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ABSTRACT
A path-based algorithm is developed for the static traffic assign-
ment problem (TAP). In each iteration, it decomposes the problem
into origin-destination (OD) pairs and solves each subproblem sep-
arately using the Wolfe reduced gradient (RG) method. This method
reduces the dimensions of each single-OD subproblem by selecting
a basic path between the OD pair and reformulating the subprob-
lem in terms of the nonbasic paths. A column generation technique
is included to avoid path enumeration in large scale networks. Also,
some speed-up techniques are designed to improve the computa-
tional efficiency. The algorithm shifts flows from costlier paths to
cheaper paths; however, the amount of flow shifted from a costlier
path is proportional to not only the travel time but also the flow on
the path. It is applied to the Philadelphia and Chicago test problems,
while different strategies for choosing the basic paths are examined.
The RG algorithm shows an excellent convergence to relative gaps of
the order of 1.0E-14 when compared against several reference TAP
algorithms.
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Introduction

Assigning an origin-destination (OD) demand matrix to an urban network for determining
link flows and travel times is known as the traffic assignment problem (TAP). The solution
of TAP needs assumption(s) about how the users distribute among traveling paths/routes
between the OD pairs. Wardrop’s first principle (Wardrop 1952), called the user equilibrium
(UE) condition, states: ‘The journey times on all the routes actually used are equal, and less
than those which would be experienced by a single vehicle on any unused route’. The UE
condition is achievedwhen no traveler can improve his travel time by unilaterally changing
routes. Based on the UE condition, Beckmann, McGuire, and Winsten (1956) transformed
the TAP into an optimization problem that works in both forms of link-path and link-node
representations of transportation networks. Since then, extensive research have been car-
ried out on providing solution algorithms for Beckmann’s optimization model. The same
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problemwas also equivalently formulated as a non-linear complementarity problem (NCP)
and several algorithms were provided to solve it. In the following, ‘UE-based TAP’ is simply
referred as ‘TAP’.

The TAP is theheart of the transportationplanningprocedures like network designprob-
lem and congestion pricing, because it is required to be solved so many times in order to
predict the flow pattern for combinations of alternatives. In practice, reducing the runtimes
of the TAP algorithms, even a few seconds,may decrease the planning time for a fewweeks
or months. Despite the fact that the first algorithm of the TAP was path-based (Dafermos
and Sparrow 1969), the link-based algorithms were in the center of attention before the
1990s because of their low memory requirements. LeBlanc, Morlok, and Pierskalla (1975)
applied the method of convex combination of Frank and Wolfe (1956), which led to the
most famous algorithm of the TAP. The Frank-Wolfe (FW) algorithm has been used in most
of the software packages for traffic assignment because of its simple implementation. This
is while it has a slow convergence rate and cannot gain precise solutions even after days.
Its poor performance is attributed to the severe zigzag movement that occurs close to the
optimal solution.Many researchers have attempted to enhance its performance bymodify-
ing its search direction (see Patriksson 1994, 102). Most recently, Mitradjieva and Lindberg
(2013) improved the FW directions by introducing the bi-conjugate FW (BFW) method and
Holmgren and Lindberg (2014) enhanced the FW performance by studying subproblem
updating in the FWmethod.

Although the link-based algorithms are mostly easy to implement and have modest
memory usage, they are not usually efficient and rapid enough. In addition, they do not
store the information of the active paths (i.e. the paths used by the travelers), which are
of considerable interest or importance to the transportation planners. On the other hand,
recent advances in computer science and advent of random access memories (RAM) with
larger storage capacities have opened theway for implementing path-based algorithms on
real-life networks. The main problem for carrying out the path-based algorithms on large
or even medium scale networks is that enumerating and storing the details of all the exist-
ing paths are almost impossible. The column generation technique is usually applied to
overcome this problem by letting the algorithms work with the set of active paths rather
than all paths existing in the network. Kumar, Peeta, and Nie (2012) investigated three
active path set update strategies: origin-destination (OD) based, origin based and simul-
taneous strategy. They showed that the simultaneous strategy, which updates the active
paths simultaneously for all ODpairs, is themost efficient strategy among them. In thepath-
based algorithms, the main problem is usually decomposed into subproblems in terms
of OD pairs. Accordingly, there are three possible strategies for updating link flows: All-
At-Once updates the link flows simultaneously after solving the subproblems of all OD
pairs, One-Origin-At-A-Time updates link flows once the subproblems having the same ori-
gin are solved and One-OD-At-A-Time updates link flows once the subproblem of each
OD pair is solved. Chen (2001) and Chen and Lee (1999) acclaimed that the last strategy
is very effective and can extremely accelerate the convergence speed of the path-based
algorithms.

Larsson and Patriksson (1992) presented the disaggregate simplicial decomposition
(DSD) algorithm, where in each iteration the TAP is replaced by a restrictedmaster problem
(RMP) defined in terms of the current shortest paths and those generated in the last itera-
tions. Alternately, the RMP is disaggregated by OD pairs, and the subproblem of each OD
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pair is solvedusinga combinationof the reducedgradient (RG)methodandanapproximate
Newtonmethod. Jayakrishnan et al. (1994) applied the gradient projection (GP) method of
Bertsekas (1976) to devise another a path-based algorithm, which moves flows from the
non-shortest paths to the shortest paths of the sameODpairs. They eliminated the demand
constraints and reformulated the objective function based on the non-shortest paths. Once
the non-shortest-path flows of an OD pair are found, the shortest-path flow of that OD pair
can be computed by subtracting its demand from the sum of the non-shortest-path flows.
Chen, Lee, and Jayakrishnan (2002) compared the performance of DSD and GP algorithms
on several test networks, and claimed that the GP algorithm was superior. Lee, Nie, and
Chen (2003) proposed a conjugate GP algorithm by calculating the Hessian matrix more
accurately. The path-based version of FW algorithm, called OD- based FW (ODBFW), was
developed by Chen, Jayakrishnan, and Tsai (2002). Utilizing the One-OD-At-A-Time flow
update strategy, it decomposes the TAP in terms of OD pairs and solves each subproblem
by the FW algorithm. Analogous to the algorithm proposed by Jayakrishnan et al. (1994),
the ODBFWmoves flows to the shortest paths from others. Florian, Constantin, and Florian
(2009) developed theprojectedgradient (PG) algorithmutilizingRosen’sGPmethod (Rosen
1960) to shift flowsof everyODpair from thepathswithhigher costs (i.e. higher travel times)
than the average to those with lower costs. The components of the search direction are set
equal to the difference between the path costs and the average cost of the same OD pair,
while the step size is found by doing a usual line search. Kumar and Peeta (2010) devel-
oped the slope basedmulti-path algorithm, which is inspired by the works of Jayakrishnan
et al. (1994) and Florian, Constantin, and Florian (2009); it shifts flows from the higher-cost
to the lower-cost paths like the latter, and uses a constant step length like the former.
Kumar and Peeta (2014a) introduced a slope-based algorithm, which shifts flows based
on the sensitivity of the path travel times with respect to path flows. Di Lorenzo, Galligari,
and Sciandrone (2015) proposed the inexact sequential minimal optimization algorithm
by adopting a decomposition-based approach and a column generation strategy, which
shifts the flow of the maximum cost path of each OD pair to one of their lower cost paths.
Javani and Babazadeh (2017) developed an algorithm which finds descent directions by
partially solving a sequence of quadratic programing (QP) subproblems in a truncated QP
(TQP) framework. The algorithm, called OD-based FW TQP (ODFWTQP), decomposes each
QP subproblem in OD pairs, and solves each subproblem by the FW method considering
only the active paths. Most recently, a path equilibration algorithm was designed by Galli-
gari and Sciandrone (2018), where in each iteration the flows of only two paths belonging
to each OD pair are adjusted using an inexact line search and an adaptive column genera-
tion technique. Bedsides, Xie, Nie, and Liu (2018) presented a greedy (GREEDY) path-based
algorithm in which a heuristic approach is utilized to solve the subproblem correspond-
ing to each OD pair. The line search is one of the most essential factors in the overall
efficiency of the TAP algorithms. Chen et al. (2013) invented a self-adaptive Armijo strat-
egy to find acceptable step sizes in TAP algorithms and analyzed the convergence rate
of FW, DSD and GP algorithms with this line search. Kumar and Peeta (2014b) proposed
strategies to improve the performance of path-based algorithms by enhancing the com-
putational efficiency of their shortest paths finding, path flows updating and link flows
and travel times updating stages. The convergence behavior and the numerical stability
of the path-based algorithms are investigated by Perederieieva et al. (2016) when pre-
cise solutions are required. Additionally, Babazadeh (2005) and Babazadeh and Aashtiani
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(2005) developed a path-based algorithm to solve themore challenging equilibrium transit
assignment problem for real-life networks.

The origin-based algorithms are another class of the TAP algorithms, first proposed by
Bar-Gera (2002). Their memory usage is lower than the path-based algorithms and can
have remarkable performances as shown so far. They are based on the fact that every
user travels on a bush rooted at his origin. A bush rooted at a node is an acyclic sub-
network (of the network) that includes at least one path from the node to every other
nodes. These algorithms iterate two main steps: bush reconstruction and equilibration
(Nie 2010). Equilibrating a bush (i.e. finding UE flow on the bush) is performed by shift-
ing flows between the links, as does in the origin-based (OBA) algorithm of Bar-Gera
(2002), or the paths on the bush, as does in the B algorithm of Dial (2006). Nie (2010)
performed comparisons among four variants of Newton-type origin-based algorithms.
Bar-Gera (2010) developed an origin-based algorithm by shifting flows between paired
alternative segments, which was named the traffic assignment by paired alternative seg-
ments (TAPAS) algorithm. Gentile (2014) proposed another origin-based algorithm, called
the local user equilibrium (LUCE) algorithm, which partitions the problem in terms of des-
tinations and finds an approximate solution for each destination by the linearization of
the travel time functions. Zheng (2015) introduced another new algorithm to the fam-
ily of origin-based algorithms. Also, Xie and Xie (2015) conducted an extensive numer-
ical and analytical investigation on the origin-based algorithms. Inoue and Maruyama
(2012) and Perederieieva et al. (2015) reviewed some of the TAP algorithms and compared
their rate of convergence in several test networks. Finally, Gentile (2016) compared dif-
ferent gradient projection algorithms applying them also to the case of dynamic traffic
assignment.

This paper is aimed to show the application of the RG method of Wolfe (1967) to the
solution of the TAP. There are also other contributions in this direction. Nguyen (1974)
devised an algorithm based on the link-node formulation of Beckmann’s model using the
convex simplex method of Zangwill (1969) that is a modification of the RG method. Flo-
rian and Nguyen (1974) used the RGmethod for finding the solution of the TAPwith elastic
demands. Larsson and Patriksson (1992) combined the RG method with an approximate
second order method to design a solution approach for the link-path formulation of the
TAP. Unfortunately, despite the excellent efficiency of the RG, its performance has never
been investigated on large scale networks. In this connection, a path-based RG algorithm is
developed by applying a column generation technique along with the One-OD-At-A-Time
flow update strategy and the simultaneous active path set update strategy. The algorithm
decomposes the problem in terms of OD pairs and solves each subproblem by the RG
method.

The numerical convergence of the RG algorithm is directly compared to the conven-
tional FW and the Bar-Gera’s OBA algorithms; as well as the newer ODFWTQP (Javani and
Babazadeh 2017) and GREEDY (Xie, Nie, and Liu 2018) algorithms. It is also compared
with the BFW (Mitradjieva and Lindberg 2013) and PG (Florian, Constantin, and Florian
2009) algorithms, using the software package Emme 4 (INRO 2017); and with the LUCE
algorithm (Gentile 2014), using the software package Visum16 (PTV 2016). In addition, indi-
rect comparisonwith algorithmB is performedbasedon the results given inDial (2006). The
networks of Philadelphia and Chicago are selected for the purposes of the research, and a
sensitivity analysis is conducted for assessing howdifferent choices of basic variables affect
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the convergence rate of the algorithm. The numerical results demonstrate performance
gain of the proposed algorithm.

The rest of this paper is organizedas follows. In thenext section, theTAP is formally stated
and itsmain properties are noted. The RGmethod is outlined and adapted to the TAP in the
subsequent section. Another section is devoted to present the numerical results, and the
summary and conclusions are provided in the final section.

TAPmodel

Let graph G = (N,A) represent the transportation network withN as the set of nodes and A
as the set of links. The Beckmann’s transformation of theUE condition (Beckmann,McGuire,
and Winsten 1956) is a nonlinear optimization problem with linear constraints, as follows:

Min
h

Z(x(h)) = ∑
a∈A

∫ xa
0 ta(v)dv

s.t.
∑
p∈Pi

hp = Di ∀i ∈ I

hp ≥ 0 ∀p ∈ Pi, i ∈ I
xa = ∑

i∈I

∑
p∈Pi

δaphp ∀a ∈ A

(1)

where
I = set of OD pairs with positive demands
Di = demand flow rate from the origin to the destination of OD pair i
Pi = set of paths from the origin node to the destination node of OD pair i
δap = 1 if link a lies on path p, and 0 otherwise
xa = flow on link a
hp = flow on path p

and ta(xa) : [0,∞) → [0,∞) is the travel time function of link a ∈ A. Considering x and h to
be the vectors of link and path flows, respectively, the last constraint of the problem can
be regarded as the vector-valued function x = x(h) with the components xa = xa(h) for
a ∈ A. The travel time on each path p is the sum of the travel times of the links lying on the
path, which is written as the function Tp(h) = ∑

a∈Ata(xa(h))δap. The optimization model
(1) assumes that the travel time of each link is a function of just the flow on that link, result-
ing that the Karush-Kuhn-Tucker (KKT) conditions of (1) are equivalent to theWardrop’s first
principle, and so every KKT point is a UE solution. Moreover, assuming that the travel time
functions ta(xa) are positive, non-decreasing and continuously differentiable (the travel
time function of a typical link on a real-life network has these features), the objective func-
tion of (1) is twice continuously differentiable and convex (Sheffi 1985). Interestingly, the
TAP comprises a separable and convex objective function with linear constraints, which
form a convex set of feasible solutions. Hence, convex optimization algorithms, like RG, are
well applicable to the problem.

RGmethod

The method of RG was originally proposed by Wolfe (1967) to solve nonlinear programing
problems with linear constraints. This method reduces the dimension of the problem by
dividing the variable set into basic and nonbasic subsets, and reformulating the problem
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based on the nonbasic variables. In this paper, we deal with problem (1), which is a mini-
mization problemwith both linear equality and nonnegativity constraints. In what follows,
we shortly describe a variation of the RG method for this special problem. Throughout the
paper, all vectors are column vectors, except that the gradient is considered to be a row
vector.

Consider the following minimization problem:

min
y

f (y)

s.t. Ay = b
y ≥ 0

(2)

where f is a continuously differentiable function on Rn, A is anm × nmatrix, and b is a vec-
tor of dimension m. Wolfe (1967) made the nondegeneracy assumption that matrix A has
rank m; and every feasible solution to the problem has at least m strictly positive compo-
nents and at most n − m zero components. At any iteration of the method, A is partitioned
into [B, N] and y into (yB, yN), where B is anm × m invertible matrix, and yB and yN are the
vector of basic and nonbasic variables with the dimensions of m and n − m, respectively.
Accordingly, the original problem (2) can be expressed as

min
y

f (yB, yN)

s.t. ByB + NyN = b
yB ≥ 0, yN ≥ 0.

(3)

The basic idea of the RG method is that for any specified yN the equality constraint of
problem (3) can be uniquely solved for yB as yB = B−1b − B−1N yN, and then the objective
function of the problem will be reduced to a function of yN only, whose gradient at given
point ȳ equals

rt = −∇Bf (ȳ)B
−1N + ∇Nf (ȳ) (4)

where∇B and∇N denote the gradients with respect to yB and yN, respectively, and rt is the
transpose of the (n − m) × 1 vector r = (rj), which is called the reduced gradient at ȳ.

Let ȳ be a feasible point of problem (3), and d = (dB, dN) be the RG direction partitioned
into vectors dB and dN corresponding to the basic and nonbasic variables, respectively. For
vector d to be a feasible descent direction it is required that (i) Ad = BdB + NdN = 0, (ii)
dj ≥ 0 for ȳj = 0, and (iii) ∇f (ȳ) d < 0. Condition (i) is equivalent to say that d should lie in
the null space of A, and obviously, condition (i) remains true if for any dN we let

dB = −B−1NdN. (5)

To satisfy conditions (ii) and (iii), dN = (dNj) is set equal to the negative of r, except that
the components dNj with rj > 0 and ȳj = 0 are held at zero. Wolfe (1972) showed by an
example that this method does not necessarily converge to a KKT point, but McCormick
(1970) presented a modified version as

dNj =
{

−rj if rj ≤ 0

−ȳjrj if rj > 0
(6)

which enables convergence (Bazaraa, Sherali, and Shetty 2006, 651). Notice that the direc-
tion d defined by (5) and (6) satisfies conditions (i) and (ii), and hence is a feasible direction.
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Furthermore, to verify condition (iii), we can use (4) to write

∇f (ȳ)d = ∇Bf (ȳ)dB + ∇Nf (ȳ)dN = (−∇Bf (ȳ)B
−1N + ∇Nf (ȳ))dN = rtdN (7)

which using (6) yields∇f (ȳ) d < 0 ifdN 	= 0. This shows the RGdirectiond is a descent direc-
tion if it has at least a nonzero component. In addition, Bazaraa, Sherali, and Shetty (2006,
604) proved that d = 0 (or equivalently, dN = 0) iff ȳ is a KKT point of the problem (2).

After the direction d is found, an improving solution is achieved by moving from ȳ
according to y = ȳ + α d, where α is the optimal step size along the direction. The step
size is determined by solving a one-dimensional line search problem of the form

min
α

f (ȳ + αd)

s.t. ȳ + αd ≥ 0 .
(8)

Finally, a solution is obtained that minimize f with respect to the current set of basic vari-
ables. Subsequently, the procedure is restarted with the choice of a new set of m basic
variables (requiring to be strictly positive), and iterates the same steps of direction finding
and line search until convergence.

Bazaraa, Sherali, and Shetty (2006, 610) proved that the above variant of the Wolfe’s RG
method converges to a KKT point whenever the m largest variables are chosen to be the
basic variables (ties are broken arbitrarily). A convergence rate analysis was also established
by Luenberger and Ye (2008, 387). They proved that themethod converges linearly and the
rate of convergence is strongly related to the choice of the basic variables.

Adaptation of RGmethod to TAP

The proposed algorithm follows a Gauss-Seidel decomposition scheme, in which the orig-
inal problem (1) is decomposed in terms of OD pairs, and the decomposed subproblems
are separately solvedby the above-describedRGmethod in a consecutivemanner. To avoid
path enumeration in large scale networks, the subproblemof eachODpair is formulated by
considering a restricted set of active paths (i.e. the paths having the potential to be used),
instead of requiring all paths joining the origin to the destination. This restricts each single-
OD assignment to the links lying on its own active paths. The algorithm initializes the active
path sets of the OD pairs, each comprising a single path, and updates them simultane-
ously per eachmajor iteration. A columngeneration technique is applied to generate active
paths, and the simultaneous strategy is applied to update the active path sets. Moreover,
the algorithm utilizes the One-OD-At-A-Time strategy for updating link flows and travel
times once a subproblem is solved.

Consider anODpair iwith active path set P+
i ⊂ Pi comprising n = |P+

i |paths connecting
the origin to the destination. Let h̄ be a feasible solution to problem (1) where h̄p = 0 for
p /∈ ∪i∈IP+

i , and xa(h) = ∑
i∈I

∑
p∈Piδaph̄p be the current flow on link a ∈ A. The restricted
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subproblem corresponding to active path set P+
i is rewritten as

min
(hp :p∈P+

i )

Zi(hp : p ∈ P+
i ) =

∑
a∈A

∫ xa(h̄)+
∑

p∈P+i
δap(hp−h̄p)

0
ta(v)dv

s.t.
∑
p∈P+

i

hp = Di

hp ≥ 0 ∀p ∈ P+
i

(9)

which is much smaller in size than if it was written for all the paths in Pi. This subproblem
can be stated in the general form of problem (2), considering that f = Zi, y = (hp : p ∈ P+

i ),
A = [1, . . . , 1]1×n and b is a positive scalar equal toDi. The algorithmpartitions y into a basic
vector yB = (hp′)1×1 and the nonbasic vector yN = (hp : p 	= p′)(n−1)×1. In other words, an
arbitrary path p′ ∈ P+

i ismade basic and the other paths in P+
i − {p′} are declared nonbasic.

Moreover, by dividing A into B = [1]1×1 and N = [1, . . . , 1]1×(n−1), the subproblem can be
expressed in the formof problem (3). Notice thatA is amatrix of rank 1, hence invertible, and
y has at least one component that is strictly positive. Consequently, Wolfe’s assumptions
hold true, and then the method of RG can be applied to obtain a feasible descent direction
d = (dp : p ∈ P+

i ) after the reduced gradient r = (rp : p ∈ P+
i − {p′}) is computed. It is to

note that computing the reduced gradient is not costly in our applications because our
results (see section ‘Numerical experiments’) show that the average number of active paths
in real case problems is of the order of 1.3 to 1.4 paths per OD pair.

To compute the reduced gradient vector, we first note that the gradient of the objective
functionZi atpoint h̄equals the vector of the current travel timeson theactivepaths, having
the components

∂Zi(h̄)

∂hp
=

∑
a∈A

∂Zi(h̄)

∂xa

∂xa(h̄)

∂hp
=

∑
a∈A

ta(xa(h̄))δap = Tp(h̄) = T̄p ∀p ∈ P+
i . (10)

It follows immediately that the gradients with respect to the basic and nonbasic variables
are

∇BZi(h̄) = (T̄p′)1×1 (11)

∇NZi(h̄) = (T̄p : p 	= p′)1×(n−1) (12)

and substituting these into (4) we obtain

rt = −∇BZi(h̄)B
−1N + ∇NZi(h̄) = (T̄p − T̄p′ : p 	= p′)1×(n−1). (13)

This shows the reduced gradient r is the vector of the travel times of the nonbasic paths
minus the travel time of the basic path, having the components

rp = T̄p − T̄p′ ∀p ∈ P+
i − { p′} . (14)

Using this in (6), the components of the RGdirection d corresponding to the nonbasic paths
are determined by

dp =
{ −(T̄p − T̄p′ ) if (T̄p − T̄p′ ) ≤ 0
−h̄p(T̄p − T̄p′ ) if (T̄p − T̄p′ ) > 0

∀p ∈ P+
i − { p′} (15)
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and then, by using (5), the component corresponding to the basic path is set equal to

dp′ = −
∑

p∈P+
i −{p′}

dp. (16)

Once the RG direction d is found, the optimal step length α ≥ 0 is found by minimizing
Zi(h̄p + αdp : p ∈ P+

i )with respect to α provided that hp = h̄p + αdp remains nonnegative
for all p ∈ P+

i . Note that how to choose the basic path is realized in the next section.
Theproposedalgorithmmakesuseof two iteration counts: outer (ormajor) and the inner

(or minor) iterations. At the start of each outer iteration, a shortest path based column gen-
eration method is used to update the active path set P+

i for each OD pair i. It is well-known
that solving the shortest path problems are computationally burdensome and consumes
most of the running times of the TAP algorithms. It therefore seems reasonable to bring all
the restricted subproblems (9) into equilibrium (with keeping the current active path sets
unchanged) before going to the next outer iteration. To do this, the algorithm performs a
number of inner iterations within each outer iteration to get a suitable level of precision
considering all OD pairs simultaneously. Each inner iteration involves scanning the OD list
while each single-OD subproblem is solved by RG iterations to a desired level of precision
(unless it is currently achieved). At the same time, the algorithm skips theODpairswith only
one path in their active path sets.

For eachODpair i, the precision of the corresponding subproblemat point h̄ ismeasured
using the restricted gap defined by

gapi =
∑
p∈P+

i

h̄pT̄p − Di min
p∈P+

i

(T̄p) (17)

which is the gap from the total travel time of OD pair i at the current solution to its desired
value occurring as if each user experienced the current shortest path among the paths in
the restricted set P+

i . The proposed stopping criterion for each subproblem is that gapi
becomes smaller than a fraction γ (say 0.1) of the average gap achieved at the last outer
iteration, which is defined as

AGap =
∑

i∈I Gapi
|I| (18)

where Gapi equals the distance between the total travel time of the travelers of OD pair i
and the total travel time of them as if they experienced the shortest path travel time on the
whole network. This is stated as

Gapi =
∑
p∈P+

i

hpTp − Diui ∀i ∈ I (19)

where h is the solution from the last outer iteration, Tp is the travel time on path p at solu-
tion h, and ui is the shortest path travel time of OD pair i as calculated at the beginning of
the current outer iteration. Based on our experiments, the performance of the algorithm is
markedly improved if the OD pairs with restricted gaps of less than, say, 10% of the average
gap are skipped. After visiting all OD pairs, the overall convergence of the inner iterations
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is checked using the relative average of the latest values of gapi for all i ∈ I, yielding the
restricted relative gap

rgap =
∑

i∈I gapi∑
i∈I

∑
p∈P+

i
h̄pT̄p

. (20)

This is compared against the relative gap

RGap =
∑

i∈I Gapi∑
i∈I

∑
p∈P+

i
hpTp

(21)

which is the relative average of the values ofGapi, i ∈ I, as calculated above. Note that RGap
is the same classical relative gap often used to measure the convergence rates of the TAP
algorithms, which is always a non-negative value approaching zero as the path flows get-
ting closer to the UE solution. Also, it is based on the shortest paths on the whole network
and so differs from rgap that is restricted to the active path set. Our experiments confirm
that the stopping criterion for inner iterations should become stricter as the algorithm
proceeds. Therefore, the inner iteration loop terminates and a new outer iteration starts
whenever rgap falls below RGapmultiplied by a given small ε, say 0.1, and divided by the
major iteration counter.

The steps of the proposed RG algorithm are as follows:

Step 0 (Initialization) Find an initial solution h by performing an all-or-nothing (AON) assign-
ment. For eachODpair i, form theactivepath setP+

i containing the shortest path found
for OD pair i through the AON assignment. Compute xa = ∑

i∈I
∑

p∈Pi +δaphp for all
a ∈ A. Set outer iteration counter k = 0.

Step 1 (Column generation) Update ta = ta(xa) for all a ∈ A, and calculate the shortest path
trees rootedatorigins. For eachODpair i: calculateTp = ∑

a∈Ata(xa) δap,∀p ∈ P+
i ; store

the shortest path travel time in ui; add the corresponding shortest path to P+
i (if not

included).
Step 2 (Outer iteration termination). Calculate Gapi using (19), ∀i ∈ I, and then RGap using

(21). If the target relative gap is achieved, stop. Otherwise, set k = k + 1, and calculate
AGap using (18) before going to Step 3.

Step 3 (Decomposition and subproblem solution) For each OD pair i: calculate T̄p =∑
a∈Ata(xa) δap and store hp in h̄p for all p ∈ P+

i ; calculate gapi using (17); if |P+
i | > 1,

repeat the following steps (at least once) until gapi < γ · AGap:
Step3.1 (Direction finding) Choose apathp′ ∈ P+

i as thebasic path. Construct direction
vector d = (dp : p ∈ P+

i ) according to (15) and (16).
Step 3.2 (Step size finding) Find α that solves⎧⎨

⎩min
α

Zi(h̄p + αd : p ∈ P+
i )

s.t. 0 ≤ α ≤ min{−h̄p/dp : dp < 0, p ∈ P+
i }

Step 3.3 (Movement and updating) For each path p ∈ P+
i , update hp = h̄p + αd, and

xa = xa + (hp − h̄p) δap for all a ∈ A lying on path p. Eliminate zero-flow paths
from P+

i . Calculate T̄p = ∑
a∈Ata(xa) δap and store hp in h̄p for all p ∈ P+

i . Calculate
gapi using (17).
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Step4 (Inner iteration termination) Calculate rgapusing (20). If rgap < ε · RGap/k go to Step
1; otherwise, repeat Step 3. �

Compared to the other state-of-the-art alternatives, the algorithm above offers compu-
tational advantages for the following reasons.

First, at each inner iteration (Step 3), the RG method is applied to solve a sequence
of OD-based subproblems in the form of (9). This is a nonlinear problem with n = |P+

i |
variables and n + 1 constraints (i.e. one linear equality constraint and n nonnegativity con-
straints). The main idea is to transform this subproblem into an equivalent problem with
only nonnegativity constraints, so that the theory and method of RG for such problem can
then be applied. To this end, a basic path p′ ∈ P+

i is chosen among the active paths con-
necting OD pair i and variable hp′ is expressed in terms of the nonbasic variables using
hp′ = Di −

∑
p	=p′hp. Substituting this into the objective function Zi leads to the equivalent

problem

min
(hp :p	=p′)

φi(hp : p 	= p′) =
∑
a∈A

∫ xa(h̄)+
∑

p	=p′ δap(hp−h̄p)+δap′ (Di−
∑

p	=p′ hp−h̄p′ )
0 ta(v)dv

s.t. hp ≥ 0 ∀p ∈ P+
i − {p′}

(22)

The function φi is a restriction of Zi onto the feasible region of the equality constraint of
subproblem (9), and then is a function of n − 1 variables. Not only has the main subprob-
lem replaced by an equivalent problem with one less variable, but also the number of
constraints has been reducedbyone aswell. The latter is a crucial factor, because our exper-
iments (presented in the subsequent section) demonstrate that in practice the number of
constraints of subproblem (9) is on average in the range of 2.1 to 2.2, and therefore remov-
ing one of them may have a desirable effect on the performance of the algorithm (notice
that this range is relevant to the OD pairs with two or more active paths, because those
with only one active path are skipped during the RG iterations). In addition, the reduced
gradient of Zi at h̄ can be viewed as the gradient of the reduced function φi evaluated at
(hp : p 	= p′). This is because using the chain rule gives the derivatives

∂φi

∂hp
=

∑
a∈A

ta(xa(h̄))δap −
∑
a∈A

ta(xa(h̄))δap′ = T̄p − T̄p′ ∀p ∈ P+
i − { p′} (23)

which are identical to those given in (14).
Second, many known TAP algorithms generate search directions based on the idea of

shifting flow from paths with higher travel times (i.e. costlier paths) to those with the lower
travel times (i.e. cheaper paths). These search directions are usually proportional to either
the path travel times or path flows; for instance, the search direction of the PG algorithm
(Florian, Constantin, and Florian 2009) is linked only to the path travel times, and that of
the ODBFW (Chen, Jayakrishnan, and Tsai 2002) only to the path flows. However, the RG
methoddescribed abovebenefits frombothpath travel times andpath flows in its direction
finding process. Considering the components of the direction computed in Step 3.1, using
(15) and (16), we can easily see that the RG algorithm yet shifts flow from costlier paths
(than the basic path p′) to cheaper paths; however, the rate of shifting from a costlier path
is proportional to not only the travel time but also the flow on the path. It seems reasonable
from a behavioral perspective because the tendency of a traveler to move from a costlier
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path will increase (decrease) as there are more (less) travelers on the path. This can also be
seen as a natural consequence of the UE condition of subproblem (9) which includes

hp[Tp(h) − Tp′(h)] = 0 if Tp(h) ≥ Tp′(h) (24)

(see Patriksson 1994, 126). In other words, the dependence of the shifting rate from a
costlier path p to the basic path p′ upon both h̄p and T̄p − T̄p′ can naturally speed up the
movement of solution toward satisfying the equilibrium condition.

Third, in Step 3.2, the algorithm attempts to find the step length α so as to minimize Zi
in direction d. The restriction α ≥ 0 is applied because d is a descent direction. However, if
dp < 0 for some active path p, a positive step along d may violate the nonnegativity con-
straints. Therefore, themaximum step length for which hp = h̄p + α dp remains feasible for
all p is obtained as

αmax = min

{
− h̄p
dp

: dp < 0, p ∈ P+
i

}
(25)

and combining this with (15) yields

αmax ≤ min

{
− 1

T̄p − T̄p′
: dp = h̄p(T̄p − T̄p′ ) < 0, p ∈ P+

i − { p′}

}
(26)

As a result, the step size α is prevented to be unduly small when h̄p is small for some non-
basic path p (see Bazaraa, Sherali, and Shetty 2006, 603), especially at the first iterations of
the algorithm where T̄p − T̄p′ is somewhat large. In addition, this feature prohibits the line
search interval to be unnecessarily large when h̄p is large and T̄p − T̄p′ is very small. This
happens at the last iterations where the solution gets closer to the optimum. It is worth
mentioning that unnecessary small step sizes will deteriorate the overall convergence of
the algorithm and excessive large search intervals will raise the computational burden,
especially for interval reduction methods like bisection.

It also should be noted that the RG direction is very easy to compute in Step 3.1 of the
proposed algorithm, because the information on the active paths are stored while they are
being processed during execution.

Numerical experiments

In this section, the RG algorithm is tested on the real-life networks of Philadelphia and
Chicago, and its performance is compared to someother competitive TAPalgorithms. Table
1 lists a summary of the main characteristics of these networks, including the number of
zones, nodes, links, and OD pairs, and the total number of trips. The detailed information
about the networks is provided from Bar-Gera’s website (Bar-Gera 2015) for the purposes
of the research.

A sensitivity analysis is performed to determine the effects of alternative choices of basic
path on the convergence rate of the RG algorithm. Besides, a direct comparison between
the RG algorithmand the algorithms of FW (LeBlanc,Morlok, and Pierskalla 1975), OBA (Bar-
Gera 2002), ODFWTQP (Javani and Babazadeh 2017) and GREEDY (Xie, Nie, and Liu 2018) is
made by looking at their relative performance. The RG, FW, ODFWTQP and GREEDY algo-
rithms are coded by the authors in C++ language (in Microsoft Visual Studio 2013) using
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the same programing framework where the algorithms share subroutines as many as pos-
sible. The executable code of theOBA algorithm is obtained from thewebpage of theOpen
Channel Foundation (2014), and compared to the mentioned algorithms for the same net-
works. All of these experiments are conducted on a PCwith a 3.4 GHZ Core i7 processor and
8 GB of RAM.

In addition, to have a better evaluation of the RG algorithm, it is directly compared
with the BFW algorithm (Mitradjieva and Lindberg 2013) and the PG algorithm (Florian,
Constantin, and Florian 2009) using the SOLA and the path-based traffic assignment mod-
ules included in the Emme 4 software (INRO 2017); and with LUCE algorithm (Gentile
2014) using the equilibrium assignment LUCE procedure developed in the Visum 16 soft-
ware (PTV 2016). These comparisons are made for the same test networks and using the
same computer as above. Furthermore, an indirect comparison between RG and B algo-
rithms is carried out on the Chicago network. In this experiment, the OBA algorithm is
used as the benchmark, because its performance against B algorithm is reported in Dial
(2006).

The bisection (Bolzano) method is used to compute the step size in Step 3.2 of the RG
algorithm. It initiates from the interval [0, αmax], where αmax is determined using (25), and
iteratively reduces the current interval by cutting it in half at each iteration. Themethodwill
stop after 35 cuts or whenever the following stopping criterion is satisfied:

|∇Zi(h̄ + αd)d| ≤ η|∇Zi(h̄)d| (27)

whereη is set to half the relative gap attained at the last outer iteration. Hence,moreprecise
line searches are performed as the algorithm iterates. The above criterion states that the
linesearch will be terminated if the absolute value of the gradient of Zi with respect to α at
current α is smaller than or equal to the absolute value of the gradient of Zi with respect to
α at α = 0 multiplied by the small value of η.

It is noteworthy tomention that both the parameters γ and ε used in Steps 3 and 4 of the
algorithm are set to 0.1. In addition, the iterative procedure of solving the problem at each
major iteration will be truncated after 100 minor iterations in case the stopping criterion in
Step 4 is not met. Also, in Step 3, each single-OD subproblemwill be solved at most 2 times
if the corresponding stopping criterion is not satisfied.

According to section ‘RG method’, the overall convergence rate of the RG algorithm
highly depends on the choice of the basic path among the active paths (between each OD
pair) in the direction finding step of the RG algorithm. Although the nonlinear program-
ing texts (e.g. Bazaraa, Sherali, and Shetty 2006, 605) suggest the basic variables should
be the largest ones, a sensitivity analysis is conducted by us to realize whether or not the
path with the highest flow tends to work better than the paths with less flows. There are
a number of candidate strategies that may be considered for choosing the basic path. It is
well-known that the TAP algorithms usually shift flows from paths with higher travel times

Table 1. Specifications of test networks.

Network
No. of
Zones

No. of
Nodes

No. of
Links

No. of OD
Pairs

Total No. of
Trips

Philadelphia 1525 13,389 40,003 1,151,166 18,503,872
Chicago 1790 12,982 39,018 3,136,441 1,360,428
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to those with lower travel times. Hence, the most sensible strategies would be choosing a
path whose travel time is the highest among the positive-flow paths or the lowest among
all paths. The former moves flows from the costliest path to other paths, while the latter
shifts flows to the cheapest path from others. Another strategy is choosing the path whose
travel time is closest to the average of the path travel times. This is inspired by the earlier
work of Florian, Constantin, and Florian (2009), and is based on the idea of shifting flows
from the paths with higher costs than the average to those with lower costs. Accordingly,
the RG algorithm is implemented on the test networks for each of the following path choice
strategies:

• Choosing a path with the largest flow (RG-hmax)
• Choosing a positive-flow path with the maximum travel time (RG-Tmax)
• Choosing a path with the minimum travel time (RG-Tmin)
• Choosing a positive-flow path with the travel time closest to the average (RG-Tmean).

Figures 1 and 2 compare the convergence rate of the RG algorithm by using each of the
above path choice strategies for the Philadelphia and Chicago test networks, respectively.
These figures tabulate the evolution of the relative gap with respect to the CPU time until
an RGap of 1.0E-14 is achieved. For Philadelphia, Figure 1 shows the RG-Tmin algorithm can
achieve an RGap of 1.0E-14 in 11.4 minutes. This significantly outperforms the RG-hmax
and RG-Tmax algorithms, which consumed respectively 15.9 and 17.3minutes, and the RG-
Tmean algorithm, which has the worst convergence rate. For the Chicago network, based
onFigure 2, theRG-Tmin algorithmperforms thebest for relativegapsdown to1.0E-9,while
at the smaller relative gaps the RG-hmax algorithm tends to dominate. However, their ulti-
mate performance are not markedly different, as they approach to RGap of 1.0E-14 in 24.1
and 25.7minutes, respectively. In comparison, less satisfaction is gained from the two other
algorithms, ofwhich the RG-Tmax demonstrates theworst performancewith about 33min-
utes CPU time needed to reach the target relative gap. Based on this sensitivity analysis,
the convergence rate of the RG algorithm ismainly related to how the basic path is chosen;
and it is overall the best when the lowest travel time path is selected. In effect, we choose
the path with the minimum travel time as the basic path in Step 3.1 of the RG algorithm
hereinafter.

In our implementation of the RG algorithm, the subproblem of each OD pair i is solved
(in Step 3) for 2 times, or until it reaches a restricted gap less than a fraction γ of the last
averagegap thatwas computed (i.e.gapi < γ · AGap). As a result, the smaller theparameter
γ , themore the subproblems are solved and themoreprecise the solutions are. A sensitivity
analysis is performed to explore the effect of changing the value of parameter γ on the
performance of the algorithm. Figure 3 illustrates the CPU time spent by the RG algorithm,
as a function of γ , to reach RGap of 1.0E-14 for the Philadelphia and Chicago test problems.
As can be seen, in both experiments, the CPU time fluctuates widely when γ varies in the
range of almost 0 to 1, hitting a low at γ = 0.1, but it rises sharply as γ increases beyond 1.
Therefore, the best performance is achieved when γ is set equal to 0.1.

Table 2 is prepared to show the computational details of the RG algorithm for the test
networks. To obtain an RGapof 1.0E-14, it performs 20 iterations in 683.5 seconds (11.4min-
utes) for Philadelphia and 30 iterations in 1540 seconds (25.7 minutes) for Chicago. In this
table the rows ‘CPU time of finding the shortest paths’ and ‘CPU time of updating the active
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Figure 1. Convergence rates of the RG algorithm with different choices of basic path for Philadelphia.

Figure 2. Convergence rates of the RG algorithm with different choices of basic path for Chicago.

path sets’ are corresponding to Step 1 of the RG algorithm. The former represents the CPU
time spent on solving the shortest path problems, and the latter presents the CPU time
spent on adding the shortest paths to the active path sets. The rows ‘CPU time of finding the
feasible directions’ and ‘CPU time of performing the line searches’ show the CPU times corre-
sponding to Steps 3.1 and3.2 of the algorithm, respectively. The former in addition contains
the CPU time to calculate path travel times throughout Step 3 regarded as necessary for
Step 3.1. Table 2 also illustrates the total memory used for storing path and link structures,
maximum number of active paths per OD pair, maximum number of arcs per active path,
the total number of active paths and the average number of active paths per OD pair in the
final solutions.
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Figure 3. Sensitivity to parameter γ on convergence of the RG algorithm to relative gap of 1.0E-14.

Table 2. Computational details of the RG algorithm to relative gap of 1.0E-14.

Network

Computational details Philadelphia Chicago

Total no. of iterations 20 30
Total CPU time (sec) 683.5 1540
CPU time of finding the shortest paths (sec) 120.7 135.1
CPU time of updating the active path sets (sec) 18.4 44.4
CPU time of finding the feasible directions (sec) 406.7 927.9
CPU time of performing the line searches (sec) 155.6 350.2
Total memory usage (MB) 491 868
Maximum no. of active paths per OD pair 11 11
Maximum no. of arcs per active path 234 183
Total no. of active paths in the final solution 1,591,567 2,904,338
Average no. of active paths per OD pair in the final solution 1.38 1.26
Average no. of active paths per OD pair in the final solution,

excluding OD pairs with just one active path
2.18 2.12

According to Table 2, the CPU time to solve the subproblems (consistingmainly of direc-
tion finding and line search) is about 82 percent of the total CPU time for Philadelphia, and
about 83 percent of that for Chicago. The CPU times of finding the RG directions and per-
forming the line searches for Chicago are about 2.3 times the Philadelphia’s. Table 2 also
reveals that themaximumnumber of arcs per path for Philadelphia is greater than Chicago,
providing an insight about the lengths of the longest paths on these networks. In effect,
solving the shortest path problems for Philadelphia is more burdensome than Chicago. As
can be seen in the table, the total CPU time required to solve the shortest path problems for
Philadelphia is about 0.9 times that for Chicago, however, the average CPU time for finding
the shortest paths per iteration is 6.04 seconds for Philadelphia and4.5 seconds for Chicago.
Table 2 also shows themaximumnumber of active paths per ODpair (observed during run-
ning the code) equals 11 for both Philadelphia and Chicago. Moreover, the total number of
active paths in the final solution of Chicago is about twice that of Philadelphia. More active
paths causes larger memory usage and longer CPU time for storing and updating the path
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Table 3. Details of the line searches used by the RG algorithm to relative gap of 1.0E-14.

Network
Outer

iteration(s)
Total number
of line searches

Average
step size

Percentage of time
maximum step size

is optimum

Philadelphia First 140,238 0.38 98.89
Last 2,532,216 4.13E6 0.0002
All 14,571,560 7.43E5 10.34

Chicago First 149,771 0.42 99.53
Last 3,142,543 2.47E8 0.0012
All 36,737,155 2.39E7 7.63

information. Finally, the results of Table 2 indicate that the average number of active paths
in the final solutions of the test networks is of the order of 1.3 to 1.4 paths per OD pair, and
is about 2.1 to 2.2 paths per ODpair when theODpairs withmore than one path are consid-
ered. It is to note that in Step 3.3 of the RG algorithm, the paths which carry positive flows
smaller than 1.0E-13 are eliminated from the active path sets.

In another experiment, we investigate how large optimal step lengths found by the
algorithm (in Step 3.2) are and how often the maximum step lengths calculated by (25) are
also the optimal ones. Table 3 provides additional results of the line searches performed on
the test problems. As can be seen, there are a total of over 14 million line searches carried
out in the case of Philadelphia and over 36 million in the case of Chicago. Comparing the
first and the last outer iterations, in both instances, the number of line searches per itera-
tion grows sharply as the algorithm comes close to the solution. For Philadelphia, there are
140,238 cases solved in the first iteration and 2,532,216 solved in the last iteration; and for
Chicago, there are149,771and3,142,543of suchcases, respectively. Theaverageof the step
sizes computed in the first iteration is 0.38 for Philadelphia and 0.42 for Chicago. However,
the step size values substantially increase as the iteration number rises, because the travel
times of the active paths become closer and so the norms of search directions decrease.
Moreover, we know that the bisection method searches an interval between zero and the
maximum allowed step size to find an optimal step size for each subproblem. Based on the
results given in the last column of Table 3, in both networks, the maximum step sizes are
also the optimal ones above 99% of the time in the first iteration; but this is not the case
almost all the time in the last iteration.

The performances of RG, FW, OBA, ODFWTQP and GREEDY algorithms for Philadelphia
are compared in Figure 4, verifying the superiority of the RG algorithmover all others.While
FW is not capable of reaching an RGap of 1.0E-5 even after two hours (and about 1100 iter-
ations) and OBA cannot attain an RGap of 1.0E-7 in the same duration, the RG algorithm
reaches an RGap of 1.0E-14 in 11.4 minutes. It also outperforms the ODFWTQP algorithm,
especially seeing that ODFWTQP cannot gain an RGap of 1.0E-9 after a running time of two
hours (and about 1000 iterations). The figure also demonstrates that the RG algorithm is
superior to the GREEDY algorithm for relative gaps down to 1.0E-14.

Figure 5 shows the evolution of RGap with respect to CPU time during the iterations of
the algorithms RG, FW, OBA, ODFWTQP and GREEDY for Chicago. The RG algorithm strictly
outperforms the other ones and is able to achieve an RGap of 1.0E-14 in 25.7 minutes. The
FW algorithm cannot obtain an RGap of 1.0E-5 even after three hours (and 2500 iterations),
and theOBAalgorithmcannot reachanRGapof 1.0E-7 in the same lengthof time.Also, anal-
ogous to the results given above for Philadelphia, the asymptotic behavior of theODFWTQP
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Figure 4. Convergence rates of algorithms FW, OBA, ODFWTQP, GREEDY and RG for Philadelphia.

algorithm occurs for relative gaps less than 1.0E-8, so that it is not capable of gaining an
RGap of 1.0E-10 even after three hours (and about 1500 iterations). The figure also reveals
the ability of theGREEDYalgorithmtoattain the target relativegap in37.3minutes,whereas
the RG algorithm makes the same progress about 12 minutes earlier. The RG and GREEDY
algorithms are similar as they both apply the column generation technique, the One-OD-
At-A-Time flow update strategy and the simultaneous active path set update strategy; and
both decompose the problem in terms of ODpairs. However, themajor difference between
these two algorithms lies in how they solve the decomposed subproblems. The GREEDY
algorithm approximates each subproblem by a quadratic problem using the second-order
Taylor expansion, and then solves the KKT conditions of each quadratic approximation in a
greedy way, without any line search. This is obviously unlike the RG algorithm, which relies
on the first-order approximation and performs the line search as well. It is worth mention-
ing that Xie, Nie, and Liu (2018) claimed theGREEDY algorithmoutperforms thebush-based
algorithms such as TAPAS by a broad margin for Philadelphia and Chicago. Consequently,
given our numerical results, RG is at least comparable to the state-of-the-art bush-based
algorithms like TAPAS.

An experiment is conducted here to investigate the performance of the RG algorithm
against other recently proposed TAP algorithms coded within well-known software pack-
ages. With regard to this, the SOLA1 and the path-based traffic assignment modules of
Emme 4 software (INRO 2017) are used to apply the BFW and the PG algorithms, respec-
tively, to solve the Philadelphia and Chicago test problems. Further, to make a comparison
with an origin-based algorithm, the equilibrium assignment LUCE procedure of Visum 16
software (PTV 2016) is applied to the test networks. In this experiment, again, the relative
gap of 1.0E-14 is considered as the target precision, although the assignment algorithms
embedded in Emme cannot attain relative gaps below 1.0E-7.2

Figure 6 compares the convergence rates of the BFW (Emme 4), PG (Emme 4), LUCE
(Visum 16) and RG algorithms for the Philadelphia test problem. The figure demonstrates
that RG is marginally more efficient than LUCE for relative gaps larger than 1.0E-8, whereas
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Figure 5. Convergence rates of algorithms FW, OBA, ODFWTQP, GREEDY and RG for Chicago.

Figure 6. Convergence rates of algorithms BFW, PG, LUCE and RG for Philadelphia.

is strictly more efficient than it for smaller relative gaps. The RG algorithm gains an RGap of
1.0E-14 in about 11.4minutes, whereas the asymptotic behavior of LUCE occurring after the
relative gap of 1.0E-10 makes it unable to reach an RGap of 1.0E-11 even after 45 minutes
and 223 iterations. Figure 6 also shows that RG clearly wins PG for relative gaps down to
1.0E-7 in the Philadelphia problem. According to this figure, RG achieves an RGap of 1.0E-7
in 3.73 minutes and after 14 iterations, while PG does the same in 30.38 minutes and after
245 iterations and BFW is unable to do the same even after 45minutes and 6000 iterations.
The results imply that, to reach an RGap of 1.0E-7, RG requires about 88 percent less CPU
time (i.e. works about 8 times faster) than does PG for Philadelphia.

Figure 7 is prepared to compare the computational efforts required by the algorithms
BFW, PG, LUCE and RG to reach RGap of 1.0E-14 for the Chicago problem. According to
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Figure 7. Convergence rates of algorithms BFW, PG, LUCE and RG for Chicago.

Table 4. Relative CPU times of algorithms OBA, B and RG to rela-
tive gap of 1.0E-4 for Chicago.

OBA B RG

1 0.171 0.041

this figure, BFW and LUCE are slightly faster than RG for relative gaps greater than 1.0E-
4; however, RG absolutely outperforms them for smaller relative gaps. The RG algorithm
gains the target relative gap in 25.7 minutes, but LUCE cannot reach even an RGap of 1.0E-
9 after one hour and 230 iterations. As also illustrated in Figure 7, the algorithms RG and
PG reach an RGap of 1.0E-7 in 4.75 minutes (and after 18 iterations) and in 51.80 minutes
(and after 270 iterations), respectively, while the BFW cannot attain the same relative gap
in one hour (and after 6000 iterations). Based on the results, the RG algorithm needs about
91 percent less CPU time (i.e. is about 11 times faster) than PG to gain an RGap of 1.0E-7
for Chicago.

In addition, an indirect comparison with the algorithm B is performed for the Chicago
problem, based on the results given in Dial (2006). He compared the CPU times needed by
the algorithms B and OBA on the same computer for Chicago, showing that B achieved an
RGap of 1.0E-4 in 30minutes while OBA reached it in 175minutes. These results can help us
compare RGwith algorithmBusing theOBA code available on Bar-Gera’s website (Bar-Gera
2015) as the benchmark. On our computer (a 3.4 GHZ Core i7 processor and 8 GB of RAM),
the algorithms RG and OBA gain an RGap of 1.0E-4 in 2.08 and 51.1 minutes, respectively.
Table 4 represents the relative CPU times of the algorithms B and RG versus the OBA, after
the CPU times of OBA for our run and Dial’s were normalized to 1. According to this table,
the proposed RG algorithm works about 4.2 times faster than algorithm B.

The above experiments disclose that the RG method can successfully deal with the
OD-based subproblems (9) within Step 3 of the proposed RG algorithm (our experiments
involved subproblems with up to 11 path variables). However, readers may wish to know
how fast the RGmethod is in comparison to commercial solvers. It is to note that linking an
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Table 5. CPU times of RG method and GAMS/CONOPT for single-OD subproblems.

CPU time over 10,000 runs (sec)

Network
Subproblem

no.
No. of active

paths
Target

restricted gap RG method GAMS/CONOPT

Philadelphia 1 2 1.9E-4 0.003 53.9
2 5 8.8E-6 0.008 146.1
3 10 5.0E-8 0.106 235.2

Chicago 4 2 2.3E-3 0.002 52.6
5 5 4.8E-5 0.009 151.3
6 10 3.1E-8 0.063 217.8

external solver with themain C++ code of the proposed algorithm is themost crucial issue
for applying such a solver, because extra subroutines should be coded in order to exchange
data between the solver and the code. Instead, we compare the computational efficiency
of the RGmethod for solving the subproblems only (instead of the entire problem) against
the CONOPT solver of GAMS optimization package (GAMS 2018), a powerful commercial
solver for nonlinear programing problems. To this end, three subproblems involving 2, 5
and 10 active paths are selected randomly among all those encountered during the pre-
vious runs of the RG algorithm for Philadelphia, and the same is performed for the case of
Chicago. Each subproblem is solvedbyRG iterations (i.e. iteratingSteps 3.1, 3.2 and3.3with-
out eliminating the zero-flowpaths) aswell as by GAMS/CONOPT (usingGAMSC++API) to
a target restricted gap gapi set to themaximal precision that GAMS can achieve,3 and each
run is repeated 10,000 times in order to ease the comparisonof the running times (the times
spent on constructing GAMS input files are excluded). Table 5 reports the performances of
the RGmethod andGAMS/CONOPTon the six selected subproblems, run on the same com-
puter as before. It is readily noticeable in the table that the RGmethod outperforms GAMS
significantly.

Summary and conclusions

A variant of the reduced gradient (RG) method of Wolfe was used to develop a fast conver-
gence path-based algorithm for the static traffic assignment problem (TAP). The algorithm
decomposes the problem in terms of origin-destination (OD) pairs, and solves each sub-
problemby the RGmethod after applying a columngeneration technique and theOne-OD-
At-A-Time flow update strategy. The real-life networks of Philadelphia and Chicago were
selected for the purposes of the research, and a sensitivity analysis was conducted on them
to realize the best strategy for choosing a basic path for each OD pair in the direction find-
ing step of the algorithm. The results show that better performance is achievedwhen using
the path with the minimum travel time as the basic path.

The performance of the suggested RG algorithm was investigated on the test net-
works by showing that it can reach a relative gap of 1.0E-14 in reasonable CPU times.
The algorithm was directly compared to the conventional Frank and Wolfe (FW) and the
well-known origin-based (OBA) algorithms; the commercial versions of the local user cost
equilibrium (LUCE), the bi-conjugate FW (BFW) and the projected gradient (PG) algorithms;
the more recent OD-based truncated quadratic programing (ODFWTQP) algorithm; and
a newly developed greedy (GREEDY) algorithm; and indirectly compared to algorithm B
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as well. The results of these comparisons elucidated that the algorithm is highly efficient,
especially when very precise solutions are required.

Over the past two decades, more than 20 papers have been published on the compari-
son of the performance of the existing TAP algorithms (see the papersmentioned in section
‘Introduction’). Although the results of these studies cannot be used to draw a definitive
conclusion on the fastest or themost efficient algorithm (mostly because of using different
programing skills and computers), each of which gives us valuable insights into this area.
The test problems of Philadelphia and Chicago have been often used in these experiments,
and the RGap is the most usedmeasure for assessing the convergence of the algorithms. A
review of these studies indicates our results are consistent with theirs in light of the follow-
ing insights. First of all, it canbe seen that the FWalgorithm is still of interest as a benchmark
for comparison purposes, although it is much slower than the newer TAP algorithms. It has
been also frequently reported that OBA is faster than FW and can reach RGap of 1.0E-7
in reasonable CPU times for Philadelphia and Chicago. The performance of BFW, PG, GP
and LUCE have been examined by a number of researchers who reported that these algo-
rithms outperform OBA and are capable of reaching the RGap values of about1.0E-8 for
large scale networks. Moreover, the algorithms B, TAPAS and GREEDY have been reported
able to achieve very high levels of precision, i.e. the RGap values of 1.0E-12 to 1.0E-14, for
Philadelphia and Chicago in acceptable CPU times.

Another point that should be addressed is what differences exist between the devel-
oped RG algorithm in this paper and the DSD algorithm of Larsson and Patriksson (1992).
The DSD algorithm applies a scaled version of the same RG method we applied but to an
extreme point formulation of subproblems (9), although the directions produced are the
same when normalized (provided that the same basic paths are chosen). However, unlike
the RG algorithm, the DSD algorithm does not include dropping the active paths with zero
flows, and also chooses path with the maximum flow (out of the paths belonging to each
OD pair) as the basic path. Moreover, at eachmain iteration, it performs a line search simul-
taneously for all OD pairs over total link flow variables, which is well-known to be inefficient
compared to the line searches performed individually for each OD pair. Furthermore, Lars-
son and Patriksson (1992) reported that their DSD algorithm cannot gain precise solutions
unless a second order method is used in place of the RG after the convergence rate of the
algorithm has become very small. The network of Barcelona (consisting of 1020 nodes,
2525 arcs and 7029 OD pairs) is the largest-size problem they solved, resulted in a solu-
tion with a relative error of about 1.0E-2. After all, our suggested RG algorithm controls
the convergence of the subproblems, both individually and as a whole, using speed-up
techniques.

It is well-known that TAP algorithms that can reach higher precise solutions in less CPU
times make the transportation planning results more reliable and stable. Many of these
algorithms (like the suggested RG) make use of the first derivatives (or an approximation
of the Hessianmatrix) of the objective function of subproblems (9) in their direction finding
procedure, providing at most a linear rate of convergence. This is while a superlinear rate
of convergence is obtainable by using the second order information. An attempt on this
issue is the ODFWTQP algorithm by Javani and Babazadeh (2017), where the search direc-
tion is obtained by partially solving the quadratic programing (QP) approximations of the
subproblems using the FW algorithm. They suggested that the overall convergence rate
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of their algorithm is related to the efficiency of the method used to solve the QP subprob-
lems, and will be expectedly enhanced by using more powerful methods than FW. In this
regard, the authors plan to apply the suggested RG algorithm within the QP algorithmic
framework.

Notes

1. We run SOLA with 8 threads available to us on our PC. Using more threads (e.g. 20 threads) may
speed up the algorithm but will use more memory.

2. If a smaller value is specified in Emme’s SOLA and path-based traffic assignment modules, it will
be converted automatically to 1.0E-7.

3. GAMS only prints up to 8 decimals on the output file.
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