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We introduce a standardized procedure for benchmarking shock-capturing schemes which 
is intended to go beyond traditional case-by-case analysis, by setting objective metrics for 
cross-comparison of flow solvers. The main idea is that use of shock-capturing schemes 
yields both distributed errors associated with propagation of wave-like disturbances 
in smooth flow regions, and localized errors at shocks where nonlinear numerical 
mechanisms are most active. Our standardized error evaluation framework relies on 
previous methods of analysis for the propagation error with associated cost/error mapping, 
and on novel analysis of the shock-capturing error based on a model scalar problem. 
Amplitude and phase errors are identified for a number of classical shock-capturing 
schemes with different order of accuracy. Whereas all schemes are found to be, as 
expected, first-order accurate at shocks, quantitative differences are found to be significant, 
and we find that certain schemes in wide use (e.g. high-order WENO schemes) may yield 
substantial over-amplification of incoming disturbances at shocks. Illustrative calculations 
are also shown for the 1D Euler equations, which support sufficient generality of the 
analysis, although nonlinearity suggests caution in straightforward extrapolation to other 
flow cases.

© 2018 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Computational fluid dynamics has undergone tremendous development as a discipline for several decades [1]. Complex 
structures as vortices, waves and shocks must be accurately resolved in the study of turbulent compressible flows. For that 
purpose, linear, central-difference approximations are ideal candidates as they yield minimal numerical diffusion and they 
are computationally efficient [2]. High-order central discretizations are in fact typically used in direct numerical simula-
tion and large-eddy simulation of turbulent flows, as well as in computational aeroacoustics. However, it is known that 
for problems involving discontinuities like shocks or material interfaces, high-order central schemes inevitably introduce 
high-frequency oscillations whose amplitude does not decrease as the grid is refined (Gibbs phenomenon), which is usually 
unacceptable if accuracy is required [3].

Several alternatives are available to circumvent the failure of central schemes at shocks, most of which fall in the class 
of ‘shock-capturing’ schemes, whose main idea [4,5], is to activate (or enhance) numerical diffusion locally around discon-
tinuities so as to prevent (or at least limit) the onset of Gibbs oscillations and stabilize computations. Many successful 
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shock-capturing algorithms have been proposed over the years, a few representative classes being: i) total variation di-
minishing (TVD) schemes [6], which rely on the use of flux or slope limiters to numerically enforce the condition of 
non-increase of the total variation in time, thus achieving oscillation-free solutions, however at the price of reduced or-
der of accuracy at extrema; ii) essentially non-oscillatory (ENO) schemes [7], in which uniform high-order accuracy is 
achieved through the use of adaptive stencils to minimize the likelihood of crossing discontinuities; iii) weighted essentially 
non-oscillatory (WENO) schemes [8], which rely on convex combination of reconstructions carried out over many candi-
date stencils, with weights depending on the local smoothness of the solution on each stencil; iv) monotonicity-preserving 
(MP) schemes [9], which numerically enforce the condition of monotonicity preservation through the use of limiters, thus 
achieving uniformly high order of accuracy. Combinations of the above methods have also been sometimes used, for in-
stance monotonicity-preserving WENO (MPWENO) schemes were developed by Balsara and Shu [10] to incorporate the MP 
property in classical WENO schemes. As previously noted, shock-capturing schemes are suboptimal for computing turbulent 
flows and for aeroacoustics applications, since inherent numerical diffusion causes damping of propagating waves. Hence, 
several efforts have been spent in recent years to alleviate these shortcomings. Some attempts fall in the class of hybrid 
methods [11,3], whereby shock sensors are used to locally apply shock-capturing schemes around shocks, or in the class of 
optimized methods, which are rather based on the attempt to modify the stencils, coefficients and/or weights of existing 
schemes, mainly WENO [12,13]. Ramifications of the shock-capturing idea are too disparate to be fully quoted here.

Evaluating the performance of shock-capturing schemes should account for several properties. First, their wave propaga-
tion properties in smooth flow regions should be addressed. Pirozzoli [14] quantified the leading-order effects of nonlinear 
mechanisms underlying shock-capturing schemes on the solution behavior in wavenumber space and introduced an empiri-
cal dispersion relation (EDR), which relies on numerical testing of individual sinusoidal waveforms with different wavenum-
bers. Although the EDR may provide a general indication about numerical dispersion and diffusion properties of nonlinear 
schemes when applied to smooth solutions, it does not account for the concurrent presence of a wide range of scales in 
realistic flow fields. Hence, such effects as nonlinear interaction of modes and mode generation due to nonlinearities are 
disregarded. A more general nonlinear spectral analysis (NSA) was proposed by Fauconnier and Dick [15,16], whereby a 
prescribed energy spectrum is assumed for the numerical solution, with randomly selected phases. The empirical dispersion 
relation is then extracted for each initial field, and averaged over many realizations to achieve a statistically meaningful 
ensemble, thus allowing to characterize numerical dispersion and diffusion in wavenumber space. Comparison of the NSA 
results with EDR showed significant differences, and revealed that nonlinearity does affect the actual behavior of the mean 
modified wavenumber. A second essential property of numerical schemes is their cost/error balance. Although often dis-
regarded, this property is of special importance in large-scale computations, in which one is constrained by the available 
computer time. A third property of obvious importance is the behavior of shock-capturing schemes at shocks. In this re-
spect, it is well known that accuracy of any shock-capturing scheme degrades to first order downstream of shocks [17–19], 
mainly because locally O (h) numerical viscosity must be injected to stabilize shock computations. Methods to remove first-
order errors at shocks were discussed by Kreiss et al. [20], but these are difficult to apply to practical problems. Possible 
alternatives include the use of front tracking techniques, which by the way faces substantial problems in complex flows [21].

It is a commonly followed procedure to evaluate the properties of shock-capturing schemes on a case-by-case basis, and 
most frequently from visual comparison of numerical solutions, rather than quantitative data evaluation. In an attempt to 
achieve greater generality and possibly lay down a standardized basis for comparison, we herein present a unified frame-
work, which includes existing tools for spectral analysis and cost/error balance evaluation, as well as a novel standardized 
procedure for evaluating numerical errors locally arising at shocks. The tools of analysis are presented in the forthcoming 
Section 2, and results of the evaluation of various schemes are presented in Section 3. Concluding remarks are given in 
Section 4.

2. Error analysis

In the present Section we identify suitable error metrics for the systematic characterization of shock-capturing schemes. 
In general terms, we stipulate that errors fall into two main categories: i) the propagation error associated with advection 
of disturbances, which is spatially distributed, and which accumulates in time; ii) the shock-capturing error, associated with 
nonlinear behavior of shock-capturing schemes at jumps, which is larger in magnitude, but concentrated in space. In the 
following, we briefly outline the analysis of the propagation error developed by Pirozzoli [14], which is also instrumental 
for the systematic evaluation of the computational efficiency, and then introduce a novel strategy for quantitative evaluation 
of the shock-capturing error.

2.1. Propagation error

We model the propagation error based on the scalar linear advection equation in a periodic domain, considering 
monochromatic sinusoidal initial conditions with wavelength λ and wavenumber w = 2π/λ,

∂u + c
∂u = 0, u (x,0) = û0eiwx, (1)
∂t ∂x
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where c is the advection speed. A semi-discrete approximation of Eq. (1) on a mesh with uniform spacing h and nodes 
x j = jh, yields

dv j

dt
+ cD v j = 0, (2)

where v j (t) ≈ u 
(
x j, t

)
, and D denotes a general (linear or nonlinear) space derivative approximation. In the case of linear 

approximations of the type

D v j = 1

h

q∑
�=−p

a�v j+�, (3)

a modified wavenumber is generally introduced to characterize the numerical dispersion and diffusion introduced by nu-
merical discretization [22]

�(ϕ) = 1

i

q∑
�=−p

a�ei�ϕ, (4)

where ϕ = wh is the reduced wavenumber. Ideally, � ≡ ϕ .
For nonlinear approximations of the space derivative operator one can nevertheless introduce an EDR [14] by advancing 

the solution up to a very short time (say τ ), and Fourier transforming the numerical solution to obtain the numerical wave 
amplitude, corresponding to the reduced wavenumber ϕ , say v̂ (ϕ;τ ) for all supported modes, thus obtaining

�(ϕ) = − 1

iσ
log

(
v̂ (ϕ;τ )

û0 (ϕ)

)
, (5)

where σ = cτ/h � 1. Despite some limitations (discussed in the original reference), the resulting EDR accounts to leading 
order for the nonlinear effects embodied in shock-capturing schemes. Specifically, the dispersion error may be identified 
based on deviations of the real part of � from ϕ , and the diffusion error based on the imaginary part of �. Fuller control 
on the effect of nonlinearities, as well as account of the actual spectral content may be achieved through NSA [15,16], 
however EDR is retained in the present work for the sake of simplicity of implementation.

2.2. Computational efficiency

Based on the above given EDR, rigorous error metrics may be introduced for shock-capturing schemes. The analysis of 
broadband wave propagation of Colonius and Lele [2] and Pirozzoli [23] shows that, for disturbances with wavenumber 
range 0 ≤ w ≤ w̄ is

E (ϕ̄) = 1

ϕ̄
max

0≤ϕ≤ϕ̄
|�(ϕ)−ϕ| , (6)

where ϕ̄ = w̄h, hence it entirely depends on the EDR of the numerical scheme. In addition, assuming that time integration 
is performed by means of an explicit Runge–Kutta scheme at fixed Courant number σ = ck/h, the incurred computational 
cost is [2]

C ∼ μ

σϕ̄nD+1 , (7)

where nD is the number of spatial dimensions and μ is a (machine-dependent) measure of the scheme grind time, i.e. 
CPU time per grid point per time step. The EDR analysis given in the previous Section can thus be used to quantitatively 
characterize the computational efficiency of shock-schemes in terms of cost/error balance.

2.3. Shock-capturing error

In order to analyze the performance of finite-difference shock-capturing schemes we consider the scalar model problem 
introduced by Casper and Carpenter [17], consisting in the linear propagation of sinusoidal disturbances in a medium with 
abrupt change of the speed of sound. Specifically, Eq. (1) is considered with

c =
{

c1, x ≤ 0
c2, x > 0

, (8)

with c1 > c2 > 0. This inviscid model may be thought of as approximating the case of refraction of sound waves at the 
interface of solid media with different acoustic impedances. The characteristic lines enter the discontinuity standing at 
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Fig. 1. Sound wave refraction test case, with −2 ≤ x ≤ 2, w1 = 2π , ε = 0.1, c1 = 2, c2 = 1; xL and xR are upstream and downstream monitoring points 
close to discontinuity which is fixed at x = 0. v1(0) and v2(0) are, respectively, the extrapolated left and right states of the numerical solution across the 
shock. (a) global view, (b) local view.

x = 0 from the left and exit from right, thus making this problem a convenient simplified testbed to analyze shock-sound 
interaction problems. Considering incoming sinusoidal disturbances of amplitude ε1 = ε and wavenumber w1 upstream of 
the discontinuity, the following exact solution is found after an initial transient

u (x, t) =
{

u1 (x, t) = c2 + ε1eiw1(x−c1t), x ≤ 0
u2 (x, t) = c1 + ε2eiw2(x−c2t), x > 0

, (9)

where ε2 = εc1/c2, w2 = w1c1/c2, and which satisfies the Rankine–Hugoniot jump relations

c1u1 (0, t) = c2u2 (0, t) . (10)

The numerical solution is monitored at two points (see Fig. 1), one just upstream of the shock (xL ) and one downstream of 
it (xR , for which several choices will be considered), where the complex amplitudes of the numerical solution (say, v̂1(xL), 
v̂2(xR)) are estimated by Fourier-transforming the solution in time at the forcing frequency ω = w1c1. Assuming that the 
wave propagation error is negligible in the vicinity of the discontinuity, the complex wave amplitudes are then extrapolated 
at the shock location according to

v̂1(0) = v̂1(xL)e−iw1xL , v̂2(0) = v̂2(xR)eiw2xR , (11)

which may be interpreted as ‘left’ and ‘right’ shock states (see Fig. 1(b)). This allows to define a numerical transfer function 
for disturbances crossing the discontinuity

χ(w;ε, c1, c2) = v̂2(0)

v̂1(0)
. (12)

For reference, the transfer function for the exact solution given in Eqn. (9) has χ̃ = c1/c2, i.e. there is no phase delay, 
and the variation of the amplitude of the disturbance is independent of the incident wavenumber. Expressing χ in terms of 
modulus and phase, χ = |χ |eiθ , we then define an amplitude error

εA = |χ |
|χ̃ | − 1, (13)

gauging the over/undershoot of the numerical solution downstream of the shock as a fraction of the exact amplitude, and a 
phase error

εP = θ, (14)

representing the concentrated phase shift of the numerical solution occurring at the jump. The total numerical error down-
stream of the shock can be likewise defined as

εT =
∣∣v̂2(0) − χ̃ v̂1(0)

∣∣∣∣χ̃ v̂1(0)
∣∣ =

∣∣∣∣χχ̃ − 1

∣∣∣∣ . (15)
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Fig. 2. Empirical dispersion relation for various shock-capturing schemes. The real (a, b) and the imaginary (c, d) parts of the modified wavenumber � are 
related to numerical phase speed and to numerical diffusion, respectively. (a, c): global view, (b, d): local view.

3. Performance of common shock-capturing schemes

For illustrative purposes, in this study we consider a limited number of representative shock-capturing schemes, in-
cluding: (i) first order upwind scheme (UW1); (ii) second-order TVD schemes of the type developed by Osher and 
Chakravarthy [6], with minmod (MM) and superbee (SB) flux limiters; (iii) schemes of the ENO class [7], with formal 
order of accuracy of three (ENO3) and five (ENO5); (iv) schemes of the WENO class [8], with formal order of accuracy 
of three (WENO3), five (WENO5) and seven (WENO7); (v) the monotonicity-preserving scheme of Suresh and Huynh [9], 
with fifth-order accuracy (MP5); (vi) monotonicity-preserving weighted essentially non-oscillatory schemes of Balsara and 
Shu [10], with formal order of accuracy of five (MPWENO5), and seven (MPWENO7). For an extensive review of the prop-
erties of WENO and MPWENO schemes, and for a compilation of weights and smoothness indicators, the reader is referred 
to Balsara and Shu [10]. We point out that, although results are here shown only for a limited number of schemes, the 
following analysis may be applied to any other scheme.

3.1. Empirical dispersion relation

The EDR resulting from the analysis developed in Section 2.1 are shown in Fig. 2, in terms of real and imaginary part 
of the modified wavenumber � defined in Eq. (5), again recalling that they are respectively associated with numerical 
phase speed and with numerical diffusion. Consistent with expectations, the figure shows that TVD schemes, which have 
relatively low order of accuracy, tend to depart quickly from the ideal behavior, injecting substantial numerical diffusion 
also to well-resolved waves. Interestingly, the analysis also indicates that the TVD-SB scheme has slightly negative numerical 
diffusion at low wavenumbers, where Im (�) > 0. This feature is associated with the well known squaring effect caused by 



G. Zhao et al. / Journal of Computational Physics 376 (2019) 924–936 929
Fig. 3. Estimated computational cost (Eq. (7)) as a function of target relative error (Eq. (6)) in one space dimension (nD = 1), for various shock-capturing 
schemes. The grind times used for the cost estimate are given in Table 1.

Table 1
Estimated CPU time per grid point per time step (grind time) for several shock-capturing schemes, normalized by the cost of the UW1 scheme.

UW1 TVD-MM TVD-SB ENO3 ENO5 WENO3 WENO5 WENO7 MP5 MPWENO5 MPWENO7

1 2.14 2.44 3.14 4.47 1.91 2.98 4.39 2.96 4.34 5.36

the superbee limiter, and which is compensated by the TVD nonlinear stability properties. ENO3 and ENO5 schemes exhibit 
good performance in terms of numerical dispersion, with strong numerical diffusion at high wavenumbers. For both of them 
the numerical phase speed exceeds the exact one up to ϕ ≈ 1.5. WENO schemes have poorer dispersive properties, and for 
instance WENO3 propagates waves around ϕ ≈ π at negative phase speed, but they inject less numerical diffusion in the 
marginally revolved waves range. As expected, the behavior of WENO schemes strongly depends on the order of accuracy, 
and for instance the WENO3 scheme has a similar behavior as TVD schemes. The MP5 scheme is probably optimal among all 
the tested schemes in terms of both dispersion and diffusion properties, showing a very regular behavior. MPWENO schemes 
yield improved behavior in terms of dispersion over WENO schemes with same order of accuracy, but they also yield larger 
numerical diffusion. A weak overshoot over the reference value is also observed for these schemes in the numerical wave 
speed at intermediate wavenumbers.

3.2. Computational efficiency

The results of the efficiency analysis carried out in Section 2.2 are reported in Fig. 3. For that purpose, following Colonius 
and Lele [2], cost/error maps are considered, whereby for any given maximum reduced wavenumber to be resolved (0 < ϕ ≤
π ), the required cost is estimated from Eqn. (7), and the incurred normalized error is estimated from Eqn. (6). Indicative 
computational cost figures have been obtained based on the measured CPU time for several one-dimensional computations, 
yielding the relative grind times reported in Table 1 to be used in Eqn. (7). In general terms, and as expected, all schemes 
exhibit increased computational cost for stricter error bounds, the scaling rate being dictated by the formal order of accuracy 
in the vanishing error limit. Despite their larger grind time, high-order schemes are found to require lower computational 
resources for given accuracy, as their performance in wavenumber space is better (recalling Fig. 2). This is especially true 
if greater accuracy is required, whereas classical second-order TVD schemes are competitive if relative errors of about 1%
are allowed. ENO schemes are found to be marginally more efficient than WENO schemes, for given order of accuracy, 
despite the extensive use of logical instructions. The MP5 scheme seems to be the optimal one within schemes with the 
same formal order of accuracy. However, introduction of the MP bounds in WENO schemes yields poorer computational 
performance, especially at large values of the relative error. This analysis may be instrumental to predict the practical 
performance of a given numerical scheme, or to compare different schemes in wave propagation problems, but we should 
recall again that the assumption of smooth solutions is used.

3.3. Shock-capturing error

The shock-capturing error of the shock-capturing schemes presented so far has been evaluated according to the guide-
lines outlined in Section 2.3. Numerical simulations of the model sound wave refraction test case have been carried out in 
the space interval −2 ≤ x ≤ 2, with the following baseline conditions, w1 = 2π , ε = 0.1, c1 = 2, c2 = 1, with downstream 
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Fig. 4. Sound wave refraction test case with the baseline conditions (w1 = 2π , ε = 0.1, c1 = 2, c2 = 1, −2 ≤ x ≤ 2) using WENO7 scheme on a sequence 
of progressively refined meshes (N is the number of grid points). (a) distribution of pointwise error; (b) spatially averaged error, alongside with reference 
trends.

diagnostic point at xR2 (see Fig. 1(b)). Several values of the mesh spacing have been considered to cover the range of re-
duced wavenumbers. Time integration is carried out by means of a third-order Runge–Kutta algorithm, at sufficiently low 
Courant number that the time stepping error is negligible. As well known [17], any shock-capturing scheme is first-order 
accurate downstream of shocks. This feature is clearly visible in Fig. 4, where we show the distribution of the local error for 
a numerical simulation carried out with the WENO7 scheme on a sequence of progressively refined meshes, and its spatial 
average on each side of the discontinuity. The expected h7 decay of the local error is observed upstream of the shock, 
but barely first-order decay is recovered downstream of it. Nevertheless, we find that different shock-capturing schemes 
have qualitatively different behavior at shocks. For illustrative purposes, in Fig. 5 we show numerical results obtained with 
various schemes, compared with the analytical solution given in Eqn. (9). Corresponding to the selected number of points 
(N = 50), the reduced wavenumber upstream of the shock is ϕ1 = w1h ≈ 0.5, and downstream of it ϕ2 = w2h ≈ 1. Un-
der these conditions significant wave propagation error is noticeable already upstream of the shock, where higher-order 
schemes clearly show less numerical diffusion. Downstream of the shock high-order schemes show clear phase delay, ap-
parently introduced locally at the shock position, and attenuation associated with propagation error, which seems to be less 
for MP-limited schemes and high-order WENO schemes. Focusing on the near-shock region, it further appears that certain 
schemes, namely ENO5, WENO5, WENO7 even overshoot the analytical solution downstream of it, thus locally exhibiting 
anti-diffusive behavior. The general conclusion which can be drawn from the figure is that the overall performance of nu-
merical schemes in shock/wave interactions is dictated by the concurrent effect of wave propagation and shock-capturing 
errors.

A spectral representation of the amplitude and phase errors for the various schemes is provided in Fig. 6, where εA , 
εP , εT defined in Eqns. (13), (14), (15) are depicted as a function of the reduced wavenumber past the shock. As also 
confirmed by log-log representation (not shown), we find the amplitude error to scale quadratically for small ϕ2 for all 
the schemes here considered, except for TVD-SB and MP5, which only exhibit linear convergence. The phase error is found 
to increase linearly at small ϕ2 for all schemes, hence it is dominant for well-resolved waves, and as a consequence the 
overall error downstream of the shock also scales linearly for ϕ2 → 0. Some unexpected behavior is observed in the spectral 
error distributions. Regarding the amplitude error, whereas most schemes have the expected behavior of low-pass filters 
and provide consistent damping mainly on the least resolved waves, some others are responsible for over-amplification 
of disturbances (associated with positive values of εA ), in a more or less extended range of wavenumbers. Specifically, 
this occurs around ϕ2 ≈ 0.4 for TVD and MP schemes, whereas even higher over-amplification is observed around ϕ2 ≈ 1
for high-order ENO and WENO schemes. The use of MP limiters in WENO schemes has the effect of suppressing any 
numerical overshoot, yielding consistent numerical wave damping. Regarding the phase error, a lagging behavior (positive 
εP ) is observed for all schemes for well-resolved waves, and phase lead is observed for marginally resolved ones, with 
MPWENO schemes showing the best performance, and the MP5 scheme delivering the poorest performance, after UW1. 
Finally, high-order ENO schemes tend to have a rather erratic behavior of the amplitude and phase errors. As previously 
pointed out, although all schemes are formally first-order accurate downstream of the shock, large differences exist in 
absolute terms. For well-resolved waves (say, ϕ2 � 0.8) MPWENO schemes have much smaller error than other schemes, 
which makes them good candidates for shock capturing. MP limiters alone introduce large errors, whereas all other schemes 
are in between. For more marginally resolved waves the overall error increases for all schemes, however MPWENO schemes 
retain some limited advantage.
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Fig. 5. Computed solutions for model sound wave refraction test case with the baseline conditions (w1 = 2π , ε = 0.1, c1 = 2, c2 = 1, −2 ≤ x ≤ 2), using 
N = 50 grid points (corresponding to ϕ2 ≈ 1), at t = 8.

In order to test the robustness of the shock-capturing error analysis carried out in this Section, in Fig. 7 we test the 
effect of changing several parameters for the model problem, namely the position of the monitoring point downstream of 
the shock, the ratio of the speed of sound across the shock, and the incoming wave amplitude. For illustrative purposes, 
only results obtained with WENO schemes are reported. Fig. 7(a–b) indicates that when the monitoring point is moved 
closer to the shock (xR = xR1 , see Fig. 1), the amplitude error slightly decreases because of reduced impact of the numerical 
propagation error. The effect on dispersion is even less evident, the main difference being stronger phase lead for ϕ2 > 1. 
Increasing the speed of sound ratio (see Fig. 7(c–d)), larger errors are generally found, with stronger damping of waves 
from WENO3, and even higher overshoot for WENO7 around ϕ2 = 1. The effect of increasing the amplitude of the incident 
wave to ε = 0.2 (see Fig. 7(e–f)) is again to exacerbate errors for WENO5 and WENO7 schemes, thus bringing to light 
their strongly nonlinear behavior, whereas WENO3 has nearly linear response in this respect. In general, we find that the 
qualitative conclusions of the spectral shock error analysis will not change when the controlling parameters of the model 
problem are varied, which gives confidence for the generality of the results herein reported.

3.4. Numerical tests for 1D Euler equations

To verify the practical validity of the analysis carried out for the linear model equation, we have further considered a 
case of shock/entropy wave interaction which is a slight variation of the classical Shu–Osher test case. The one-dimensional 
Euler equations are solved in the interval [−0.5, 10], with initial conditions

(ρ, u, p) =
{

(1 + 0.2 sin(5x), 3.54964, 1 ), x < 0
(3.85714 , 0.92028, 10.33333), x ≥ 0

, (16)
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Fig. 6. Spectral distribution of shock-capturing error for model sound wave refraction test case, as a function of downstream reduced wavenumber, under 
the baseline condition (w1 = 2π , ε = 0.1, c1 = 2, c2 = 1, downstream monitoring point at xR2 ). (a, c, e): global view, (b, d, f): local view.
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Fig. 7. Spectral distribution of shock-capturing error for model sound wave refraction test case, as a function of downstream reduced wavenumber, under 
the baseline condition (w1 = 2π , c2 = 1, −2 ≤ x ≤ 2). Effect of: position of downstream monitoring point (a-b), speed of sound ratio (c–d), and amplitude 
of incoming wave (e–f). (a, c, e): amplitude error, (b, d, f): phase error.
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Fig. 8. Computed density distributions for one-dimensional shock/entropy wave interaction test case ((a, c), global view, (b, d), local view). Numerical 
solutions are obtained for downstream reduced wavenumber ϕ2 = 0.4 (a, b), and ϕ2 = 0.925 (c, d). The solid lines denote the reference numerical solution.

modeling the interaction of a sine density wave with a steady shock located at x = 0. All simulations are carried out at 
CFL number of 0.6, and the Steger–Warming flux splitting is used for upwinding. The simulations have been conducted 
over a sufficiently long time interval that any initial transient has been washed away. Since no exact solution exists for this 
problem, a reference numerical solution has been preliminarily fabricated with the WENO3 scheme using 12800 grid points. 
Fig. 8 shows the density distributions obtained with all shock-capturing schemes at time t = 9.22. To highlight specific 
features of each scheme, the mesh spacing has been selected in such a way to achieve desired values of the reduced 
wavenumber ϕ2. All schemes maintain shock-capturing ability near the discontinuity, and show higher or lesser degree 
of numerical diffusion past the shock. Regarding the amplitude error, the figure confirms that TVD-SB and MP5 schemes 
exhibit a slight overshoot at the downstream monitoring point for ϕ2 = 0.4 (see Fig. 6). However, a very different behavior 
is observed downstream of the shock, with the TVD-SB which has significantly less numerical diffusion than TVD-MM, 
however with tendency to overemphasize numerical extrema. As expected based on Fig. 6, the MP5 scheme also exhibits a 
slight overshoot at the monitoring point xR2 , but it retains much better amplitude and phase accuracy downstream of the 
shock, thus supporting the conclusions of Suresh and Huynh [9]. The results of ENO and WENO schemes are shown in panels 
(c), (d) at coarse resolution (ϕ2 = 0.925). Under these conditions, they exhibit significant density overshoots right past the 
shock, and significant phase shift with respect to the reference solution, which persists moving downstream. MPWENO 
schemes show more numerical damping than WENO schemes, thus supporting the conclusions of Balsara and Shu [10]. 
However, their phase error is less than other high-order schemes. In general, the observed trends are in good agreement 
and tend to support the validity of the conclusions reached in Section 3.3 based on the model linear problem.
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4. Conclusion

We have introduced a standardized procedure for the quantitative evaluation of shock-capturing schemes, which includes 
analysis of the wave propagation performance through an empirically derived numerical dispersion relation (EDR), a cost/er-
ror balance analysis, and a novel spectral analysis of the shock-capturing error. This procedure is intended to go beyond 
the conventional approach of evaluating shock-capturing schemes on a case-by-case basis, and provides a useful platform 
for cross-scheme comparison. It is important to note that, given the inherent nonlinearity of the algorithms under scrutiny, 
it is impossible to characterize their behavior through any finite set of numerical experiments, as is the case here. Hence, 
although we believe that the results of the analysis herein developed are representative of the actual behavior of numerical 
schemes, they do not necessarily apply to all possible test cases.

The baseline EDR has been used to characterize the numerical dispersion and diffusion errors of common schemes. Al-
though more sophisticated approaches are possible [15] which better account for nonlinear effects and spectral distribution 
of energy across wavenumber space, we find that EDR well highlights certain features which are not evident from linear 
analyses, as for instance the weakly unstable behavior of TVD schemes incorporating the superbee limiter. High-order ENO 
and WENO schemes are found to have similar behavior, with better dispersive properties for ENO, and less numerical diffu-
sion for WENO. A good compromise as far as wave propagation properties is concerned is found to be the MP5 scheme [9]. 
Regarding the computational efficiency, we confirm that high-order schemes have generally better cost/error balance, es-
pecially when strict admissible error bounds are placed. ENO schemes are found to be slightly more efficient than WENO 
schemes with the same order of accuracy. Further, the MP5 scheme is found to be slightly more efficient than all other 
fifth-order accurate schemes. Application of MP limiters to WENO schemes (MPWENO) implies additional computational 
cost, with no significant error reduction.

With regard to the shock-capturing error analysis, we do confirm that all shock-capturing schemes are first-order ac-
curate downstream of shocks, however with important differences among them. The phase error is found to be dominant 
over the amplitude error, and in this respect shock-capturing schemes typically yield a lagging behavior. Analysis of the 
amplitude error shows that the amplitude of disturbances transmitted through shocks is generally underestimated. Notable 
exceptions to this common behavior include the TVD and the MP5 schemes, which are especially inaccurate in the range 
of well-resolved waves (i.e. low ϕ2), and yielding over-amplification of waves around ϕ2 ≈ 0.4. A similar behavior is also 
observed for high-order ENO and WENO schemes, which yield exaggerated amplitude of transmitted waves for ϕ2 ≈ 1. This 
behavior is probably to be traced to the near-shock activation of linearly unstable stencils, both in ENO and WENO. Aug-
menting WENO schemes with MP limiters appears to be an effective strategy for shock-capturing, and MPWENO schemes 
yield the lowest overall numerical error among the tested schemes, and suppression of overshoots. Illustrative calculations 
have been carried out for the 1D Euler equations, which generally support validity of the analysis. The main benefit of the 
present analysis is the availability of precise metrics to rank shock-capturing schemes which, with all caveats stated above, 
may be also used for the synthesis of new schemes.
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