if it exists. Otherwise zn ∈ B(yn, R) and in this
case we set wn = zn. We observe that w = ω-limwn ∈ ω-limB(yn, R) by definition.
We claim that w = z. In order to prove that we fix ε > 0. Then for ω-a.e.(n) we
have d(yn, zn) < R + ε. This implies that d(yn, wn) < ε and so d(w, z) < ε. From
the arbitrariness of ε the claim is proved. The last step is to show that the open
ball B(y,R) is contained in ω- limB(yn, R). Indeed given z = ω-lim zn ∈ B(y,R)
then there exists ε > 0 such that d(z, y) < R − ε. The set of indices n such that
d(zn, yn) < d(z, y) + ε < R belongs to ω, hence z ∈ ω- limB(yn, R). Since Xω is
geodesic and in any length space the closed ball is the closure of the open ball the
proof is concluded.

In general, even if every space Xn is uniquely geodesic, the ultralimit Xω may be
not uniquely geodesic. This is because, in general, it is not true that all the geodesics
of Xω are limit of sequences of geodesics of Xn. The fact that the geodesics of Xω

are actually limit of geodesics of the spaces Xn is true when all the Xn are CAT(κ).
We recall the following fact which is well known (see [BH13] or [DK18] for instance):

Proposition 2.7.9. Let (Xn, xn) be a sequence of CAT(κ) pointed metric spaces
and ω be a non-principal ultrafilter. Then any geodesic of length < Dκ in Xω is limit
of a sequence of geodesics of Xn. As a consequence Xω is a CAT(κ) metric space.

The main result of this section is the following stability property for the CAT(κ)-
radius:

Corollary 2.7.10. Let (Xn, xn) be a sequence of complete, locally geodesically
complete, locally CAT(κ), geodesic metric spaces with ρcat(Xn) ≥ ρ0 > 0. Let ω
be a non-principal ultrafilter. Then Xω is a complete, locally geodesically complete,
locally CAT(κ), geodesic metric space with ρcat(Xω) ≥ ρ0.
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Proof. Let y = ω-lim yn be a point of Xω. For any r < ρ0 and for any n the ball
B(yn, r) is a CAT(κ) metric space. Moreover by Lemma 2.7.8 we have that B(y, r)
is the ultralimit of a sequence of CAT(κ) metric spaces, hence it is CAT(κ) by
Proposition 2.7.9. This shows that Xω is locally CAT(κ) and ρcat(Xω) ≥ ρ0 by
the arbitrariness of r. Moreover Xω is geodesic by Corollary 2.7.7. We fix now a
geodesic segment γ of Xω defined on [a, b]. We look at the ball B(γ(a), ρ0), which
is CAT(κ), and we take a sequence of points zn such that ω-lim zn = γ(a). The
subsegment of γ inside this ball, defined on [a, a+ ρ0) is the limit of a sequence of
geodesics γn inside the corresponding balls B(zn, ρ0), by Proposition 2.7.9. Each γn
can be extended to a geodesic segment γ̃n on the interval (a− ρ0, a+ ρ0) since each
Xn is locally geodesically complete and complete. The ultralimit of the maps γ̃n is
a geodesic segment defined on [a− ρ0, a+ ρ0] which extends γ. We can do the same
around γ(b). This proves that Xω is locally geodesically complete.

We conclude this section recalling, in the next two propositions, the relations
between ultralimits and pointed Gromov-Hausdorff convergence.

Proposition 2.7.11 (see [Jan17]). Let (Xn, xn) be a sequence of proper, length
metric spaces and ω be a non-principal ultrafilter. Then:

(a) if the ultralimit (Xω, xω) is proper then it is the limit of a convergent subsequence
in the pointed Gromov-Hausdorff sense;

(b) reciprocally, if (Xn, xn) converges to (X,x) in the pointed Gromov-Hausdorff
sense then for any non-principal ultrafilter ω the ultralimit Xω is isometric to
(X,x) (we recall that, in this case, (X,x) is proper by definition of Gromov-
Hausdorff convergence).

We now explicit the fact that continuity under ultralimits implies continuity
under pointed Gromov-Hausdorff convergence.

Proposition 2.7.12. Let C be a class of pointed, proper metric spaces and h : C → R
be a function. Suppose that C is closed under ultralimits and h is continuous under
ultralimits, i.e. for every non-principal ultrafilter ω and every sequence (Xn, xn) ∈ C
it holds h(Xω) = ω-lim h(Xn). Suppose that (Xn, xn) ⊆ C converges in the pointed
Gromov-Hausdorff sense to (X∞, x∞). Then X∞ ∈ C and h(X∞) = limn→+∞ h(Xn).

We need the following lemma.

Lemma 2.7.13. Let an be a bounded sequence of real numbers. Let anj be a
subsequence converging to ã. Then there exists a non-principal ultrafilter ω such that
ω-lim an = ã.

Proof. The set {nj}j is infinite, then there exists a non-principal ultrafilter ω
containing {nj}j (cp. [Jan17], Lemma 3.2). Moreover for every ε > 0 there exists jε
such that for all j ≥ jε it holds |anj − ã| < ε. The set of indices where the inequality
is true belongs to ω since the complementary is finite. This implies exactly that
ã = ω-lim an.
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Proof of Proposition 2.7.12. We fix every non-principal ultrafilter ω. Since the class
C is made of proper metric spaces then Xω is isometric to X∞ (Proposition 2.7.11).
Therefore h(X∞) = h(Xω) = ω- lim h(Xn). This implies that ω- lim h(Xn) does
not depend on the ultrafilter ω. By the previous lemma we conclude that every
converging subsequence of h(Xn) has h(X∞) as a limit, i.e. lim infn→+∞ h(Xn) =
lim supn→+∞ h(Xn) = h(X∞).
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Chapter 3

Packing and doubling on locally
CAT(κ)-spaces

3.1 Uniform lower bounds on volume of balls

We fix a complete, geodesic, GCBA-space X. From (8) & (9) it follows that there
exists an upper bound for the measure of any tiny ball B(x, r); moreover one can
find a uniform upper bound of the measure of all balls, independently of the center
x, provided that X satisfies a uniform packing condition at some scale (see Theorem
3.2.1 for a precise statement). It is less clear if there exists a lower bound on the
measure, and in particular if this lower bound depends only on some universal
constant. Indeed in general the µX -volume of balls of a given radius is not uniformly
bounded below independently of the space X. For instance consider the balls of
radius 1

2 inside Rn: when n grows the measure of these balls tends to 0. The next
theorem shows that if the dimension is bounded from above then there is a uniform
bound from below to the measure of balls of a given (sufficiently small) radius:

Theorem 3.1.1. Let X be a complete, geodesic, GCBA metric space. If dim(X) ≤
n0 then for any x ∈ X and any r < min{1, ρac(x)} it holds

µX(B(x, r)) ≥ cn0 · rn0 ,

where cn0 is a constant only depending on n0.

The proof of this fact is based on ideas most of which are already present in
[LN19]. First of all we have:

Proposition 3.1.2. Let X be a complete, geodesic, GCBA metric space and x ∈ X
be a point of dimension n. Then there exists a 1-Lipschitz, surjective map P : TxX →
Rn such that:

(a) P (O) = 0;

(b) P (B(O, r)) = B(0, r) for any r > 0;

(c) dT (V,O) = dRn(P (V ), 0) for any V ∈ TxX.
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Proof. As the point x has dimension n then the geometric dimension of TxX is n.
This implies that ΣxX is a space of dimension n− 1 satisfying the assumptions of
Proposition 11.3 of [LN19]. So there exists a 1-Lipschitz surjective map P ′ : ΣxX →
Sn−1. We extend the map P ′ to a map P over the tangent cones by sending the
point V = (v, t) to the point (P ′(v), t). It is immediate to check that P is surjective
and that P (0) = 0.
Moreover the tangent cone over Sn−1 is Rn, as said in Example 2.2.2; therefore
the equality P (B(O,R)) = B(0, R) follows directly from (7). Always by (7) we
have dT (V,O) = dRn(P (V ), 0) for any V ∈ CxX. Finally the 1-Lipschitz property
of P follows from the same property of P ′ and from the properties of the cosine
function.

Combining this result with the properties of the logarithmic map explained in
Section 2.2.2 we deduce the following:

Proposition 3.1.3. Let X be a complete, geodesic, GCBA metric space and x ∈ X
be a point of dimension n. Then there exists a 2-Lipschitz map Ψx : B(x, ρac(x))→
Rn such that

(a) Ψx(x) = 0;

(b) Ψx(B(x, r)) = B(0, r) for any 0 < r < ρac(x);

(c) d(x, y) = d(0,Ψx(y)) for any y ∈ B(x, ρac(x)).

Proof. Define Ψx = P ◦ logx, where P is the map of the previous proposition and
logx is the logarithmic map at x. Then Ψ satisfies the thesis.

Using the map Ψx we can transport metric and measure properties from Rn to
X. We denote by ωn the Hn-volume of the ball of radius 1 of Rn.

Corollary 3.1.4. Let X be a complete, geodesic, GCBA metric space and x ∈ X
be a point of dimension n. Then

Hn(B(x, r)) ≥ 1
2nωnr

n

for any 0 < r < ρac(x).

Proof. It follows directly from the properties of the map Ψx and the behaviour of
the Hausdorff measure under Lipschitz maps.

Proof of Theorem 3.1.1. We fix x ∈ X, 0 < r < min{1, ρac(x)} and ε = r
2n0

. We
call d0 the dimension of x. We look for the biggest ball around x of Hausdorff
dimension exactly d0. In order to do that we define

r1 = sup{ρ > 0 s.t. HD(B(x, ρ)) = d0}.

(where HD denotes the Hausdorff dimension). Notice that HD(B(x, ρ)) is monotone
increasing in ρ. If r1 ≥ r we stop and we redefine r1 = r. Otherwise there exists a
point x1 such that d(x, x1) ≤ r1 + ε and the dimension of x1 is d1 > d0, by definition
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of r1. Now we look for the biggest ball around x1 of Hausdorff dimension d1. We
define

r2 = sup{ρ > 0 s.t. HD(B(x1, ρ)) = d1}.

Arguing as before, if r1 + ε + r2 ≥ r we stop the algorithm and we redefine r2 as
r = r1 + ε+ r2. Otherwise we can find again a point x2 such that d(x2, x1) ≤ r2 + ε
and whose dimension is d2 > d1. We continue the algorithm until r1 +ε+ . . .+rk = r.
It happens in at most n0 steps. At the end we have points x = x0, x1, . . . xk with
k ≤ n0 such that d(xi, xj) ≤ rj + ε, r1 + ε+ . . .+ rk = r and such that the dimension
of xj is dj , with di > dj if i > j. We observe that the dj-dimensional parts of the
balls B(xj , rj), denoted by Bdj (xj , rj), are disjoint and contained in B(x, r), by
construction. Moreover the open ball B(xj , rj) has no point of dimension greater
than dj . So

µX(B(x, r)) =
n0∑
k=0
HkxBk(x, r) ≥

∑
j

Hdj (Bdj (xj , rj)).

The last step is to estimate the last term of the sum. Since k ≤ n0 and r1+ε+. . .+rk =
r then r1 + . . . + rk = r − (k − 1)ε ≥ r

2 . Hence there exists an index j such that
rj ≥ r

2n0
. By definition any point of the ball B(xj , rj) is of dimension ≤ dj . Hence

by the properties of the Hausdorff measure we get

Hdj (Bdj (xj , rj)) = Hdj (B(xj , rj)) ≥
1

2dj
ωdjr

dj
j ≥ cn0r

n0 ,

where the first inequality follows directly from the previous corollary and the last
one holds since r ≤ 1. So we can choose

cn0 =
( 1

4n0

)n0

min
k=0,...,n0

ωk

that is a constant depending only on n0. This concludes the proof.

3.2 Characterization of the packing condition
We are ready to characterize the packing condition in terms of dimension and
measure of a GCBA metric space.

Theorem 3.2.1. Let X be a complete, geodesic, GCBAκ metric space with ρac(X) ≥
ρ0 > 0. The following facts are equivalent.

(a) There exist P0 > 0 and 0 < r0 <
ρ0
3 such that Pack(3r0,

r0
2 ) ≤ P0;

(b) There exist n0, V0, R0 > 0 such that dim(X) ≤ n0 and µX(B(x,R0)) ≤ V0 for
any x ∈ X;

(c) There exists a measure µ on X and there exist two functions c(r), C(r) such
that for any x ∈ X and for any 0 < r < ρ0:

0 < c(r) ≤ µ(B(x, r)) ≤ C(r) < +∞.
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Moreover the set of constants (n0, V0, R0, ρ0, κ) can be expressed only in terms of the
set of constants (P0, r0, ρ0, κ) and viceversa.
Finally if any of the above conditions holds then the natural measure µX satisfies
condition (c) and X is proper and geodesically complete.

Proof. Assume first that X satisfies Pack(3r0,
r0
2 ) ≤ P0. First of all it follows that

the dimension of X is bounded. Indeed we fix any point x ∈ X and we denote by n
its dimension. We consider the map Ψx : B(x, 2r0)→ Rn given by Proposition 3.1.3.
Let x1, . . . , xk be a 2r0-separated subset of BRn(0, 2r0). Since Ψx is surjective on
this ball we can take preimages yi of xi under Ψx. Moreover d(yi, x) = d(Ψx(yi), 0),
hence yi ∈ B(x, 2r0). As Ψx is 2-Lipschitz the set {y1, . . . , yk} is a r0-separated
subset of B(x, 2r0). Then

k ≤ Pack
(

2r0,
r0
2

)
≤ Pack

(
3r0,

r0
2

)
≤ P0

by Theorem 2.4.7. But it is easy to show that k ≥ 2n. Therefore 2n ≤ P0 is the bound
on the dimension we were looking for. We observe that this bound is expressed only
in terms of P0. We fix now x ∈ X and any R > 0. Let r = min{1, R, 1

10r0,
1

100Dκ}.
We take a covering of B(x,R) with balls of radius r. By Theorem 2.4.7 it is possible
to do that with k balls, where k can be estimated in the following way:

k = Cov(B(x,R), r) ≤ Pack
(
B(x,R), r2

)
≤ P0(1 + P0)

2R
r
−1.

We call y1, . . . , yk the centers of these balls. By Theorem 2.4.7 the space X is proper,
then from the choice of r we get that B(yi, r) is a tiny ball for any i, as follows
from (6). Moreover the maximal number of r-separated points inside B(yi, 10r) is
bounded by Pack(10r, r2) ≤ P0(1 + P0)19, as follows again by Theorem 2.4.7. Hence
by (8) we have

Hj(B(yi, r)j) ≤ C(P0)rj ,

where C(P0) is a constant depending only on P0. Therefore, using the fact that the
dimension of X is bounded above by n0 = P0

2 and r ≤ 1, we get:

µX(B(yi, r)) =
n0∑
j=0
Hj(B(yi, r)j) ≤

P0
2 · C(P0)

for any i. Finally

µX(B(x,R)) ≤ P0(1 + P0)
2R
r
−1 · P0

2 · C(P0) = V (P0, r0, R, κ). (28)

This shows that for any x ∈ X and any R0 we can find the desired uniform bound
on the volume of the ball B(x,R0). This ends the proof of the implication (a) ⇒
(b). Moreover this part of the proof, together with Theorem 3.1.1, shows that if (a)
holds then the measure µX is a measure that satisfies condition (c) of the theorem.
Assume now that X has dimension bounded above by n0 and that the volume of the
balls of radius R0 are uniformly bounded above by V0. We set r0 = min{R0

6 , 1,
ρ0
6 }.

The claim is that X satisfies Pack(3r0,
r0
2 ) ≤ P0 for some P0 depending only on
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V0, R0, n0 and ρ0. We consider the ball of radius R0
2 centered at a point x ∈ X. We

take a r0-separated subset of B
(
x, R0

2

)
and we suppose its cardinality is bigger than

some k. It means that there are k points y1, . . . , yk ∈ B
(
x, R0

2

)
such that d(yi, yj) >

r0 for any i 6= j. Hence the balls centered at yi of radius r0
2 are pairwise disjoint

and satisfy B
(
yi,

r0
2
)
⊆ B

(
x, R0

2 + r0
2

)
⊂ B(x,R0), since R0

2 + r0
2 ≤

R0
2 + R0

6 < R0.

We can apply Theorem 3.1.1 to get µX
(
B(yi, r02 )

)
≥ cn0

( r0
2
)n0 for any i. Thus

V0 ≥ µX(B(x,R0)) ≥
k∑
i=1

µX

(
B

(
yi,

r0
2

))
≥ k · cn0

(
r0
2

)n0

,

then
k ≤ 2n0V0

cn0r
n0
0

= 2n0V0
cn0

·max
{

1,
( 6
ρ0

)n0

,

( 6
R0

)n0}
= P0.

It means that Pack(B(x, R0
2 ), r02 ) ≤ P0. Since R0 ≥ 6r0 we can conclude that

Pack(3r0,
r0
2 ) ≤ P0 that is what claimed.

Finally assume that there exists a measure µ such that for any x ∈ X and for any
0 < r < ρ0 it holds

0 < c(r) ≤ µ(B(x, r)) ≤ C(r) < +∞.

We take any r0 <
ρ0
3 and we fix any point x ∈ X. Let k be the maximal cardinality

of a r0-separated subset of B(x, 3r0). Then, arguing as before, we can find k disjoint
balls of radius r0

2 contained in B(x, 4r0). Since C(4r0) ≥ µ(B(x, 4r0)) ≥ k · c( r02 )
then k ≤ C(4r0)

c( r02 ) = P0. This shows that X satisfies (a) with these choices of r0 and
P0.

3.3 Characterization of pure-dimensional spaces

In this section X will be a complete, geodesic GCBA-space. We say that X is purely
n-dimensional if dim(x) = n for any x ∈ X. Moreover we say that a measure µ on
X is:

• D-doubling up to scale t at x ∈ X if there exists a constant D > 0 such that for
any 0 < t′ ≤ t it holds

µ(B(x, 2t′))
µ(B(x, t′)) ≤ D;

• D-doubling up to scale t if it is D-doubling up to scale t at any point x ∈ X (for
a uniform doubling constant D).

When uniformity of the constant and of the scale is not an issue we will simply
say that µ is locally doubling on X: that is if for any x ∈ X there exist tx > 0 and
Dx > 0 such that µ is Dx-doubling up to scale tx at any point of B(x, tx).
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Remark 3.3.1. Notice that any metric measure space (X, d, µ) satisfying a D0-
doubling condition up to scale t0 is P0-packed at scale r0 = t0

4 for P0 = D4
0 (provided

that the measure gives positive mass to the balls of positive radius). Actually let
x ∈ X and take any r0-separated subset {y1, . . . , yk} of B(x, 3r0). So the balls
B(yi, r02 ) are pairwise disjoint. From the doubling property we get:

µX (B(x, 3r0)) ≥
k∑
i=1

µ (B(yi, r0/2)) ≥
k∑
i=1

1
D4

0
µ(B(yi, 8r0))

and since B(yi, 8r0) ⊇ B(x, 3r0) we deduce that k ≤ D4
0.

The next result characterizes GCBA-spaces whose natural measure is locally
doubling:

Theorem 3.3.2. Let X be a proper, geodesic, GCBA metric space. Suppose µX is
locally doubling: then X is purely n-dimensional for some n.

We begin the proof of Theorem 3.3.2 with the following two preliminary results.

Lemma 3.3.3. Let X be a proper, geodesic, GCBA metric space and x ∈ X. Let
v ∈ ΣxX and assume that every point of B((v, 1), ε) is a k-regular point of TxX, for
some ε > 0. Then there exists r > 0 such that all points of the set

Av,ε(r) = {y ∈ X s.t. dT (logx(y), (v, d(x, y))) ≤ εd(x, y)} ∩B(x, r)

have dimension k.

We recall that, since TxX is a GCBA-space and since the set of k-regular points
is open in TxX, if (v, 1) is k-regular point in TxX then it is always possible to find
ε satisfying the assumptions of the lemma. The set Av,ε, or better its projection
on the tangent cone through the logarithm map at x, should be thought as a part
of angular sector around v. So the statement of the lemma says that any possible
geodesic segment starting at x with direction close to v stay in the k-dimensional
part of X for a uniform time r.

Proof. Suppose the thesis is false. Then there exists a sequence of points yn of
dimension different from k at distance rn → 0 from x such that

dT (logx(yn), (v, rn)) ≤ εrn.

We consider rescaled tiny balls Yn = 1
rn
B(x, r0) as in Lemma 2.2.5, together with

the approximating maps fn; so for all n we have:

dT (fn(yn), (v, 1)) ≤ ε.

Moreover we are in the standard setting of convergence. Indeed the GCBA-space
X is geodesic and complete, so the contraction maps ϕRr are well-defined for any
R < ρcat(x) and they are surjective and 2r

R -Lipschitz; therefore, by applying the
same proof as in Lemma 2.4.9, we conclude that the rescaled balls are uniformly
packed (the other properties follow from the discussion in Section 2.2). Moreover
the sequence yn ∈ Yn converges to some point y∞ ∈ B((v, 1), ε). So y∞ is k-regular
by assumption. But, by Lemma 2.2.8, the points yn must be k-dimensional for n
large enough, which is a contradiction.
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Lemma 3.3.4. Let v ∈ ΣxX and let γ be a geodesic starting at x defining v. For
any 0 < ε < 1 we have for all r > 0 small enough:

B

(
γ

(
r

2

)
,
εr

8

)
⊂ Av,ε(r)

Proof. As the logarithm map is 2-Lipschitz, for every y ∈ B
(
γ
(
r
2
)
, εr8
)
we have

dT (logx(y), (v, d(x, y))) ≤ dT
(

logx(y), logx
(
γ

(
r

2

)))
+ dT

((
v,
r

2

)
, (v, d(x, y))

)
≤ 2d

(
y, γ

(
r

2

))
+
∣∣∣∣r2 − d(x, y)

∣∣∣∣
≤ 3d

(
y, γ

(
r

2

))
≤ 3εr

8 ≤ εd(x, y)

since d(x, y) ≥ r
2 −

εr
8 . On the other hand if y ∈ B(γ( r2), εr8 ) we have d(x, y) ≤

r
2 + εr

8 < r, so the ball B(γ( r2), εr8 ) is included in Av,ε(r).

Proof of Theorem 3.3.2. Let us suppose X is not pure dimensional. We take a point
x0 ∈ X of minimal dimension d0. Then we have by assumption

r0 = sup{ρ > 0 s.t. HD(B(x0, ρ)) = d0} < +∞.

We can find a point x ∈ X with dimension d > d0 such that d(x0, x) = r0. Indeed
for any n we can find a point xn such that d(x0, xn) < r0 + 1

n and dim(xn) > d0.
The sequence of points xn converge, as the space is proper, to a point x at distance
exactly r0 from x0. Assume that dim(x) = d0: then there would exist a small radius
ρ such that the Hausdorff dimensions of B(x, ρ) is exactly d0. But xn belongs to
B(x, ρ) for n � 0, and any open ball around xn has Hausdorff dimension strictly
greater than d0; therefore HD(B(x, ρ)) > d0, a contradiction.
Now, the tangent cone TxX at x has dimension d. Hence there exists a point
v ∈ ΣxX and ε > 0 such that any point of the ball B((v, 1), ε) is regular and
of dimension d. We take any geodesic γ starting at x and defining v and we set
yr = γ( r2). Applying the two lemmas above we have that, for all r small enough, any
point of the ball B(yr, εr8 ) is d-dimensional. Since X satisfies a doubling condition
around x we know by Remark 3.3.1 that a ball B(x, r0) is P0-packed, for some r0, P0
depending on x. So, by Theorem 2.4.7 and by the properties of the natural measure
recalled in Section 2.2.3, there exists a constant C, only depending on r0 and P0,
such that for all sufficiently small r we have:

µX

(
B

(
yr,

εr

8

))
≤ C ·

(
εr

8

)d
.

Consider now the ball B(yr, r): notice that there exists a ball of radius at least
r
4 contained in B(yr, r) ∩ B(x0, r0), so made only of d0-dimensional points. In
particular by Corollary (3.1.4) we have µX(B(yr, r)) ≥ cd0( r4)d0 , where cd0 is a
constant depending only on d0. Thus

µX(B(yr, r))
µX(B(yr, εr4 )) ≥ C

′rd0−d,
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where C ′ is a constant that does not depend on r. Since this is true for any r small
enough and d0 < d, this inequality contradicts the doubling assumption at yr when
r goes to 0.

As a consequence we obtain the following:

Corollary 3.3.5. Let X be a complete, geodesic, GCBAκ metric space with ρac(X) ≥
ρ0 > 0. The following facts are equivalent:

(a) there exist D0 > 0 and t0 > 0 such that the natural measure µX is D0-doubling
up to scale t0;

(b) X is purely dimensional and there exist P0 > 0 and 0 < r0 < ρ0/3 such that
Pack(3r0,

r0
2 ) ≤ P0;

(c) there exist n0, V0, R0 > 0 such that X is purely n0-dimensional and µX(B(x,R0)) ≤
V0 for any x ∈ X.

Moreover each of the three sets of constants (D0, t0, ρ0, κ), (P0, r0, ρ0, κ), (n0, V0, R0, ρ0, κ)
can be expressed in terms of the others.
Finally if the conditions hold then X is proper and geodesically complete.

Proof of Corollary 3.3.5. The implication (a) ⇒ (b) follows from Theorem 3.3.2
and from Remark 3.3.1together with Theorem 2.4.7.
Assume now X purely n-dimensional and Pack(3r0,

r0
2 ) ≤ P0. We recall that

by Theorem 3.2.1 n can be bounded from above in terms of P0. We fix t0 <
min{1, R, 1

10r0,
1

100Dκ} as in the proof of Theorem 3.2.1. By Theorem 2.4.7 we know
X is proper, so it is easy to check that ρcat(X) ≥ t0 by (6). Therefore by Theorem
3.1.1 we have

µX(B(x, t)) ≥ cntn = c(P0)tn

for any t ≤ t0. Moreover, by the same estimate used in the proof of Theorem 3.2.1,
and using the fact that µX is just the n-dimensional Hausdorff measure, we get

µX(B(x, 2t)) ≤ P0(1 + P0)3 · P0
2 · C(P0)tn

for any t ≤ t0. Hence

µX(B(x, 2t))
µX(B(x, t)) ≤

P0(1 + P0)3 · P0
2 · C(P0)

c(P0) = D0

which shows the implication (b) ⇒ (a).
The equivalence between (b) and (c) is proved in Theorem 3.2.1.

Finally the doubling condition also implies the uniform continuity of the natural
measure of annuli:

Lemma 3.3.6. Let X be a complete, geodesic, GCBAκ metric space which is D0-
doubling up to scale t0 and satisfies ρac(X) ≥ ρ0. There exists β > 0, only depending
on D0, such that for every R > 0 and for every positive ε < min

{
t0

24R ,
1
9

}
it holds:

µX(A(x,R, (1− ε)R)) ≤
(

max
{24R
t0

, 9
})β

· εβ · µX(B(x,R)).
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Proof. The proof is exactly the same as in Proposition 11.5.3 of [HKST15], with a
minor modification due to the fact that we assume that µX is doubling only up to
scale t0. Actually, arguing as in the first part of the proof of Proposition 11.5.3 of
[HKST15], one deduces that

µX(A(x,R,R− t)) ≤ D4
0 · µX(A(x,R− t, R− 3t)) (29)

for all x ∈ X and all positive t ≤ min
{
t0
8 ,

R
3

}
=: tR. From (29) we deduce that for

all t ≤ tR it holds

µX (A(x,R,R− t)) ≤ D4
0

(
µX(B(x,R))− µX (A(x,R,R− t))

)
hence

µX(A(x,R,R− t)) ≤
(

D4
0

1 +D4
0

)
· µX(B(x,R))

Setting tm = 1
2·3m one then shows by induction as in [HKST15] that

µX
(
A(x,R, (1− tm)R)

)
≤
(

D4
0

1 +D4
0

)m+1−m0

· µX(B(x,R))

for all m ≥ m0 =
⌈
log3( R

2tR )
⌉
. Our claim then follows for ε ≤ min

{
t0

24R ,
1
9

}
choosing

β = log3

(1+D4
0

D4
0

)
. Indeed for every such ε we choose the unique integer m ≥ m0

such that tm+1 ≤ ε ≤ tm. Therefore we have

µX(A(x,R, (1− ε)R)) ≤ µX(A(x,R, (1− tm)R))

≤
(

D4
0

1 +D4
0

)m+1−m0

· µX(B(x,R)).

Using the fact that m+ 1 ≥ − log3 2ε we get

µX(A(x,R, (1− ε)R)) ≤ (2 · 3m0)β · εβ · µX(B(x,R)).

Since m0 ≤ log3

(
R

2tR

)
+ 1 the thesis follows.

As a consequence we deduce that for D-doubling GCBA-spaces the measure
of balls is continuous under the Gromov-Hausdorff convergence, which sharpens
Lemma 2.2.7:

Corollary 3.3.7. Let Xn be a sequence of complete, geodesic, GCBAκ metric spaces
which are D0-doubling up to scale t0 and satisfying ρac(Xn) ≥ ρ0. Assume that Xn

converge in the pointed Gromov-Hausdorff sense to some GCBA-space X and let
xn ∈ Xn be a sequence of points converging to x ∈ X. Then for any R ≥ 0 it holds

µX(B(x,R)) = lim
n→+∞

µXn(B(xn, R)).
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Proof. By Remark 3.3.1 and Theorem 2.4.7 the spaces Xn are P0-packed at some
scale r0 ≤ ρ0/3 for P0, r0 only depending on D0, t0, ρ0 and κ. By Theorem 3.2.1,
precisely by (28), the balls of radius R in Xn have uniformly bounded volume, that
is

µXn(B(xn, R)) ≤ C(R)

for a universal function C(R) only depending on D0, t0, ρ0 and R. By the above
Corollary for all R > 0 and ε > 0 there exists δ > 0, depending only on D0, t0 and R
such that for any xn ∈ Xn it holds µXn(A(xn, R+ δ,R)) ≤ ε. The proof then follows
directly from (10).

3.4 Examples
The first examples of GCBAκ spaces is given by complete Riemannian manifolds
with sectional curvature bounded above by κ. Observe that if the sectional curvature
is also bounded below then the manifold is P0-packed at scale r0, for some P0, r0
depending only on the lower bounds and on the dimension of the manifold. In the
following we will introduce a class of non-manifold GCBAκ metric spaces satisfying
a uniform packing condition.

3.4.1 Mκ-complexes

An important class of GCBAκ spaces is provided by Mκ-complexes with bounded
geometry, in a sense we are going to explain. First of all we recall briefly the
definitions and the properties of the class of simplicial complexes we are interested
in. A κ-simplex S is the convex set generated by n+ 1 points v0, . . . , vn of Mκ

n in
general position, where Mκ

n is the unique n-dimensional space-form with constant
sectional curvature κ. If κ > 0 the points v0, . . . , vn are required to belong to an
open emisphere. We say that S has dimension n. Each vi is called a vertex. A
d-dimensional face T of S is the convex hull of a subset {vi0 , . . . , vid} of (d + 1)
vertices. The interior of S, denoted Ṡ, is defined as S minus the union of its lower
dimensional faces; the boundary ∂S is the union of its codimension 1 faces.
Let Λ be any set and E =

⊔
λ∈Λ Sλ, where any Sλ is a κ-simplex. Let ∼ be an

equivalence relation on E satisfying:

(i) for any λ ∈ Λ the projection map p : Sλ → E/∼ is injective;

(ii) for any λ, λ′ ∈ Λ such that p(Sλ) ∩ p(Sλ′) 6= ∅ there exists an isometry hλ,λ′
from a face T ⊆ Sλ onto a face T ′ ⊆ Sλ′ such that p(x) = p(x′), for x ∈ Sλ and
x′ ∈ Sλ′ , if and only if x′ = hλ,λ′(x).

The quotient space K = E/∼ is called a Mκ-simplicial complex or simply Mκ-
complex; the set E is the total space. A subset S ⊆ K is called a m-simplex of K
if it is the image under p of a m-dimensional face of some Sλ; its interior and its
boundary are, respectively, the image under p of the interior and the boundary of Sλ.
The support of a point x ∈ K, denoted supp(x), is the unique simplex containing x
in its interior (notice that supp(v) = v when v is a vertex). The open star around a
vertex v is the union of the interior of all simplices having v as a vertex.
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Metrically K is equipped with the quotient pseudometric. By Lemma I.7.5 of [BH13]
the pseudometric can be expressed using strings. A m-string in K from x to y
is a sequence Σ = (x0, . . . , xm) of points of K such that x = x0, y = xm and for
each i = 0, . . . ,m− 1 there exists a simplex Si containing xi and xi+1. Moreover a
m-string Σ = (x0, . . . , xm) from x to y is taut if

• there is no simplex containing {xi−1, xi, xi+1};

• if xi−1, xi ∈ Si and xi, xi+1 ∈ Si+1 then the concatenation of the segments
[xi−1, xi] and [xi, xi+1] is geodesic in the subcomplex Si ∪ Si+1.

The length of Σ is defined as:

`(Σ) =
m−1∑
i=0

dSi(xi, xi+1)

where dS denotes the standard Mκ-metric on a geodesic simplex S of Mκ. Then
any string can be identified to a path in K and the natural quotient pseudometric
on K coincides with the following ([BH13], Lemma I.7.21):

dK(x, y) = inf{`(Σ) s.t. Σ is a taut string from x to y}.

Moreover for any x ∈ K one can define the number

ε(x) = inf
S simplex of K

x ∈ S

 inf
T face of S
x /∈ T

dS(x, T )

 (30)

which has the following fundamental property:

Lemma 3.4.1 (Lemma I.7.9 and Corollary I.7.10 of [BH13]).
If ε(x) > 0 for any x and K is connected then dK is a metric and (K, dK) is a length
space. Moreover if y ∈ K satisfies dK(x, y) < ε(x) then any simplex S containing y
contains also x and dK(x, y) = dS(x, y).

We remark that a Mκ-complex can be non-locally compact, even when the quotient
pseudometric on it is a metric.
For any vertex v ∈ K it is possible to define the link Lk(v,K) of K at v as follows.
We fix any λ ∈ Λ such that v = p(vλ), where vλ is a vertex of Sλ. The set of unit
vectors w of TvλMκ

n such that the geodesic starting in direction w stays inside Sλ for
a small time is a geodesic simplex of M1

n−1 = Sn−1, denoted Lk(vλ, Sλ). Consider
the equivalence relation on the disjoint union

⊔
p(Sλ)3v Sλ given by wλ ∼ wλ′ if and

only if p(Sλ)∩ p(Sλ′) 6= ∅ and (dhλ,λ′)vλ(wλ) = w′λ: the link Lk(v,K) is the quotient
space under this equivalence relation. It is clearly a M1-complex.

We introduce now the class of simplicial complexes we are interested in. We say
that K has valency at most N if for all v ∈ K the number of simplices having v as
a vertex is bounded above by N . Notice that if the valency is at most N then the
maximal dimension of a simplex of K is at most N too. We say that a simplex S has
size bounded by R > 0 if it contains a ball of radius 1

R and it is contained in a ball of
radius R; accordingly we say the simplicial complex K has size bounded by R if all
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the simplices Sλ defining K have size bounded by R. The bound on the size avoids
to have too thin simplices: it should be thought as a quantitative non-collapsing
condition, as follows from the next results. Indeed the first one affirms that a bound
on the size of a simplex gives uniform bounds on the size of any of its faces: for
example its 1-dimensional faces are not too short (and not too long).

Lemma 3.4.2. Let S be a Mκ-simplex of dimension n and size bounded by R. Then
any face of S of dimension d has size bounded by 2n−dR.

Proof. We prove the lemma by induction on the dimension n. If n = 0, 1 there is
nothing to prove. Assume now that the bounds hold for all faces of Mκ-simplices of
dimension ≤ n− 1 and consider a n-dimensional Mκ-simplex S = Conv(v0, . . . , vn)
of size bounded by R. Let S′ = Conv(v0, . . . , vn−1) be the face of S opposite to
vn and identify Mκ

n−1 with the κ-model space containing S′. It is clear that S′ is
contained in a ball BMκ

n−1
(x, 2R) of Mκ

n−1. On the other hand let BMκ
n

(x, 1
R) be the

ball of Mκ
n which is contained in S. Call ψ : S → S′ the map sending every point z

of S to the intersection of the extension of the geodesic [vn, z] after z with S′ and
let y = ψ(x); moreover let ϕ be the contraction map centered at vn sending y to x.
Notice that ψ ◦ ϕ(z) = z for all z ∈ S′. The map ϕ is 2-Lipschitz, so any point of
BMκ

n
(y, 1

2R) is sent to BMκ
n

(x, 1
R) under ϕ. Therefore

BMκ
n−1

(
y, 1

2R

)
= B

(
y, 1

2R

)
∩Mκ

n−1 ⊆ ψ
(
BMκ

n
(x, 1

R)
)
⊆ S′

which proves the induction step.

In the second result we prove the non-collapsing property: limit of n-dimensional
simplices with uniform bound on the size is again n-dimensional (and satisfies the
same bound on the size).

Proposition 3.4.3. The class of n-dimensional Mκ-simplices of size bounded by R
and having a fixed point o as a vertex is compact under the Hausdorff distance on
Mκ
n . Moreover, under this convergence, any face of the limit space is limit of faces

of the simplices in the sequence. Finally the same class is closed under ultralimits.

Proof. We take a sequence of simplices Sl as in the assumption. We denote by
vl0 = o, vl1 . . . , v

l
n the vertices of Sl. All the sequences (vli) are contained in a compact

subset of Mκ
n , so up to subsequence they converge to vi for all i = 0, . . . , n, in

particular v0 = o. Then the ε-neighbourhood Conv(v0, . . . , vn)ε of Conv(v0, . . . , vn)
is a convex subset of Mκ

n which definitely contains vl0 = o, vl1 . . . , v
l
n, hence

Conv(v0, . . . , vn)ε ⊇ Conv(vl0 = o, vl1 . . . , v
l
n).

Analogously Conv(v0, . . . , vn) ⊆ Conv(vl0 = o, vl1 . . . , v
l
n)ε definitely, hence

Conv(v0, . . . , vn) → Conv(vl0 = o, vl1 . . . , v
l
n) for the Hausdorff distance. Similarly

any face of S is limit of corresponding faces of Sl. We now claim that v0, . . . , vn
are in general position. If not then there are three vertices, say v0, v1, v2, belonging
to the same 1-dimensional space. This means the faces Conv(vl0, vl1, vl2) tend to a
1-dimensional face, therefore thay cannot have size bounded below uniformly, which
contradicts Lemma 3.4.2. Therefore S is a n-dimensional simplex. Moreover it is
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clear it is contained in a ball of radius R and it contains a ball of radius 1
R . Fix now

any non-principal ultrafilter ω and a sequence Sl as above. Each Sl is proper and
the sequence converges in the Gromov-Hausdorff sense to the proper space S. Then
by Proposition 2.7.11 we get that the ultralimit Sω is isometric to S.

Clearly the same conclusion holds for the class of simplices of dimension at most
n and size bounded by R since it is the finite union of compact classes.
Our aim is to use the compactness of this class of simplices to show uniform packing
estimates for a Mκ-complex with bounded size and bounded valency.
In the following we will state the equivalent versions, in our setting, of a series of
well-known results for Mκ-complexes with finite shapes proved in [BH13], where a
Mκ-complex is of finite shape if the isometries classes of its simplices are finite. The
original proofs are based on the finiteness of the class of simplices, while our proofs
will be based on the compactness of the class of simplices we are considering: in this
sense we can think our results as a generalization of the original ones.

Lemma 3.4.4. Let K be a Mκ-complex of size bounded by R and dim(K) ≤ n.
Then there exists a constant ε0(R,n) > 0 depending only on R and n such that for
all vertices v, w of K it holds ε(v) > ε0(R,n) and dK(v, w) ≥ ε0(R,n).

Proof. The class of simplices with size bounded by 2n−dR and dimension exactly
d is compact with respect to the Hausdorff distance of Mκ

d by 3.4.3. Moreover the
map Conv(v0, . . . , vd) 7→ dMκ

d
(v0,Conv(v1, . . . , vd)) is continuous with respect to the

Hausdorff distance and it is positive. Therefore it attains a global minimum εd > 0.
Setting ε0(R,n) = mind=0,...,n εd, we have ε(v) ≥ ε0(R,n) > 0 for every vertex v ∈ K.
Therefore every two vertices v, w of K satisfy dK(v, w) ≥ ε0(R,n) (or, by Lemma
3.4.1, there would exist a simplex S of K such that dK(v, w) = dS(v, w) < ε0(R,n),
a contradiction).

Lemma 3.4.5. Let S be a Mκ-simplex of size bounded by R and dim(S) ≤ n. Let
∂Tτ denote the τ -neighbourhood of the boundary of any face T of S. For any positive
τ there exists ε(R,n, τ) > 0 such that for all faces T of S, for all x ∈ T \ ∂Tτ and
all faces T ′ of S which do not contain x it holds:

d(x, T ′) ≥ ε(R,n, τ)

Moreover for any integer d ≥ 0 there exist ηd = ηd(R,n), εd = εd(R,n) > 0, where
ε0 = ε0(R,n) is the function given by Lemma 3.4.4 and η0 = ε0

8(n+1) , satisfying the
following conditions:

(a) for all d-dimensional faces T of S, for every x ∈ T \ ∂Tηd−1 and every face T ′
of S not containing x it holds: d(x, T ′) ≥ εd;

(b) ηk + ηk+1 + · · · ηm ≤ εk
8 , for all 0 ≤ k ≤ m ≤ n.

Proof. The proof follows same arguments of Lemma 3.4.4. Indeed it is sufficient to
consider the positive, lower semicontinuous map

h(S) = min
T face of S

inf
x∈T\∂Tτ

min
T ′ face of S
x /∈ T ′

d(x, T ′)
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on the compact set of Mκ-simplices of size bounded by R and dimension at most n,
and take as ε(R,n, τ) its positive minimum.

To prove the second part of the Lemma we define ε1(R,n) as ε(R,n, η0), where
this is the number given by the first statement with τ = η0. Then we choose
0 < η1 = min{ ε0

8(n+1) ,
ε1

8(n+1)} and again we define ε2 > 0 as ε(R,n, η1). We can
continue choosing 0 < η2 = min{ ε0

8(n+1) ,
ε1

8(n+1) ,
ε2

8(n+1)} and so on. This process
produces the announced εi, ηi, which clearly satisfy (b).

As a consequence we get the following useful estimates:

Lemma 3.4.6. Let K be a Mκ-complex of size bounded by R and dim(K) ≤ n. For
all τ > 0 there exists ε(R,n, τ) > 0 with the following property: for all x ∈ K whose
support is S satisfying dS(x, ∂S) ≥ τ we have ε(x) ≥ ε(R,n, τ). In particular if K
is connected then (K, dK) is a length metric space.

Proof. Let x ∈ K. Any simplex containing x must contain supp(x) as a face. It is
then enough to apply the first claim of Lemma 3.4.5 to get the estimate on ε(x).
The second part follows immediately from Lemma 3.4.1.

Lemma 3.4.7. Let K be a Mκ-complex of size bounded by R and dim(K) ≤ n.
Then there exists δ = δ(R,n) > 0 depending only on R and n such that:

(a) if two simplices S, S′ of K are at distance ≤ δ, they share a face;

(b) moreover for every x ∈ K the ball B(x, δ) is contained in the open star of some
vertex;

(c) finally for every x ∈ K there exists y ∈ K such that B(x, δ) ⊆ B(y, ε(y)
4 ) (where

ε(y) is the function defined in (30)).

Proof. We start proving (c). Consider the numbers εd, ηd given by Lemma 3.4.5. The
claim is that δ = mind=0,...,n ηd satisfies the thesis of (c). Actually take any x ∈ K
and consider the d-dimensional simplex S = supp(x). There are two possibilities:
either x ∈ S \ ∂Sηd−1 or there exists a point y1 ∈ ∂S such that d(x, y1) ≤ ηd−1.
In the first case we observe that any simplex S′ containing x must have S has
a face and by Lemma 3.4.5 we can conclude that ε(x) ≥ εd. Hence in this case
B(x, δ) ⊆ B(x, εd8 ) ⊆ B(x, η(x)

4 ) as follows by Lemma 3.4.5.(b). Otherwise let
S1 = supp(y1) and call 0 ≤ d1 ≤ d− 1 its dimension. Arguing as before we find that
either ε(y1) ≥ εd1 or there exists again a point y2 whose support S2 has dimension
0 ≤ d2 < d1 such that d(y1, y2) ≤ ηd1−1. In the first case we have

B(x, δ) ⊆ B(y1, ηd−1 + ηd1) ⊆ B
(
y1,

εd1

4

)
⊆ B

(
y1,

ε(y1)
4

)
,

otherwise we continue the procedure inductively. Then either at some step we have
the thesis or we find a vertex v of K such that

d(x, v) ≤ ηd−1 + ηd−2 + . . .+ η0 ≤
ε0
8 .

Therefore B(x, δ) ⊆ B
(
v, ε0(R,n)

4

)
⊆ B

(
v, ε(v)

4

)
, which proves (c).
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In order to prove (b) we fix x ∈ K and we find the corresponding y given by (c).
Then for all point z ∈ B(x, δ) we can apply Lemma 3.4.1 and find that any simplex
S containing z must contain also y. This means that any such S has the vertices of
supp(y) as vertices. This concludes the proof of (b).
Finally the proof of (a) is an easy consequence: suppose to have two points x and x′
belonging to two simplices S, S′ respectively such that d(x, x′) ≤ δ; then they belong
to the open star of a same vertex by (b). In particular S and S′ share a vertex.

Another straightforward application of compactness and continuity yields the
following, whose proof is omitted:

Lemma 3.4.8. Let K be a Mκ-complex of size bounded by R and dim(K) ≤ n.
Then there exists R′ = R′(R,n) depending only on R and n such that for every
vertex v of K the M1-complex Lk(v,K) has size bounded by R′.

We start now considering Mκ-complexes with bounded size and valency:

Proposition 3.4.9. Let K be a connected Mκ-complex of size bounded by R and
valency at most N . Then K is locally finite (i.e. for all x ∈ K there are a finite
number of simplices containing x) and (K, dK) is a proper, geodesic metric space.

Proof. Any simplex S containing a point x must have supp(x) as a face; in particular
if v is a vertex of supp(x) then it is also a vertex of S. So the number of simplices
containing x is bounded by the number of simplices containing v, which is bounded
by N by assumption. By Lemma 3.4.6 we know that (K, dK) is a length metric
space. Finally, by Lemma 3.4.7, for all y ∈ K the ball B(y, δ) belongs to the open
star of a vertex, which is the union of a finite number of simplices, hence K is locally
compact and complete. Then as K is a complete, locally compact, length metric
space, it is proper and geodesic by Hopf-Rinow’s Theorem.

The following is the analogue of Theorem I.7.28 of [BH13]:

Proposition 3.4.10. Let K be a connected Mκ-complex of size bounded by R and
valency at most N . Then for any ` > 0 there exists m0 = m0(`, R,N) depending
only on `, R and N such that any m-taut string of length ≤ ` satisfies m ≤ m0.

Proof. We use the same proof of Theorem I.7.28 of [BH13] (which is forMκ-complexes
of finite shape), proceeding by induction on the dimension of K. The first step is
to prove that if a m-string Σ is included in the open star of a vertex v then m
is bounded by a function m′0(`, R,N). This is clear with m′0 = 3 if the geodesic
associated to Σ passes through v, otherwise it follows by the inductive hypothesis by
projecting radially Σ to Lk(v,K) (which has lower dimension) using Lemma 3.4.8.
Now, if the bound stated in the proposition did not hold there would exist tout
m-strings Σi inMκ-complexes Ki with length ≤ ` and arbitrary large m. Then there
would exist also tout m′-substrings Σ′i of the Σi, with m′ > m′0(`, R,N), included
in some ball B̄(xi, δ) ⊂ Ki, for δ = δ(R,N) defined in Lemma 3.4.7. By the same
lemma Σ′i would be included in the open star of some vertex which, by step one,
implies that m′ ≤ m′0(`, R,N), a contradiction.
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Corollary 3.4.11. Let K be a connected Mκ-complex of size bounded by R and
valency at most N . Let x, y ∈ K such that dK(x, y) ≤ `. Then there exists a geodesic
joining x to y realized as the concatenation of at most m0(`, R,N) geodesic segments,
each contained in a simplex of K.

Proof. Immediate from the fact that K is a geodesic space (by 3.4.9), the character-
ization of dK in terms of taut strings and Proposition 3.4.10.

In order to establish if a Mκ-complex is a locally CAT(κ) space we use the
following improvement of a well-known criteria. We recall that the injectivity radius
of a complex K, denoted ρinj(K), is defined as the supremum of the r ≥ 0 such that
any two points of K that are at distance at most r are joined by a unique geodesic.

Proposition 3.4.12. Let K be a connected Mκ-complex of size bounded by R and
valency at most N . The following facts are equivalent:

(a) (K, dK) is locally CAT(κ);

(b) K satisfies the link condition, i.e. the link at any vertex is CAT(1);

(c) (K, dK) is locally uniquely geodesic;

(d) (K, dK) has positive injectivity radius;

(e) ρinj(K) ≥ δ(R,N), where δ(R,N) is the function defined in Lemma 3.4.7.

Moreover if K satisfies one of the equivalent conditions above then for any x ∈ K
the ball B(x, δ(R,N)) is a CAT(κ) space, i.e. the CAT(κ)-radius of K is at least
δ(R,N).

The equivalences between (a), (b) and (c) are quite standard. The equivalence of
these conditions with (d) is known for simplicial complexes with finite shapes, see
[BH13]. The main point of Proposition 3.4.12 is that the last equivalence continues
to hold in our setting and moreover we can bound from below the injectivity radius
of K in terms of R and N only.

Proof of Proposition 3.4.12. The equivalence between (a) and (b) follows from The-
orem II.5.2 and Remark II.5.3 of [BH13], while (a) ⇒ (c) is straightforward. The
implication (c)⇒ (e) follows as in Proposition I.7.55 of [BH13]. Actually by Proposi-
tion 3.4.9 we have ε(x) > 0 for every x ∈ K, so the ball B(x, ε(x)

2 ) is isometric to the
open ball B(O, ε(x)

2 ) of the κ-cone Cκ(Lk(v,K)) centered at the cone point O (cp.
Theorem I.7.39 in [BH13]). Moreover by assumption a neighbourhood of O of the
cone Cκ(Lk(v,K)) is uniquely geodesic, which implies that the whole Cκ(Lk(v,K))
is uniquely geodesic (cp. Corollary I.5.11, [BH13]) and this in turns implies that
B(x, ε(x)

2 ) is. By Lemma 3.4.7(c) we conclude that the injectivity radius is bounded
below by δ(R,N) (recall that the dimension of K is bounded above by N). The
implication (e) ⇒ (d) is obvious, while (c) ⇒ (b) follows exactly as in Theorem
II.5.4 of [BH13]. Finally the last remark follows from Theorem I.7.39 &Theorem
II.3.14 of [BH13] together with Lemma 3.4.7(c).
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We recall that a locally compact, locally CAT(κ), Mκ-complex is locally geodesi-
cally complete if and only if it has no free faces (see II.5.9 and II.5.10 of [BH13] for
the definition of having free faces and the proof of this fact). We can finally show
that the class of metric spaces we are studying in this section is uniformly packed.

Proposition 3.4.13. Let K be a connected Mκ-complex without free faces, of size
bounded by R, valency at most N and positive injectivity radius. Then K is a proper,
geodesic, GCBAκ metric space with ρcat(K) ≥ ρ0 and satisfying Pack(3r0,

r0
2 ) ≤ P0,

for constants ρ0, P0, r0 depending only on R,N and κ, and r0 ≤ ρ0/3.

Proof. By the proof of Proposition 3.4.10 we know that K is proper and geodesic.
Moreover since the injectivity radius is positive then K is locally CAT(κ) and by
Proposition 3.4.12 the CAT(κ)-radius is at least ρ0 = δ(N,R). Since K has no free
faces then it is locally geodesically complete. This shows that K is also a GCBAκ
metric space. We remark that clearly Hk(K) = 0 if k > N since the projection map
from a simplex to K is 1-Lipschitz; this shows that there are no points of dimension
greater than N , i.e. dim(K) ≤ N . We now use Lemma 3.4.7 to estimate the number
of simplices intersecting a ball around any point x ∈ K. Any simplex S which
intersect B(x, δ(R,N)) intersects the open star around some vertex v, by Lemma
3.4.7.(b). Therefore v must be a vertex of S. If follows that the number of simplices
intersecting B(x, δ(R,N)) is bounded by N . Therefore, for any x ∈ K we have

µK(B(x, δ(R,N))) ≤
N∑
d=0

N · Hd(BMκ
d

(o, δ(R,N))) ≤ V0,

where V0 depends just on R,N and κ (here is o is any point of Mκ
d ). The conclusion

follows from Theorem 3.2.1.

3.4.2 Gromov-hyperbolic CAT(0)-cube complexes

Related to Mκ-complexes there is a special class of examples: geodesically complete,
CAT(0)-cube complexes with bounded valency (i.e. such that the number of cubes
having a common vertex is uniformly bounded by some constant N). These spaces
can manifest a Gromov-hyperbolicity behaviour: for instance it is classical that any
proper cocompact CAT(0)-space without 2-flats is Gromov-hyperbolic (see [Gro87],
[BH13]).
For cube complexes with bounded valency we have the following hyperbolicity
criterion. Recall that one says that a cube complex X has L-thin rectangles if all
Euclidean rectangles [0, a]× [0, b] isometrically embedded in X satisfy min{a, b} ≤ L.
Then:

Proposition 3.4.14. Let X be a simply connected cube complex with no free faces,
dimension ≤ n and valency ≤ N , endowed with its canonical `2-metric (the length
metric which makes any d-cube of X isometric to [−1, 1]d):

(a) if X has positive injectivity radius, then it is a complete, geodesically complete,
CAT(0) metric space which is P0-packed at scale r0 = 1

3 , for a packing constant
P0 = P0(N);
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(b) if moreover X has L-thin rectangles, then it is Gromov-hyperbolic with hyperbol-
icty constant δ = 4 ·RamdL+ 1e (where Ram(m) denotes the Ramsey number
of m).

Proof. The barycenter subdivision of the cube-complex gives aM0-complex structure
toX with valency bounded uniformly in terms ofN and n and, clearly, with uniformly
bounded size. Moreover since X has positive injectivity radius and it has no free
fraces then the same is true for the metric induced by the complex structure (which
is isometric), therefore we can apply Proposition 3.4.13 to conclude (a) (the fact
that X is globally CAT(0) follows from the simply connectedness assumption).
The proof of (b) is presented in Theorem 3.3 of [Gen16].

Theorem J and its consequences will apply to this case. Notice that the quantita-
tive Tits Alternative with specification is new for hyperbolic, CAT(0) cube complexes
(compare with [SW05], [GJN20]).
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Chapter 4

Entropies of convex,
Gromov-hyperbolic metric
spaces

From now on we will focus our attention on complete, convex, geodesically complete,
packed metric spaces. We start introducing several notions of entropies with the
idea to find invariants that give information on the complexity of the space. We do
not need any group action at the moment.
We recall that given two functions f, g : [0,+∞) → R we say that f and g have
the same asymptotic behaviour, and we write f � g, if for all ε > 0 there exists
Tε ≥ 0 such that if T ≥ Tε then |f(T ) − g(T )| ≤ ε. The function Tε is called the
threshold function. The notation f �

P0,r0,δ,...
g means that the threshold function can

be expressed only in terms of ε and P0, r0, δ, . . .

4.1 Covering and volume entropy

In this section we will introduce the first two types of entropies: the covering entropy,
defined in terms of the covering functions, and the volume entropy of a measure.

4.1.1 Properties of the covering entropy

Let X be a complete, convex, geodesically complete metric space that is P0-packed
at scale r0. It is natural to define the upper covering entropy of X as the number

hCov(X) = lim sup
T→+∞

1
T

log Cov(B(x, T ), r0),

where x is any point of X. The lower covering entropy is defined taking the limit
inferior instead of the limit superior and it is denoted by hCov(X). By triangular
inequality it is easy to show that the definitions of upper and lower covering entropy
do not depend on the point x ∈ X. In the next proposition we can see that they do
not depend on r0 too and moreover we can replace the covering function with the
packing function.
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Proposition 4.1.1. Let X be a complete, convex, geodesically complete metric space
that is P0-packed at scale r0 and let x ∈ X. Then

1
T

log Cov(B(x, T ), r) �
P0,r0,r,r′

1
T

log Pack(B(x, T ), r′)

for all r, r′ > 0. In particular any of these functions can be used in the definition of
the upper and lower covering entropy.

Proof. For all 0 < r ≤ r′ and x ∈ X clearly Cov(B(x, T ), r) ≥ Cov(B(x, T ), r′) and
Cov(B(x, T ), r) ≤ Cov(B(x, T ), r′) · supy∈X Cov(B(y, r′), r). By Corollary 2.4.10 we
have supy∈X Cov(B(y, r′), r) = Cov(r′, r) which is a finite number depending only
on P0, r0, r, r

′. Therefore we obtain

1
T

log Cov(B(x, T ), r) �
P0,r0,r,r′

1
T

log Cov(B(x, T ), r′).

The thesis follows from (21).

The upper and lower covering entropies can be computed also using the covering
function of the metric spheres.

Proposition 4.1.2. Let X be a complete, convex, geodesically complete metric space
that is P0-packed at scale r0 and x ∈ X. Then for all r > 0

1
T

log Cov(B(x, T ), r) �
P0,r0,r

1
T

log Cov(S(x, T ), r)

Proof. Clearly it holds Cov(S(x, T ), r) ≤ Cov(B(x, T ), r). The other estimate is more
involved. We divide the ball B(x, T ) in annulii A(x, kr, (k+1)r) with k = 0, . . . , Tr −1.
We easily obtain

Cov(B(x, T ), 2r) ≤
T
r
−1∑

k=0
Cov(A(x, kr, (k + 1)r), 2r).

Now we claim that for any k it holds

Cov(A(x, kr, (k + 1)r), 2r) ≤ Cov(S(x, T ), r).

Indeed let {y1, . . . , yN} be a set of points realizing Cov(S(x, T ), r). For all i =
1, . . . , N we consider the geodesic segment γi = [x, yi] and we call xi the point
along the geodesic γi at distance kr from x. Then xi ∈ A(x, kr, (k + 1)r) for every
i = 1, . . . , N . We claim that {x1, . . . , xN} is a 2r-dense subset of A(x, kr, (k + 1)r).
We take any y ∈ A(x, kr, (k + 1)r) and we consider the geodesic segment γ =
[x, y]. We extend this geodesic up to find a point γ(T ) at distance T from
x. Then there exists i such that d(γ(T ), yi) = d(γ(T ), γi(T )) ≤ r. By con-
vexity of the metric we have d(γ(kr), γi(kr)) ≤ r, therefore we conclude that
d(y, xi) ≤ d(y, γ(kr)) + d(γ(kr), xi) ≤ 2r. This ends the proof of the claim, so
Cov(B(x, T ), 2r) ≤ R

r Cov(S(x, T ), r). The thesis follows from these estimates and
Proposition 4.1.1.
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Combining Proposition 2.4.4 and Proposition 4.1.1 we can find an uniform upper
bound to the covering entropy.

Lemma 4.1.3. Let X be a complete, convex, geodesically complete metric space
that is P0-packed at scale r0. Then

hCov(X) ≤ log(1 + P0)
r0

.

Proof. For every x ∈ X it holds Pack(B(x,R), r0) ≤ P0(1 + P0)
R
r0
−1
. The thesis

follows immediately.

4.1.2 Volume entropy of homogeneous measures

Let X be a complete, convex, geodesically complete metric space that is P0-packed
at scale r0. The upper volume entropy of a measure µ on X is defined as

hµ(X) = lim sup
T→+∞

1
T

logµ(B(x, T )),

while the lower volume entropy hµ(X) is defined taking the limit inferior. These
definitions do not depend on the choice of the point x ∈ X.
A measure µ on X is called H-homogeneous at scale r if

1
H
≤ µ(B(x, r)) ≤ H

for all x ∈ X. We remark that the condition must hold only at scale r.

Proposition 4.1.4. Let X be a complete, convex, geodesically complete metric space
that is P0-packed at scale r0 and let µ be a measure on X which is H-homogeneous
at scale r. Then

1
T

logµ(B(x, T )) �
P0,r0,H,r

1
T

log Cov(B(x, T ), r).

In particular the upper (resp. lower) volume entropy of µ coincides with the upper
(resp. lower) covering entropy of X.

Proof. For all x ∈ X it holds µ(B(x, T )) ≤ H · Cov(B(x, T ), r) and µ(B(x, T )) ≥
1
H · Pack(B(x, T − r), r).
By Proposition 4.1.1 and since T−r

T �
r

1 we have the thesis.

Remark 4.1.5. The proof of the proposition shows another fact: if a measure is
H-homogeneous at scale r then it is H(r′)-homogeneous at scale r′ for all r′ ≥ r
and H(r′) depends just on H,P0, r0, r and r′.

We provide here two examples of homogeneous measures. If X is a complete,
geodesically complete, CAT(0) metric space that is P0-packed at scale r0 then the
natural measure on X satisfies

c ≤ µX(B(x, r0)) ≤ C

for all x ∈ X, where c and C are constants depending only on P0 and r0 (Theorem
3.2.1). It follows immediately the following result.
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Corollary 4.1.6. Let X be a complete, geodesically complete, CAT(0) metric space.
If it is P0-packed at scale r0 for some P0 and r0 then hCov(X) = hµX (X). The same
holds for the lower entropies.

The second example is the counting measure of a cocompact group of isometries
on a δ-hyperbolic metric space.

Corollary 4.1.7. Let X be a complete, convex, geodesically complete, Gromov-
hyperbolic metric space X and Γ be a discrete, non-elementary, cocompact group of
isometries of X. Then for all x ∈ X it holds

hCov(X) = hµΓ
x
(X),

where µΓ
x is the counting measure of the orbit Γ · x. The same holds for the lower

entropies.

We will see in Section 7.2 that in this case the upper and lower entropies coincide.

Proof. By the cocompactness assumption we know that X is P0-packed at scale r0
for some P0, r0. Then by (42) we have sys�(Γ, X) ≥ s0(P0, r0, δ,D), where D is an
upper bound on the codiameter of the action and δ is the Gromov-hyperbolicity
constant. Then for all y ∈ X it holds

1 ≤ µΓ
x(B(y,D)) ≤ Pack

(
D,

s0
4

)
.

This shows, by Proposition 2.4.4, that µΓ
x is H(P0, r0, δ,D)-homogeneous at scale D.

The thesis follows from Proposition 4.1.4.

4.2 Lipschitz-topological entropy
Let X be a complete, convex, geodesically complete metric space that is P0-packed
at scale r0. The space Geod(X) is locally compact but not compact. The upper
topological entropy of the geodesic flow is defined (see [Bow73], [HKR95]) as

htop(Geod(X)) = inf
â

sup
K

lim
r→0

lim sup
T→+∞

1
T

log CovâT (K, r),

where the infimum is taken among all metrics â inducing the topology of Geod(X),
the supremum is taken among all compact subsets of Geod(X) and CovâT (K, r) is
the covering function of the compact subset K at scale r with respect to the metric
âT defined by

âT (γ, γ′) = max
t∈[0,T ]

â(Φtγ,Φtγ
′).

By the variational principle this quantity equals the measure-theoretic entropy
defined as the supremum of the entropies of the flow-invariant probability measures
on Geod(X) (cp. [HKR95], Lemma 1.5). An easy computation shows that the upper
topological entropy is always zero.

Lemma 4.2.1. There are no flow-invariant probability measures on Geod(X). In
particular the upper topological entropy of the geodesic flow is 0.
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Proof. Suppose there is a flow-invariant probability measure µ on Geod(X). For
x ∈ X we define AR = {γ ∈ Geod(X) s.t. γ(0) ∈ B(x,R)}, for every R ≥ 0. Clearly
there exists R ≥ 0 such that µ(AR) > 1

2 . By flow-invariance of µ we have that the
set

Φ−1
2R+1(AR) = {γ ∈ Geod(X) s.t. γ(2R+ 1) ∈ B(x,R)}

has measure > 1
2 . This implies that µ(AR ∩ Φ−1

2R+1(AR)) > 0, but this intersection
is empty.

Looking at the proof of the variational principle given in [HKR95] we can observe
that the sequence of metrics on Geod(X) that approach the infimum in the definition
of the upper topological entropy are the restriction to Geod(X) of metrics defined on
its one-point compactification. These metrics are not the natural ones on Geod(X),
since they are not geometric. We propose a more appropriate definition of topological
entropy for proper, convex, geodesically complete metric spaces.
We define the upper Lipschitz-topological entropy of Geod(X) as

hLip-top(Geod(X)) = inf
â

sup
K

lim
r→0

lim sup
T→+∞

1
T

log CovâT (K, r),

where the infimum is now taken only among all geometric metrics on Geod(X). The
lower Lipschitz-topological entropy is defined by taking the limit inferior instead of
the limit superior and it is denoted by hLip-top(Geod(X)). The main result of this
section is the following.

Theorem 4.2.2. Let X be a complete, convex, geodesically complete metric space
that is P0-packed at scale r0. Then

hLip-top(Geod(X)) = hCov(X).

The same holds for the lower entropies.

One of the two inequalities is easy. In order to prove the other one we will show
that for the distances induced by the functions f ∈ F the definition of topological
entropy can be heavily simplified.

4.2.1 Topological entropy for the distances induced by f ∈ F

For a metric f ∈ F we denote by hf the upper metric entropy of the geodesic flow
with respect to f , that is

hf (Geod(X)) = sup
K

lim
r→0

lim sup
T→+∞

1
T

log CovfT (K, r).

In the same way is defined the lower metric entropy with respect to f , hf (Geod(X)).
For a subset Y of X we denote by Geod(Y ) the set of geodesic lines of X passing
through Y at time 0.

Proposition 4.2.3. Let X be a complete, convex, geodesically complete metric space
that is P0-packed at scale r0 and let f ∈ F . Then
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(a) for all x, y ∈ X it holds hf (Geod(x)) = hf (Geod(y));

(b) for all x ∈ X and R ≥ 0 it holds hf (Geod(B(x,R))) = hf (Geod(x));

(c) for all x ∈ X it holds hf (Geod(X)) = hf (Geod(x)) ≤ hCov(X);

(d) for all x ∈ X the function r 7→ lim supT→+∞
1
T log CovfT (Geod(x), r) is con-

stant.

The same conclusions hold for the lower Lipschitz-topological entropy.

The proposition is a consequence of the following key lemma.

Lemma 4.2.4 (Key Lemma). Let f ∈ F , γ ∈ Geod(X) and 0 < r ≤ r′. Then

1
T

log CovfT (BfT (γ, r′), r) �
P0,r0,r,r′,f

0,

where BfT (γ, r′) is the closed ball of center γ and radius r′ with respect to the metric
fT . As a consequence the convergence is uniform in γ.

Proof. Let P > 0 depending only on f and r such that∫ −P
−∞

2|u|f(u)du+
∫ +∞

P
2|u|f(u)du < r

4 .

We fix ε > 0 and T ≥ P
ε . Let ET = {x1, . . . , xN} be a maximal r

16 -separated subset
of B(γ(T ), r′ + εT ), so it is also r

16 -dense, and {y1, . . . , yM} be a r
16 -dense subset

of B(γ(−P ), r′ + 2P ). For every i = 1, . . . ,M and j = 1, . . . , N we take a geodesic
line γij extending the geodesic segment [yi, xj ]. We parametrize γij in such a way
that γij(−P ) = yi. The claim is that {γij}i,j is a r-dense subset of BfT (γ, r′) with
respect to the metric fT . We fix γ′ ∈ BfT (γ, r′). This means

max
t∈[0,T ]

f t(γ′, γ) = max
t∈[0,T ]

f(Φt(γ′),Φt(γ)) ≤ r′.

In particular for all t ∈ [0, T ] we get d(γ′(t), γ(t)) ≤ r′, since

d(γ′(t), γ(t)) = d(Φt(γ′)(0),Φt(γ)(0)) ≤ f(Φt(γ′),Φt(γ)) ≤ r′.

Therefore d(γ′(−P ), γ(−P )) ≤ r′ + 2P. Moreover

d(γ′(T + εT ), γ(T )) ≤ d(γ′(T + εT ), γ′(T )) + d(γ′(T ), γ(T )) ≤ εT + r′.

Thus there exists xj such that d(xj , γ′(T+εT )) ≤ r
16 and yi such that d(yi, γ′(−P )) ≤

r
16 . We have d(γij(−P ), γ′(−P )) ≤ r

16 , so if we denote with tj the time such that
γij(tj) = xj it holds |tj − (T + εT )| ≤ r

8 . Then

d(γij(T + εT ), γ′(T + εT )) ≤ d(γij(T + εT ), γij(tj)) + d(γij(tj), γ′(T + εT ))

≤ r

8 + r

16 <
r

4 .
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From the convexity of the metric we have d(γ′(u), γij(u)) < r
4 for all u ∈ [−P, (1+ε)T ].

For t ∈ [0, T ] we have

f t(γ′, γij) =
∫ +∞

−∞
d(γ′(u), γij(u))f(u− t)du

≤
∫ −P
−∞

(
r

4 + 2|u+ P |
)
f(u− t)du+

+
∫ (1+ε)T

−P

r

4f(u− t)du+

+
∫ +∞

(1+ε)T

(
r

4 + 2|u− (1 + ε)T |
)
f(u− t)du.

The first term can be estimated as follows∫ −P
−∞

(
r

4 + 2|u+ P |
)
f(u− t)du ≤ r

4 +
∫ −P−t
−∞

2|v + t+ P |f(v)dv

≤ r

4 +
∫ −P
−∞

2|v|f(v)dv.

The second term is less than or equal to r
4 . The third term can be controlled in this

way:∫ +∞

(1+ε)T

(
r

4 + 2|u− (1 + ε)T |
)
f(u− t)du ≤ r

4 +
∫ +∞

(1+ε)T−t
2|v − (1 + ε)T + t|f(v)dv

≤ r

4 +
∫ +∞

(1+ε)T−t
2|v|f(v)dv

≤ r

4 +
∫ +∞

P
2|v|f(v)dv.

The last inequality follows from T ≥ P
ε . Therefore

f t(γ′, γij) ≤
r

4 + r

4 + r

4 +
∫ −P
−∞

2|v|f(v)dv +
∫ +∞

P
2|v|f(v)dv ≤ r.

We conclude that

CovfT (BfT (γ, r′), r) ≤ Cov
(
r′ + 2P, r16

)
·#ET .

From Proposition 2.4.4, if ρ = min
{
r0,

r
16
}
, we get #ET ≤ P0(1 + P0)

r′+εT
ρ
−1
. Thus

1
T

log CovfT (BfT (γ, r′), r) ≤ 1
T
K(P0, r0, r, r

′, f) · εT
ρ

log(1 + P0)

= ε ·K ′(P0, r0, r, r
′, f).

Here K,K ′ are constants depending only on P0, r0, r, r
′, f and not on ε or γ. So

from the arbitrariness of ε we achieve the proof.
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The computation of hf requires to consider the supremum among all compact
subsets of Geod(X). We notice that given a compact subset K ⊆ Geod(X) then
the set E(K) is compact since E is continuous. In particular it is bounded, hence
contained in a ball B(x,R) centered at a reference point x ∈ X. We observe also
that the set Geod(B(x,R)) is compact since the evaluation map E is proper. We
conclude that any compact subset of Geod(X) is contained in a compact subset
of the form Geod(B(x,R)) and therefore in order to compute hf it is enough to
take the supremum among these sets. The main consequence of Lemma 4.2.4 is the
following result, which is the key ingredient in the proof of Proposition 4.2.3.

Corollary 4.2.5. Let f ∈ F , x ∈ X, R ≥ 0 and 0 < r ≤ r′. Then

1
T

log CovfT (Geod(B(x,R)), r) �
P0,r0,r,r′,f

1
T

log CovfT (Geod(B(x,R)), r′).

Proof. The quantity 1
T log CovfT (Geod(B(x,R)), r) is

≤ 1
T

log CovfT (Geod(B(x,R)), r′) · sup
γ∈Geod(X)

CovfT (BfT (γ, r′), r)

= 1
T

(
log CovfT (Geod(B(x,R)), r′) + log sup

γ∈X
CovfT (BfT (γ, r′), r)

)
The conclusion follows by Lemma 4.2.4.

Proof of Proposition 4.2.3.(b). Let ε > 0 and T > R
ε . Let γ1, . . . , γN be a r-dense

subset of Geod(x) with respect to the metric f (2+ε)T . The claim is that {γi} is a
K-dense subset of Geod(B(x,R)) with respect to fT , where K depends only on
r,R and f . We consider a geodesic line γ ∈ Geod(B(x,R)). Then there exists a
geodesic line γ′ ∈ Geod(x) extending [x, γ((1 + ε)T )]. We call tγ′ the time such that
γ′(tγ′) = γ((1 + ε)T ). Then

tγ′ = d(x, γ((1 + ε)T )) ≤ d(x, γ(0)) + d(γ(0), γ((1 + ε)T ))
≤ R+ (1 + ε)T ≤ (1 + 2ε)T

since T ≥ R
ε . Moreover |tγ′ − (1 + ε)T | ≤ R. We know there exists γi such

that maxt∈[0,(1+2ε)T ] f(Φtγ
′,Φtγi) ≤ r. In particular d(γ′(tγ′), γi(tγ′)) ≤ r. Then

d(γ((1 + ε)T ), γi(tγ′)) ≤ r and in conclusion:

d(γ((1+ε)T ), γi((1+ε)T )) ≤ d(γ((1+ε)T ), γi(tγ′))+d(γi(tγ′), γi((1+ε)T )) ≤ r+R.

From the convexity of the metric we have d(γ(t), γi(t)) ≤ R+r for all t ∈ [0, (1+ε)T ].
We have to estimate f t(γ, γi) =

∫+∞
−∞ d(γ(u), γi(u))f(u − t)du for every t ∈ [0, T ].

Since d(γ(0), γi(0)) ≤ R and d(γ((1 + ε)T ), γi((1 + ε)T )) ≤ r +R then∫ +∞

−∞
d(γ(u), γi(u))f(u− t)du ≤

∫ 0

−∞
(R+ 2|u|)f(u− t)du+

+
∫ (1+ε)T

0
(R+ r)f(u− t)du+

+
∫ +∞

(1+ε)T
(R+ r + 2|u− (1 + ε)T |)f(u− t)du
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≤ R+
∫ −t
−∞

2|v + t|f(v)dv + (R+ r) +
∫ +∞

(1+ε)T−t
(R+ r+ 2|v − (1 + ε)T + t|)f(v)dv.

We conclude that the above quantity is less than or equal to

3R+ 2r +
∫ 0

−∞
2|v|f(v)dv +

∫ +∞

0
2|v|f(v)dv ≤ 3R+ 2r + C(f) = K(R, r, f).

By the previous corollary hf (Geod(B(x,R)))can be computed as

lim sup
T→+∞

1
T

log CovfT (B(x,R),K)

which is
≤ lim sup

T→+∞

1
T

log Covf (1+2ε)T (Geod(x), r)

= (1 + 2ε) lim sup
T→+∞

1
T

log CovfT (Geod(x), r).

Since this is true for all ε > 0 then we obtain the thesis.

Proof of Proposition 4.2.3.(a). We have y ∈ B(x,R), whereR = d(x, y), so Geod(y) ⊆
Geod(B(x,R)). Therefore

hf (Geod(y)) ≤ hf (Geod(B(x,R))) = hf (Geod(x)).

The other inequality can be proved in the same way.

Finally we achieve the proof of the remaining parts of Proposition 4.2.3.

Proof of Proposition 4.2.3.(c) & (d). The equality in (c) follows directly from (b),
so

hf (X) = lim sup
T→+∞

1
T

log CovfT (Geod(x), r0),

where x is a point of X. We fix T > 0 and we consider a r0-separated subset
ET of S(x, T ) of maximal cardinality, which is also r0-dense. For all y ∈ ET we
consider a geodesic line γy extending [x, y] such that γy(0) = x and γy(T ) = y.
We claim that {γy}y∈ET is a (r0 + C(f))-dense subset of Geod(x) with respect
to fT . We take a geodesic line γ ∈ Geod(x). Then there exists y ∈ ET such
that d(γ(T ), y) = d(γ(T ), γy(T )) ≤ r0. From the convexity of the metric it holds
d(γ(u), γy(u)) ≤ r0 for all u ∈ [0, T ]. Moreover d(γ(u), γy(u)) ≤ r0 + 2|u− T | for all
u ∈ [T,+∞) and d(γ(u), γy(u)) ≤ 2|u| for all u ∈ (−∞, 0]. Then for all t ∈ [0, T ] we
get

f t(γ, γy) =
∫ +∞

−∞
d(γ(u), γy(u))f(u− t)du

≤
∫ 0

−∞
2|u|f(u− t)du+

∫ T

0
r0f(u− t)du+

+
∫ +∞

T
(r0 + 2|u− T |)f(u− t)du ≤ r0 + C(f).
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The last inequality follows from similar estimates given in the proofs of Lemma 4.2.4.
Therefore applying Corollary 4.2.5 we have

lim sup
T→+∞

1
T

log CovfT (Geod(x), r0) ≤ lim sup
T→+∞

1
T

log Cov(S(x, T ), r0).

This, together with Proposition 4.1.2, proves (c). We observe that (d) is exactly
Corollary 4.2.5 with R = 0.

4.2.2 Proof of Theorem 4.2.2

We are ready to give the

Proof of Theorem 4.2.2. Proposition 4.2.3.(c) shows that hLip-top(Geod(X)) is less
than or equal to hCov(X).
In order to prove the other inequality we fix a geometric metric â on Geod(X) and
we denote by M the Lipschitz constant with respect to â of the evaluation map E.
Then we have

sup
K

lim
r→0

lim sup
T→+∞

1
T

log CovâT (K, r) ≥ lim sup
T→+∞

1
T

log CovâT (Geod(x), r0),

where x ∈ X. Indeed the function r 7→ 1
T log CovâT (Geod(x), r) is increasing.

We fix T ≥ 0 and we consider a set γ1, . . . , γN realizing CovâT (Geod(x), r0). The
claim is that γi(T ) is a Mr0-dense subset of S(x, T ). Indeed we take a point
y ∈ S(x, T ) and we extend the geodesic [x, y] to a geodesic line γ ∈ Geod(x). Then
there exists γi such that âT (γ, γi) ≤ r0. Since the evaluation map is M -Lipschitz we
have

d(y, γi(T )) = d(γ(T ), γi(T )) = d(ΦTγ(0),ΦTγi(0)) ≤ Lâ(ΦTγ,ΦTγi) ≤Mr0.

Therefore

lim sup
T→+∞

1
T

log CovâT (Geod(x), r0) ≥ lim sup
T→+∞

1
T

log Cov(S(x, T ),Mr0)

and the conclusion follows by Proposition 4.1.2.

Remark 4.2.6. By Proposition 4.2.3 and Theorem 4.2.2 the upper Lipschitz-
topological entropy of X can be computed as

hLip-top(X) = lim sup
T→+∞

1
T

log CovfT (Geod(x), r)

independently of f ∈ F , x ∈ X and r > 0. Moreover

1
T

log CovfT (Geod(x), r0) �
P0,r0,f

1
T

log Cov(B(x, T ), r0)

by the proofs of Theorem 4.2.2 and Proposition 4.2.3 and by Proposition 4.1.2.
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4.2.3 Lipschitz-topological entropy of the geodesic semi-flow

We consider now the space of geodesic rays Ray(X) and the corresponding geodesic
semi-flow. The definition of upper and lower Lipschitz-topological entropy of the
geodesic semi-flow can be given in an analogous way to the case of the geodesic
flow and they are denoted by hLip-top(Ray(X)) and hLip-top(Ray(X)) respectively.
We denote the space of geodesic rays with starting point belonging to Y ⊆ X as
Ray(Y ).

Proposition 4.2.7. Let X be a complete, convex, geodesically complete metric space
that is P0-packed at scale r0. Then:

(a) hLip-top(Ray(X)) equals lim supT→∞ 1
T log CovfT (Ray(x), r) independently of

f ∈ F , the point x ∈ X and r > 0.

(b) hLip-top(Ray(X)) = hLip-top(Geod(X)) = hCov(X).

The same conclusions hold for the lower topological entropy.

Proof. The proof of hLip-top(Ray(X)) ≥ hCov(X) is the same given in the proof of
Theorem 4.2.2. On the other hand it is clear that

CovfT (Ray(B(x,R)), r) ≤ CovfT (Geod(B(x,R)), r),

therefore, using Theorem 4.2.2 and Proposition 4.2.3,

hCov(X) = hLip-top(Geod(X)) = lim sup
T→+∞

1
T

log CovfT (Geod(B(x,R)), r)

≥ lim sup
T→+∞

1
T

log CovfT (Ray(B(x,R)), r).

Since this is true for all R ≥ 0 and for all r > 0 we obtain hf (Ray(X)) = hCov(X),
which shows (b).
Moreover the number lim supT→+∞

1
T log CovfT (Ray(B(x,R)), r) does not depend

on f ∈ F , x ∈ X, r > 0 and R ≥ 0, proving (a).

We remark that we have:

1
T

log CovfT (Geod(x), r) �
P0,r0,r,f

1
T

log CovfT (Ray(x), r).

4.3 Dimension of the boundary

Let X be a complete, convex, geodesically complete metric space X that is P0-packed
at scale r0. In this section we will show how the covering entropy equals the shadow
dimension of the boundary, which is a sort of Minkowski dimension relative to
appropriate open sets of the boundary: the shadows. In the second part we will see
that if X is also Gromov-hyperbolic then there is a precise link between the shadow
dimension and the Minkowski dimension of the visual metrics.
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4.3.1 Shadow dimension

We fix a point x ∈ X. For all y ∈ X and r ≥ 0 we define the shadow of radius r
casted by y with center x as

Shadx(y, r) = {z ∈ ∂X s.t. [x, z] ∩B(y, r) 6= ∅}.

We define the r-shadow covering number of ∂X at scale ρ > 0 as the minimum
number of shadows of radius r casted by points at distance at least log 1

ρ from x
with center x needed to cover ∂X. It is denoted by Shad-Covr(∂X, ρ). The upper
shadow dimension of ∂X is defined as

Shad-D(∂X) = lim sup
ρ→0

log Shad-Covr(∂X, ρ)
log 1

ρ

.

Taking the limit inferior instead of the limit superior we define the lower shadow
dimension, denoted by Shad-D(∂X). We can see that if we do the change of variable
ρ = e−T we can write

Shad-D(∂X) = lim sup
T→+∞

1
T

log Shad-Covr(∂X, e−T ).

A priori the upper and the lower shadow dimension may depend on r, but we will
see it is not the case.

Lemma 4.3.1. Let X be a complete, convex, geodesically complete metric space
that is P0-packed at scale r0. Then

Cov(S(x, T ), 4r) ≤ Shad-Cov2r(∂X, e−T ) ≤ Cov(S(x, T ), r)

for all x ∈ X, T ≥ 0 and r > 0.

Proof. Let y1, . . . , yN be a subset of S(x, T ) realizing Cov(S(x, T ), r). Then any
geodesic ray starting at x passes through a closed ball of radius r and center some
of the yi and in particular it passes through the open ball of radius 2r and center yi.
In other words the boundary ∂X is covered by the shadows Shadx(yi, 2r), showing
the right inequality.
Now let y1, . . . , yN be a set realizing Shad-Cov2r(∂X, e−T ). This means that
d(x, yi) ≥ T for all i and that any geodesic ray [x, z] passes through some open ball
of radius 2r and center yi. First of all it is possible to suppose yi ∈ S(x, T ). Indeed
we consider the geodesic [x, yi] and we take the point y′i at distance T from x. By
convexity of the metric it follows that also the shadows casted by y′i of radius 2r
and center x cover the boundary of X. So we suppose yi ∈ S(x, T ) and we want
to show that {yi} covers S(x, T ) at scale 4r. We take y ∈ S(x, T ) and we extend
the geodesic [x, y] to a geodesic ray [x, z]. This ray passes through B(yi, 2r) for
some i. Let y′ ∈ [x, y] be a point such that d(y′, yi) < 2r. Then d(y, y′) < 2r and so
d(y, yi) < 4r. This concludes the proof.

As a consequence the covering entropy of X equals the shadow dimension of the
boundary of X.
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Proposition 4.3.2. Let X be a complete, convex, geodesically complete metric space
that is P0-packed at scale r0. Then

1
T

log Shad-Covr(∂X, e−T ) �
P0,r0,r

1
T

log Cov(S(x, T ), r).

In particular the upper (resp. lower) shadow dimension of ∂X does not depend on r
and equals the upper (resp. lower) covering entropy of X.

Proof. It follows directly from the previous lemma and Proposition 4.1.2.

4.3.2 Minkowski dimension

In case X is also δ-hyperbolic the shadow dimension is equivalent to a modified
version of the Minkowski dimension. We recall that upper and lower Minkowski
dimension of ∂X with respect to a visual metric Dx,a are respectively classically
defined as

MDDx,a(∂X) = lim sup
ρ→0

log CovDx,a(∂X, ρ)
log 1

ρ

,

MDDx,a(∂X) = lim inf
ρ→0

log CovDx,a(∂X, ρ)
log 1

ρ

,

where the covering is considered with respect to the metric Dx,a. If we cover ∂X with
generalized visual balls we define the upper and lower visual Minkowski dimension as

MD(∂X) = lim sup
ρ→0

log Cov(∂X, ρ)
log 1

ρ

, MD(∂X) = lim inf
ρ→0

log Cov(∂X, ρ)
log 1

ρ

respectively, where Cov(∂X, ρ) denotes the minimal number of generalized visual
balls of radius ρ needed to cover ∂X. Also in this case if we put ρ = e−T we have

MD(∂X) = lim sup
T→+∞

1
T

log Cov(∂X, e−T ),

and the analogous formula for the lower Minkowski dimension. The following result
follows directly from Lemma 2.3.3.

Lemma 4.3.3. Let Dx,a be a visual metric of center x and parameter a. Then

MD(∂X) = a ·MDDx,a(∂X), MD(∂X) = a ·MDDx,a(∂X).

The next well-known lemma highlights the relation between the Gromov product of
two points of the boundary and the time until the corresponding geodesic rays stay
close. We recall that given z ∈ ∂GX and x ∈ X then ξz denotes any geodesic ray
such that ξz(0) = x and ξ+

z = z.

Lemma 4.3.4. Let X be a proper, δ-hyperbolic metric space, z, z′ ∈ ∂GX and
x ∈ X. Then

(a) if (z, z′)x ≥ T then d(ξz(T − δ), ξz′(T − δ)) ≤ 4δ;
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(b) for all b > 0, if d(ξz(T ), ξz′(T )) < 2b then (z, z′)x > T − b.
Proof. Assume (z, z′)x ≥ T and suppose d(ξz(T − δ), ξz′(T − δ)) > 4δ. We fix
S ≥ T − δ and we consider the triangle ∆(x, ξz(S), ξz′(S)). We know there exist
a ∈ [x, ξz(S)], b ∈ [x, ξz′(S)], c ∈ [ξz(S), ξz′(S)] such that d(a, b) < δ, d(b, c) <
δ, d(a, c) < δ and Tδ := d(x, a) = d(x, b), d(ξz(S), a) = d(ξz(S), c), d(ξz′(S), b) =
d(ξz′(S), c). Since this triangle is 4δ-thin we conclude that T − δ > Tδ.
Moreover d(ξz(S), ξz′(S)) = d(ξz(S), c) + d(c, ξz′(S)) = 2(S − Tδ). Hence

(z, z′)x ≤ lim inf
S→+∞

1
2
(
2S − d(ξz(S), ξz′(S))

)
+ δ = Tδ + δ < T

where we have used (17). This contradiction concludes the first part.
Now we assume d(ξz(T ), ξz′(T )) < 2b. Using d(ξz(S), ξz′(S)) < 2(S − T ) + 2b for all
S ≥ T we obtain, again by (17),

(z, z′)x ≥ lim inf
S→+∞

1
2
(
2S − d(ξz(S), ξz′(S))

)
> T + b.

The shadows in a proper, δ-hyperbolic metric space are defined as

Shadx(y, r) = {z ∈ ∂GX s.t.[x, z] ∩B(y, r) 6= ∅ for some [x, z]}.

If X is also convex clearly the two definitions of shadows coincide.
Lemma 4.3.5 (Shadow’s Lemma, [Sul79]). Let X be a proper, δ-hyperbolic metric
space. Let z ∈ ∂GX, x ∈ X and T ≥ 0. Then

B(z, e−T ) ⊆ Shadx (ξz (T ) , 7δ) ⊆ B(z, e−T+7δ).

Proof. Let z′ ∈ B(z, e−T ), i.e. (z, z′)x0 > T . By the previous lemma we get
d(ξz(T − δ), ξz′(T − δ)) ≤ 4δ. So d(ξz′(T, ξz(T )) ≤ 6δ < 7δ. This implies z′ ∈
Shadx(ξz(T ), 7δ), showing the first containment.
Now we fix z′ ∈ Shadx(ξz(T ), 7δ), which means that there exists a geodesic ray ξz′ =
[x, z′] that passes through B(ξz(T ), 7δ). Let T ′ ≥ 0 such that d(ξz′(T ′), ξz(T )) < 7δ.
Then it holds |T ′ − T | < 7δ and so d(ξz′(T ), ξz(T )) < 14δ. By the previous lemma
we get (z, z′)x > T − 7δ implying the second containment.

As a corollary we get another characterization of the covering entropy of X in
case it is also δ-hyperbolic.
Proposition 4.3.6. Let X be a complete, convex, geodesically complete, δ-hyperbolic
metric space that is P0-packed at scale r0. Then

1
T

log Cov(∂X, e−T ) �
P0,r0,δ

1
T

log Cov(S(x, T ), r0).

In particular the upper (resp. lower) visual Minkowski dimension of ∂X equals the
upper (resp. lower) covering entropy of X.
Proof. It follows directly from the previous lemma and Proposition 4.3.2.

Putting together Proposition 4.1.1, Proposition 4.1.4, Proposition 4.3.2, Proposi-
tion 4.3.6, Theorem 4.2.2 and Proposition 4.2.3 we get the proof of Theorem G and
Theorem H.
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Chapter 5

Quantitative Tits alternative

In this chapter we will prove Theorem J.
First remark that it is possible to assume `(a) = `(b) =: `. Indeed we can take
b′ = bab−1 and 〈a, b′〉 is still a discrete and non-elementary group, which moreover is
torsion-free if 〈a, b〉 was torsion-free. Futhermore `(b′) = `(a) and the length of b′ as
a word of a, b is 3.

The proof will then be divided into two cases: ` ≤ ε0
3 and ` > ε0

3 , where ε0 = ε0(P0, r0)
is the Margulis constant given by Corollary 2.6.2. The proof in the first case does
not need the torsionless assumption and produces a true free subgroup; it heavily
draws, in this case, from techniques introduced in [DKL18] and [BCGS17]. On the
other hand in the case where ` > ε0

3 the proofs of the statements (a) and (b) diverge.
In this last case producing a free sub-semigroup is quite standard, while producing
a free subgroup is much more complicated and for this we need to properly modify
the argument of [DKL18] to use it in our context.

5.1 Proof of Theorem J, case ` ≤ ε0
3 .

We assume here that a, b are non-elliptic isometries with `(a)=`(b) = ` ≤ ε0
3 of a

complete, convex, geodesically complete, δ-hyperbolic metric space X that is P0-packed
at scale r0 and that the group 〈a, b〉 is non-elementary and discrete. In particular a
and b are both parabolic or both hyperbolic.

In order to find a free subgroup in this case we will use a criterion which is the
generalization of Proposition 4.21 of [BCGS17] to non-elliptic isometries. Recall
that, given two isometries a, b ∈ Isom(X), the Margulis constant of the couple (a, b)
is the number

L(a, b) = inf
x∈X

inf
(p,q)∈Z∗×Z∗

{
max{d(x, apx), d(x, bqx)}

}
.

Proposition 5.1.1. Let a, b be two non-elliptic isometries of X of the same type
such that 〈a, b〉 is discrete and non-elementary. If a, b satisfy

L(a, b) > max{`(a), `(b)}+ 56δ
then 〈a, b〉 is a free group.
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The proof closely follows (mutatis mutandis) the proof of Proposition 4.21 [BCGS17];
we report it here in the case of parabolic isometries for the sake of clarity and
completeness; the case where one isometry is hyperbolic and the other one is
parabolic can be proved in a similar way but we do not need it for our purposes.
As a first step notice that we can control the Margulis constant L(a, b) by the
distance of the corresponding generalized Margulis domains:

Lemma 5.1.2. Let a, b two isometries of X and let L > 0:

(a) if d(ML(a),ML(b)) > 0 then L(a, b) ≥ L;

(b) conversely if L(a, b) > L thenML(a) ∩ML(b) = ∅.

Proof. If d(ML(a),ML(b)) > 0 thenML(a) ∩ML(b) = ∅. In particular for every
x ∈ X and for all p, q ∈ Z∗ we have d(x, apx) > L or d(x, bqx) > L. Taking the
infimum over x ∈ X we get L(a, b) ≥ L, proving (a).
Suppose now L(a, b) > L and ML(a) ∩ML(b) 6= ∅. Take x in the intersection.
In particular ∀η > 0 there exist xη ∈ ML(a), yη ∈ ML(b) such that for some
(pη, qη) ∈ Z∗ × Z∗

d(x, xη) < η, d(x, yη) < η, d(xη, apηxη) ≤ L, d(yη, bqηyη) ≤ L.

By the triangle inequality we get d(x, apηx), d(x, bqηx) ≤ L+ 2η. As this is true for
every η > 0 we get L(a, b) ≤ L. This contradiction proves (b).

Proof of Proposition 5.1.1. We will assume that a, b are parabolic isometries, the
hyperbolic case being covered in [BCGS17]. The aim is to show that there exists
x ∈ X such that

d(apx, bqx) > max{d(x, apx), d(x, bqx)}+ 2δ ∀(p, q) ∈ Z∗ × Z∗; (31)

this will imply that a and b are in Schottky position by Proposition 4.6 of [BCGS17],
so the group 〈a, b〉 is free.
With this in mind, choose L0 and 0 < ε < δ with L(a, b) > L0 > 56δ + 2ε, and
set `0 = δ + ε. Since L(a, b) > L0 then ML0(a) ∩ML0(b) = ∅ by Lemma 5.1.2.
Moreover the two Margulis domains are non-empty since L0 > 0.
Now fix points x0 ∈ Ml0(a) and y0 ∈ Ml0(b) which ε

2 -almost realize the distance
between the two generalized Margulis domains, that is:

d(x0, y) ≥ d(x0, y0)− ε

2 ∀y ∈Ml0(b)

d(y0, x) ≥ d(y0, x0)− ε

2 ∀x ∈Ml0(a).

Then we can find a point x ∈ [x0, y0] such that:
d(x, apx) > L0 and d(x, bqx) > L0 ∀(p, q) ∈ Z∗ × Z∗. (32)

Indeed the setsML0(a) andML0(b) are non-empty, closed and disjoint; moreover
the former contains x0 and the latter contains y0. Then their union cannot cover
the whole geodesic segment [x0, y0]. Any x on this segment which does not belong
toML0(a) ∪ML0(b) satisfies our requests. As x0 and apx0 belong toMl0(a) and
x ∈ X \ML0(a) we deduce by Lemma 2.5.5 that
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d(x, x0) ≥ d(x,Ml0(a))− ε

2 ≥
L0 − `0

2 − ε

2 > 27δ ∀p ∈ Z∗ (33)

(notice that x ∈ [x0, y0] and x0 is a ε
2 -almost projection of y0 onMl0(a)) and the

same is true for d(x, apx0).
Now choose points u ∈ [x, apx], u′ ∈ [x, apx0] and u′′ ∈ [x, x0] at distance 11δ from
x (notice that this is possible as d(x, apx) > L0 > 56δ and by (33)). Consider
the approximating tripod f∆̄ : ∆(x, x0, a

px0)→ ∆̄ and the preimage c ∈ f−1
∆̄ (c̄) ∩

[x0, a
px0] of its center c̄. By Lemma 2.5.4 we deduce that d(c,Ml0(a)) ≤ 12δ and

then, by (15) and Lemma 2.5.5, that

(apx0, x0)x ≥ d(x, c)− 4δ ≥ d(x,Ml0(a))− 16δ > 11δ = d(x, u′) = d(x, u′′).

So f∆̄(u′)=f∆̄(u′′) and, by the thinness of ∆(x, x0, a
px0), we get d(u′, u′′)≤4δ. Since

d(x, apx) > L0 and d(x, apx0) > d(apx, apx0) we immediately deduce

(apx0, a
px)x >

1
2L0 > d(u, x) = d(u′, x).

So, again by thinness of the triangle ∆(x, apx0, a
px), we have d(u, u′) ≤ 4δ. Therefore

d(u, u′′) ≤ 8δ. One analogously proves that choosing v ∈ [x, bqx], v′ ∈ [x, bqy0] and
v′′ ∈ [x, y0] at distance 11δ from x we have d(v, v′′) ≤ 8δ.
Therefore (as x belongs to the geodesic segment [x0, y0]) we deduce that

d(u, v) ≥ d(u′′, x) + d(x, v′′)− d(u, u′′)− d(v, v′′) ≥ 6δ.

Comparing with the tripod ∆̄′ which approximates the triangle ∆(apx, x, bqx), we
deduce by the 4δ-thinness that f∆̄′(u) 6= f∆̄′(v). It follows that

(apx, bqx)x < d(x, u) = d(x, v) = 11δ.

One then computes:
d(apx, bqx) = d(apx, x) + d(x, bqx)− 2(apx, bqx)x

≥ max{d(apx, x), d(x, bqx)}+ min{d(apx, x), d(x, bqx)} − 22δ
≥ max{d(apx, x), d(x, bqx)}+ L0 − 22δ

which implies (31), by definition of L0.

We continue the proof of Theorem J in the case `(a) = `(b) = ` ≤ ε0
3 .

Set bi = biab−i. Then `(bi) = ` for all i and bi is of the same type of a, in particular
it is non-elliptic. Moreover for any i 6= j the group 〈bi, bj〉 is discrete (as a subgroup
of a discrete group) and non-elementary.
Indeed otherwise there would exist a subset F ⊆ ∂X fixed by both bi, bj , so
biFix∂(a) = Fix∂(biab−i) = F = Fix∂(bjab−j) = bjFix∂(a). This implies that
bi−j(F ) = F , hence F ⊆ Fix∂(b) and, as these sets have the same cardinality, they
coincide. Therefore we deduce that Fix∂(a) = b−i(F ) = Fix∂(b), which means that
the group 〈a, b〉 is elementary, a contradiction.
Since for any i 6= j the group 〈bi, bj〉 is discrete and non-elementary, then by definition
of the Margulis constant ε0 we have

Mε0(bi) ∩Mε0(bj) = ∅.
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(otherwise there would exist a point x ∈ X and powers k, h such that d(x, bki x) ≤ ε0
and d(x, bhj x) ≤ ε0, and 〈bki , bhj 〉 would be virtually nilpotent, hence elementary; but
we have just seen that this implies that 〈a, b〉 is elementary, a contradiction). Moreover
each Margulis domainMε0(bi) is non-empty, since we assumed ` = `(bi) ≤ ε0

3 .
We now need the following

Lemma 5.1.3. Let B the set of all the conjugates bi = biab−i, for i ∈ Z. For any
fixed L > 0 the cardinality of every subset S of B such that

d(Mε0(bih),Mε0(bik)) ≤ L ∀ bih , bik ∈ S

is bounded from above by a constant M0 only depending on P0, r0, δ and L.

Proof. Let S = {bi1 , · · · , biM } ⊆ B satisfying d(Mε0(bih),Mε0(bik)) ≤ L for all
bih , bik ∈ S. Fix η > 0 and consider the closed (L2 + η)-neighbourhoods of the
generalized Margulis domains Bk = B(Mε0(bik), L2 + η), for bik ∈ S. Since the
domains are starlike then Bk is 20δ-quasiconvex for all k by Lemma 2.3.11. Moreover
Bh ∩Bk 6= ∅ for every h, k. Indeed chosen points xih ∈Mε0(bih) and xik ∈Mε0(bik)
which 2η-almost realize the distance between these domains then the midpoint of the
geodesic segment [xih , xik ] is in Bh ∩Bk. Therefore we can apply Helly’s Theorem
(Proposition 2.3.12) to find a point x0 at distance at most 419δ from each Bk. So

d(x0,Mε0(bik)) ≤ R0 = 419δ + L

2 + η, for k = 1, . . . ,M.

Notice that x0 belongs at most to one of the domains Mε0(bik), since they are
pairwise disjoint. So for each of the remaining M − 1 domains we can find points
xk ∈ Mε0(bik) ∩ B(x0, R0 + η) and pk ∈ Z∗ such that d(xk, bpkik xk) = ε0. For this
consider any x′k ∈Mε0(bik) ∩B(x0, R0 + η): by definition there exists pk ∈ Z∗ such
that d(x′k, b

pk
ik
x′k) ≤ ε0. On the other hand d(x0, b

pik
ik
x0) > ε0 since x0 /∈ Mε0(bik).

Then, by continuity of the displacement function of the isometry bpkik , we can find a
point xk along the geodesic segment [x0, x

′
k] such that d(xk, bpkik xk) = ε0 precisely.

Remark that xk ∈ B(x0, R0 + η) as it belongs to the geodesic [x0, x
′
k].

Now, since `(bik) ≤ ε0
3 for all k, we can apply Proposition 2.5.6 and get

d
(
xk,M ε0

3
(bik)

)
≤ K

for some K depending only on P0, r0, δ and ε0, so (by Corollary 2.6.2) ultimately
only on P0, r0 and δ.
So for each k we have some point yk ∈ X such that

d(yk, bqkik yk) ≤
ε0
3 and d(xk, yk) ≤ K + η

for some qk ∈ Z∗. Set R1 = R0 + η+K + η, so that yk ∈ B(x0, R1). We remark now
that the ball B(yk, ε03 ) is contained inMε0(bik): indeed for every z ∈ B(yk, ε03 ) it
holds

d(z, bqkik z) ≤ d(z, yk) + d(yk, bqkik yk) + d(bqkik yk, b
qk
ik
z) ≤ ε0.

Finally we set R2 = R1 + ε0
3 : then we have B(yk, ε03 ) ⊂ B(x0, R2) for all k. All the

balls B(yk, ε03 ) are pairwise disjoint, so the points yk are ε0
3 -separated. Hence the
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cardinality M of the set S satisfies M ≤ 1 +Pack
(
R2,

ε0
6
)

=: M0, which is a number
depending only on P0, r0, δ, L and η by Proposition 2.4.4. Taking for instance the
constant M0 obtained for η = 1, we get the announced bound.

To conclude the proof of the theorem in this case we will apply the previous
lemma for an appropriate value of L. By Proposition 2.5.6 we get

sup
x∈Mε0+56δ(bi)

d(x,Mε0(bi)) ≤ K0(P0, r0, δ, ε0) = K ′0(P0, r0, δ),

where again Corollary 2.6.2 bounds the value of ε0 in terms of P0 and r0.
We set L = 2K ′0 and apply Lemma 5.1.3: so there exist i, j ≤M0(P0, r0, δ) such that

d(Mε0(bi),Mε0(bj)) > 2K ′0.

In particular
d(Mε0+56δ(bi),Mε0+56δ(bj)) > 0.

(otherwise we would find xi ∈ Mε0+56δ(bi) and xj ∈ Mε0+56δ(bj) at arbitrarily
small distance; but there exists also points yi ∈ Mε0(bi) and yj ∈ Mε0(bj) with
d(xi, yi) ≤ K ′0 and d(xj , yj) ≤ K ′0, which would yield d(Mε0(bi),Mε0(bj)) ≤ 2K ′0, a
contradiction).
Applying b−i we deduce that d(Mε0+56δ(a),Mε0+56δ(bj−iabi−j)) > 0. This implies,
by Lemma 5.1.2, that

L(a, bj−iabi−j) ≥ ε0 + 56δ > max{`(a), `(bj−iabi−j)}+ 56δ.

By Proposition 5.1.1 we then deduce that the subgroup generated by a and w =
bj−iabi−j is free. Remark that the length of w is bounded above by 3M0 that is a
function depending only on P0, r0 and δ.

5.2 Proof of Theorem J, case ` > ε0
3 .

We assume here that a, b are two isometries satisfying `(a) = `(b) = ` > ε0
3 of

a complete, convex, geodesically complete, δ-hyperbolic metric space X that is P0-
packed at scale r0 and the group 〈a, b〉 is non-elementary and discrete. In this case
a and b are necessarily hyperbolic.

The proof of assertion (a) in Theorem J in this case stems directly from Proposition 4.9
of [BCGS17] (free sub-semigroup theorem for isometries with minimal displacement
bounded below), since Corollary 2.6.2 bounds ε0 in terms of P0 and r0. So we
will focus here on the proof of assertion (b), therefore assuming moreover 〈a, b〉
torsionless.

Consider the closed, minimal displacement subsets Min(a),Min(b) of a, b. Then the
proof of assertion (b) of Theorem J will break down into three subcases according
to the value of the distance d0 = d(Min(a),Min(b)) between the minimal sets: the
case where d0 ≤ ε0

120 , the case ε0
120 < d0 ≤ 30δ and the case d0 > 30δ. In all cases we

will use a ping-pong argument which we will explain in the next subsection.
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5.2.1 Ping-pong

The aim of this subsection is to prove the following:

Proposition 5.2.1. Let X be a proper, convex, δ-hyperbolic space and let a, b be
two hyperbolic isometries of X with minimal displacement `(a) = `(b) = `. Let α, β
be two axis for a and b respectively satisfying ∂α ∩ ∂β = ∅. Finally let x−, x+ be
respectively projections of β−, β+ on α and suppose that x+ follows x− along the
(oriented) geodesic α. Assume d(x−, x+) ≤M0: then the group 〈aN , bN 〉 is free for
any N ≥ (M0 + 77δ)/`.

For any x ∈ α and any T ≥ 0 we will denote for short by x± T the points along
α at distance T from x according to the orientation of α; we will use the analogous
notation y ± T for the points on β such that d(y, y ± T ) = T . By assumption we
have x+ = x− + T0 for some T0 ≥ 0.
Finally for T > 0 we define T -neighbourhoods of α+ and α− as:

A+(T ) = {z ∈ X s.t. d(z, x+ + T ) ≤ d(z, x+)}
A−(T ) = {z ∈ X s.t. d(z, x− − T ) ≤ d(z, x−)}

(34)

and their analogues B±(T ) = {z ∈ X s.t. d(z, y± ± T ) ≤ d(z, y±)} for β.

The proof will stem from a series of technical lemmas.

Lemma 5.2.2. For any T ≥ 2t ≥ 0 one has:

A+(T ) ⊆ {z ∈ X | (α+, z)x+ ≥ t}

A−(T ) ⊆ {z ∈ X | (α−, z)x− ≥ t}.

Analogously, B±(T ) ⊆ {z ∈ X | (β±, z)y± ≥ t} for T ≥ 2t ≥ 0.

Proof. Let z ∈ A+(T ), i.e. d(z, x+ + T ) ≤ d(z, x+). For any S ≥ T we have

d(z, x+ + S) ≤ d(z, x+ + T ) + (S − T ) ≤ d(z, x+) + (S − T ).
Hence

(α+, z)x+ ≥ lim inf
S→+∞

1
2
[
d(z, x+) + S − (d(z, x+) + S − T )

]
= T

2 ≥ t.

The proof for B±(T ) is analogous.

Lemma 5.2.3. For any T ≥ 2t+ 8δ one has:

B±(T ) ⊂ {z ∈ X | (β±, z)x± ≥ t}.

Proof. Let z ∈ B+(T ), i.e. d(z, y+) ≥ d(z, y+ + T ). We have, again, ∀S ≥ T ,

d(z, y+ + S) ≤ d(z, y+ + T ) + (S − T ) ≤ d(z, y+) + (S − T ).

Since y+ is also a projection of x+ on the geodesic segment [y+, y+ + S], by Lemma
2.3.5 it holds (y+, y+ + S)x+ ≥ d(x+, y+)− 4δ. Expanding the Gromov product we
get

d(x+, y+ + S) ≥ d(x+, y+) + S − 8δ.
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Therefore

2(z, β+)x+ ≥ lim inf
S→+∞

[
d(x+, z) + d(x+, y+ + S)− d(z, y+ + S)

]
≥ lim inf

S→+∞

[
d(x+, z) + d(x+, y+) + S − 8δ − d(z, y+)− (S − T )

]
≥ T − 8δ ≥ 2t.

The proof for B−(T ) is the same.

Lemma 5.2.4. For any z ∈ X it holds:

(α+, z)x− ≥ (α±, z)x+ − δ, (α+, β−)x− ≥ (α+, β−)x+ − δ,

(α−, z)x+ ≥ (α±, z)x− − δ, (α−, β+)x+ ≥ (α−, β+)x− − δ.

Proof. We have (α+, z)x− ≥ lim infS→+∞(x+ + S, z)x− . On the other hand for any
S ≥ 0 we get (as x+ follows x− along α):

2(x+ + S, z)x− = d(x+ + S, x−) + d(x−, z)− d(x+ + S, z)
= d(x+, x+ + S) + d(x+, x−) + d(x−, z)− d(x+ + S, z)
≥ d(x+, x+ + S) + d(z, x+)− d(x+ + S, z)
= 2(x+ + S, z)x+ .

So, by (17), we get (α+, z)x− ≥ lim infS→+∞(x+ + S, z)x+ ≥ (α+, z)x+ − δ. Taking
any sequence zn converging to β− then proves the second formula. The proof for
(α−, z)x+ and (α−, β+)x+ is analogous.

Lemma 5.2.5. For any u ∈ X it holds:

(β+, u)x− ≥ (β+, u)x+ − 13δ, (β−, u)x+ ≥ (β−, u)x− − 13δ.

Proof. Take a sequence (yi) defining β+ and let xi be a projection of yi on α. By
Remark 2.3.7 we know that, up to a subsequence, the sequence xi converges to x∞
which is a projection on α of β+. So d(x∞, x+) ≤ 10δ by Lemma 2.3.6. For any
ε > 0 and for every i large enough, by Lemma 2.3.5, we have

d(yi, x−) ≥ d(yi, xi) + d(xi, x−)− 8δ ≥ d(yi, x+) + d(x+, x−)− 24δ − ε.

Therefore we get

2(β+, u)x− ≥ lim inf
i→+∞

[
d(x−, u) + d(x−, yi)− d(u, yi)

]
≥ lim inf

i→+∞

[
d(x−, u) + d(x+, yi) + d(x−, x+)− 24δ − d(u, yi)

]
≥ lim inf

i→+∞

[
d(x+, yi) + d(x+, u)− d(u, yi)− 24δ

]
≥ 2(β+, u)x+ − 26δ.
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Lemma 5.2.6. We have:

(α+, β+)x+ ≤ 13δ, (α−, β+)x+ ≤ 13δ,

(α−, β−)x− ≤ 13δ, (α+, β−)x− ≤ 13δ

Proof. Take a sequence (yi) defining β+ and call xi a projection of yi on α. As
before, xi converges, up to a subsequence, to a projection x∞ of β+ on α and
d(x∞, x+) ≤ 10δ. For any ε > 0, for any S ≥ 0 and for every i large enough, by
Lemma 2.3.5, we have

d(yi, x+ ± S) ≥ d(yi, xi) + d(xi, x+ ± S)− 8δ
≥ d(yi, x+) + d(x+, x+ ± S)− 24δ − ε.

Therefore we get

2(α+, β+)x+ ≤ lim inf
i,S→+∞

[
d(x+, x++S) + d(x+, yi)− d(x++S, yi)

]
+ 2δ ≤ 26δ.

The same computation with −S instead of S proves the second inequality. The
inequalities involving β− are proved in the same way.

Lemma 5.2.7. The subsets A+(T ), A−(T ), B+(T ) and B−(T ) are pairwise disjoint
for T > 64δ.

Proof. Fix some t > 28δ. We claim that the subsets A+(T ), A−(T ), B+(T ) and
B−(T ) are pairwise disjoint provided that T ≥ 2t + 8δ > 64δ. We first prove
that A+(T ) ∩ A−(T ) = ∅. If z ∈ A+(T ) ∩ A−(T ) then (α+, z)x+ ≥ t > 28δ and
(α−, z)x− ≥ t > 28δ by Lemma 5.2.2. Then by Lemma 5.2.4 we have (α−, z)x+ > 27δ.
Thus we obtain a contradiction since

δ ≥ (α+, α−)x+ ≥ min{(α+, z)x+ , (α−, z)x+} − δ > 27δ.

Let us prove now that A+(T ) ∩ B+(T ) = ∅. If z ∈ A+(T ) ∩ B+(T ) then we have
(α+, z)x+ > 28δ and (β+, z)x+ > 28δ by Lemma 5.2.2 and Lemma 5.2.3. We then
obtain again a contradiction by Lemma 5.2.6, as

13δ ≥ (α+, β+)x+ ≥ min{(α+, z)x+ , (β+, z)x+} − δ > 27δ.

We now prove that A+(T ) ∩ B−(T ) = ∅. Actually if z ∈ A+(T ) ∩ B−(T ) then
(α+, z)x+ > 28δ and (β−, z)x− > 28δ by Lemma 5.2.2 and Lemma 5.2.3. Moreover
by Lemma 5.2.5 we have (β−, z)x+ > 15δ and combining Lemma 5.2.6 with Lemma
5.2.4 we deduce that (β−, α+)x+ ≤ (β−, α+)x− + δ ≤ 14δ. So we again get a
contradiction since

14δ ≥ (α+, β−)x+ ≥ min{(α+, z)x+ , (β−, z)x+} − δ > 14δ.

The proof of B+(T ) ∩ B−(T ) = ∅ can be done as for A+(T ) ∩ A−(T ) = ∅, using
Lemma 5.2.4. The remaining cases can be proved similarly.

We are now in position to prove Proposition 5.2.1.



5.2 Proof of Theorem J, case ` > ε0
3 . 109

Proof of Proposition 5.2.1. We define the sets:

A+ = {z ∈ X s.t. d(z, aNx−) ≤ d(z, x+)},
A− = {z ∈ X s.t. d(z, a−Nx+) ≤ d(z, x−)}

and their analogues B± = {z ∈ X s.t. d(z, bNy∓) ≤ d(z, y±)} for b.
By assumption we have d(x−, aNx−) = N`(a) ≥ d(x−, x+) + 65δ.
In particular A+ ⊆ A+(65δ) as defined in (34), as follows directly from the convexity
of the distance function from the geodesic line α using the fact that x+ + 45δ is
between x+ and aNx− (according to the chosen orientation of α), and A− ⊆ A−(65δ).
Moreover we have d(y−, y+) ≤ d(x−, x+) + 12δ by Lemma 2.3.6, and we can prove
in the same way that B+ ⊆ B+(65δ) and B− ⊆ B−(65δ).
Then by Proposition 5.2.7 the sets A+, A−, B+, B− are pairwise disjoint. We will
prove now the following relations:

aN (X \A−) ⊆ A+, a−N (X \A+) ⊆ A−,
bN (X \B−) ⊆ B+, b−N (X \B+) ⊆ B−

Indeed if z ∈ X \ A− then d(z, a−Nx+) > d(z, x−); applying aN to both sides we
get d(aNz, x+) > d(aNz, aNx−), i.e. aNu ∈ A+. The other relations are proved in
the same way. As a consequence we have, for all k ∈ N∗,

akN (X \A−) ⊆ A+, a−kN (X \A+) ⊆ A−,

bkN (X \B−) ⊆ B+, b−kN (X \B+) ⊆ B−.

It is then standard to deduce by a ping-pong argument that the group generated by
aN and bN is free. Actually no nontrivial reduced word w in {aN , bN} can represent
the identity, since it sends any point of X \(A+∪A−∪B+∪B−) into the complement
A+∪A−∪B+∪B− (notice that the former set is non-empty, as X is connected).

5.2.2 Proof of Theorem J.(b) when d(Min(a),Min(b)) ≤ ε0
74 .

Recall that we are assuming a, b isometries with `(a) = `(b) = ` > ε0
3 .

Let x0 ∈ Min(a), y0 ∈ Min(b) be points with d(x0, y0) = d(Min(a),Min(b)). More-
over we choose oriented geodesics α ⊆ Min(a), β ⊆ Min(b) with boundary points
α± = a±, β± = b±, and with α(0) = x0, β(0) = y0 respectively (all these properties
of the minimal set of an hyperbolic isometry in a convex metric space are well known
and proved, for instance, in [Pap05]). In particular d(α, β) = d(x0, y0). Finally
denote by πα and πβ the projection maps on α and β respectively, and call x± the
projections of β± on α. As in subsection 5.2.1, up to replacing b with b−1 we can
assume that x+ follows x− along α.

Let now [z−, z+] be the set of points of α at distance d = ε0
37 <

1
3` from β. It is a

nonempty, finite geodesic segment since the metric space is convex and ∂α ∩ ∂β = ∅
(the group 〈a, b〉 being non-elementary). Clearly it holds:

d(z−, β) = d(z+, β) = d.
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Call 2L the length of [z−, z+]. The following estimate of this length is due to
Dey-Kapovich-Liu: since the proof is scattered in different papers (it appears in the
discussion after Lemma 4.5 in [DKL18], using an argument of [Kap01] for trees), we
consider worth to recall it for completeness:

Proposition 5.2.8. With the notations above it holds: 2L < 5`.

For 0 ≤ T ≤ L let αT denote the central segment of [z−, z+] of length 2T (so
αL = [z−, z+]). Then:

Lemma 5.2.9. For any x ∈ αL−` we have that either

d(πβ(ax), πβ(bx)) ≤ 2d and d(πβ(a−1x), πβ(b−1x)) ≤ 2d (35)
or

d(πβ(ax), πβ(b−1x)) ≤ 2d and d(πβ(a−1x), πβ(bx)) ≤ 2d. (36)

Moreover the conditions (35) and (36) cannot hold together, and one of the two hold
on the whole interval αL−`.

Proof. By assumption, as `(a) = `, the points a±1x belong to αL. Then, by definition
of αL, we have d(πβ(x), x) ≤ d and d(πβ(a±1x), a±1x) ≤ d. Therefore:

|d(πβ(x), πβ(a±1x))− `(a)| ≤ 2d.

As πβ(x), πβ(a±1x) belong to β and b translates πβ(x) along β precisely by ` =
`(b) = `(a), it follows that there exists τ, τ ′ ∈ {1,−1} such that

d(πβ(ax), πβ(bτx)) = d(πβ(ax), bτπβ(x)) ≤ 2d,

d(πβ(a−1x), πβ(bτ ′x)) ≤ 2d.

Moreover, since d(πβ(ax), πβ(a−1x)) ≥ 2` − 2d, the above relations cannot hold
together with τ = τ ′ when 2`− 2d > 4d. Therefore for our choice of d < 1

3` we have
τ ′ = −τ and the first part of the statement is proved.
Since d(πβ(bx), πβ(b−1x)) = 2` > 4d, the relations (35) and (36) cannot hold at the
same time. Finally the last assertion follows from the connectedness of the interval
αL−`.

Lemma 5.2.10. Let η ≥ 0 and x ∈ B(αL−`, η). Then either

d(bx, πα(ax)) ≤ 3η + 6d and d(b−1x, πα(a−1x)) ≤ 3η + 6d (37)
or

d(b−1x, πα(ax)) ≤ 3η + 6d and d(bx, πα(a−1x)) ≤ 3η + 6d (38)

Moreover the first (resp. second) condition occurs if and only if the first (resp.
second) condition in Lemma 5.2.9 holds.

Proof. We fix x ∈ X such that d(x, αL−`) ≤ η. Since every point of αL−` is at
distance at most d from β then d(x, πβ(x)) ≤ η + d. We assume that (35) holds and
we prove the first one in (37), the other cases being similar. We have:

d(bx, πα(ax)) ≤ d(bx, πβ(bx)) + d(πβ(bx), πβ(πα(ax))) + d(πβ(πα(ax)), πα(ax)).
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The first term equals d(x, πβ(x)) ≤ η + d. We observe that from the choice of L− `
we have πα(ax) ∈ αL, so the third term is smaller than or equal to d. For the second
term we have

d(πβ(bx), πβ(πα(ax))) ≤ d(πβ(bx), πβ(bπα(x))) + d(πβ(bπα(x)), πβ(aπα(x)))
≤ d(πβ(x), x) + d(x, πβ(πα(x))) + 2d ≤ 2η + 4d.

where we used (35) to estimate the term d(πβ(bπα(x)), πβ(aπα(x))).
In conclusion d(bx, πα(ax)) ≤ 3η + 6d.

Lemma 5.2.11. If 2L ≥ 5` then for any commutator g of {a±1, b±1} and any
x ∈ αL/5 we have d(x, gx) ≤ 36d.

Proof. We give the proof for [a, b] = aba−1b−1, the other cases are similar. Assume
that (37) holds. We have d(b−1x, a−1x) ≤ 6d by Lemma 5.2.10. Calling x′ = a−1b−1x,
we have

d([a, b]x, x)=d(bx′, a−1x) ≤ d(bx′, πα(b−1x))+d(πα(b−1x), a−1x). (39)

By the second inequality in (37) we have d(x′, α) = d(b−1x, α) ≤ 6d; hence applying
the first one in (37) to x′ yields d(bx′, πα(b−1x)) ≤ 24d. The second term in (39) is
less than or equal to

d(πα(b−1x), b−1x) + d(b−1x, a−1x) ≤ 2d(b−1x, a−1x) ≤ 12d.

So d([a, b]x, x) ≤ 36d. The proof in case (38) holds is analogous.

Proof of Proposition 5.2.8. If 2L ≥ 5` then by Lemma 5.2.11 there exists a point
x ∈ αL/5 which is displaced by all the commutators of a±1, b±1 by less than 36d < ε0.
In particular [a±1, b±1] and [a±1, b∓1] belong to the same elementary group. This
in turns implies that 〈a, b〉 is elementary. Indeed if one commutator is the identity
then 〈a, b〉 is abelian, hence elementary. If the commutators are all different from
the identity then they do not have finite order (since 〈a, b〉 is assumed to be torsion-
free); so, as they belong to the same elementary group, there exists a subset
F ⊆ ∂X made of one or two points that is fixed by all the commutators. But
since a−1[a, b]a = [b, a−1] and b−1[a, b]b = [b−1, a] we deduce that a−1(F ) = F and
b−1(F ) = F . Therefore F is invariant for both a and b, hence 〈a, b〉 should be
elementary. This contradiction concludes the proof.

Let now x ∈ [z−, z+] be any point whose distance from β is at most ε0
74 . It

exists by assumption on the distance between the geodesics α and β. Now the
distance function dβ(·) = d(·, β) is convex with dβ(x) ≤ ε0

74 and dβ(z±) = d = ε0
37 .

Furthermore by Proposition 2.3.10 the value of dβ at x+ and at x− does not exceed
M = max{49δ, ε074 + 19δ}. Therefore by convexity we deduce

d(x, x+) ≤ dβ(x+)− dβ(x)
dβ(z+)− dβ(x) · d(x, z+) ≤ 74M

ε0
· d(x, z+)

and the same estimate holds for d(x, x−). Thus:



112 5. Quantitative Tits alternative

d(x−, x+) ≤ 74 max
{

49 δ
ε0
, 19 δ

ε0
+ 1

}
· 2L =: M0

As 2L ≤ 5` we conclude the proof in this case using Proposition 5.2.1. Recall that
`(a) = ` > ε0

3 , so it is enough to choose

N =
⌈
36491 δ

ε0
+ 1

⌉
which is bounded from above by a function depending only on P0, r0 and δ.

5.2.3 Proof of Theorem J.(b) when ε0
74 < d(Min(a),Min(b)) ≤ 30δ.

Recall that we are assuming a, b isometries with `(a) = `(b) = ` > ε0
3 .

We use the same notations as in 5.2.2: α ⊆ Min(a) and β ⊆ Min(b) are oriented
geodesics invariant under the action of a, b respectively, with α± = a±, β± = b±,
α(0) = x0, β(0) = y0 and d(α, β) = d(x0, y0) = d(Min(a),Min(b)). Finally the
points x+, x− are respectively projections of β+, β− on α, and x+ follows x− along
α.

The strategy here is to use the packing assumption to reduce the proof to the
previous subcase. For this we set

P := Pack
(

60δ, ε0
148

)
+ 1.

By assumption d(x0, y0) = d(x0, β) ≤ 30δ. We define [z−, z+] as the (non-empty)
subsegment of α of points whose distance from β is at most 60δ. Moreover let
w− and w+ be some projections of z− and z+ on β, respectively. There are two
possibilities: d(w−, w+) ≥ 2P` or the opposite.

Assume that we are in the first case. Let w be the midpoint of the segment [w−, w+].
For every i = 1, . . . , P we consider the isometry bi. Then:

d(biz−, β) = d(z−, β) = 60δ, d(biz+, β) = d(z+, β) = 60δ.

Notice that the points wi− = biw− and wi+ = biw+ are respectively projections of
biz− and biz+ on β. So d(w−, wi−) = i · ` ≤ P · ` ≤ d(w−, w). In particular wi−
belongs to the segment [w−, w] for all 1 ≤ i ≤ P . Hence w belongs to the segment
[wi−, wi+]. Since the distance from biα of wi− and wi+ is ≤ 60δ then, by convexity,
we get d(w, biα) ≤ 60δ. Hence there exists a point zi ∈ biα such that d(zi, w) ≤ 60δ.
If the distance between any two of these points zi was greater than ε0

74 then the
subset S = {z1, · · · , zP } would be a ε0

74 -separated subset of B(w, 60δ), but this is in
contrast with the definition of P . So there must be two different indices 1 ≤ i, j ≤ P
such that d(zi, zj) ≤ ε0

74 . Therefore

d(Min(a),Min(bj−iabi−j)) = d(Min(biab−i),Min(bjab−j)) ≤ ε0
74 .

Now the group 〈a, bj−iabi−j〉 is clearly again discrete, non-elementary and torsion-
free. Thus, from the proof of Theorem J in the case where the minimal sets have
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distance ≤ ε0
74 given in Subsection 5.2.2, we deduce that there exists an integer

N(P0, r0, δ) such that the group 〈aN , (bj−iabi−j)N 〉 is free. Remark that the length
of (bj−iabi−j)N , as a word in {a, b}, is at most 3PN , and this number is bounded
above in terms of P0, r0 and δ.

Assume now that we are in the case where d(w−, w+) < 2P`. Then:

d(z−, z+) ≤ 2P`+ 120δ.

Starting from this inequality we want to bound the distance between the projections
x−, x+ of β− and β+ on α, in order to apply Proposition 5.2.1. We look again
at the distance dβ from β: we know that dβ(x0) ≤ 30δ and dβ(z−) = dβ(z+) =
60δ. Moreover d(x0, z+) ≤ d(z−, z+) ≤ 2P` + 120δ. By Proposition 2.3.10.(c) we
know that dβ(x+) ≤ max{49δ, 19δ + d(α, β)} = 49δ. Then we can conclude that
d(x0, x+) ≤ d(x0, z+) ≤ 2P` + 120δ, by convexity of the function dβ. The same
estimate holds for x−, so

d(x−, x+) ≤ 4P`+ 240δ =: M0.

We can therefore conclude, by Proposition 5.2.1, that the group 〈aN , bN 〉 is free for
any N ≥ 4P + 317δ/`. Again we remark that N can be bounded from above by a
function depending only on P0, r0 and δ.

5.2.4 Proof of Theorem J.(b) when d(Min(a),Min(b)) > 30δ.

Recall that we are always assuming a, b isometries with `(a) = `(b) = ` > ε0
3 .

We use the same notations as in 5.2.2: α ⊆ Min(a) and β ⊆ Min(b) are oriented
geodesics invariant under the action of a, b respectively, with α± = a±, β± = b±,
α(0) = x0, β(0) = y0 and d(α, β) = d(x0, y0) = d(Min(a),Min(b)). Finally the
points x+, x− are respectively projections of β+, β− on α, and x+ follows x− along
α. By Remark 2.3.7 the points x−, x+ can be chosen in this way: for any time
t ≥ 0 we denote by xt a projection on α of β(t). The limit point of a convergent
subsequence of (xt), for t→ +∞, defines a projection x+ of β+ on α. The point x−
can be similarly chosen as the limit point of a convergent subsequence of (xt) for
t→ −∞. By Proposition 2.3.10.(b) we have d(xt, xt′) ≤ 9δ for any t, t′ ∈ R and this
implies that d(x−, x+) ≤ 9δ. We can then apply again Proposition 5.2.1 to conclude
that the group 〈aN , bN 〉 is free for N ≥ 86 δ` , and the least N with this property can
be bounded as before by a function depending only on P0, r0 and δ.
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Chapter 6

Applications of the Tits
Alternative

In this chapter we will always assume that X is a complete, convex, geodesically
complete, δ-hyperbolic metric space that is P0-packed at scale r0. We will see several
applications of the Quantitive Tits Alternative, as Theorem K, Theorem L, Theorem
M and the description of the thin components. Other consequences will be studied
in Chapter 8.

6.1 Lower bound for the entropy

We prove here the universal lower bounds for the entropy of any complete, convex,
geodesically complete, δ-hyperbolic metric space X that is P0-packed at scale r0 and
for the algebraic entropy of any finitely generated, non-elementary discrete group
acting on X.
Recall that we defined in Section 2.6 the nilpotence radius of Γ at x as

nilrad(Γ, x) = sup{r ≥ 0 s.t. Γr(x) is virtually nilpotent}

and the nilradius of the action as nilrad(Γ, X) = infx∈X nilrad(Γ, x).

Theorem 6.1.1. Let X be a complete, convex, geodesically complete, δ-hyperbolic
metric space that is P0-packed at scale r0. Assume that X admits a non-elementary,
discrete group of isometries Γ. Then:

(a) EntAlg(Γ) ≥ C0,

(b) hCov(X) ≥ C0 · nilrad(Γ, X)−1,

where C0 = C0(P0, r0, δ) is a constant depending only on P0, r0 and δ.

Proof. We fix any symmetric, finite generating set S of Γ. Clearly there exist a, b ∈ S
such that 〈a, b〉 is non-elementary, or Γ would be elementary. So, by Theorem J.(a),
there exists a free semigroup 〈v, w〉+ where v, w ∈ SN , with N depending on P0, r0, δ.
In particular card(SkN ) ≥ 2k for all k, so Ent(Γ, S) ≥ log 2

N = C0. Since this holds
for any S, this proves (a). In order to show (b) notice that, if ν0 = nilrad(Γ, X),
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there exist a point x ∈ X and g1, g2 ∈ Γ generating a non-virtually nilpotent
subgroup such that max{`(g1), `(g2)} ≤ ν0. Since X is packed the subgroup 〈g1, g2〉
is non-elementary by Corollary 2.6.5, so we can apply Theorem J.(a) and deduce the
existence of a free semigroup 〈v, w〉+ where v, w ∈ SN , for N = N(P0, r0, δ). Let
s > 0 such that sys�(Γ, x) > s. Observe that the points of 〈g1, g2〉x are all distinct
and s-separated. So we can apply Proposition 4.1.1 to conclude that

hCov(X) ≥ lim inf
T→+∞

1
T

log #(〈g1, g2〉x ∩B(x, T )).

As card
(
〈g1, g2〉x ∩B(x, kNν0)

)
≥ 2k, we have hCov(X) ≥ log 2

Nν0
= C0 · ν−1

0 .

6.2 Systolic estimates
Recall that we defined in Section 2.6 the minimal free displacement sys�(Γ, x) at
x as the infimum of d(x, gx) when g runs over the subset Γ \ Γ� of the torsionless
elements of Γ, and the free systole of the action as

sys�(Γ, X) = inf
x∈X

sys�(Γ, x).

Corollary 6.2.1. Let X be a complete, convex, geodesically complete, δ-hyperbolic
metric space that is P0-packed at scale r0. Then for any non-elementary discrete
group of isometries Γ of X it holds:

sys�(Γ, x) ≥ min
{
ε0,

1
H0

e−H0·nilrad(Γ,x)
}

(40)

where H0 = H0(P0, r0, δ) is a constant depending only on P0, r0 and δ.

The proof is a modification of the proof of Theorem 6.20 of [BCGS17]. We will
use also Lemma 7.2.2 and in particular the fact that the Γ-entropy of X is at most
E0 := log(1+P0)

r0
.

Proof of Corollary 6.2.1. Suppose that sys�(Γ, x) < ε0: then we can choose a non-
elliptic element a ∈ Γ such that d(x, ax) = sys�(Γ, x) < nilrad(Γ, x). Indeed the
infimum in the definition of sys�(Γ, x) is attained since the action is discrete and
nilrad(Γ, x) ≥ ε0 by definition of ε0. If nilrad(Γ, x) = +∞ there is nothing to
prove. Otherwise we fix any arbitrary ε > 0 and set R = (1 + ε) · nilrad(Γ, x). By
definition ΓR(x) is not virtually nilpotent and contains a. This implies that there
exists b ∈ ΓR(x) such that d(x, bx) ≤ R and 〈a, b〉 is not elementary. Indeed ΓR(x)
is finitely generated by some b1, . . . , bk with d(x, bix) ≤ R for all i = 1, . . . , k (since
Γ is discrete); if 〈a, bi〉 was elementary for all i then each bi would belong to the
maximal, elementary subgroup containing g (Lemma 2.6.3), hence ΓR(x) would be
elementary and virtually nilpotent (by Corollary 2.6.5), a contradiction. We can
therefore apply Theorem J and infer that the semigroup 〈aτN , w〉+ is free, where w
is a word on a and b of length at most N = N(P0, r0, δ) and τ ∈ {±1}. We now use
Lemma 6.22.(ii) of [BCGS17] to deduce that

hΓ(X) ·min
{
d(x, aτNx), d(x,wx)

}
≥ e−hΓ(X)·max{d(x,aτNx),d(x,wx)}.
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As d(x,wx) ≤ NR and d(x, a±Nx) ≤ N · sys�(Γ, x) < N · nilrad(Γ, x), this implies,
by the estimate on hΓ(X) and by the arbitrariness of ε, that

E0N · sys�(Γ, x) ≥ e−E0N ·nilrad(Γ,x).

The conclusion follows by setting H0 = E0 ·N .

We define the upper nilradius of Γ acting on X as the supremum over the ε0-thin
subset of X

nilrad+(Γ, X) = sup
x∈Xε0

nilrad(Γ, x)

where ε0 = ε0(P0, r0) always denotes the generalized Margulis constant. By conven-
tion we set nilrad+(Γ, X) = −∞ if Xε0 = ∅. The upper nilradius can be infinite.
For instance we have:

Example 6.2.2. Let X be a complete, convex, geodesically complete, δ-hyperbolic
metric space that is P0-packed at scale r0. Let Γ be a discrete group of isometries of
X containing a parabolic element: then supx∈Xr nilrad(Γ, x) = +∞ for all r > 0.
Actually let g be a parabolic element of Γ, in particular `(g) = 0. We take a sequence
of points xn ∈ X such that d(xn, gxn) ≤ 1

n . Thus sys
�(Γ, xn) ≤ 1

n . So for any fixed
r > 0 we have points xn such that sys�(Γ, xn) ≤ r and the nilpotence radius at x is
larger and larger by Corollary 6.2.1.

By taking in (40) the supremum over all x ∈ Xε0 we deduce the formula

sys�(X,Γ) ≥ min
{
ε0,

1
H0

e−H0·nilrad+(Γ,X)
}

(41)

which proves in particular Theorem L when Γ is torsionless.

Clearly if Γ is a cocompact group one has nilrad+(Γ, X) ≤ 2 ·Diam(Γ\X). However
there are many non-cocompact examples where the upper nilradius is finite and the
estimate (41) is non-trivial:

Example 6.2.3 (Quasiconvex-cocompact groups).
This example will be really important for the results of Chapter 7. We recall that
a discrete group Γ of isometries of a δ-hyperbolic space X is called quasiconvex-
cocompact if it acts cocompactly on the quasiconvex-hull of its limit set Λ(Γ) and
the codiameter of Γ is the infimum of the real numbers D > 0 such that for all
x, y ∈QC-Hull(Λ(Γ)) there exists g ∈ Γ such that d(y, gx) ≤ D.
Consider now a non-elementary, quasiconvex-cocompact group Γ of a complete,
convex, geodesically complete, δ-hyperbolic metric space that is P0-packed at scale
r0. It is classical that, for all x ∈QC-Hull(Λ(Γ)), the subset Σ2D(x) of elements g of
Γ such that d(x, gx) ≤ 2D generates Γ.
We affirm that there exists s0 = s0(P0, r0, δ,D) such that sys�(Γ, X) ≥ s0. Indeed
since the action is quasiconvex-cocompact then any element of Γ is either elliptic
or hyperbolic. Therefore the infimum defining the free systole equals the infimum
over points belonging to the axes of all hyperbolic elements of Γ. Any such axis is
contained in QC-Hull(Λ(Γ)) by definition, so

sys�(Γ, X) = inf
x∈QC-Hull(Λ(Γ))

sys�(Γ, x).
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By (40) we conclude that

sys�(Γ, X) ≥ min
{
ε0,

1
H0

e−2H0D
}

=: s0. (42)

Now, for any point x ∈ Xε0 by definition there exists g ∈ Γ such that d(x, gx) ≤ ε0
and we denote one of its axis by Ax(g). By Proposition 2.5.6 we have

d(x,Ax(g)) ≤ K0(P0, r0, δ, `(g), ε0) = K(P0, r0, δ,D) =: K.

Moreover the axis of g belongs to QC-Hull(Λ(Γ)), therefore it is easy to conclude
that nilrad(Γ, x) ≤ 2K + 2D. This shows that nilrad+(Γ, X) is finite, bounded by
2(K +D).

Example 6.2.4 (Abelian covers).
Let Γ be a torsionless group of isometries of a complete, convex, geodesically
complete, δ-hyperbolic metric space that is P0-packed at scale r0. Let Γ0 = [Γ,Γ] be
the commutator subgroup. We affirm that

nilrad+(Γ0, X) ≤ 6 · nilrad+(Γ, X)

(in particular nilrad+(Γ0, X) is finite for any quasiconvex-cocompact Γ).
Actually assume that nilrad+(Γ, X) < D and let a, b ∈ Γ elements which generate a
non-virtually nilpotent (hence non-elementary) subgroup and satisfy d(x, ax) < D,
d(x, bx) < D. Then also the elements a′ = a−1[a, b]a and b′ = b−1[a, b]b generate a
non-elementary (hence non-virtually nilpotent) subgroup of Γ, by the same argument
used in the last lines of the proof of Proposition 5.2.8. However a′ and b′ belong to
Γ0 and both move x less than 6D, which proves the claim.
Notice that X/Γ0 is not compact provided that the abelianization Γ/Γ0 of Γ is
infinite.

6.3 Lower bound for the diastole
The estimate of the diastole given in Theorem M stems from the application of
the classical Tits Alternative combined with Breuillard-Green-Tao’s generalized
Margulis Lemma. We state here the version allowing torsion, from which Theorem
M easily follows. Recall that the free diastole of Γ acting on X is dias�(Γ, X) =
supx∈X sys�(Γ, x), and that the free r-thin subset of X is defined as

X�r = {x ∈ X | ∃g ∈ Γ \ Γ� s.t. d(x, gx) < r}.

We then have:

Corollary 6.3.1. Let X be a complete, convex, geodesically complete, δ-hyperbolic
metric space that is P0-packed at scale r0. Then for any non-elementary, discrete
group of isometries Γ of X we have:

dias�(Γ, X) ≥ ε0

where ε0 = ε0(P0, r0) always denotes the generalized Margulis constant.
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Proof. Consider the free r-thin subset X�r . We first show that if r ≤ ε0 then X�r is not
connected. By definition ∀x ∈ X�r the group Γr(x) is virtually nilpotent and contains
a torsionless element a. For any such x we denote by Nr(x) the unique maximal
elementary subgroup of Γ containing Γr(x) given by Lemma 2.6.3. Moreover, since
there are only finitely many g ∈ Γ such that d(x, gx) < r, there exists η > 0 such
that for all g ∈ Γr(x) it holds d(x, gx) ≤ r − 2η. In particular if d(x, x′) < η then
d(x′, ax′) < r, so x′ ∈ X�r too and Γr(x) ⊆ Γr(x′). This implies that the map
x 7→ Nr(x) is locally constant. So if X�r was connected we would have that Nr(x) is a
fixed elementary subgroup Nr which does not depend on x ∈ X�r . We show now that
Nr is a normal subgroup of Γ: indeed ∀g ∈ Γ and ∀x ∈ X�r we have that gx ∈ X�r
and Γr(gx) = gΓr(x)g−1, therefore gNrg

−1 = Nr. As Γ is non-elementary there
exists a non-elliptic isometry b ∈ Γ such that the group 〈Nr, b〉 is non-elementary.
The group Nr is normal in Γ and amenable (since by Corollary 2.6.5 it is virtually
nilpotent), therefore its cyclic extension 〈Nr, b〉 is amenable. However we know that
Nr contains at least the non-elliptic element a, so by Theorem J the group 〈Nr, b〉
contains a free group and this is impossible for an amenable group. This shows that
X�r is not connected and in particular X�r 6= X. Therefore there exists a point x ∈ X
such that d(x, gx) ≥ ε0 for every g ∈ Γ�.

Notice that, in the proof, we do exploit the existence of a true free subgroup, not
just of a semi-group; actually there exist amenable groups with free semigroups, so
the weak Tits Alternative would not suffice.

6.4 Geometry and topology of the thin subsets
In this part X is a complete, CAT(0), geodesically complete, δ-hyperbolic metric
space that is P0-packed at scale r0. We will need the CAT(0) assumptions instead
of the convexity since we will use Lemma 2.5.2. Moreover in this section we will
assume that the group Γ acting on X is torsionless. The ε-thin subset of X is defined
as the subset

Xε = {x ∈ X | ∃g ∈ Γ s.t. d(x, gx) < ε}.

We will denote in the following by p : X → X̄ = Γ\X the natural covering projection,
and we will call X̄ε = p(Xε) the ε-thin subset of X̄.

The following theorems describe the geometric and topological structure of the thin
subsets of X and of the quotient space X̄ = Γ\X. They follow closely Theorems
6.25-6.26-6.29 of [BCGS17] for actions on CAT(0), Gromov-hyperbolic, packed
metric spaces; however we precisely determine the group structure of the connected
components of the thin subsets and extend those results to actions by groups which
are not in the classes Hypconvex and Hypthick considered there (for instance for groups
with parabolics).

Proposition 6.4.1 (Group structure of components of the thin subset).
Let Xi

ε be any non-empty, connected component of the ε-thin subset Xr and let
Γiε = StabΓ(Xi

ε). Then:

(a) the subsets Xi
ε are precisely invariant under the action of Γ, that is gXi

ε∩Xj
ε = ∅

unless gXi
ε = Xj

ε and Γjε = gΓiεg−1;
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(b) if ε < ε0 then Γiε is an elementary subgroup and coincides with the maximal
elementary subgroup of Γ containing the ε-almost stabilizers Γε(x) for any
x ∈ Xi

ε.

Proof. The first assertion is classical: the Xi
ε are the connected components of

p−1(X̄ε). As every g ∈ Γ acts as an automorhism of the covering p : X → X̄, it
permutes the connected components. The second assertion then follows from the
fact that StabΓ(Xj

ε ) =StabΓ(gXi
ε) = gStabΓ(Xi

ε)g−1.
Let us now prove (b). Since ε is smaller than the Margulis constant ε0 and Xi

ε

is assumed to be non-empty and connected, we infer as in the proof of Corollary
6.3.1 the existence of a maximal elementary subgroup N i

ε containing Γε(x) for any
x ∈ Xi

ε. Moreover for every g ∈ Γiε and every x ∈ Xi
ε we have gΓε(x)g−1 = Γε(gx),

with gx ∈ Xi
ε again, so we deduce analogously that N i

ε is normal in Γiε. Following
the same proof of 6.3.1 we deduce that, if Γiε was not elementary, there would
exists g ∈ Γiε \ N i

ε such that the group 〈N i
ε, g〉 is amenable but not elementary, a

contradiction by the free subgroup theorem.

The above proposition allows us to talk of hyperbolic and parabolic components of
the ε-thin subset when ε is smaller than the Margulis constant ε0, according to the
type of the elementary subgroup Γiε. The following results give a geometric picture
of these subsets:

Proposition 6.4.2 (Hyperbolic components).
Let Xi

ε be a hyperbolic component of the ε-thin subset Xε, for ε < min{ε0, r0},
and let g0 be a hyperbolic isometry generating the elementary, cyclic group Γiε.
Let p̂ : X → X̂ = Γiε\X and p : X → X̄ = Γ\X denote the natural covering
projections, let γ be an axis of g0 and let γ̂, γ̄ be the closed geodesics obtained by
projecting γ to X̂ and X̄ respectively. If r = `(g0) = `(γ̄), we have:

(a) the neighbourhood B(γ, Lε(r)) is entirely included in Xi
ε, where Lε(r) is the

function defined by

Lε(r) =
log

(
2
r − 1

)
2 log(1 + P0) · ε−

1
2 (43)

(notice that the function Lε(r) tends to +∞ when r tends to 0, the geometric
parameters P0, r0, δ and ε being fixed);

(b) the neighbourhood B(γ̄, Rε(r)) of γ̄ in X̄ is isometric to the neighbourhood
B(γ̂, Rε(r)) of γ̂ in X̂, where Rε is given by

Rε(r) = 1
4H0

· log
( 1
ε ·H0

)
− r

4 (44)

(notice that the function Rε(r) tends to +∞ when ε tends to 0, and that Rε(r) ≤
Lε(r) when r → 0 for fixed ε);

(c) the geodesic γ̄ is a deformation retract of B(γ̄, Rε).

For the proof we need a preliminary fact. We saw in Corollary 6.2.1 that, given g ∈ Γ
and x ∈ X, an upper bound of the displacement of this point by any other element
of Γ which does not generate with g an elementary subgroup yields a corresponding
lower bound of the displacement d(x, gx). Reversing the inequality (40) we obtain:
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Lemma 6.4.3. Let ε be smaller than the generalized Margulis constant ε0.
For any given x ∈ Xε the group ΓRε(x) is elementary for

Rε = 1
H0
· log

( 1
ε ·H0

)
where H0 = H0(P0, r0, δ) is the constant given in Corollary 6.2.1.

Proof of Proposition 6.4.2. As Xi
ε is a (non-empty) hyperbolic component, the ele-

mentary subgroup Γiε is cyclic (because Γ is assumed to be torsionless).
To show (a) notice that γ is included in the generalized Margulis domainMr(g0).
Then, by Proposition 2.5.5(b), for any x ∈ γ we know that Mε(g0) contains the
whole ball B(x, Lε(r)), hence B(x, Lε(r)) ⊆ Xi

ε.
To show (b) notice first that the map p is clearly Γiε-invariant and surjective,
therefore it induces a well defined map π : Γiε\X → Γ\X satisfying π ◦ p̂ = p.
Let now x̄, ȳ ∈ B(γ̄, R) and call x̄′, ȳ′ two projections of x̄, ȳ on γ̄; let moreover
x, y, x′, y′ ∈ X projecting respectively to x̄, ȳ, x̄′, ȳ′, with x′, y′ ∈ γ and such that
d(x, x′) = d(x̄, x̄′), d(y, y′) = d(ȳ, ȳ′) and d(x′, y′) = d(x̄′, ȳ′) ≤ r

2 . Finally let g ∈ Γ
an element minimizing d(x, g′y), that is

d(x̄, ȳ) = inf
g′∈Γ

d(x, g′y) = d(x, gy) ≤ 2R+ r

2 .

We therefore have d(y, gy) ≤ d(y, x) + d(x, gy) ≤ 4R + r and, similarly,
d(y′, gy′) ≤ d(y′, x)+d(x, gy)+d(gy, gy′) ≤ 4R+r. So we deduce that for 4R+r ≤ Rε,
that is R smaller than the function given in (44), the element g belongs to the group
ΓRε(y′), which is elementary by Lemma 6.4.3. As g0 ∈ ΓRε(y′) too, it follows that
ΓRε(y′) = Γiε by maximality. Then

d(x̄, ȳ) = inf
g∈Γ

d(x, gy) = inf
g′∈Γiε

d(x, g′y) = d(p̂(x), p̂(y)).

As π ◦ p̂ = p we conclude that π is an isometry between B(γ̂, Rε) and B(γ̄, Rε).
Notice that π restricts to an isometry between γ̂ and γ̄, since π(p̂(γ)) = p(γ) = γ̄.
Consider now the map Q : B(γ,Rε)× [0, 1]→ B(γ,Rε) defined sending (x, t) to the
point along [x, q(x)] at distance t from x, where q(x) is the projection of x on γ.
The map Q yields a deformation retract of γ in B(γ,Rε). Observe that B(γ,Rε) is
Γiε-invariant and that q(gk0x) = gk0q(x); therefore Q is Γiε-equivariant and defines a
quotient map Q̂ : B(γ̂, Rε)× [0, 1]→ B(γ̂, Rε) which is a deformation retract of γ̂ in
B(γ̂, Rε). Composing Q̂ with π we obtain the desired deformation of γ̄ in B(γ̄, Rε),
which shows (c).

The structure of parabolic components is similar, up to replace the tubular
neighbourhood of the geodesic γ ⊆ Min(g0) with a neighbourhood of any ray with
endpoint the parabolic fixed point z of the subgroup Γiε.
In general there might be no horoball Hz entirely included in Xi

ε (for instance when
Γiε is generated by a screw motion of a horosphere in H3). Nevertheless it remains
true that there exists an open cone Cz (with uniform width, with respect to our
geometric parameters P0, r0, δ), containing the end of any geodesic ray going to z,
which is entirely included in one connected component Xi

ε. Moreover any x ∈ Cz
has a large neighbourhood (compared to the depth of x in Xi

ε) whose quotient by Γ
is isometric to its quotient by the smaller group Γiε:
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Proposition 6.4.4 (Parabolic components).
Let Xi

ε be a parabolic component of the ε-thin subset Xε, for ε < min{ε0, r0},
with elementary, virtually nilpotent stabilizer Γiε and parabolic fixed point z. Let
again p̂ : X → X̂ = Γiε\X, p : X → X̄ = Γ\X be the projection maps and let
r < r(ε) = (1 + P0)−

56δ+1
ε . Then:

(a) the set Xi
r := Xi

ε ∩ Xr is connected. In other words there exists a unique
connected component of Xr inside Xi

ε, so the notation Xi
r is coherent.

Let Hz be any horosphere centered at z intersecting Xi
r and H i

z,r := Hz ∩ Xi
r.

Let Cr = Cr(Hz) be the set of points x ∈ X satisfying

Bz(Hz, x) > d(H i
z,r, x)− Lε(r) + 40δ. (45)

Then:

(b) the subset Cr is contained in Xi
ε;

(c) the subset Cr is a connected, Γiε-invariant geodesic cone of vertex z
(i.e. for all x ∈ Cr the whole geodesic ray [x, z] belongs to Cr);

(d) any geodesic ray with endpoint z definitively belongs to Cr;

(e) calling Ĉr = p̂(Cr) and C̄r = p(Cr) the projections of Cr on X̂ and X̄,
their Rε(ε)-neighbourhoods B(Ĉr, Rε(ε)), B(C̄r, Rε(ε)) are isometric;

(f) for any x ∈ Cr the projections of [x, z] in X̂ and X̄ are geodesic rays.

(Here Lε(r) and Rε(ε) are the same functions as in (43) and (44).)

Proof. The choice of r < r(ε) gives −Lε(r) + 40δ < −16δ ≤ 0. So if y ∈ H i
z,r then

any point y′ of the geodesic ray [y, z] satisfies

Bz(Hz, y
′) > d(H i

z,r, y
′)− Lε(r) + 56δ. (46)

Indeed for any such point we have Bz(Hz, y
′) = d(H i

z,r, y
′).

We are now going to show (b). Let x ∈ X satisfying (45). Let x0 ∈ Hz be the
intersection of a bi-infinite geodesic through x with endpoint z. Choose some y0
and y in H i

z,r minimizing the distance to x0 and x respectively, and call d0 =
d(x0, y0) = d(x0, H

i
z,r) for short. Since y0 ∈ Xi

r, by Proposition 6.4.1 there exists a
parabolic isometry g ∈ Γiε with fixed point z such that y0 ∈Mr(g). Consider now
the points x1, y1 on the geodesic rays [x0, z] and [y0, z] at distance d0

2 + 4δ from
y0, x0 respectively: by Lemma 2.3.2 we know that d(y1, x1) ≤ 16δ. Indeed the two
geodesic rays ξ1 = [x0, z] and ξ2 = [x0, z] satisfy d(ξ1(t+ t1), ξ2(t+ t2)) ≤ 8δ for all
t ≥ 0, where t1 + t2 = d0 and |t1 − t2| ≤ 8δ. This implies max{t1, t2} ≤ d0

2 + 4δ, so
d(x1, y1) ≤ 16δ by triangular inequality. Clearly also y1 ∈Mr(g) by convexity.
Assume now first that x does not belong to the horoball H+

z . Since x0 is the
projection of x on the convex set Hz containing y, by the Projection Lemma 2.3.5,
we have d(x, y) ≥ d(x, x0) + d(x0, y)− 8δ, therefore

d(y1, x) ≤ d(y1, x0) + d(x0, x) ≤
(
d0
2 + 20δ

)
+
(
d(y, x)− d(x0, y) + 8δ

)
.
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Moreover d(x0, y) ≥ d0 by minimality, so we deduce from (45):

d(y1, x) ≤ d0
2 + d(H i

z,r, x)− d0 + 28δ < Bz(Hz, x) + Lε(r).

Since x 6∈ H+
z the term Bz(Hz, x) is negative, hence x belongs to B(y1, Lε(r)) and

is inMε(g) by Proposition 2.5.5.(b). So x ∈ Xi
ε.

Assume now that x ∈ H+
z . If x is between x1 and z along [x0, z] we can find a point

y2 along [y0, z] such that d(x, y2) ≤ 8δ and of course y2 ∈Mr(g); so, by the choice
of Lε(r), we conclude by Proposition 2.5.5.(b) that x ∈Mε(g) and so x ∈ Xi

ε. On
the other hand, if x ∈ [x0, x1], we want to show that d(y1, x) < Lε(r). Suppose the
opposite: d(y1, x) ≥ Lε(r). Then by (45) and the disposition of the points x0, x, x1
we get

d0 ≤ d(x0, x) + d(x,H i
z,r) = d(x0, x1)− d(x, x1) + d(x,H i

z,r)
≤ d(x0, y1) + 16δ − Lε(r) + d(x,H i

z,r)
< d(x0, y1) + 16δ − Lε(r) + Bz(Hz, x) + Lε(r)− 40δ
≤ d(x0, y1) + 16δ + d(x, x1)− 40δ

≤
(
d0
2 + 20δ

)
+ 16δ +

(
d0
2 + 4δ − 40δ

)
≤ d0

a contradiction. So x ∈ B(y1, Lε(r)), hence again we deduce that x ∈ Xi
ε concluding

the proof of (b).

Let us now show (c) and (d). First of all Cr is Γiε-invariant since Xi
r, Hz and Bz(Hz, ·)

are, by Lemma 2.5.2 (observe that here we do not use (a)). Moreover if we consider
any point x′ belonging to a geodesic ray [x, z] with x ∈ Cr we notice that:

Bz(Hz, x
′) = Bz(Hz, x) + d(x, x′), d(H i

z,r, x
′) ≤ d(H i

z,r, x) + d(x, x′),

so x′ satisfies again (45), which proves that Cr is a geodesic cone of vertex z. Finally
Cr is connected. Indeed choose any y ∈ H i

z,r, pick a point x ∈ Cr and consider the
geodesic ray [x, z], which is contained in Cr. The geodesic rays [x, z] and [y, z] are
definitely 8δ-close, so by Lemma 2.3.2 we find two points x′ along [x, z] and y′ ∈ [y, z]
satisfying d(x′, y′) ≤ 8δ. This implies Bz(Hz, y

′) ≤ Bz(Hz, x
′) + 8δ, therefore by

(46):

d(x′, H i
z,r) ≤ d(x′, y′) + d(y′, H i

z,r) < 8δ + Bz(Hz, y
′) + Lε(r)− 56δ

≤ Bz(Hz, x
′) + Lε(r)− 40δ.

A similar estimate is true for every point of the geodesic segment [x′, y′].
So every point of the path [x, x′]∪ [x′, y′]∪ [y′, y] satisfies (45), which shows that every
point of Cr can be connected to the chosen point y and thus that Cr is connected. In
fact, the same proof shows that any geodesic ray with endpoint z definitely belongs
to Cr, that is (d).

The proof of (a) uses the same ideas: let r′ > 0 small enough to have Lr(r′) > 8δ,
where Lr(r′) is given by Proposition 2.5.5.(b). We fix a point y that is displaced by
some g ∈ Γiε less than r′; by convexity the same is true for every point along [y, z].
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We take now a point x ∈ Xi
ε ∩Xr, so there exists g′ ∈ Γiε such that d(x, g′x) < r.

Here the important fact is that the fixed point at infinity of g′ is again z. As
usual we can find two points x′ ∈ [x, z] and y′ ∈ [y, z] at distance ≤ 8δ by Lemma
2.3.2. Since Lr(r′) > 8δ we apply Proposition 2.5.5.(b) to conclude that every
point of the geodesic segment [x′, y′] is contained in Xi

ε ∩Xr. So the whole path
[x, x′]∪ [x′, y′]∪ [y′, y] is contained in this set. Notice that the isometry that displaces
the points less than r along this path may change from point to point. However this
shows that Xi

ε ∩Xr is connected since y is fixed, proving (a).

Let us now show (e). The map p being Γiε-invariant, it induces a map π : X̂ → X̄
satisfying π ◦ p̂ = p. This map is clearly surjective since p is. Let us now show
that π is injective. Let y, y′ ∈ B(Cr, R), for R < 1

4(Rε − ε) and Rε as in (44), and
assume that p(y) = p(y′). Then there exists h ∈ Γ such that y = hy′. We take
projections x, x′ ∈ Cr respectively of y and y′. From (b) we know that d(x, gx) < ε
and d(x′, g′x′) < ε for some g, g′ ∈ Γiε. This implies:

d(x′, h−1ghx′) ≤ 2R+ d(hy′, ghy′) = 2R+ d(y, gy) ≤ 4R+ ε.

Since 4R + ε < Rε we conclude by Lemma 6.4.3 that g′ and h−1gh belong to the
same maximal, elementary group, namely Γiε. Now

h−1Fix∂(g) = Fix∂(h−1gh) = Fix∂(g′) = Fix∂(g),

which implies h ∈ Γiε. This means that p̂(y) = p̂(y′), so π is injective.
In conclusion, as π is the restriction of a local isometry and is bijective, it is
an isometry.

Finally let us show (f). We first prove that the maps p̂ and p are injective
when restricted to [x, z], with x ∈ Cr. Assume that there exists x′ ∈ [x, z]
and h ∈ Γ such that hx′ ∈ [x, z]. Up to replacing h with h−1 we may sup-
pose hx′ ∈ [x′, z]. Then let g ∈ Γiε such that d(x, gx) < ε, which exists by (b).
By convexity we have d(x′, gx′) < ε and d(x′, h−1ghx′) = d(hx′, ghx′) < ε.
So h−1gh is an isometry that moves x′ less than ε. Therefore h−1gh is in the
same maximal elementary group containing g, namely Γiε. This implies that h−1gh
is of parabolic type and, as h−1Fix∂(g) = Fix∂(h−1gh) = Fix∂(g), we deduce once
again that z ∈ Fix∂(h), so h is parabolic with fixed point z. Moreover the isometry
h sends the geodesic ray [x′, z] to the geodesic ray [hx′, z], but by Lemma 2.5.2
we necessarily have hx′ = x′, which implies that h = id, since Γ has no elliptic
elements. This shows that the maps p̂ and p, when restricted to [x, z], are injective
local isometries with images p̂([y, z]) and p([y, z]) respectively. By Proposition I.3.28
of [BH13], the restriction of p̂ and p to [x, z] are locally isometric coverings, and
since they are bijective then they are isometries, concluding the proof of (f).



125

Chapter 7

Critical exponent of discrete
groups of isometries

In this chapter we introduce the notion of critical exponent of a group of isometries
Γ, showing how it can be seen as another notion of entropy. In order to highlight
the relations between the critical exponent and the other definitions of entropies
we gave in Chapter 4 we will first define the versions of those invariants relative to
subsets of the boundary at infinity. In the second part of the chapter we will prove
Theorem P which is one of the main results of this thesis.

7.1 Entropies of subsets of the boundary
Let X be a complete, convex, geodesically complete, δ-hyperbolic metric space that
is P0-packed at scale r0. In this section we will consider a subset C of ∂X and
we define the relative version, with respect to C, of all the different definitions of
entropies introduced in Chapter 4. We observe that when C = ∂X then we are in
the case yet studied. We will be interested especially to the subsets C related to the
limit set of a discrete group of isometries acting on X.
We start with a couple of basic, although fundamental, lemmas relating geodesic
rays and lines with endpoints in C.

Lemma 7.1.1. Let X be a proper, δ-hyperbolic metric space. Let γ be a geodesic
line and x ∈ X with S := d(γ(0), x). Let x′ be a projection of x on γ. Then

(a) there exists an orientation of γ such that [x, x′]∪[x′, γ+] is a (1, 4δ)-quasigeodesic.

(b) with respect to the orientation of (a) there exists a geodesic ray ξ starting at x
such that d(ξ(S + t), γ(t)) ≤ 76δ for all t ≥ 0. In particular ξ+ = γ+;

(c) for all orientations of γ there exists a geodesic ray ξ starting at x such that
d(ξ(S + t), γ(t)) ≤ 2S + 76δ for all t ≥ 0. Also in this case γ+ = ξ+.

Proof. We choose the orientation of γ such that x′ belongs to the negative ray γ|(−∞,0]
and we take the geodesic ray ξ = [x, γ+]. By Lemma 2.3.9 the path α = [x, x′] ∪
[x′, γ+] is a (1, 4δ)-quasigeodesic and moreover it satisfies d(ξ(S+ t), α(S+ t)) ≤ 72δ
for every t ≥ 0. Furthermore the time t0 such that α(t0) = γ(0) is between S and
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S + 4δ implying d(ξ(S + t), γ(t)) ≤ 76δ.
For the second part of the proof we suppose to be in the situation above and we
consider the geodesic ray ξ = [x, γ−]. By Lemma 2.3.9 the path α = [x, x′] ∪ [x′, γ−]
satisfies d(ξ(S + t), α(S + t)) ≤ 72δ for every t ≥ 0. Furthermore for every t ≥ 0 the
point α(S + t) belongs to γ and d(α(S + t), γ(0)) ≤ d(α(S + t), x) + d(x, γ(0)) ≤
2S + t+ 4δ. So d(ξ(S + t), γ(t)) ≤ 76δ + 2S.

We remark that if γ(0) is a projection of x on γ then the first part of the lemma
holds for both the positive and negative rays of γ.

Lemma 7.1.2. Let X be a proper, δ-hyperbolic metric space. Let x ∈ X and
C ⊆ ∂X be a subset with at least two points. Then there exists L > 0 such that for
every geodesic ray ξ with ξ(0) = x and ξ+ ∈ C there exists a geodesic line γ with
γ± ∈ C such that d(ξ(t), γ(t)) ≤ L for all t ∈ [0,+∞). Moreover if x ∈ QC-Hull(C)
then L depends only on δ.

Proof. Let z, z′ be two distinct points of C. Let Dx,a be a standard visual metric of
parameter a centered at x and letm = Dx,a(z,z′)

2 . We have that eitherDx,a(ξ+, z) ≥ m
or Dx,a(ξ+, z′) ≥ m. We suppose it holds the first case and we choose a geodesic line
γ joining z and ξ+. We parametrize γ in such a way that γ(0) is a projection of x on
γ. Then m ≤ Dx,a(z, ξ+) ≤ e−a(z,ξ+)x . If S denotes d(x, γ(0)) = d(ξ(0), γ(0))
and ξz = [x, z] then by the previous lemma and the remark below we have
d(ξ(S + t), ξz(S + t)) ≤ d(γ(t), γ(−t)) + 152δ = 2t+ 152δ. Therefore

(z, ξ+)x ≥
1
2 lim inf
t→+∞

[2(S + t)− d(ξ+(S + t), ξz(S + t))] ≥ S − 76δ

implying e−a(S−76δ) ≥ m. This means d(γ(0), ξ(0)) ≤ 1
a log 1

m + 76δ =: L′. The
thesis follows with L := L′ + 76δ by the previous lemma.
We observe that L depends on δ, a and m, and the choice of a depends only on δ.
Moreover when x ∈ QC-Hull(C) we can take z, z′ ∈ C such that x ∈ [z, z′]. With
this choice m equals 1

2 showing that L depends only on δ.

Remark 7.1.3. If C ′ ⊆ C ⊆ ∂X and x ∈ X is fixed then the constant L given by
the previous lemma relative to C works also for C ′, provided C ′ has at least two
points, as follows by the proof.

7.1.1 Covering and volume entropy

Let X be a complete, convex, geodesically complete, δ-hyperbolic metric space that
is P0-packed at scale r0 and let C be a subset of ∂X. The upper covering entropy of
C is defined as

lim sup
T→+∞

1
T

log Cov(B(x, T ) ∩B(QC-Hull(C), σ), r),

where r > 0, σ ≥ 0 and x ∈ X and it is denoted by hCov(C). The lower covering
entropy of C, denoted by hCov(C), is defined taking the limit inferior instead of the
limit superior. These quantities do not depend on x ∈ X as usual. The analogous of
Proposition 4.1.1 holds.
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Proposition 7.1.4. Let X be a complete, convex, geodesically complete, δ-hyperbolic
metric space that is P0-packed at scale r0, C be a subset of ∂X and x ∈ X. Then

1
T

log Cov(B(x, T ) ∩B(QC-Hull(C), σ), r) �
P0,r0,r,r′,σ,σ′

1
T

log Pack(B(x, T ) ∩B(QC-Hull(C), σ′), r′)

for all r, r′ > 0 and σ, σ′ ≥ 0. In particular any of these functions can be used in the
definition of the upper and lower covering entropies of C.

Proof. Once σ is fixed the asymptotic estimate can be proved exactly as in Proposi-
tion 4.1.1. Moreover for all σ ≥ 0 it is easy to prove that

Cov(B(x, T ) ∩B(QC-Hull(C), σ), r) ≤
Cov(B(x, T ) ∩QC-Hull(C), r0) · Cov(r0 + σ, r0).

and Cov(r0 + σ, r0) is uniformly bounded in terms of P0, r0 and σ by Proposition
2.4.4. This concludes the proof.

Clearly when C = ∂X we have hCov(∂X) = hCov(X). Moreover if C is a closed
subset of ∂X then hCov(C) ≤ hCov(∂X), so hCov(C) ≤ log(1+P0)

r0
by Lemma 4.1.3.

The analogous of Proposition 4.1.2 holds. We remark that in this case a dependence
on δ appears.

Proposition 7.1.5. Let X be a complete, convex, geodesically complete, δ-hyperbolic
metric space that is P0-packed at scale r0, C be a subset of ∂X and x ∈ X. Then

1
T

log Cov(B(x, T ) ∩QC-Hull(C), r) �
P0,r0,r,δ

1
T

log Cov(S(x, T ) ∩QC-Hull(C), r)

In particular any of these functions can be used in the definition of the upper and
lower covering entropies of C.

Proof. As in the proof of Proposition 4.1.2 one inequality is obvious, so we are
going to prove the other. We divide the ball B(x, T ) in the annulii A(x, kr, (k+ 1)r)
with k = 0, . . . , Tr − 1. Therefore we can estimate the quantity Cov(B(x, T ) ∩
QC-Hull(C), 72δ + 2r) from above by

T
r
−1∑

k=0
Cov(A(x, kr, (k + 1)r) ∩QC-Hull(C), 72δ + 2r).

We claim that every element of the sum is ≤ Cov(S(x, T ) ∩QC-Hull(C), r). Indeed
let y1, . . . , yN be a set of points realizing Cov(S(x, T ) ∩ QC-Hull(C), r). For all
i = 1, . . . , N we consider the geodesic segment γi = [x, yi] and we call xi the
point along this geodesic at distance kr from x. We want to show that x1, . . . , xN
is a (72δ + 2r)-dense subset of A(x, kr, (k + 1)r) ∩ QC-Hull(C). Given a point
y ∈ A(x, kr, (k + 1)r) ∩ QC-Hull(C) there exists a geodesic line γ with endpoints
in C containing y. We parametrize γ so that γ(0) is a projection of x on γ and
y ∈ γ|[0,+∞). We take a point yT ∈ γ|[0,+∞) at distance T from x, so that yT ∈
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S(x, T )∩QC-Hull(C) and therefore there exists i such that d(yT , yi) ≤ r. By Lemma
2.3.9 the path α = [x, γ(0)] ∪ [γ(0), yT ] is a (1, 4δ)-quasigeodesic and, if ty denotes
the real number such that α(ty) = y, it holds ty ∈ [kr, (k+ 1)r]. By Lemma 2.3.9 we
get d(y, γ′i(ty)) ≤ 72δ, where γ′i = [x, yT ]. We conclude the proof of the claim since
d(y, xi) ≤ d(y, γ′i(ty)) +d(γ′i(ty), γi(ty)) +d(γi(ty), xi) ≤ 72δ+ 2r, from the convexity
of the metric. We remark that using the ideas of Lemma 4.3.4 it is possible to obtain
a similar estimate without using the convexity. The thesis follows by Proposition
7.1.4.

The upper volume entropy of C with respect to a measure µ is

hµ(C) = sup
σ≥0

lim sup
T→+∞

1
T

logµ(B(x, T ) ∩B(QC-Hull(C), σ)),

where x ∈ X. Taking the limit inferior instead of the limit superior is defined the
lower volume entropy of C, hµ(C).

Proposition 7.1.6. Let X be a complete, convex, geodesically complete, δ-hyperbolic
metric space that is P0-packed at scale r0, let C be a subset of ∂X and let µ be a
measure on X which is H-homogeneous at scale r. Then for all σ ≥ r it holds

1
T

logµ(B(x, T ) ∩B(QC-Hull(C), σ)) �
H,P0,r0,r,σ

1
T

log Cov(B(x, T ) ∩QC-Hull(C), r0).

In particular the upper (resp. lower) volume entropy of C with respect to µ coincides
with the upper (resp. lower) covering entropy of C and it can be computed using
σ = r in place of the supremum.
Proof. By Remark 4.1.5 we know that µ is H(σ)-homogeneous at scale σ for all
σ ≥ r, where H(σ) depends on P0, r0, σ, r,H. Therefore the proof of Proposition
4.1.4 works in this case.

7.1.2 Lipschitz topological entropy

Let X be a complete, convex, geodesically complete, δ-hyperbolic metric space that
is P0-packed at scale r0. For a subset C of ∂X and Y ⊆ X we set

Geod(Y,C) = {γ ∈ Geod(X) s.t. γ± ⊆ C and γ(0) ∈ Y }.

If Y = X we simply write Geod(C). Clearly Geod(C) is a Φ-invariant subset of
Geod(X), so the geodesic flow is well defined on it. The upper Lipschitz-topological
entropy of Geod(C) is defined as

hLip-top(Geod(C)) = inf
â

sup
K

lim
r→0

lim sup
T→+∞

1
T

log CovâT (K, r),

where the infimum is taken among all geometric metrics on Geod(C). The lower
Lipschitz-topological entropy is defined taking the limit inferior instead of the limit
superior and it is denoted by hLip-top(Geod(C)). In the following crucial result we
observe the difference between closed and non-closed subsets of ∂X that is the basis
of the difference between the Hausdorff and the Minkowski dimension of the limit
set of a discrete group of isometries.
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Theorem 7.1.7. Let X be a complete, convex, geodesically complete, δ-hyperbolic
metric space that is P0-packed at scale r0 and C be a subset of ∂X. Then

hLip-top(Geod(C)) = sup
C′⊆C

hCov(C ′),

where the supremum is among closed subsets C ′ of C. The same holds for the lower
entropies.

We remark that the supremum of the covering entropies among the closed subsets
of C can be strictly smaller than the covering entropy of C, marking the distance
between the equivalences of the different notions of entropies in case of non-closed
subsets of the boundary. We start with an easy lemma.

Lemma 7.1.8. Let X and C be as in Theorem 7.1.7 and let x ∈ X. Then every
compact subset of Geod(C) is contained in Geod(B(x,R), C ′) for some R ≥ 0 and
some C ′ ⊆ C closed. Moreover Geod(B(x0, R), C ′) is compact for all R ≥ 0 and all
closed C ′ ⊆ C.

Proof. We fix a compact subset K of Geod(C). The continuity of the evalua-
tion map gives that E(K) is contained in some ball B(x,R). Moreover the maps
+,− : Geod(X)→ ∂X, defined by γ 7→ γ+, γ− respectively, are continuous ([BL12],
Lemma 1.6). This means that C ′ = +(K) ∪ −(K) is a closed subset of ∂X and
clearly K ⊆ Geod(B(x,R), C ′). By a similar argument, and since the evaluation
map is proper, it follows that the set Geod(B(x,R), C ′) is compact for all R ≥ 0
and all C ′ ⊆ C closed.

For a metric f ∈ F and C ⊆ ∂X we denote by hf the upper metric entropy of
Geod(C) with respect to f , that is

hf (Geod(C)) = sup
K

lim
r→0

lim sup
T→+∞

1
T

log CovfT (K, r).

Taking the limit inferior instead of the limit superior we define the lower metric
entropy of Geod(C) with respect to f , denoted by hf (Geod(C)). The analogous of
Proposition 4.2.3 is the following.

Proposition 7.1.9. Let X be as in Theorem 7.1.7, C ′ be a closed subset of ∂X,
f ∈ F , x ∈ X and L be the constant given by Lemma 7.1.2. Then

(a) hf (Geod(B(x,R), C ′)) = hf (Geod(B(x, L), C ′)) for all R ≥ L;

(b) hf (Geod(C ′)) = hf (Geod(B(x, L), C ′)) ≤ hCov(C ′);

(c) The function r 7→ lim supT→+∞
1
T log CovfT (Geod(B(x, L), C ′), r) is constant.

The same conclusions hold for the lower entropies.

We observe that applying the Key Lemma 4.2.4 we have directly the relative
version of Corollary 4.2.5.
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Corollary 7.1.10. Let f ∈ F , x ∈ X, R ≥ 0 and 0 < r ≤ r′. Then

1
T

log CovfT (Geod(B(x,R), C ′), r′) �
P0,r0,r,r′,f

1
T

log CovfT (Geod(B(x,R), C ′), r).

Proof of of Proposition 7.1.9. We fix R ≥ L and T ≥ 0. We take a set γ1, . . . , γN
of geodesic lines realizing CovfT (Geod(B(x, L), C ′), r0). Our aim is to show that
γ1, . . . , γN is a (4R + 2L + C(f) + 76δ + r0)-dense subset of Geod(B(x,R), C ′).
This, together with Corollary 7.1.10, will prove (a). We consider a geodesic line
γ ∈ Geod(B(x,R), C ′), so d(γ(0), x) =: S ≤ R. By Lemma 7.1.1 there exists a
geodesic ray ξ starting at x such that d(ξ(S + t), γ(t)) ≤ 2S + 76δ for all t ≥ 0
and in particular ξ+ belongs to C. Now we apply Lemma 7.1.2 to find a geodesic
line γ′ ∈ Geod(C ′) such that d(ξ(t), γ′(t)) ≤ L for all t ≥ 0. Clearly we have
γ′ ∈ Geod(B(x, L), C ′) and d(γ′(S+ t), γ(t)) ≤ 2S+L+ 76δ for all t ≥ 0. Therefore
d(γ′(t), γ(t)) ≤ 3S +L+ 76δ for all t ≥ 0. This implies that for all t ∈ [0, T ] we have

f t(γ, γ′) ≤
∫ −t
−∞

(
d(γ(0), γ′(0)) + 2|s|

)
f(s)ds+

∫ +∞

−t

(
3S + L+ 76δ

)
f(s)ds.

Since d(γ(0), γ′(0)) ≤ L + S we get f t(γ, γ′) ≤ 4S + 2L + C(f) + 76δ using the
properties of f , and so fT (γ, γ′) ≤ 4R + 2L + C(f) + 76δ. Moreover, since γ′ ∈
Geod(B(x, L), C ′), there exists γi such that fT (γ′, γi) ≤ r0. This implies fT (γ, γi) ≤
4R+ 2L+ C(f) + 76δ + r0.
We observe that (c) follows directly from the previous corollary.
The first equality in (b) follows by (a). In order to prove the inequality we fix
y1, . . . , yN realizing Cov(S(x, T ) ∩QC-Hull(C ′)). So there are γi ∈ Geod(C ′) such
that yi ∈ γi. By Lemma 7.1.1 there exists an orientation of γi such that, called
Si = d(x, γi(0)) and Ti ≥ 0 such that γi(Ti) = yi, we have T ≤ Si + Ti ≤ T + 4δ and
the geodesic ray ξi = [x, γ+

i ] satisfies d(ξi(Si+t), γi(t)) ≤ 76δ for all t ≥ 0. By Lemma
7.1.2 there exists γ′i ∈ Geod(B(x, L), C ′) such that d(γ′i(t), ξi(t)) ≤ L for all t ≥ 0.
We claim that the set {γ′i} is (6L+ 160δ + 2r0 + 2C(f))-dense in Geod(B(x, L), C ′).
By (a) and (c) this would imply the thesis. We fix γ ∈ Geod(B(x, L), C ′), so there
exists y ∈ S(x, T ) and Ty ∈ [T − L, T + L] such that γ(Ty) = y and therefore
d(y, yi) ≤ r0 for some i. We observe that we have d(γ′i(Si + Ti), yi) ≤ L+ 76δ and
so d(γ′i(T ), yi) ≤ L+ 80δ. Moreover d(γ(T ), yi) ≤ L+ r0 implying d(γ(T ), γ′i(T )) ≤
2L + 80δ + r0. Furthermore by definition d(γ(0), γ′i(0)) ≤ 2L, so by convexity
d(γ(t), γ′i(t)) ≤ 2L + 80δ + r0 for all t ∈ [0, T ]. The thesis follows by the classical
subdivision of the integral defining f into three parts, each estimated by the constants
above.

Proof of Theorem 7.1.7. We fix a geometric metric â on Geod(C) and we denote
by M the Lipschitz constant with respect to â of the evaluation map E. By Remark
7.1.3 the constant L given by Lemma 7.1.2 can be chosen independently of C ′ ⊆ C,
once x is fixed. Clearly we have

sup
R≥0,C′⊆C

lim
r→0

lim sup
T→+∞

1
T

log CovâT (Geod(B(x,R), C ′), r) ≥
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sup
C′⊆C

lim sup
T→+∞

1
T

log CovâT (Geod(B(x, L), C ′), r0).

We fix geodesic lines γ1, . . . , γN realizing CovâT (Geod(B(x, L), C ′), r0). Since
d(γi(0), x) ≤ L for all i = 1, . . . , N then there exists ti ∈ [T − L, T + L] such
that d(γi(ti), x) = T . We claim that the points yi = γi(ti) ∈ S(x, T ) ∩QC-Hull(C ′)
are (2L+ 80δ +Mr0)-dense. By Proposition 7.1.5 this would imply

hLip-top(Geod(C)) ≥ sup
C′⊆C

hLip-top(Geod(C ′)) ≥ sup
C′⊆C

hCov(C ′).

We fix y ∈ S(x, T ) ∩ QC-Hull(C ′) and we select a geodesic line γ ∈ Geod(C ′)
containing y. By Lemma 7.1.1, with an appropriate choice of the orientation of
γ, the geodesic ray ξ = [x, γ+] satisfies d(ξ(S + t), γ(t)) ≤ 76δ for all t ≥ 0, where
S = d(x, γ(0)). By Lemma 7.1.2 there exists γ′ ∈ Geod(B(x, L), C ′) such that
d(ξ(t), γ′(t)) ≤ L for all t ≥ 0, implying d(γ′(S + t), γ(t)) ≤ L + 76δ for all t ≥ 0.
Denoting by Ty the real number such that γ(Ty) = y we have by Lemma 7.1.1 that
T ≤ S+Ty ≤ T+4δ. Therefore we apply the previous estimate with t = Ty obtaining
d(γ′(T ), y) ≤ d(γ′(T ), γ′(S+Ty))+d(γ′(S+Ty), y) ≤ L+80δ. Moreover there exists
i ∈ {1, . . . , N} such that âT (γ′, γi) ≤ r0 and in particular d(γ′(T ), γi(T )) ≤ Mr0.
Therefore we get d(yi, y) ≤ d(γi(ti), γi(T )) + d(γi(T ), y) ≤ 2L + 80δ + Mr0. The
other inequality follows by Proposition 7.1.9. Indeed we have

hLip-top(Geod(C)) ≤ sup
C′⊆C

hf (Geod(C ′)) ≤ sup
C′⊆C

hCov(C ′).

Remark 7.1.11. Let X be as in Theorem 7.1.7, C ⊆ ∂X closed and x ∈ QC-Hull(C).
By the proof of Theorem 7.1.7, Lemma 7.1.2 and Remark 7.1.3 we obtain

1
T

log Cov(S(x, T ) ∩QC-Hull(C), r0) �
P0,r0,δ,f

1
T

log CovfT (Geod(B(x, L), C), r0)

for all f ∈ F , where L depends only on δ.

For all Y ⊆ X and C ⊆ ∂X we denote by Ray(Y,C) the set of geodesic rays
ξ with ξ(0) ∈ Y and ξ+ ∈ C. When Y = X we use the notation Ray(C) and
in this case this set is invariant by the geodesic semi-flow. So it is defined in the
usual way its upper and lower Lipschitz-topological entropy, denoted respectively by
hLip-top(Ray(C)) and hLip-top(Ray(C)).

Proposition 7.1.12. Let X and C be as in Theorem 7.1.7. Then

(a) hLip-top(Ray(C)) equals supC′⊆C lim supT→∞ 1
T log CovfT (Ray(x,C ′), r) indepen-

dently of f ∈ F , the point x ∈ X and r > 0, where the supremum is taken
among the closed subsets of C.

(b) hLip-top(Ray(C)) = hLip-top(Geod(C));

(c) the equivalent asymptotic estimate of Remark 7.1.11 holds for the geodesic
semi-flow.
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The same conclusions hold for the lower entropies.

Proof. The inequality hLip-top(Ray(C ′)) ≥ hCov(C ′) for all closed C ′ ⊆ C follows by
the same proof of Theorem 7.1.7. The remaining part of the thesis can be proved in
a similar way of Proposition 7.1.9 and we omit the details.

7.1.3 Shadow and Minkowski dimension

The notions of shadow covering, shadow dimension and visual Minkowski dimension
can be directly generalized to the case of subsets C of ∂X. The upper (resp. lower)
shadow dimension of C will be denoted by Shad-D(C) (resp. Shad-D(C)), while the
upper (resp. lower) visual Minkowski dimension of C will be denoted by MD(C)
(resp. MD(C)).

Proposition 7.1.13. Let X be a complete, convex, geodesically complete, δ-hyperbolic
metric space that is P0-packed at scale r0. Let C be a subset of ∂X, x ∈ X and L be
the constant of Lemma 7.1.2. Then

1
T

log Cov(S(x, T ) ∩QC-Hull(C), r) �
P0,r0,δ,r,L

1
T

log Shad-Covr(C, e−T ).

In particular the upper (resp. lower) shadow dimension of C equals the upper (resp.
lower) covering entropy of C.

Proof. Let y1, . . . , yN be a set realizing Cov(S(x, T )∩QC-Hull(C), r). We fix z ∈ C
and we consider the geodesic ray ξ = [x, z]. By Lemma 7.1.2 there exists γ ∈
Geod(B(x, L), C) such that d(ξ(t), γ(t)) ≤ L for all t ≥ 0. Let ty ∈ [T − L, t + L]
such that d(γ(ty), x) = T and call y = γ(ty). Then there exists i ∈ {i, . . . , N} such
that d(y, yi) ≤ r and moreover d(ξ(T ), y) ≤ 2L, implying [x, z] ∩B(yi, 2L+ 2r) 6= ∅.
This shows that

Shad-Cov2L+2r(C, e−T ) ≤ Cov(S(x, T ) ∩QC-Hull(C), r).

Now let yi, . . . , yN be points realizing Shad-Covr(C, e−T ). By the same argument
used in the proof of Lemma 4.3.1 we can suppose d(yi, x) = T . Let y ∈ S(x, T ) ∩
QC-Hull(C) and let γ ∈ Geod(C) such that y ∈ γ oriented in such a way that,
by Lemma 7.1.1, the geodesic ray ξ = [x, γ+] satisfies d(ξ(S + t), γ(t)) ≤ 76δ
for all t ≥ 0, where S = d(x, γ(0)). By the same lemma we know, indicated by
ty ≥ 0 the real number such that γ(ty) = y, that T ≤ S + ty ≤ T + 4δ implying
d(ξ(T ), y) ≤ 80δ. Moreover there exists i ∈ {1, . . . , N} such that d(ξ(T ), yi) < 2r,
therefore d(y, yi) < 80δ + 2r. This shows that

Cov(S(x, T ) ∩QC-Hull(C), 80δ + 2r) ≤ Shad-Covr(C, e−T ).

The thesis follows by Proposition 7.1.5 together with Proposition 7.1.4.

By Lemma 4.3.1 we get immediately the following.

Proposition 7.1.14. Let X be a complete, convex, geodesically complete, δ-hyperbolic
metric space that is P0-packed at scale r0, let C be a subset of ∂X, x ∈ X and L be
the constant given by Lemma 7.1.2. Then

1
T

log Cov(C, e−T ) �
P0,r0,δ,L

1
T

log Cov(S(x, T ) ∩QC-Hull(C), r0).
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In particular the upper (resp. lower) Minkowski dimension of C equals the upper
(resp. lower) covering entropy of C.

We remark that the upper visual Minkowski dimension of C equals the upper vi-
sual Minkowski dimension of its closure C while it can happen that supC′⊆C MD(C ′) <
MD(C), where the supremum is taken among the closed subsets of C.

The proofs of Theorems N and O follow by Proposition 7.1.4, Proposition 7.1.5,
Proposition 7.1.6, Theorem 7.1.7, Proposition 7.1.9, Remark 7.1.11, Proposition
7.1.13 and Proposition 7.1.14.

7.2 Critical exponent of discrete groups of isometries
In this section we will specialize the study of the entropies to special subsets of
the boundary at infinity of a complete, convex, geodesically complete, δ-hyperbolic
metric space that is P0-packed at scale r0. In the first subsection we will introduce the
entropy ofX relative to a discrete group Γ of isometries ofX and the critical exponent
of Γ. In the second one we will study the special case of quasiconvex-cocompact
groups.

7.2.1 General properties

Let X be a proper metric space and let Γ be a discrete group of isometries of X.
The critical exponent1 of Γ is

hΓ := inf
{
s ≥ 0 s.t.

∑
g∈Γ

e−sd(x,gx) < +∞
}
.

It does not depend on x ∈ X. We remark that for every s ≥ 0 the series∑
g∈Γ e

−sd(x,gx), which is called the Poincaré series of Γ, is Γ-invariant. In other
words

∑
g∈Γ e

−sd(x,gx) =
∑
g∈Γ e

−sd(x′,gx′) for all x′ ∈ Γx.
The upper Γ-entropy of X is defined as

hΓ(X) = lim sup
T→+∞

1
T

log #Γx ∩B(x, T ) = lim sup
T→+∞

1
T

log #ΣT (x),

where the last equality follows from the finiteness of the stabilizers of a discrete
group. The lower Γ-entropy of X is defined taking the limit inferior instead of the
limit superior and it is denoted by hΓ(X). They do not depend on x ∈ X. The
following proposition is proved in the δ-hyperbolic case in [Coo93], but it remains
true for proper metric spaces.

Lemma 7.2.1 (Proposition 5.3 of [Coo93]). Let X be a proper metric space and let
Γ be a discrete group of isometries of X. Then hΓ(X) = hΓ.

We remark that for CAT(−1) metric spaces X it holds hΓ(X) = hΓ(X) for every
discrete group of isometries of X, see [Rob02]. The Γ-entropy of X is also related to
the covering entropy of the limit set Λ(Γ).

1Usually it is denoted by δ(Γ) but we prefer the notation hΓ in order to avoid the possibility of
confusion with the hyperbolicity constant δ.
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Lemma 7.2.2. Let X be a complete, convex, geodesically complete, δ-hyperbolic
metric space that is P0-packed at scale r0 and let Γ be a discrete group of isometries
of X. Then:

(a) hΓ(X) ≤ hCov(Λ(Γ));

(b) if Γ is non-elementary and quasiconvex-cocompact with codiameter ≤ D and if
x ∈ QC-Hull(Λ(Γ)) then

1
T

log #Γx ∩B(x, T ) �
P0,r0,δ,D

1
T

log Cov(B(x, T ) ∩QC-Hull(Λ(Γ))).

In particular hΓ(X) = hCov(Λ(Γ)).

The same conclusions hold for the lower entropies.

Proof. We fix x ∈ QC-Hull(Λ(Γ)) and ε = sys�(Γ, x) > 0. By the Γ-invariance of
QC-Hull(Λ(Γ)) and the definition of the systole we get

#Γx ∩B(x, T ) ≤ Pack
(
B(x, T ) ∩QC-Hull(Λ(Γ)), ε2

)
,

showing (a) by Proposition 7.1.4. In order to prove (b) we fix x ∈ QC-Hull(Λ(Γ))
and we call D the codiameter of the action. By (42) the free-systole of the action is
bounded from below by a constant depending only on P0, r0, δ and D, so the proof
of (a) shows the first half of the asymptotic estimate. Furthermore we claim that

Pack(B(x, T ) ∩QC-Hull(Λ(Γ)), D) ≤ #Γx ∩B(x, T +D).

Indeed let y1, . . . , yN be points realizing Pack(B(x, T ) ∩ QC-Hull(Λ(Γ)), D), so
d(yi, yj) > 2D for every i 6= j. For every i let xi be a point of the orbit of x at
distance at most D from yi. It follows that the points xi are all distinct, concluding
the proof of the claim. The conclusion follows applying Proposition 7.1.4.

Remark 7.2.3. Under the assumptions of Lemma 7.2.2 then by Lemma 7.2.1 and
the discussion after Proposition 7.1.4 we always have hΓ ≤ log(1+P0)

r0
=: h+. Moreover

if Γ is non-elementary and quasiconvex-cocompact with codiameter ≤ D then there
exists h− > 0 depending only on P0, r0, δ,D such that hΓ ≥ h−. This follows from
Lemma 7.2.1, Example 6.2.3 and the proof of Theorem 6.1.1.

Let X be a proper, δ-hyperbolic metric space, let x ∈ X and B be a Borelian
subset of ∂GX. Following [Pau96], for all α ≥ 0 and all η > 0 we set

Hαη (B) = inf

∑
i∈N

ραi s.t. B ⊆
⋃
i∈N

B(zi, ρi) and ρi ≤ η

 .
As in the classical case the visual α-dimensional Hausdorff measure of B is defined
as limη→0Hαη (B) =: Hα(B), while the visual Hausdorff dimension of B is defined
as the unique α ≥ 0 such that Hα′(B) = 0 for all α′ > α and Hα′(B) = +∞ for
all α′ < α. The visual Hausdorff dimension of the borelian subset B is denoted by
HD(B). By Lemma 2.3.3, see also [Pau96], we have HD(B) = a · HDDx,a(B) for
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all visual metrics Dx,a of center x and parameter a, where HDDx,a(B) denotes the
classical Hausdorff dimension with respect to the metric Dx,a. Therefore we directly
obtain the usual inequalities

HD(B) ≤ MD(B) ≤ MD(B)

for all Borelian subsets B of ∂GX. In Section 1.6.3 we have seen how these inequalities
can be strict.

There is a canonical way to construct a measure on ∂GX starting from the Poincaré
series. For every s > hΓ the measure

µs = 1∑
g∈Γ e

−sd(x,gx)

∑
g∈Γ

e−sd(x,gx)∆gx,

where ∆gx is the Dirac measure at gx, is a probability measure on the compact
space X ∪ ∂GX. Then there exists a sequence si converging to hΓ such that µsi
converges ∗-weakly to a probability measure on X ∪ ∂GX. Any of these limits is
called a Patterson-Sullivan measure and it is denoted by µPS.

Proposition 7.2.4 (Theorem 5.4 of [Coo93].). Let X be a proper, δ-hyperbolic
metric space and let Γ be a discrete group of isometries of X with hΓ < +∞. Then
every Patterson-Sullivan measure is supported on Λ(Γ). Moreover it is a Γ-quasi
conformal density of dimension hΓ, i.e. it satisfies

1
Q
ehΓ(Bz(x,x)−Bz(x,g−1x)) ≤ d(g∗µPS)

dµPS
(z) ≤ QehΓ(Bz(x,x)−Bz(x,g−1x))

for every g ∈ Γ and every z ∈ Λ(Γ), where Q is a constant depending only on δ and
an upper bound on hΓ.

The quantification of Q is not explicitated in the original paper, but it follows from
the proof therein.

7.2.2 The quasiconvex cocompact case

Let Γ be a discrete, quasiconvex-cocompact group of isometries of a proper, δ-
hyperbolic metric space X. Then it is proved in [Coo93] that the Patterson-Sullivan
measure on Λ(Γ) is (A, hΓ)-Ahlfors regular for some A > 0. We will precise this
result quantifying the constant A in terms of universal constants in case X is also
convex, geodesically complete and packed.

Theorem 7.2.5. Let X be a complete, convex, geodesically complete, δ-hyperbolic
metric space that is P0-packed at scale r0. Let Γ be a discrete, quasiconvex-cocompact
group of isometries of X with codiameter ≤ D and x be a point of QC-Hull(Λ(Γ)).
Then:

(a) Λ(Γ) is visually (A, hΓ)-Ahlfors regular with respect to any Patterson-Sullivan
measure, where A depends only on P0, r0, δ and D.

(b) it holds
1
T

log Cov(Λ(Γ), e−T ) �
P0,r0,δ,D

hΓ;
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(c) MD(Λ(Γ)) = MD(Λ(Γ)) = hΓ.

We observe that (c) follows immediately from (b), while (b) is essentially straightfor-
ward once proved (a). Indeed we have

Lemma 7.2.6. Suppose C ⊆ ∂X is visually (A, s)-Ahlfors regular. Then

1
T

log Cov(C, e−T ) �
δ,A,s

s.

We define the packing∗ number at scale ρ of a subset C of ∂X as the maximal
number of disjoint generalized visual balls of radius ρ with center in C and we denote
it by Pack∗(C, ρ).

Lemma 7.2.7. For all T ≥ 0 it holds Pack∗(C, e−T+δ) ≤ Cov(C, e−T ) and
Cov(C, e−T+δ) ≤ Pack∗(C, e−T ).

Proof. Let z1, . . . , zN be points of C realizing Cov(C, e−T ). Suppose there exist
points w1, . . . , wM of C such that B(wi, e−T+δ) are disjoint, in particular (wi, wj)x ≤
T − δ for every i 6= j. If M > N then two different points wi, wj belong to the same
ball B(zk, ρ), i.e. (zk, wi)x > T and (zk, wj)x > T. By (16) we have (wi, wj)x > T −δ
which is a contradiction. This shows the first inequality.
Now let z1, . . . , zN be a maximal collection of points of C such that B(zi, ρ) are
disjoint. Then for every z ∈ C there exists i such that B(z, ρ) ∩ B(zi, ρ) 6= ∅.
Therefore there exists w ∈ ∂X such that (zi, w)x > T and (z, w)x > T . As before
we get (zi, z)x > T − δ, proving the second inequality.

Proof of Lemma 7.2.6. Since the measure µ in the definition of Ahlfors regularity is
assumed to be of total measure one, we have

1 = µ(C) ≤ Ae−sT · Cov(C, e−T ) and 1 = µ(C) ≥ 1
A
e−sT · Pack(C, e−T )

implying Cov(C, e−T ) ≥ 1
Ae

sT and Pack(C, ρ) ≤ AesT . Therefore
1
T

log Cov(C, e−T ) ≥ s+ 1
T

log 1
A

and 1
T

log Cov(C, e−T ) ≤ 1
T

log Pack∗(C, e−T−δ) ≤ s+ 1
T

logA+ sδ

T
.

Proof of Theorem 7.2.5. As observed (c) follows from (b) and (b) follows from (a)
applying Lemma 7.2.6 and the fact that hΓ ≤ log(1+P0)

r0
. In order to prove (a) we

consider two cases: if Γ is elementary then #Λ(Γ) ∈ {0, 2} and hΓ = 0. If this
cardinality is 0 there is nothing to prove. If Λ(Γ) = {z−, z+} then it is straightfoward
to see that µPS(z−) = µPS(z+) = 1

2 .
If Γ is non-elementary we denote by 0 < h− ≤ h+ < +∞ the numbers introduced in
Remark 7.2.3. They depend only on P0, r0, δ and D. We will prove
(a’) Λ(Γ) is visually (A, hΓ)-Ahlfors regular with respect to the Patterson-Sullivan
measure, where A depends only on δ, h−, h+ and D.
We denote by L the constant given by Lemma 7.1.2 relative to x and Λ(Γ), remarking
that it depends only on δ.
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Step 1: ∀z ∈ ∂X and ∀ρ > 0 it holds µPS(B(z, ρ)) ≤ ehΓ(21δ+3D+3L)ρhΓ.
We suppose first z ∈ Λ(Γ) and we take the set

B̃(z, ρ) =
{
y ∈ X ∪ ∂X s.t. (y, z)x > log 1

ρ

}
.

It is open (cp. Observation 4.5.2 of [DSU17]) and B̃(z, ρ) ∩ ∂X = B(z, ρ), so
µPS(B̃(z, ρ)) = µPS(B(z, ρ)) since µPS is supported on Λ(Γ) ⊆ ∂X. Let T = log 1

ρ ,
ξz = [x, z] and zT be the point on ξz at distance T from x. For every y ∈ Γx∩ B̃(z, ρ)
we have

d(x, y) > T − δ and d(x, y) > d(x, zT ) + d(zT , y)− 20δ. (47)

Indeed from d(y, ξz(S)) ≥ S − d(x, y) for all S ≥ 0 we get T < (y, z)x ≤ d(x, y) + δ.
In order to prove the second inequality we extend [x, y] to a geodesic ray ξw with
ξ+
w = w. By the analogue of (16) we have (w, z)x ≥ min{(y, z)x, (y, w)x}−δ > T−2δ,
where the last inequality follows from d(x, y) > T − δ. By Lemma 4.3.4 we have
d(ξz(T − 3δ), ξw(T − 3δ)) ≤ 4δ and applying the triangular inequality we get
d(y, zT ) ≤ 10δ and the second estimate in (47).
Moreover by Lemma 7.1.2, since x ∈ QC-Hull(Λ(Γ)), there exists γ ∈ Geod(Λ(Γ))
such that d(zT , γ(T )) ≤ L. By the cocompactness of the action on QC-Hull(Λ(Γ))
we can find a point x1 ∈ Γx such that d(x1, γ(T )) ≤ D, so d(zT , x1) ≤ L+D. This
actually implies d(x, y) > d(x, x1) +d(x1, y)− 20δ− 2D− 2L for all y ∈ Γx∩ B̃(z, ρ).
Therefore ∑

y∈Γx∩B̃(z,ρ)

e−sd(x,y) ≤
∑

y∈Γx∩B̃(z,ρ)

e−s(d(x,x1)+d(x1,y)−20δ−2D−2L)

= es(20δ+2D+2L)e−sd(x,x1) ·
∑

y∈Γx∩B̃(z,ρ)

e−sd(x1,y)

≤ es(20δ+3D+3L)e−sd(x,zT ) ·
∑
g∈Γ

e−sd(x1,gx1)

= es(20δ+3D+3L) · ρs ·
∑
g∈Γ

e−sd(x,gx).

In other words we have µs(B̃(z, ρ)) ≤ es(20δ+3D+3L)ρs, and by ∗-weak convergence
we conclude that

µPS(B(z, ρ)) = µPS(B̃(z, ρ)) ≤ lim inf
i→+∞

µsi(B̃(z, ρ)) ≤ ehΓ(20δ+3D+3L)ρhΓ .

In the general case of z ∈ ∂X we observe that if B(z, ρ) ∩ Λ(Γ) = ∅ then the thesis
is obviously true since µPS is supported on Λ(Γ). Otherwise there exists w ∈ Λ(Γ)
such that (z, w)x > log 1

ρ . It is straightforward to check that B(w, ρ) ⊆ B(z, ρeδ) by
(16). Then µPS(B(z, ρ)) ≤ ehΓ(21δ+3D+3L)ρhΓ .

Step 2: for every R ≥ R0 := log 2
hΓ

+ 21δ + 3D + 3L + 5δ and for every g ∈ Γ it
holds µPS(Shadx(gx,R)) ≥ 1

2Qe
−hΓd(x,gx), where Q is the constant of Proposition

7.2.4 that depends only on δ and h+.

From the first step we know that for every ρ ≤ ρ0 := 2−
1
hΓ e−(21δ+3D+3L) and for every

z ∈ ∂X it holds µPS(B(z, ρ)) ≤ 1
2 . A direct computation shows that R0 = log 1

ρ0
+5δ.
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We claim that for every R ≥ R0 and every g ∈ Γ the set ∂X \ g(Shadx(g−1x,R))
is contained in a generalized visual ball of radius at most ρ0. Indeed if z, w ∈
∂X \g(Shadx(g−1x,R)) then the geodesic rays [gx, z], [gx,w] do not intersect the ball
B(x,R). Therefore, setting ξ = [gx, z], we get (ξ(T ), gx)x ≥ d(x, [gx, ξ(T )])− 4δ ≥
R− 4δ by Lemma 2.3.5. This implies (z, gx)x ≥ lim infT→+∞(ξ(T ), gx)x ≥ R− 4δ
and the same holds for w. Thus by (16) we get (z, w)x ≥ R− 5δ, proving the claim.
By Proposition 7.2.4 we get

µPS(Shadx(gx,R))
µPS(g−1(Shadx(gx,R))) ≥

1
Q
e−hΓ(Bz(x,x)−Bz(x,gx)).

Since R ≥ R0 the measure of g−1(Shadx(gx,R)) is at least 1
2 and the Busemann

function is 1-Lipschitz (Lemma 2.3.1), so

µPS(Shadx(gx,R)) ≥ 1
2Qe

−hΓd(x,gx).

Step 3. For every z ∈ QC-Hull(Λ(Γ)) and every ρ > 0 the following is true:
µPS(B(z, ρ)) ≥ 1

2Qe
−hΓ(R0+δ+2D+2L)ρhΓ.

For every ρ > 0 we set T = log 1
ρ . We first want to show that if z ∈ ∂X and R ≥ 0

then Shadx(ξz(T +R), R) ⊆ B(z, e−T ). Indeed if w ∈ ∂X is a point such that the
geodesic ray ξw = [x,w] passes through B(ξz(T +R), R) then d(ξz(T +R), ξw(T +
R)) < 2R and by Lemma 4.3.4 we get (z, w)x > T . We take R = R0 +L+D, where
R0 is the constant of the second step and we conclude that Shadx(ξz(T + R), R)
is contained in B(z, ρ). By Lemma 7.1.2 it is possible to find a geodesic line
γ ∈ Geod(Λ(Γ)) such that d(γ(T +R), ξz(T +R)) ≤ L. Moreover there exists g ∈ Γ
such that d(gx, γ(T +R)) ≤ D, implying Shadx(gx,R0) ⊆ Shadx(ξz(T +R), R) ⊆
B(z, ρ). From the second step we obtain µPS(B(z, ρ)) ≥ 1

2Qe
−hΓd(x,gx). Furthermore

d(x, gx) ≤ T +R0 + 2L+ 2D, so finally

µPS(B(z, ρ)) ≥ 1
2Qe

−hΓ(R0+δ+2L+2D)ρhΓ .

The explicit description of the constants shows as they depend only on δ, h−, h+ and
D, proving (a’) and so the theorem.

As a consequence we have a uniform asymptotic behaviour for the Γ-entropy of
a discrete, non-elementary, quasiconvex-cocompact group. Indeed by Lemma 7.2.2
and Proposition 7.1.14 we get

1
T

log #Γx ∩B(x, T ) �
P0,r0,δ,D

hΓ,

where x ∈ QC-Hull(Λ(Γ)). We remark that similar results can be obtained for the
covering entropy, the Lipschitz-topological entropy, and the shadow dimension. This
uniform convergence to the limit will be the key of the continuity results proved in
the last chapter.

Actually for the Γ-entropy we can improve the rate of convergence following again
the ideas of [Coo93].
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Theorem 7.2.8. Let X be a complete, convex, geodesically complete, δ-hyperbolic
metric space that is P0-packed at scale r0. Let Γ be a discrete, quasiconvex-cocompact
group of isometries of X with codiameter ≤ D and x be a point of QC-Hull(Λ(Γ)).
Then there exists K > 0 depending only on P0, r0, δ and D such that for all T ≥ 0 it
holds

1
K
· eT ·hΓ ≤ Γx ∩B(x, T ) ≤ K · eT ·hΓ .

Proof. We denote by s0 = s0(P0, r0, δ,D) the number given by (42), by R0 =
R0(P0, r0, δ,D) the number of Step 2 of Theorem 7.2.5, by Q the constant of
Proposition 7.2.4 and by L the constant of Lemma 7.1.2 that depends only on
δ. Moreover we set N0 = Pack

(
4R0 + 1, s02

)
, which depends only on P0, r0, δ,D

by Proposition 2.4.4. It is easy to check that if [x, z] ∩ B(y,R0) 6= ∅ and [x, z] ∩
B(y′, R0) 6= ∅, where z ∈ ∂X and y, y′ are points of X with |d(x, y)− d(x, y′)| ≤ 1,
then d(y, y′) ≤ 4R0 + 1. Therefore for every k ∈ N we have

#{y ∈ Γx s.t. y ∈ A(x, k, k + 1) and z ∈ Shadx(y,R0)} ≤ N0.

Step 1.For all k ∈ N it holds #Γx ∩B(x, k) ≤ 4QN0e
hΓk.

Let Aj = Γx ∩ A(x, j, j + 1). By the observation made before we conclude that
among the set of shadows {Shadx(y,R0)}y∈Aj there are at least #Aj

N0
disjoint sets.

Thus

1 ≥ µPS

 ⋃
y∈Aj

Shadx(y,R0)

 ≥ #Aj
N0
· 1

2Qe
−hΓ(j+1),

where we used Step 2 of Theorem 7.2.5. This implies #Aj ≤ 2QN0e
hΓ(j+1) for every

j ∈ N. Finally we have

#Γx ∩B(x, k) ≤
k−1∑
j=0

#Ak ≤ 4QN0e
hΓk.

Step 2.For all k ∈ N it holds #Γx ∩B(x, k) ≥ e−hΓ(21δ+6D+6L)ehΓk.

For every z ∈ Λ(Γ) we consider the geodesic ray ξz = [x, z]. Then by Lemma 7.1.2
there exists γ ∈ Geod(Λ(Γ)) such that d(ξz(t), γ(t)) ≤ L for every t ≥ 0. Moreover
for every t ≥ 0 we can find yt ∈ Γx such that d(yt, γ(t)) ≤ D, so d(ξz(t), yt) ≤ D+L.
This implies that z ∈ Shadx(yt, D+L) and |d(x, yt)−t| ≤ D+L. Therefore for every
t ≥ 0 we can cover Λ(Γ) with shadows casted by points of Γx at distance between
t−D−L and t+D+L from x and with radius D+L. Choosing t = k−D−L we
get Λ(Γ) ⊆

⋃
y∈Γx∩A(x,k−2D−2L,k) Shadx(y,D+L). By the same argument of Lemma

4.3.5 we have Shadx(y,D + L) ⊆ B(zy, e−d(x,y)+D+L) ⊆ B(zy, e−k+3D+3L) for every
y ∈ Γx ∩ A(x, k − 2D − 2L, k), where zy is the point at infinity of an extension of
[x, y]. So by Step 1 of Theorem 7.2.5 we conclude

1 = µPS(Λ(Γ)) ≤ #Γx ∩B(x, k) · ehΓ(21δ+6D+6L)e−hΓk.

The thesis follows by the bounded quantification of all the constants involved in
terms of P0, r0, δ and D.
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Chapter 8

Compactness and continuity

The aim of this chapter is to study properties that are stable under Gromov-Hausdorff
convergence and ultralimits and to find a criteria for the continuity of the entropy
under this kind of convergence.

8.1 Compactness of GCBA spaces

In the first part we focus on general GCBA spaces, while in the next sections we
will specialize to the case of CAT(0) metric spaces.

8.1.1 Compactness of packed and doubling GCBA-spaces

Throughout the section we fix P0, r0, ρ0 > 0 with r0 < ρ0/3 and κ ∈ R. We denote
by GCBAκ

pack(P0, r0; ρ0) the class of complete, geodesic, GCBAκ metric spaces X
with ρac(X) ≥ ρ0 and Pack(3r0,

r0
2 ) ≤ P0. Then we have the following result which

is strictly related to Gromov’s Precompactness Theorem, see [Gro81]:

Theorem 8.1.1. The class GCBAκpack(P0, r0; ρ0) is closed under ultralimits and
compact under pointed Gromov-Hausdorff convergence.

Proof. Any space X ∈ GCBAκpack(P0, r0; ρ0) is proper by Proposition 2.4.7, geodesic
and geodesically complete. We consider any sequence (Xn, xn) of elements of
GCBAκpack(P0, r0; ρ0) and any non-principal ultrafilter ω. For any n we have
ρcat(Xn) ≥ min{Dκ2 , ρ0} = ρ′0 > 0 from (6). Then by Corollary 2.7.10 we have
that Xω is a complete, locally geodesically complete, locally CAT(κ), geodesic metric
space with again ρcat(Xω) ≥ ρ′0.
We want to prove now that Pack(3r0,

r0
2 ) ≤ P0 holds on Xω. We fix a point yω = ω-

lim yn ∈ Xω: by Lemma 2.7.8 we have B(yω, 3r0) = ω-limB(yn, 3r0). Let ziω = ω-
lim zin, i = 1, . . . , N be a r0-separated subset of B(yω, 3r0), that is d(ziω, zjω) > r0
for all i 6= j. For any couple i 6= j we have d(zin, zjn) > r0 for ω-a.e.(n). Since there
are a finite number of couples, then for ω-a.e.(n) it holds d(zin, zjn) > r0 for any
i 6= j. Moreover the points zin belong to B(yn, 3r0) for any i. So, for ω-a.e.(n), there
is a r0-separated subset of B(yn, 3r0) of cardinality N . Therefore N ≤ P0 and in
particular Pack(3r0,

r0
2 ) ≤ P0 on Xω. We can now apply again Proposition 2.4.7 to

conclude that Xω is proper, hence a GCBAκ metric space.
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To finish the first part of the proof we need to show that ρac(Xω) ≥ ρ0. This is the
object of the following:

Proposition 8.1.2. Let (Xn, xn) be GCBAκ-spaces converging to (X,x) with respect
to the pointed Gromov-Hausdorff topology. Then:

ρac(X) ≥ lim sup
n→∞

ρac(Xn)

We postpone the proof of this proposition to end the proof of Theorem 8.1.1. In order
to prove the compactness under pointed Gromov-Hausdorff convergence we take a
sequence of spaces (Xn, xn) ⊆ GCBAκpack(P0, r0; ρ0) and we fix any non-principal
ultrafilter ω. Let (Xω, xω) ∈ GCBAκpack(P0, r0; ρ0) be the ultralimit. Since the
limit is proper we can apply Proposition 2.7.11 to find a subsequence (Xnk , xnk)
that converges in the pointed Gromov-Hausdorff sense to (Xω, xω), showing the
compactness part of the statement.

Proof of Proposition 8.1.2. Assume that ρac(Xn) ≥ ρ0 > 0 for infinitely many
n. Take any non-principal ultrafilter ω: since by definition X is proper then by
Proposition 2.7.11 we have X = ω- limXn. If ρ0 ≤ Dκ

2 we have ρcat(Xn) ≥ ρ0 for all
n, so by Corollary 2.7.10 we conclude immediately that ρac(Xω) ≥ ρcat(Xω) ≥ ρ0.
Assume now that ρ0 >

Dκ
2 ; in particular as before we deduce ρcat(Xω) = Dκ

2 .
The strategy is the following: we claim that for any yω = ω-lim yn ∈ Xω and for
any point zω = ω-lim zn at distance < ρ0 from yω there exists a unique geodesic
joining yω to zω. In particular this geodesic must coincide with the ultralimit of the
geodesics [yn, zn] of length < ρ0. If this is true then for any two points zω = ω-lim zn,
wω = ω-limwn of Xω at distance < ρ0 from yω and any t ∈ [0, 1] we get

d((zω)t, (wω)t) = ω- lim d((zn)t, (wn)t) ≤ ω- lim 2t · d(zn, wn) = 2t · d(zω, wω)

which implies that ρac(yω) ≥ ρ0 for any yω ∈ Xω.
So suppose our claim is not true: that is assume that there exists a point yω = ω-
lim yn ∈ Xω, a radius ρ1 ∈ (Dκ2 , ρ0) such that any point at distance < ρ1 from yω
is joined to yω by a unique geodesic, while for arbitrarily small values ε > 0 there
exist two different geodesics γε, γ′ε joining yω to the same point zε,ω = ω-lim zε,n
with d(yω, zε,ω) = ρ1 + ε.
We consider the points wε = γε(ρ1 − ε), w′ε = γ′ε(ρ1 − ε) and set ` = d(wε, w′ε).
We observe we have ` ≤ 4ε and ` > 0 since the ball of radius Dκ

2 around zε,ω is
CAT(κ) by assumption, so uniquely geodesic. Similarly we consider the points
uε = γε(ρ1 + ε− Dκ

2 ), u′ε = γ′ε(ρ1 + ε− Dκ
2 ) and we set L = d(uε, u′ε). Our first step

is to prove that
L = d(uε, u′ε) ≥

Dκ

8 ·
`

2ε =: τ. (48)

So suppose by contradiction that (48) does not hold. First of all we remark that
τ ≤ Dκ

2 , since ` ≤ 4ε. Then, as the ball B(zε,ω, Dκ2 ) is CAT(κ), we can consider the
κ-comparison triangle ∆κ(zε,ω, uε, u′ε). As usual we denote by wε, w′ε the comparison
points of wε and w′ε, respectively. By definition the edges of ∆κ(zε, uε, u′ε) have
length Dκ

2 ,
Dκ
2 , L. We consider another triangle ∆(Z, V, V ′) on Mκ

2 with edges
[Z, V ], [Z, V ′], [V, V ′] of length respectively Dκ

2 ,
Dκ
2 , τ . We denote by W,W ′ the
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points along [Z, V ] and [Z, V ′] at distance 2ε from Z. Since the contraction map ϕRr
towards Z is 2r

R -Lipschitz and d(W,Z) = d(W ′, Z) = 2ε we deduce

d(W,W ′) ≤ 2 · 2ε
(Dκ/2)d(V, V ′) = 8ε

Dκ
τ = `

2 .

Since we are assuming by contradiction that L < τ , we have by comparison that
d(wε, w′ε) < d(W,W ′). So, applying the CAT(κ) condition, we obtain

` = d(wε, w′ε) ≤ d(wε, w′ε) < d(W,W ′) ≤ `

2

a contradiction. Therefore (48) holds.
Now, by assumption there exists a unique geodesic from y to any point in B(y, ρ1).
Since d(y, wε) < ρ1 by construction, if wε = ω-limwε,n then the ultralimit of the
geodesics γε,n = [yn, wε,n] is the unique geodesic joining y to wε, that is γε =
ω- lim γε,n. Analogously, if w′ε = ω-limw′ε,n, we have γ′ε = ω- lim γε,n where γ′ε,n =
[yn, w′ε,n]. Applying the contraction property on Xn from R = ρ1 − ε to r =
ρ1 + ε−Dκ/2 we get

L = d(uε, u′ε) = ω- lim d
(
γε,n(ρ1 + ε−Dκ/2), γ′ε,n(ρ1 + ε−Dκ/2)

)
≤ ω- lim 2(ρ1 + ε−Dκ/2)

ρ1 − ε
· d(wε,n, w′ε,n)

= 2(ρ1 + ε−Dκ/2)
ρ1 − ε

· `.

(49)

As ρ1 >
Dκ
2 , combining (48) and (49) gives a contradiction for ε → 0. We have

therefore proved that ρac(X) ≥ ρ0. This implies the upper semi-continuity of the
almost-convexity radius since we can apply the same argument to any subsequence.

Remark 8.1.3. In particular for any sequence of pointed metric spaces (Xn, xn) in
GCBAκpack(P0, r0; ρ0) and for any non-principal ultrafilter ω the ultralimit Xω is a
proper space. Notice that, in general, the ultralimit of a sequence of proper spaces
is not proper, even if the spaces are really mild. For instance let (Xn, xn) = (Rn, 0)
and ω be any non-principal ultrafilter. Then Xω is isometric to `2(R), the spaces of
sequences {an} of real numbers such that

∑
a2
n < +∞. This is a non-proper space

of infinite dimension.

The compactness of a class of proper metric spaces C is hard to achieve since
properness and dimension are in general not stable under limits.
In the next theorem we precisely characterize the classes of proper, GCBAκ, geodesic
metric spaces with almost-convexity radius uniformly bounded from below that are
precompact and compact under pointed Gromov-Hausdorff convergence. For this we
need the following slight refinement of the packing condition at scale r0. Given a
function P : [0,+∞)→ N, we say that a pointed metric space (X,x) belongs to the
class

GCBAκpack(P (·), r0; ρ0)



144 8. Compactness and continuity

if X is a complete, geodesic, GCBAκ metric space with ρac(X) ≥ ρ0 and it satisfies
Pack(B(x,R), r02 ) ≤ P (R) for all R > 0. This is equivalent to asking that the
packing costant P of Definition 2.4.1 possibly depends also on the distance of the
center of the balls from x. The same argument used in Theorem 8.1.1 shows that
the class GCBAκpack(P (·), r0; ρ0) is closed under ultralimits and therefore compact
under pointed Gromov-Hausdorff convergence. Moreover we have:

Theorem 8.1.4. Let C be a class of proper, GCBAκ, geodesic metric spaces X
with ρac(X) ≥ ρ0 > 0. Then C is precompact under the pointed Gromov-Hausdorff
convergence if and only if there exist P (·) and r0 > 0 such that

C ⊆ GCBAκpack(P (·), r0; ρ0).

Moreover C is compact if and only if it is precompact and closed under ultralimits.

We stress the “only if” part in the above statement: for GCBAκ spaces, a uniform
packing assumption (depending only on the distance from the basepoint x) at some
fixed scale is a necessary and sufficient condition in order to have precompactness
(we recall that, in the general Gromov’s Precompactness Theorem, one needs to
have a uniform control of the packing function at every scale in order to achieve
precompactness).

Proof of Theorem 8.1.4. Let C be a class of proper, GCBAκ, geodesic spaces X
with ρac(X) ≥ ρ0 > 0. Let us prove the first equivalence stated in 8.1.4. So
assume that it is precompact in the pointed Gromov-Hausdorff sense, i.e. the
closure C is compact under pointed Gromov-Hausdorff convergence. Suppose C is not
contained in GCBAκpack(P (·), r0; ρ0) for any choice of P (·) and r0. Hence there exists
r0 <

ρ0
3 and R > 0 such that for any n there is a space (Xn, xn) ∈ C with a set of r0-

separated points inside B(xn, R) of cardinality at least n. By assumption there exists
a subsequence, denoted again (Xn, xn), converging in the pointed Gromov-Hausdorff
sense to (X,x). The space X is proper, see the discussion at the beginning of Chapter
2. Fix now any non-principal ultrafilter ω. Then (Xω, xω) is isometric to (X,x) by
Proposition 2.7.11, and in particular it is proper. We are going to prove that inside
B(xω, R) there are infinitely many points that are at distance at least r0 one from
the other: therefore Xω cannot be proper and this is a contradiction. For any n we
denote the set of r0-separated points of cardinality n inside B(xn, R) by {z1

n, . . . , z
n
n}.

Then, for any fixed k ∈ N, we consider the admissible point zkω = ω-lim zkn ∈ Xω

(notice that zkn is defined only for n ≥ k, but this suffices to define a point zkω in the
ultralimit). Clearly zkω ∈ B(xω, R) for all k. Moreover if k 6= l then d(zkn, zln) > r0 for
all n, hence d(zkω, zlω) ≥ r0. This shows that C is a subclass of GCBAκpack(P (·), r0; ρ0)
for some P (·) and r0. Viceversa if C ⊆ GCBAκpack(P (·), r0; ρ0) then its closure C is
contained in the compact space GCBAκpack(P (·), r0; ρ0) by the analogue of Theorem
8.1.1, so C is compact.
Let us show now the second equivalence. Suppose that C is precompact and closed
under ultralimits. Applying the same proof of the second part of Theorem 8.1.1
we get that C is compact under pointed Gromov-Hausdorff convergence. Vicev-
ersa if C is compact under Gromov-Hausdorff convergence then it is contained in
GCBAκpack(P (·), r0; ρ0) for some P (·), r0. In particular for any non-principal ultrafil-
ter ω and any sequence of spaces (Xn, xn) ∈ C we have that Xω is a proper metric
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space. By Proposition 2.7.11 there exists a subsequence that converges in the pointed
Gromov-Hausdorff sense to Xω, hence Xω ∈ C since C is compact.

As a consequence of Theorem 8.1.4 and of the estimates on volumes and packing
proved in Sections 3.1 & 2.4, we deduce that the dimension is almost stable under
pointed Gromov-Hausdorff convergence, in the following sense:

Proposition 8.1.5. Let (Xn, xn) be a sequence of GCBAκ metric spaces with
almost convexity radius ρac(Xn) ≥ ρ0 > 0 converging to (X,x) in the pointed
Gromov-Hausdorff sense. Let Xmax

n be the maximal dimensional subspace of X.
Then

dim(X) ≤ lim inf
n→+∞

dim(Xn)

and the equality dim(X) = limn→+∞ dim(Xn) holds if and only if the distance
d(xn, Xmax

n ) stays uniformly bounded when n→∞.

Proof. As the spaces (Xn, xn) converge to (X,x), they form a precompact family
and so they belong to GCBAκpack(P (·), r0, ρ0), for some P (·) and r0, by Theorem
8.1.4. Let us first show that we always have

dim(X) ≤ lim inf
n→+∞

dim(Xn) (50)

Actually consider a subsequence, we we still denote (Xn), whose dimensions equal
the limit inferior, denoted d0. Now suppose that there exists a point y ∈ X with
dim(y) = d > d0. We may assume that y is d-regular, since Regd(X) is dense in
Xd. The point y is the limit of a sequence of points yn ∈ Xn and for any r > 0 the
volume of the ball B(y, r) is bigger than or equal to the limit of the volumes of the
balls B(yn, r2), by (10). By Theorem 3.1.1 we have for all n:

µX

(
B

(
yn,

r

2

))
≥ cd0 ·

(
r

2

)d0

where cd0 is a constant depending only on d0. Moreover, since y is d-regular, then for
any r small enough the ball B(y, r) contains only d-dimensional points. We conclude
by (8) & (9) that

µX(B(y, r)) ≤ C · rd,

where C is a constant depending only on y and not on r. Therefore, as d0 < d, we
have a contradiction if r is small enough, and (50) is proved.
Assume now that d(xn, Xmax

n ) < D for all n. Since the almost convexity radius is
bounded below by ρ0 both for Xn and for X, also the CAT(κ)-radius is bounded
below by (6). So we can consider tiny balls B(yn, r0) centered at regular points yn of
maximal dimension, all with the same radius r0, such that the closed ball B(yn, 10r0)
converge to some ball B(y, 10r0) of X and satisfy the condition Pack(P0,

r0
2 ) for

some constant P0 for all n, by Proposition 2.4.7. We are then in the standard setting
of convergence, which implies by Lemma 2.2.8 that

dim(X) ≥ dim(y) ≥ lim sup
n→∞

dim(yn) = lim sup
n→∞

dim(Xn).

Conversely, assuming dim(X) = limn→+∞ dim(Xn), then in particular dim(Xn) is
constant for n� 0 and equal to d0 = dim(X). Consider a regular point y = (yn) ∈ X
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of dimension d0: then the points yn are admissible by definition (that is, d(xn, yn)
stays uniformly bounded); moreover we can choose as before uniformly packed tiny
balls with B(yn, 10r0) converging to B(y, 10r0), so the points yn belong to Xmax

n ,
again by Lemma 2.2.8 (b).

Example 8.1.6. Let (X,x) ∈ GCBAκpack(P0, r0, ρ0) be any space. We consider
the space Y obtained by gluing the half-line [0,+∞) to X at the point x. Clearly
Y belongs to GCBAκpack(P ′0, r′0, ρ′0). The pointed Gromov-Hausdorff limit of the
sequence (Y, n), where n ∈ [0,+∞), is the real line. This is an example where the
maximal dimension part escapes to infinity and the dimension is not preserved.

We are going now to explore some variations of Theorem 8.1.4.
We fix constants κ ∈ R and P0, r0, V0, R0, D0, t0, ρ0, n0 > 0, with r0 ≤ ρ0/3, and
consider the following classes of complete, geodesic GCBAκ spaces X:
– the class GCBAκpack(P0, r0; ρ0, n0) of spaces which are P0-packed at scale r0, with
almost-convexity radius ρac(X) ≥ ρ0 and dimension ≤ n0;
– the class GCBAκpack(P0, r0; ρ0, n

pure
0 ) of spaces P0-packed at scale r0, with almost-

convexity radius ρac(X)≥ρ0 and of pure dimension n0;
– the classes GCBAκvol(V0, R0; ρ0, n0), GCBAκvol(V0, R0; ρ0, n

pure
0 ) of those satisfying

µX(B(x,R0)) ≤ V0, ρac(X) ≥ ρ0 and which have, respectively, dimension ≤ n0 and
pure dimension n0;
– the class GCBAκdoub(D0, t0; ρ0) of spaces D0-doubled up to scale t0, with ρac(X)≥ρ0.
Then:

Corollary 8.1.7. All the above classes are compact with respect to the pointed
Gromov-Hausdorff convergence.

Proof. By Theorem 3.2.1 and Corollary 3.3.5, the above are all subclasses of
GCBAκpack(P0, r0; ρ0), for suitable P0 and r0. By the compactness Theorem 8.1.4, the
proof then reduces to show that the additional conditions on the dimension, on the
measure of balls of given radius or on the doubling constant are stable under Gromov-
Hausdorff limits. By Lemma 2.2.7, if a sequence Xn in GCBAκvol(V0, R0; ρ0, n0)
converges to X, then µX(B(y,R0)) ≤ V0 for any y ∈ X. On the other hand from
Corollary 3.3.7 it follows that the doubling condition is preserved to the limit. The
stability of the dimension is proved in Proposition 8.1.5. To conclude we need to
show that pure-dimensionality is stable under Gromov-Hausdorff limits: this is the
object of the proposition which follows.

Proposition 8.1.8. Let (Xn, xn) be a sequence of GCBAκ metric spaces with
almost convexity radius ρac(Xn) ≥ ρ0 > 0 converging to (X,x) in the pointed
Gromov-Hausdorff sense. Assume that Xn is pure-dimensional for all n: then X is
pure-dimensional of dimension dim(X) = limn→+∞ dim(Xn).

Proof. The spaces (Xn, xn) form a precompact family and so, by Theorem 8.1.4, they
belong to GCBAκpack(P (·), r0, ρ0), for suitable P (·) and r0. Then, using the maps
Ψxn of Proposition 3.1.3 as in the first part of Theorem 3.2.1, the numbers dim(Xn)
belong to the finite set [0, n0]. Suppose to have two integers d1 6= d2 and two infinite
subsequences Xni1

, Xni2
such that dim(Xni1

) = d1 for any i1 and dim(Xni2
) = d2
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for any i2. We consider the sequences xni1 and xni2 : for any r > 0 we have by (10)
and Lemma 2.2.7

lim sup
n→+∞

µXn

(
B

(
xn,

r

2

))
≤ µX(B(x, r)) ≤ lim sup

n→+∞
µXn(B(xn, r)).

By (8) and Theorem 3.1.1 we have

1
C

(
r

2

)d1

≤ µXni1

(
B

(
xni1 ,

r

2

))
≤ µXni1 (B(xni1 , r)) ≤ Cr

d1 ,

1
C

(
r

2

)d2

≤ µXni2

(
B

(
xni2 ,

r

2

))
≤ µXni2 (B(xni2 , r)) ≤ Cr

d2 ,

where C is a constant depending only on P (·) and r0. Since this is true for any
arbitrarily small r we deduce that d1 = d2. Therefore limn→+∞ dim(Xn) exists and
we denote it by d0. We again apply the same estimate as before to conclude that for
any y ∈ X and for any small r > 0 we have

1
C
rd0 ≤ µX(B(y, r)) ≤ Crd0 ,

where C is a constant depending on P (·) and r0. Therefore the dimension of y is d0,
which concludes the proof.

Finally we can specialize these theorems to subclasses of compact spaces. Clearly
the subclasses of the above classes made of spaces with diameter less than or equal
to some constant ∆ will be compact with respect to the usual Gromov-Hausdorff
distance. We state here just two particularly interesting cases, which are reminiscent
of the classical finiteness theorems of Riemannian geometry. Consider the classes:

GCBAκvol(V0; ρ0, n
=
0 ), GCBAκvol(V0; ρ0, n

pure
0 )

of complete, geodesic GCBAκ with total measure µ(X) ≤ V0, almost convexity
radius ρac(X) ≥ ρ0 and which are, respectively, precisely n0-dimensional and purely
n0-dimensional.

Corollary 8.1.9. The classes GCBAκvol(V0; ρ0, n
=
0 ) and GCBAκvol(V0; ρ0, n

pure
0 ) are

compact under Gromov-Hausdorff convergence and contain only finitely many homo-
topy types.

Proof. First we show that the diameter is uniformly bounded in both classes. Actually
consider X ∈ GCBAκvol(V0; ρ0, n

=
0 ) and take any two points y, y′ ∈ X such that

d(y, y′) = ∆ > ρ := min{ρ0, 2}. Let γ be a geodesic joining y to y′. Along γ we take
points at distance ρ one from the other: they are at least ∆

ρ − 1 and the balls of
radius ρ

2 around these points are disjoint. Then by Theorem 3.1.1 we get

V0 ≥ µX(X) ≥ cn0

2n0
ρn0

(∆
ρ
− 1

)
so the diameter of X is bounded from above in terms of n0, ρ0 and V0 only.
LetR0 such un upper bound. Then these classes are included in GCBAκvol(V0, R0; ρ0, n0),
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whose compactness we have just proved. The conclusion follows from Propositions
8.1.5 and 8.1.8.
Finally notice that any element of both classes has local geometric contractibility
function LGC(r) = r for r ≤ ρ0 (see [Pet90] for the definition). Moreover the covering
dimension of any space in both classes coincides with the Hausdorff dimension, so
it is uniformly bounded from above. We can then apply Corollary B of [Pet90] to
conclude that there are only finitely many homotopy types inside any of the two
classes.

8.1.2 Compactness of Mκ-complexes

The aim of this section is to provide compactness and finiteness results for simplicial
complexes. We denote by Mκ(R,N) the class of Mκ-complexes without free faces,
of size bounded by R, valency at most N and positive injectivity radius.

Theorem 8.1.10. The class Mκ(R,N) is compact under pointed Gromov-Hausdorff
convergence.

By Proposition 3.4.13 there exist P0, r0, ρ0 such that any K ∈Mκ(R,N) belongs to
GCBAκpack(P0, r0; ρ0). So, by Theorem 8.1.4, the class Mκ(R,N) is precompact and
it is compact if and only if it is closed under ultralimits. We are going now to show
that Mκ(R,N) is closed under ultralimits.
We fix a non-principal ultrafilter ω and we take any sequence (Kn, on) in Mκ(R,N).
We denote by Kω the ultralimit of this sequence. Our aim is to prove that Kω is
isometric to a Mκ-complex K̂ω satisfying the same conditions as the Kn’s.

Step 1: construction of the simplicial complex K̂ω.
Let us start definining who are the simplices of K̂ω. Let (xn) be any admissible
sequence of points, with xn ∈ Kn, and consider the unique simplex supp(xn) of Kn

containing xn in its interior: we define S(xn) = ω-lim supp(xn). The metric space
S(xn) is a Mκ-simplex with size bounded by R by 3.4.3. Notice that, a priori, if yn is
another sequence defining the same point as xn in Kω then S(yn) might be different
from S(xn).
Now we define K̂ω as follows. Let pn : S → Kn denote the projection of any simplex
of the total space of Kn to Kn. The total space of K̂ω will be⊔

(xn) admissible
S(xn)

where (xn) is any admissible sequence of points in Kn, and the equivalence relation
is: if zω = ω-lim zn ∈ S(xn) and z′ω = ω-lim z′n ∈ S(x′n) (i.e. (zn), (z′n) are admissible
sequences of points respectively in supp(xn) and supp(x′n)), we say that zω ∼ z′ω
if and only if ω-lim dKn(pn(zn), pn(z′n)) = 0. That is, we compare the points zn
and z′n in the common space Kn where they live. For simplicity we will abbreviate
dKn(pn(zn), pn(z′n)) with dKn(zn, z′n). First of all we need to check that the relation
is well defined: given other admissible sequences (wn), (w′n) with wn ∈ supp(xn) and
w′n ∈ supp(x′n) such that zω = ω-limwn and z′ω = ω-limw′n, we have

dKn(wn, w′n) ≤ dsupp(xn)(wn, zn) + dKn(zn, z′n) + dsupp(x′n)(z′n, w′n)
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hence ω- lim dKn(wn, w′n) = 0. Once proved it is well defined it is easy to show it is
an equivalence relation. We call K̂ω the quotient space and denote pω : S(xn) → K̂ω

the projections.

Step 2: K̂ω satisfies axiom (i) of Mκ-complexes.
We fix an admissible sequence (xn) and the corresponding simplex S(xn). We need
to prove that the map pω : S(xn) → K̂ω is injective. For this consider points
zω = ω- lim zn and z′ω = ω- lim z′n in S(xn), with zn, z

′
n ∈ supp(xn) for all n;

then there exists ε0 > 0 such that ω-lim dsupp(xn)(zn, z′n) > ε0 > 0. In particu-
lar dsupp(xn)(zn, z′n) > ε0 ω-a.e.(n). Now, for any point z of a Mκ-complex define
dim(z) as the dimension of supp(z). The strategy to prove the injectivity is by
induction on

d = max{ω- lim dim(zn), ω- lim dim(z′n)}.

Observe that if ω- lim dim(zn) = k then we have dim(zn) = k ω-a.e.(n) because
the possible dimensions belong to a finite set. For d = 0 we have that zn, z′n
are both vertices of supp(xn), ω-a.e.(n). If pω is not injective then for every
ε > 0 we have dKn(zn, z′n) ≤ ε for ω-a.e.(n). By Lemma 3.4.4 we know that if
dKn(zn, z′n) ≤ ε0(R,N) then zn = z′n as points of supp(xn).
We consider now the inductive step. We denote by Tn, T ′n the faces of Sn containing
zn and z′n in their interior, respectively. We suppose there exists τ > 0 such that for
ω-a.e.(n) it holds zn ∈ Tn \ (∂Tn)τ . By Lemma 3.4.6 we have ε(zn) ≥ ε(R,N, τ) for
ω-a.e.(n), and similarly for z′n. Once again this fact implies the injectivity. Consider
now the case where for all τ > 0 the set

{n ∈ N s.t. d(zn, ∂Tn) ≤ τ and d(z′n, ∂T ′n) ≤ τ}

belongs to ω. Therefore ω-lim d(zn, ∂Tn) = ω-lim d(z′n, ∂T ′n) = 0. This means that
zω belongs to ∂Tω and z′ω belongs to ∂T ′ω, by Proposition 3.4.3. Hence zω = ω-limwn
and z′ω = ω-limw′n, where wn and w′n belong to a lower dimensional face of Tn and
T ′n respectively. We then apply the inductive assumption to get the thesis.

Step 3: K̂ω satisfies axiom (ii) of Mκ-complexes.
Consider two simplices S(xn), S(x′n) and suppose pω(S(xn)) ∩ pω(S(x′n)) 6= ∅. This
means that for any ε > 0 there exist yω = ω- lim yn and y′ω = ω- lim y′n with
yn ∈ supp(xn) and y′n ∈ supp(x′n) such that dKn(yn, y′n) < ε for ω-a.e.(n). If
ε < δ(R,N) then by Lemma 3.4.7.(a) we know that supp(xn) and supp(x′n) share a
face in Kn. Let then Tn ⊂ supp(xn) and T ′n ⊂ supp(x′n) such faces and hn : Tn → T ′n
an isometry such that pn(z) = pn(z′) for z ∈ Tn, z′ ∈ T ′n if and only if z′ = hn(z).
By assumption this holds for ω-a.e.(n). By Proposition 3.4.3 it is easy to see that
the metric spaces Tω = ω-limTn and T ′ω = ω-limT ′n are, respectively, faces of S(xn)
and S(x′n). Moreover the sequence of maps (hn) defines a limit map hω : Tω → T ′ω
which is an isometry, by Proposition 2.7.5. It remains to show that pω(zω) = pω(z′ω),
for zω ∈ Tω and z′ω ∈ T ′ω, if and only if hω(zω) = z′ω. But given zω = ω- lim zn
and z′ω = ω- lim z′n with zn ∈ supp(xn), z′n ∈ supp(x′n) we have pω(zω) = pω(z′ω) by
definition if and only if ω- lim dKn(pn(zn), pn(z′n)) = 0. This happens if and only if
for any ε > 0 the inequality

dKn(pn(zn), pn(z′n)) < ε
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holds for ω-a.e.(n). This means that dKn(pn(hn(zn)), pn(z′n)) < ε holds ω-a.e.(n), in
particular pω(hω(zω)) = pω(z′ω). By the injectivity of the projection map pω we then
obtain hω(zω) = z′ω, which is the thesis.

Step 4: K̂ω belongs to Mκ(R,N).
It is clear that K̂ω has size bounded by R by construction.
We want to show it has valency at most N . Fix a vertex v of K̂ω and parameterize by
α ∈ A the set of simplices S(xn(α)) of K̂ω having v as a vertex. For any fixed α ∈ A
there is a vertex vn(α) of supp(xn(α)) such that the sequence (vn(α)) converges
for ω-a.e.(n) to v, by Proposition 3.4.3. In particular for all α, α′ ∈ A we get
dKn(vn(α), vn(α′)) < ε(R,N) for ω-a.e.(n), and then vn(α) = vn(α′) by Lemma
3.4.4. Let now S(xn(α)) 6= S(xn(α′)) be distinct elements of K̂ω, for α, α′ ∈ A. Then
there exists a vertex of the first simplex u = ω-lim un, with un ∈ supp(xn(α)), which
does not belong to the second one. So dKn(un, supp(xn(α′))) > 0 for ω-a.e.(n), hence
supp(xn(α)) 6= supp(xn(α′)) for ω-a.e.(n). Therefore if K̂ω has m different simplices
S(xn(α)) sharing the vertex v, there also exist m different simplices supp(xn(α)) of
Kn sharing the same vertex vn(α) for ω-a.e.(n). This contradicts our assumptions if
m > N .
Finally the fact that K̂ω has positive injectivity radius and has not free faces will
follow from the last step, where we prove that K̂ω and Kω are isometric. In fact Kω

is geodesically complete and locally CAT(κ), as ultralimit of complete, geodesically
complete, locally CAT(κ) spaces with CAT(κ)-radius uniform bounded below; hence
Kω (and in turns K̂ω) has positive injectivity radius and no free faces, by Proposition
3.4.12 and II.5.9&II.5.10 of [BH13].

Step 5: K̂ω is isometric to Kω.
We define a map Φ : Kω → K̂ω as follows. Let yω = ω-lim yn be the ω-limit of be
an admissible sequence (yn) of Kn. Any yn belongs to supp(yn): we will denote by
(yn)supp(yn) the point, in the ultralimit of the sequence of simplices supp(yn), which
is defined by the admissible sequence of points (yn) 1.
We then define Φ as

Φ(yω) = pω((yn)supp(yn)).
It is easy to see it is well defined and surjective.
It remains to prove it is an isometry. Let yn, zn ∈ Kn define admissible sequences.
So the distances dKn(yn, zn) are uniformly bounded by some constant L. Therefore
by Proposition 3.4.10 for any n there exists a geodesic between yn and zn which is
the concatenation of at most m0(L,R,N) segments, each of them contained in a
simplex. Since the number of segments is uniformly bounded we can define a path
in K̂ω which is the concatenation of geodesic segments, each contained in a simplex
of K̂ω, and whose length is the limit of the lengths of the segments in Kn. This
shows that

dK̂ω(pω((yn)supp(yn)), pω((zn)supp(zn)) ≤ ω- lim dKn(yn, zn).

In order to prove the other inequality we fix two points y = pω((yn)supp(yn)) and
z = pω((zn)supp(zn)) of K̂ω. Notice that from the inequality above we deduce that

1The notation stresses the fact that we see (yn)supp(yn) as limit of points in the abstract simplices
supp(yn) (not in Kn). Namely, (yn)supp(yn) belongs to the total space of K̂ω, while yω ∈ Kω.
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K̂ω is path-connected. Hence, by Proposition 3.4.10, we know that there exists a
geodesic between y and z which is the concatenation of at most m0(`, R,N) geodesic
segments, each of them contained in a simplex, where ` = dK̂ω(x, y). These segments
cross finitely many simplices, each of which can be seen as the ω-limit of a sequence
of simplices in Kn. Since the number is finite we can see the union of these simplices
of K̂ω as the ultralimit of the union of the corresponding simplices in Kn. We can
therefore approximate the geodesic in K̂ω with paths in Kn between yn and zn,
whose total length tend to `. So

dK̂ω(pω((yn)supp(yn)), pω((zn)supp(zn)) ≥ ω- lim dKn(yn, zn).

which ends the proof of Theorem 8.1.10.

We can specialize this compactness theorem to other families of Mκ-complexes,
as done for GCBAκpack(P0, r0; ρ0). Namely consider:
– the subclass Mκ(R,N ; ∆) ⊆Mκ(R,N) of complexes with diameter ≤ ∆;
– the class Mκ(R;V, n) of Mκ-complexes without free faces, with size bounded by R,
total volume ≤ V , dimension bounded above by n and positive injectivity radius.

Remark 8.1.11. We should specify the measure on the complexes K of the class
Mκ(R;V, n) under consideration. Any such space is stratified in subspaces of different
dimension, so it is naural to consider the measure which is the sum over k = 0, . . . , n
of the k-dimensional Hausdorff measure on each k-dimensional part. This clearly
coincides with the natural measure µK of K seen as GCBA-space.

Corollary 8.1.12. For any choice of R, n, V , N and ∆, the above classes are com-
pact under Gromov-Hausdorff convergence and contain only finitely many simplicial
complexes up to simplicial homeomorphisms.

Proof. The compactness of Mκ(R,N ; ∆) is clear from the one of Mκ(R,N). More-
over, by Proposition 3.4.13, we know that any K ∈ Mκ(R,N ; ∆) satisfies the
condition Pack(3r0,

r0
2 ) ≤ P0 for constants P0, r0 only depending on R and N .

Furthermore, by Lemma 3.4.4, any two vertices of K are ε(R,N)-separated: in
particular the number of vertices of K is bounded above by Pack(∆

2 ,
ε(R,N)

2 ) which
is a number depending only on R,N, κ and ∆. Since the valency is bounded and the
total number of vertices is bounded, we have only finitely many possible simplicial
complexes up to simplicial homeomorphisms.
On the other hand it is straightforward to show that any K ∈ Mκ(R;V, n) has
valency bounded from above by a function depending only on R, V, n and κ, because
any simplex of locally maximal dimension contributes to the total volume with a
quantity greater than a universal function v(R,n, κ) > 0.
This also shows also that the total number of simplices of K is uniformly bounded in
terms of R, V and n, hence the combinatorial finiteness of Mκ(R;V, n). Moreover,
since any simplex has uniformly bounded size, also the diameters of complexes in this
class are uniformly bounded. Therefore Mκ(R;V, n) ⊆Mκ(R,N) for a suitable N
and, as the class is made of compact metric spaces, it is actually precompact under
(unpointed) Gromov-Hausdorff convergence. It remains to show that Mκ(R;V, n)
is closed. By the proof of Theorem 8.1.10 it is clear that the upper bound on the
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dimension of the simplices is preserved under limits. The stability of the upper
bound on the total volume is proved as for the class GCBAκvol(V0, R0; ρ0, n0) in
Corollary 8.1.7.

Finally we want to point out that the assumptions on size and diameter in the
above compactness results are essential:

Examples 8.1.13. Non-compact families of Mκ-complexes.

(1) Let Xn be a wedge of n circles of radius 1. The family of M0-complexes {Xn}
has uniformly bounded size and uniformly bounded diameter, but the valency is
not bounded. Notice that this family is neither finite nor uniformly packed. In
particular, it is not precompact.

(2) Let Xn be obtained from a circle of radius 1, then choosing n equidistant points
on the circle and gluing n circles of radius 1 to them. The Xn’s admit M0-
complex structures with uniformly bounded valency and uniformly bounded
diameter, but the size of the simplices is not bounded. Again, this family is
neither finite nor uniformly packed, hence not precompact.

8.2 Ultralimit of groups

In this section we investigate the convergence under ultralimits of group actions on
CAT(0), δ-hyperbolic metric spaces that are P0-packed at scale r0.

Let us consider a sequence (Xn, xn) of complete, geodesically complete, CAT(0),
δ-hyperbolic metric spaces that are P0-packed at scale r0. For any non-principal
ultrafilter ω the ultralimit (Xω, xω) of the sequence (Xn, xn) is again a complete,
geodesically complete, CAT(0), δ-hyperbolic metric space that is P0-packed at scale
r0: this follows from Theorem 8.1.1 and from the fact that the δ-hyperbolicity
condition, as expressed in (12), is clearly stable under ultralimits.

Let moreover Γn be any group of isometries of the space Xn. We will now define
a limit group of isometries Γω of Xω. We recall that a sequence of isometries (gn),
with each gn ∈ Γn, is admissible if there exists M < +∞ such that d(xn, gnxn) ≤M
∀n ∈ N. Every admissible sequence (gn) defines a limit isometry gω = ω-lim gn of
Xω by the formula

gω(yω) = ω- lim(gn(yn))

where yω = ω-lim yn is a generic point of Xω, see Proposition 2.7.5. We then define:

Γω := {ω- lim gn | (gn) admissible sequence, gn ∈ Γn ∀n}.

The following lemma is straightforward:

Lemma 8.2.1. The composition of admissible sequences of isometries is an admis-
sible sequence of isometries and the limit of the composition is the composition of
the limits.
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(Indeed if gω = ω-lim gn, hω = ω-lim hn belong to Γω then their composition belong
to Γω, as d(gnhn · xn, xn) ≤ d(gnhn · xn, gn · xn) + d(gn · xn, xn) < +∞).
Analogously one proves that (idn) belongs to Γω and defines the identity map of
Xω, and that if gω = ω-lim gn belongs to Γω then also the sequence (g−1

n ) defines an
element of Γω, which is the inverse of gω.
So we have a well defined composition law on Γω, that is for gω = ω- lim gn and
hω = ω- lim hn we set

gω ◦ hω = ω- lim(gn ◦ hn)

With this operation Γω is a group of isometries of Xω and is called the ultralimit
group of the sequence of groups Γn.
In the following proposition we describe the possible ultralimits of an admissible
sequence of isometries:

Proposition 8.2.2. Assume that (Xn, xn) is a sequence of complete, geodesically
complete, CAT(0), δ-hyperbolic metric spaces that are P0-packed at scale r0. Let (gn)
be an admissible sequence of isometries.

(a) If gn is of hyperbolic type with axis γn for ω-a.e.(n) then

(a.1) if ω-lim d(xn, γn) < +∞ then gω is elliptic when ω-lim `(gn) = 0, and
hyperbolic with axis γω = ω-lim γn and `(gω) = ω-lim `(gn) otherwise;

(a.2) if ω-lim d(xn, γn) = +∞ then gω is either elliptic or parabolic.

(b) If gn is parabolic for ω-a.e.(n) then gω is either elliptic or parabolic.

Notice that any two axes of a hyperbolic isometry are at uniformly bounded distance
from each other, by the δ-hyperbolicity assumption, cp. Lemma 2.3.8, so (a) does
not depend on the particular choice of γ. Moreover the ultralimit of a sequence
of geodesics γn at uniformily bounded distance from the base points xn is again a
geodesic of Xω (Proposition 2.7.5).

Example 8.2.3. Case (a.2) can actually occur for the limit gω of a sequence of
hyperbolic isometries gn. Let for instance Γn be a Schottky group of X = H2

generated by two hyperbolic isometries an, bn with non-intersecting axes. The
convex core of the quotient space X̄n = Γn\H2 is a hyperbolic pair of pants,
with boundary given by three periodic geodesics αn, βn and γn. These geodesics
correspond, respectively, to the projections of the axes of the elements an, bn and
cn = an · bn (up to replacing bn with its inverse). Letting the length `(γn) tend to
zero (which means pulling two of the isometry circles of an and bn closer and closer),
the sequence of hyperbolic isometries cn tends to a parabolic isometry and X̄n tends
to a surface with one cusp.

Proof of Proposition 8.2.2. We start from gn of hyperbolic type with axis γn for
ω-a.e.(n). Assume first that ω-lim d(xn, γn) = C < +∞. If ω-lim `(gn) = 0
then any point of the limit geodesic γω is a fixed point of gω, so gω is elliptic.
Otherwise ω-lim `(gn) = ` > 0 and it is immediate that gω translates γω by `, hence
it is of hyperbolic type with axis γω.
Suppose now that gn is of hyperbolic type with axis γn for ω-a.e.(n) and that
ω-lim d(xn, γn) = +∞. Let M0 ≥ 0 be an upper bound for d(xn, gnxn) for every
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n. A direct application of Proposition 2.5.7 gives ω-lim `(gn) = 0, otherwise the
distance between xn and the axis γn of gn would be uniformly bounded. Suppose
that gω is hyperbolic: in this case `(gω) = `0 would be strictly positive. Applying
again Proposition 2.5.7 we would find, for ω-a.e.(n), a point pn ∈ Xn satisfying

d(pn, xn) ≤ K1(`0,M0, δ), d(pn, gnpn) ≤ `0
2 .

The first condition implies that the sequence (pn) defines a point pω of Xω, while
the second condition implies that d(pω, gωpω) ≤ `0

2 which is impossible, so gω is no
of hyperbolic type.
Finally suppose that gn is of parabolic type for ω-a.e.(n). If gω was hyperbolic of
translation length `0 > 0 then arguing as before there would exist a point pn ∈ Xn

satisfying
d(pn, xn) ≤ K1(`0,M0, δ), d(pn, gnpn) ≤ `0

2 .

This is again a contradiction.

The next theorem explains how the ultralimit of a sequence of torsion-free,
discrete groups of isometries in our setting can degenerate, that is, when the limit is
non-discrete or admits elliptic elements:

Theorem 8.2.4. Let (Xn, xn) be a sequence of complete, geodesically complete,
CAT(0), δ-hyperbolic metric spaces that are P0-packed at scale r0. Let Γn be a
sequence of torsion-free, discrete groups of isometries of Xn. Let ω be a non-
principal ultrafilter and Γω be the limit group of isometries of Xω. Then one of the
following mutually exclusive possibilities holds:

(a) ∀L ≥ 0 ∃r > 0 such that ω- lim d(xn, (Xn)r) > L. In this case the group Γω acts
discretely on Xω and it has no torsion;

(b) ∃L ≥ 0 such that ∀r > 0 it holds ω- lim d(xn, (Xn)r) ≤ L. In this case the group
Γω is elementary (possibly non-discrete).

Proof. We start from case (a). We recall that Xω is proper. Let gω = ω-lim gn be an
element of Γω and yω = ω-lim yn be a point of Xω. By definition of yω there exists
L ≥ 0 such that d(xn, yn) ≤ L for all n. By assumption there exists r such that
d(yn, gnyn) ≥ r for ω-a.e.(n), if gn 6= id for ω-a.e.(n). This implies d(yω, gωyω) ≥ r,
so sys(Γω, yω) ≥ r for all yω ∈ B(xω, L). Since Xω is proper we conclude that Γω
is discrete. Moreover it is torsion-free: indeed any elliptic element gω = (gn) of Γω
must have a fixed point yω, hence, as just proved, gn is the identity for ω-a.e.(n); so
gω = id necessarily, since sys(Γω, yω) is strictly positive.
We now study case (b). In this case for all r > 0 there exists a point yn ∈ Xn with
d(xn, yn) ≤ L and sys(Γn, yn) ≤ r for ω-a.e.(n). Observe that for all r ≤ ε0 the
group ΓRr(yn) is elementary, with Rr → +∞ when r → 0 by Lemma 6.4.3. Now, by
definition, for every gω = ω-lim gn of Γω there exists M such that d(xn, gnxn) ≤M
for ω-a.e.(n), so d(yn, gnyn) ≤ 2L+M ≤ Rr provided that r is small enough. This
implies that gn belongs, for ω-a.e.(n), to a fixed elementary subgroup Γ′n < Γn
that does not depend on the element gω under consideration. Then there are two
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possibilities: for ω-a.e.(n) either Γ′n is of hyperbolic type or it is of parabolic type.
Assume that the isometries in Γ′n are all hyperbolic for ω-a.e.(n), so there exists
a common axis γn for all of them. If ω-lim d(xn, γn) < +∞, then we are in case
(a.1) of Proposition 8.2.2: the limit gω is either hyperbolic with axis γω = ω- lim γn
or elliptic, for all gω ∈ Γω, hence this group is elementary. In all the other cases
Proposition 8.2.2 implies that Γω does not contain any hyperbolic isometry, so the
group is elementary by Gromov’ classification of groups acting on hyperbolic spaces
(cp. [Gro87],[DSU17]).

We examine now the case when the limit group is discrete:

Corollary 8.2.5. Same assumptions as in Theorem 8.2.4.
Let X̄n = Γn\Xn be the quotient metric spaces, let pn : Xn → X̄n the
projection maps and let x̄n = pn(xn). Then:

(a) if the groups Γn are non-elementary, then one can always suitably choose the base
points xn ∈ Xn so that case (a) of Theorem 8.2.4 occurs, hence the ultralimit
group Γω is discrete and torsion-free;

(b) if case (a) of Theorem 8.2.4 occurs, then the ultralimit space X̄ω of the sequence
(X̄n, x̄n) is isometric to Γω\Xω.

Proof. By Corollary 6.3.1, if the groups Γn are non-elementary it is always possible
to choose xn ∈ Xn in order that the pointwise systole of the Γn at xn are uniformly
bounded away from zero, i.e. sys(Γn, xn) ≥ ε > 0 for every n. The fact that case (a)
occurs for this choice of the base points is then a direct consequence of Proposition
2.5.5.(b).
To show (b) notice that the projections pn : Xn → X̄n form an admissible sequence of
1-Lipschitz maps and then, by Proposition 2.7.5, they yield a limit map pω : Xω → X̄ω

defined as pω(yω) = ω-lim pn(yn), for ω-lim yn = yω. The map pω is clearly surjective.
We want to show that it is Γω-equivariant. We fix gω = ω-lim gn ∈ Γω and yω = ω-
lim yn ∈ Xω. Then:

pω(γωyω) = ω- lim pn(γnyn) = ω- lim pn(yn) = pω(yω).

Therefore we have a well defined, surjective quotient map p̄ω : Γω\Xω → X̄ω. We will
now show that it is a local isometry. We fix an arbitrary point yω = ω- lim yn ∈ Xω,
consider its class [yω] ∈ Γω\Xω and set L = d(xω, yω). By assumption there exists
r, depending only on L, such that sys(Γn, yn) ≥ r for ω-a.e.(n). In particular the
systole of Γω at yω is at least r, so the quotient map Xω → Γω\Xω is an isometry
between B(yω, r2) and B([yω], r2).
Moreover for ω-a.e.(n) we have that B(pn(yn), r2) is isometric to B(yn, r2). By Lemma
2.7.8 we know that ω-limB(pn(yn), r2) is isometric to B(pω(yω), r2) = B(p̄ω(yω), r2)
and that ω-limB(yn, r2) is isometric to B(yω, r2). Therefore B(p̄ω(yω), r2) is isometric
to B([yω], r2). By Proposition 3.28, Sec.I, of [BH13] we conclude that the map p̄ω
is a locally isometric covering map. To conclude, it is enough to show that p̄ω is
injective. Let [zω], [yω] ∈ Γω\Xω. Then we have p̄ω([zω]) = p̄ω([yω]) if and only
if pω(zω) = pω(yω). This is equivalent to ω- lim d(pn(zn), pn(yn)) = 0 and, as the
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systole of yn is uniformly bounded away from zero, this means ω-lim d(zn, gnyn) = 0
for some gn ∈ Γn and for ω-a.e.(n). We observe that the sequence (gn) is admissible,
therefore it defines an element gω = ω-lim gn ∈ Γω satisfying d(zω, gωyω) = 0. This
implies that [zω] = [yω] and therefore p̄ω is an isometry.

Non-elementary ultralimit groups are characterized in the next result:

Theorem 8.2.6. Same assumptions as in Theorem 8.2.4.

(a) If there exist two sequences of admissible isometries (gn), (hn) in Γn of the same
type such that 〈gn, hn〉 is non-elementary for ω-a.e.(n) then the group 〈gω, hω〉
is non-elementary;

(b) the group Γω is non-elementary if and only if there exist two sequences of
admissible isometries (gn), (hn) such that 〈gn, hn〉 is non-elementary for ω-
a.e.(n).

Notice that Γω non-elementary implies that it is also discrete and torsion-free, by
Theorem 8.2.4.

Proof. Let (gn), (hn) be as in (a) and let M ≥ 0 such that for all n it holds
d(xn, gnxn), d(xn, hnxn) ≤ M . We first assume that fω = ω- lim fn, for some
admissible sequence of isometries fn ∈ 〈gω, hω〉, is elliptic. Then there would exist a
point yω = ω-lim yn with fωyω = yω. So for all r > 0 and for ω-a.e.(n) the following
conditions would hold, for some L ≥ 0:

d(xn, yn) ≤ L, d(yn, fnyn) ≤ r.

The first condition implies that

d(yn, gnyn) ≤ d(yn, xn) + d(xn, gnxn) + d(gnxn, gnyn) ≤ 2L+M

and similarly for hn. If r is small enough we then deduce that 〈gn, hn〉 is elementary
by Lemma 6.4.3, a contradiction.
So we assume now that the elements gω, hω are both parabolic. If 〈gω, hω〉 was
elementary then they would have the same fixed point at infinity z. We then choose
ε > 0 small enough so that Rε ≥ 16δ+ ε, where Rε is the quantity defined in Lemma
6.4.3. As `(gω) = `(hω) = 0 and Xω is convex, there exist points yω = ω-lim yn,
wω = ω-limwn of Xω such that d(yω, gωyω) < ε and d(wω, hωwω) < ε. By Lemma
2.3.2 we can also find points y′ω ∈ [yω, z] and w′ω ∈ [wω, z] such that d(yω, wω) ≤ 8δ.
By convexity and by the triangular inequality we deduce:

d(y′ω, gωy′ω) < ε, d(y′ω, hωy′ω) < 16δ + ε ≤ Rε.

Similar estimates hold for gn and hn for ω-a.e.(n), implying that 〈gn, hn〉 is elementary
for ω-a.e.(n), a contradiction.
A similar argument works when one element is parabolic, say gω, and the other, hω,
is hyperbolic. In this case, if 〈gω, hω〉 was elementary, the fixed point of gω would
coincide with one point at infinity z of an axis γ of hω. In this case we choose ε > 0
so that Rε > `0 + 16δ, where Rε is again the number given by Lemma 6.4.3 and `0
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is the minimal displacement of hω. We then take a point zω = ω-lim zn of Xω such
that d(zω, gωzω) < ε, a point yω = ω-lim yn on γ, and a point z′ω = ω-lim z′n ∈ [zω, z]
such that d(yω, z′ω) ≤ 8δ. By convexity and the triangular inequality we get

d(z′ω, gωz′ω) < ε, d(z′ω, hωz′ω) ≤ 16δ + `0 < Rε.

and again similar estimates hold for gn, hn for ω-a.e.(n), showing that 〈gn, hn〉 is
elementary for ω-a.e.(n), a contradiction.
It remains to consider the case where both gω and hω are of hyperbolic type. Suppose
they have the same axis. By Lemma 8.2.2 we know that the axis is the ultralimit of
some axis γn of gn, and of some axis ηn of hn as well; therefore ω-lim γn = ω-lim γ′n.
This means that for all C > 0 and for ω-a.e.(n) the set of points of γn that are at
distance at most ε0

37 from γ′n is a subsegment of length at least C, where ε0 is the
generalized Margulis constant. By Proposition 5.2.8 we conclude that `(gn) ≥ 1

5C.
Therefore the sequence (gn) is not admissible, a contradiction. This implies that gω
and hω do not have the same axis, therefore 〈gω, hω〉 is not elementary. This proves
(a).
In order to prove (b) assume first that (gn), (hn) are two admissible sequences such
that 〈gn, hn〉 is not elementary for ω-a.e.(n). Up to replacing hn with hngnh−1

n we
may suppose that gn, hn are of the same type, and still admissible. So Γω is not
elementary by (a).
Conversely assume that Γω is not elementary. Then it contains at least a hyperbolic
element gω and by Theorem 8.2.4 we know it is discrete. Therefore, by discreteness
and non-elementarity, there exists another element hω ∈ Γω such that 〈gω, hω〉 is
not elementary. Up to replacing hω with hωgωh−1

ω we may again suppose that hω
is of hyperbolic type (and the group genarated by gω and this element remains
non-elementary). Hence the axes γω, γ′ω respectively of gω = ω-lim gn and hω = ω-
lim hn are not the same. By Lemma 8.2.2 the elements gn, hn are hyperbolic for
ω-a.e.(n), and have axes γn, γ′n such that γω = ω-lim γn, and γ′ω = ω-lim γ′n. Now,
if 〈gn, hn〉 was elementary for ω-a.e.(n) then we could choose γn = γ′n for ω-a.e.(n)
and therefore γω = γ′ω, a contradiction. This shows that 〈gn, hn〉 is not elementary
for ω-a.e.(n).

For all P0, r0, δ,∆ > 0 we denote by

CAT0
nil(P0, r0, δ; ∆)

the class of triples (X,x,Γ) where X is a complete, geodesically complete, CAT(0),
δ-hyperbolic metric space that is P0-packed at scale r0, x is a point of X and Γ is
a discrete and torsion-free group of isometries of X satisfying nilrad+(Γ, X) ≤ ∆.
Then we have:

Corollary 8.2.7. The class CAT0
nil(d, δ, σ,R0; ∆) is closed under ultralimits, hence

compact under pointed Gromov-Hausdorff convergence.

Proof. Consider any sequence ((Xn, xn),Γn) in this class. As recalled at the be-
ginning of this section the ultralimit (Xω, xω) of the sequence (Xn, xn) is again a
complete, geodesically complete, CAT(0), δ-hyperbolic metric space that is P0-packed
at scale r0. Then to prove that our class is closed under ultralimits we need only to



158 8. Compactness and continuity

show that the bound of the upper nilradius is satisfied also by the limit group Γω
acting on Xω, indeed by the estimate (41) we know that sys(Xn,Γn) ≥ s0(P0, r0, δ,∆)
for all n. Therefore we are in case (a) of Theorem 8.2.4 and Γω is a discrete and
torsion-free group of isometries of Xω.
Assume first that sys(Γn, Xn) is greater than or equal to the the generalized Margulis
constant ε0 for ω-a.e.(n). Then sys(Γω, Xω) ≥ ε0, so nilrad+(Γω, Xω) = −∞ ≤ ∆,
and the conclusion holds.
Otherwise sys(Γn, Xn) < ε0 for ω-a.e.(n). In this case we take any yω = ω-lim yn
such that s = sys(Γω, yω) < ε0. By the discreteness of Γω there exists gω = ω-
lim gn ∈ Γω such that d(yω, gωyω) = s. We fix ε < ε0 − s and we deduce that
d(yn, gnyn) < s + ε < ε0 for ω-a.e.(n), so nilrad+(Γn, yn) ≤ ∆. This means that
for all ε > 0 there is hn ∈ Γn such that d(yn, hnyn) ≤ ∆ + ε and 〈hn, gn〉 is not
elementary. To conclude we need to show that 〈gω, hω〉 is not elementary. Assume
the contrary: then hω has the same type and the same fixed points at infinity as
gω. If they were hyperbolic then by Lemma 8.2.2 also gn, hn would be hyperbolic
for ω-a.e.(n), and by Theorem 8.2.6 we would obtain that 〈gn, hn〉 is elementary for
ω-a.e.(n), a contradiction. On the other hand if both are parabolic then we have
two possibilities: either gn, hn are of the same type for ω-a.e.(n), and arguing as
before would give again a contradiction; or gn is hyperbolic and hn is parabolic for
ω-a.e.(n). In this last case we consider the elementary group 〈gω, hωgωh−1

ω 〉 and
apply Theorem 8.2.6 as before to deduce that the group 〈gn, hngnh−1

n 〉 is elementary
for ω-a.e.(n). Therefore hnFix∂(gn) = Fix∂(hngh−1

n ) = Fix∂(gn), so the fixed point
of hn coincides with one of the fixed points of gn, which contradicts the fact that Γn
is discrete. This shows that 〈gω, hω〉 is not elementary. By the arbitrariness of ε we
then obtain nilrad+(Γω, yω) ≤ ∆.

8.3 Convergence of the boundaries
We recall that CAT0(P0, r0) is the class of couples (X,x) where X is a complete,
geodesically complete, CAT(0) metric space that is P0-packed at scale r0 and x
is a point of X. Moreover CAT0(P0, r0, δ) is the subclass of CAT0(P0, r0) made
of δ-hyperbolic spaces. The boundary of the spaces in this class is stable under
ultralimits.

Proposition 8.3.1. Let (Xn, xn) ⊆ CAT0(P0, r0, δ) and let Dxn,a be a standard
visual metric of parameter a and center xn on ∂Xn. Let ω be a non-principal
ultrafilter and let (Xω, xω) be the ultralimit of the sequence (Xn, xn). Then there
exists a visual metric Dxω ,a of parameter a and center xω on ∂Xω such that ω-
lim(∂Xn, Dxn,a) is isometric to (∂Xω, Dxω ,a).

We observe that since the spaces ∂Xn are compact with diameter at most 1 then
the ultralimit ω-lim ∂Xn does not depend on the basepoints.

Proof. A point of ω-lim ∂Xn is a class of a sequence of points (zn) ∈ ∂Xn and each
point zn is identified to the geodesic ray ξn = [xn, zn]. The sequence of geodesic rays
(ξn) defines a geodesic ray ξω of Xω with ξω(0) = xω which provides a point of ∂Xω.
It is then defined the map Ψ: ω-lim ∂Xn → ∂Xω that sends the sequence (zn) to
the boundary point identified by the geodesic ray ξω.
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Good definition. We need to show that Ψ is well defined. Let (z′n) be another
sequence of points equivalent to (zn), i.e. ω- limDxn,a(zn, z′n) = 0. Since Dxn,a is a
standard visual metric for every n this implies that for all ε > 0 and for ω-a.e.(n) it
holds (zn, z′n)xn > log 1

ε =: Tε. By Lemma 4.3.4 we have d(ξn(Tε − δ), ξ′n(Tε − δ)) ≤
4δ and, by convexity of the metric, we have that d(ξn(Sη), ξ′n(Sη)) < η, where
Sη = η · Tε4δ for all η > 0. This means that for every T ≥ 0 and every η > 0 we have
d(ξn(T ), ξ′n(T )) < η for ω-a.e.(n). Since η is arbitrary we obtain that ξω and ξ′ω
coincide up to time T for every T ≥ 0 and therefore ξω = ξ′ω.
Bijectivity. The next step is to show that Ψ is bijective. It is clearly surjective
since every geodesic ray of Xω is ultralimit of geodesic rays of Xn by the CAT(0)
condition. Let us show it is injective: if two sequence of points (zn), (z′n) have the
same image under Ψ then for all T ≥ 0 and for every η > 0 we have that for ω-a.e.(n)
the geodesic rays ξzn and ξz′n stay at distance less than 2η up to time T . By Lemma
4.3.4 we conclude that (zn, z′n)xn > T − η and therefore Dxn,a(zn, z′n) ≤ e−a(T−η).
Since this is true for ω-a.e.(n) we get ω-limDxn,a(zn, z′n) ≤ e−a(T−η) implying ω-
limDxn,a(zn, z′n) = 0, i.e. (zn) = (z′n) as elements of ω-lim ∂Xn, by the arbitrariness
of T and η.
Homeomorphism Let us show Ψ is continuous. Both ω-lim ∂Xn and ∂Xω are
metrizable, then it is enough to check the continuity on sequences of points. We
take a sequence (zkn)k∈N converging to (z∞n ) in ω-lim ∂Xn. This means that for every
ε > 0 there exists kε ≥ 0 such that if k ≥ kε then ω-limDxn,a(zkn, z∞n ) < ε. Arguing
as before we obtain that for every ε > 0 there exists kε ≥ 0 such that for every
fixed k ≥ kε it holds (zkn, z∞n )xn ≥ log 1

ε =: Tε for ω-a.e.(n). Therefore by the same
argument used before we conclude that for every T ≥ 0 there exists kT ≥ 0 such
that for every fixed k ≥ kT then ξzkn and ξz∞n stay at distance at most 2 up to time
T for ω-a.e.(n). So the same conclusion holds for ξzkω and ξz∞ω and by Lemma 4.3.4
we have (Ψ(zkn),Ψ(z∞n ))xω ≥ T − 1. This implies exactly that the sequence Ψ(zkn)
converges to Ψ(z∞n ). To prove the continuity of the inverse map we suppose Ψ(zkn)
converges to Ψ(z∞n ). By similar arguments used before we get that the geodesic rays
ξkω and ξ∞ω stay at bounded distance up to time T , provided k ≥ kT . So the same
happens for ξkn and ξ∞n for ω-a.e.(n) implying once again the convergence of (zkn) to
(z∞n ).
The metric on ∂Xω. Since Ψ is an homeomorphism we can endow ∂Xω with
the metric induced by Ψ, i.e. D(zω, z′ω) = ω-limDxn,a(zn, z′n), where zn and z′n
are sequences such that Ψ(zn) = zω and Ψ(z′n) = z′ω. It remains to show it is
a visual metric. We show one of the two conditions since the other is similar.
We take zω = Ψ(zn), z′ω = Ψ(z′n) and we set Dn := Dxn,a(zn, z′n). By definition
Dω = ω-limDn = D(zω, z′ω). Since each Dxn,a is a standard visual metric we
get (zn, z′n)xn ≤ 1

a log 1
Dn

=: Tn for every n and by Lemma 4.3.4 we conclude
that d(ξzn(Tn + 3δ), ξzn(Tn + 3δ)) ≥ 6δ for every n. There are two possibilities:
Tω := ω-limTn is either +∞ or a positive real number. In the first case we
have Dω = 0 and so there is nothing to prove. In the second case we know
that d(ξzω(Tω + 3δ), ξzω(Tω + 3δ)) ≥ 6δ and so by Lemma 4.3.4 we conclude that
(zω, z′ω)xω < Tω + δ = 1

a log 1
Dω

+ δ, implying Dω < eδe−a(zω ,z′ω)xω .

We denote by CAT0
qc(P0, r0, δ;D) the class of triples (X,x,Γ) such that (X,x) ∈

CAT0(P0, r0, δ), Γ is a discrete, non-elementary, quasiconvex-cocompact group of
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isometries of X with codiameter ≤ D and finally x ∈ QC-Hull(Λ(Γ)). This class is
closed under ultralimits.

Theorem 8.3.2. Let (Xn, xn,Γn) ⊆ CAT0
qc(P0, r0, δ;D), ω be a non-principal ul-

trafilter and let (Xω, xω,Γω) be the ultralimit space.
Then Ψ(ω-lim Λ(Γn)) = Λ(Γω), where Ψ is the isometry of Proposition 8.3.1. More-
over Γω is a discrete, non-elementary, quasiconvex-cocompact group of isometries of
Xω with codiameter ≤ D and xω ∈ QC-Hull(Λ(Γω)).

Proof. Let L be the constant of Lemma 7.1.2, depending only on δ. We fix a sequence
zn ∈ Λ(Γn) and we observe that by Lemma 7.1.2 and the cocompactness of the
action of Γn on QC-Hull(Λ(Γn)) we can find a sequence (gkn)k∈N such that

(a) gknxn converges to zn when k tends to +∞;

(b) g0
n = id;

(c) d(gknxn, gk+1
n xn) ≤ 2L+ 2D;

(d) d(gknxn, ξzn(k)) ≤ L+D.

For every k ∈ N the sequence gkn is admissible by (b) and (c), so it defines a limit
isometry gkω ∈ Γω. Moreover we have d(gkωxω, ξΨ(zn)(k)) ≤ L+D for every k ∈ N, as
follows by the definition of Ψ. This clearly implies that the sequence gkωxω converges
to Ψ(zn) and so Ψ(zn) ∈ Λ(Γω). In other words Ψ(ω- lim Λ(Γn)) ⊆ Λ(Γω). It is
easy to show that Γω acts on ω- lim Λ(Γn) by (gn)(zn) = (gnzn) and that the action
commutes with Ψ. Moreover the set ω- lim Λ(Γn) is Γω-invariant and closed, so
it is Ψ(ω- lim Λ(Γn)). The Γω-invariance is trivial, while if (zkn)k∈N ∈ ω- lim Λ(Γn)
is a sequence converging to (z∞n ) and z∞n /∈ ω- lim Λ(Γn) then there exists ε0 > 0
such that for ω-a.e.(n) we have Dxn,a(z∞n ,Λ(Γn)) ≥ ε0 and this is a contradiction.
Therefore the set Ψ(ω- lim Λ(Γn)) is a closed Γω-invariant subset of ∂Xω, that implies
it contains Λ(Γω) and so the equality between these two sets. This also implies that
ω-limQC-Hull(Λ(Γn)) = QC-Hull(Λ(Γω)) and so xω ∈ QC-Hull(Λ(Γω)).
By Example 6.2.3 and Corollary 8.2.7 we know that Γω is a non-elementary and
discrete group. Moreover for every two points yω, y′ω ∈ QC-Hull(Λ(Γω)) there exist
sequences of points yn, y′n ∈ QC-Hull(Λ(Γn)) such that yω = ω-lim yn and y′ω = ω-
lim y′n and so there are gn ∈ Γn such that d(gnyn, y′n) ≤ D. The sequence gn is
clearly admissible so it defines an element gω = ω-lim gn of Γω and d(gωyω, y′ω) ≤ D,
implying that the action of Γω on QC-Hull(Λ(Γ)) is cocompact with codiameter
≤ D.

8.4 Continuity of the entropies

In this last section we will find sufficient conditions to ensure the continuity of the
entropy under convergence of metric spaces. In general it is false that the upper
(resp.lower) entropies of the ultralimit is the ultralimit of the upper (resp.lower)
entropies of the spaces.
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Example 8.4.1. Let X be any complete, geodesically complete, CAT(0) metric
space X that is P0-packed at scale r0 and let X ′ be the metric space obtained by
gluing a ray [0,+∞) to a point of X. The space X ′ is again complete, geodesically
complete, CAT(0) and packed. We take the sequence (Xn, xn) = (X ′, n), where
n ∈ [0,+∞). Clearly Xω is isometric to R with respect to every non-principal
ultrafilter ω, so hCov(Xω) = hCov(Xω) = 0. On the other hand hCov(Xn) = hCov(X)
and hCov(Xn) = hCov(X) for every n. The same holds for all the other definition of
entropies.

If we require an uniformity condition on the entropy function, as explained in
the following theorem, then we have continuity. Later we will se a relative version of
this result.

Theorem 8.4.2. Let (Xn, xn) ⊆ CAT0(P0, r0) and ω be a non-principal ultrafilter.
Suppose that for every n it holds

1
T

log Pack(B(xn, T ), r0) � hn

and that the threshold functions do not depend on n. Then the upper and lower
covering entropies of Xω coincide and equals hω = ω- lim hn.

Remark 8.4.3. We remark that:

(a) under the assumptions of the theorem then for every n the upper and lower
covering entropies coincide and hn is their common value. Moreover, and that
is the important hypothesis, the rate of convergence to the limit is uniform in n.

(b) Furthermore by Proposition 4.1.1, Proposition 4.1.4, Theorem 4.2.2 and Remark
4.2.6, Proposition 4.3.2 and Theorem 4.3.6 the assumption of the theorem is
equivalent to a control of the rate of convergence to the limit of the functions
definining the volume entropies, the Lipschitz topological entropies, the shadow
dimensions or the Minkowski dimensions. So if one has a uniform control on
the rate of convergence of one of these functions then it has the continuity of all
the entropies;

(c) by Proposition 2.7.12 under the assumptions of the theorem we have continuity
under pointed Gromov-Hausdorff convergence.

Proof of Theorem 8.4.2. The first step is the following: we claim that for every
T ≥ 0 it holds

ω- limPack(B(xn, T ), 2r0) ≤ Pack(B(xω, T ), r0) ≤ ω- limPack(B(xn, T ), r0).

Let y1
ω, . . . , y

N
ω be a maximal 2r0-separated subset of B(xω, T ). By Lemma 2.7.8

each yiω can be written as yiω = ω-lim yin with yin ∈ B(xn, T ). Since d(yiω, yjω) > 2r0
for every i 6= j and since they are a finite number then for ω-a.e. n it holds
d(yin, yjn) > 2r0 for all i 6= j, so for ω-a.e.(n) there is a 2r0-separated subset of
B(xn, T ) with at least N elements. This implies

Pack(B(xω, T ), r0) ≤ ω- limPack(B(xn, T ), r0).
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Now let y1
n, . . . , y

Nn
n be a maximal 4r0-separated subset of B(xn, T ). We consider

the set Aω = {ω- lim yinn s.t. 1 ≤ in ≤ Nn}.
Clearly every element of Aω belongs to B(xω, T ). Moreover for every two distinct
points yω, zω ∈ Aω it holds d(yω, zω) ≥ 4r0. Indeed ω-lim yinn = ω-lim yjnn if and only
if ω({n ∈ N s.t. in = jn}) = 1, otherwise for ω-a.e. n it holds d(yinn , yjnn ) > 4r0.
This implies that if yω, zω ∈ Aω are distinct points then d(yω, zω) ≥ 4r0 > 2r0,
so Aω is a 2r0-separated subset of B(xω, T ). Since Xω is proper the set Aω is of
finite cardinality Nω. We claim that the set I = {n ∈ N s.t. Nn = Nω} satisfies
ω(I) = 1. In order to prove it we rename the elements of Aω as y1

ω, . . . , y
Nω
ω , where

ykω = ω- lim y
ikn
n for some 1 ≤ ikn ≤ Nn. From what said before we know that for k 6= l

we have ω({n ∈ N s.t. ikn 6= iln}) = 1. So

1 = ω

( ⋂
1≤k<l≤Nω

{n ∈ N s.t. ikn 6= iln}
)

= ω({n ∈ N s.t. ikn 6= iln for all 1 ≤ k < l ≤ Nω})
≤ ω({n ∈ N s.t. Nn ≥ Nω}) = ω(I ∪ J)

where J = {n ∈ N s.t. Nn > Nω}. Then the claim is true if ω(J) = 0. If ω(J) = 1
then for all 1 ≤ j ≤ Nω + 1 we can define yjω = ω-lim yjn if n ∈ J . They are
Nω + 1 distinct points of Aω, which is impossible. In this way we conclude that
for ω-a.e. n it holds Pack(B(xω, T ), r0) ≥ Nω = Nn = Pack(B(xn, T ), 2r0) and so
ω- limPack(B(xn, T ), 2r0) ≤ Pack(B(xω, T ), r0).

Now let h̃ = ω- lim hn ∈
[
0, log(1+P0)

r0

]
by Lemma 4.1.3. By assumption for every

ε > 0 there exists Tε depending on ε and not on n such that∣∣∣∣ 1T log Pack(B(xn, T ), r0)− hn
∣∣∣∣ < ε for all T ≥ Tε.

The sets

A1 =
{
n ∈ N s.t.

∣∣∣∣ 1T log Pack(B(xn, T ), r0)− hn
∣∣∣∣ < ε for all T ≥ Tε

}
and

A2 = {n ∈ N s.t. |hn − h̃| < ε}

belong to ω. Moreover by Proposition 4.1.1 and the first estimate we have that the
set

A3 =
{
n ∈ N s.t.

∣∣∣∣ 1T log Pack(B(xn, T ), r0)− 1
T

log Pack(B(xω, T ), r0)
∣∣∣∣ ≤ ε}

belongs to ω for every T ≥ T ′ε, where T ′ε depends only on ε, P0 and r0. Taking
T ≥ max{Tε, T ′ε} and n ∈ A1 ∩A2 ∩A3 ∈ ω we conclude that∣∣∣∣ 1T log Pack(B(xω, T ), r0)− h̃

∣∣∣∣ < 3ε,

finishing the proof, again using Proposition 4.1.1.
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We now state the relative version of theorem 8.4.2. For every sequence (Xn, xn) ∈
CAT0(P0, r0, δ), for every sequence of subsets Cn ⊆ ∂Xn and every non-principal
ultrafilter ω we denote by Cω the set Ψ(ω- limCn), where Ψ is the map of Proposition
8.3.1.

Theorem 8.4.4. Let (Xn, xn) ⊆ CAT0(P0, r0, δ), Cn ⊆ ∂Xn for every n and ω be
a non-principal ultrafilter. Suppose that for every n it holds

1
T

log Pack(B(xn, T ) ∩QC-Hull(Cn), r0) � hn

and that the threshold functions do not depend on n. Then the upper and lower
covering entropies of Cω coincide and equals hω = ω- lim hn.

Proof. The proof is the same of Theorem 8.4.2. The only delicate point is the
first estimate on the packing number. But by definition of Cω we observe that
QC-Hull(Cω) = ω-limQC-Hull(Cn), so that estimate can be proved in the same
way.

The analogue of Remark 8.4.3 holds for Theorem 8.4.4. As a consequence we get
the continuity of the critical exponent of quasiconvex-cocompact groups.

Corollary 8.4.5. Let (Xn, xn,Γn) ⊆ CAT0
qc(P0, r0, δ;D) and let ω be a non-

principal ultrafilter. Then hΓω = ω-lim hΓn.

Proof. For every n we take Cn = Λ(Γn). By Theorem 8.3.2 we have Cω = Λ(Γω).
By Theorem 7.2.5 and the analogue of Remark 8.4.3 the assumptions of Theorem
8.4.4 are satisfied. Since (Xω, xω,Γω) ∈ CAT0

qc(P0, r0, δ;D) then hn = hΓn for every
n and hω = hΓω by Theorem 7.2.5. This concludes the proof.
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