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A B S T R A C T

As of May 17th 2020, the novel coronavirus disease 2019 (COVID-19) pandemic has caused 307,395
deaths worldwide, out of 3,917,366 cases reported to the World Health Organization. No specific
treatments for reducing mortality or morbidity are yet available. Deaths from COVID-19 will continue to
rise globally until effective and appropriate treatments and/or vaccines are found. In search of effective
treatments, the global medical, scientific, pharma and funding communities have rapidly initiated over
500 COVID-19 clinical trials on a range of antiviral drug regimens and repurposed drugs in various
combinations. A paradigm shift is underway from the current focus of drug development targeting the
pathogen, to advancing cellular Host-Directed Therapies (HDTs) for tackling the aberrant host immune
and inflammatory responses which underlie the pathogenesis of SARS-CoV-2 and high COVID-19
mortality rates. We focus this editorial specifically on the background to, and the rationale for, the use and
evaluation of mesenchymal stromal (Stem) cells (MSCs) in treatment trials of patients with severe
COVID-19 disease. Currently, the ClinicalTrials.gov and the WHO Clinical Trials Registry Platform (WHO
ICTRP) report a combined 28 trials exploring the potential of MSCs or their products for treatment of
COVID-19. MSCs should also be trialed for treatment of other circulating WHO priority Blueprint
pathogens such as MERS-CoV which causes upto 34% mortality rates. It’s about time funding agencies
invested more into development MSCs per se, and also for a range of other HDTs, in combination with
other therapeutic interventions. MSC therapy could turn out to be an important contribution to bringing
an end to the high COVID-19 death rates and preventing long-term functional disability in those who
survive disease.
© 2020 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
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Introduction — Cornavirus-2019 Disease (COVID-19) — a global
pandemic

Since early January 2020, the world has witnessed unprece-
dented global scientific and political attention focused on the
devastating coronavirus disease 2019 (COVID-19) pandemic,
caused by the novel, highly contagious zoonotic pathogen, the
severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)
(Hui et al., 2020; Chen et al., 2020). By May 17th, 2020, there have
been 307,395 deaths worldwide out of 3,917,366 (7% case fatality)
confirmed COVID-19 cases reported from all continents to the
World Health Organization (WHO, 2020). As with the two other
novel coronavirus zoonotic diseases of humans, SARS and MERS, no
specific treatments for reducing mortality or morbidity are yet
available (Memish et al., 2020; Hui et al., 2020; Hui and Zumla,
2019). The management of COVID-19 patients remains largely
symptomatic and supportive with organ support for severely ill
https://doi.org/10.1016/j.ijid.2020.05.040
1201-9712/© 2020 The Author(s). Published by Elsevier Ltd on behalf of International So
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
patients (Richardson et al., 2020; Guan et al., 2020). Deaths from
COVID-19 will continue to rise globally until effective and
appropriate treatments and vaccines are found.

Clinical trials of therapeutic interventions

With no specific treatments being available for treating
COVID-19 patients, the global medical, scientific, pharma and
funding communities have rapidly initiated over 500 COVID-19
related trials (https://clinicaltrials.gov/ct2/who_table). These clin-
ical trials have been fast-tracked by ethical committees worldwide
and a range of therapeutic interventions registered on clinical
trials.gov are taking forward phase 1, 2 and 3 trials of antiviral drug
regimens, biologics, repurposed drugs in various combinations,
herbal remedies, nutritional supplements, and cellular therapies. A
paradigm shift is underway from the current focus of drug
treatment combinations targeting the pathogen, to advancing
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cellular Host-Directed Therapies (HDTs) for tackling the aberrant
host immune and inflammatory responses, which underlie the
pathogenesis of SARS-CoV-2 and the high COVID-19 death rates.
This is an area, which has been eclipsed by the current emphasis
the huge number of trials evaluating new anti-viral drugs,
repurposed drugs and combinations thereof. We thus focus this
editorial specifically on the background to, and the rationale for,
the use and evaluation of mesenchymal stromal (Stem) cells
(MSCs) in treatment trials of patients with severe COVID-19
disease. A paradigm shift is underway from the current focus of
drug treatment combinations targeting the pathogen, to advancing
cellular Host-Directed Therapies (HDTs) (Zumla et al., 2015; Zumla
et al., 2020) for tackling the aberrant host immune and
inflammatory responses, which underlie the pathogenesis of
SARS-CoV-2 and the high COVID-19 death rates. This is an area,
which has been eclipsed by the current emphasis the huge number
of trials evaluating new anti-viral drugs, repurposed drugs and
combinations thereof. We thus focus this editorial specifically on
the background to, and the rationale for, the use and evaluation of
mesenchymal stromal (Stem) cells (MSCs) in treatment trials of
patients with severe COVID-19 disease.

Pathology and Autopsy studies of COVID-19 deaths

Defining the underlying pathogenesis and pathology of
COVID-19 disease for developing appropriate therapeutic inter-
ventions may prevent end organ damage and long-term functional
disability in those who survive severe disease. Autopsy and
minimally invasive biopsy studies indicate that COVID-19 is a
multi-system disease. The lungs in particular manifest significant
pathological lesions, such as alveolar exudative inflammation and
interstitial inflammation, alveolar epithelium proliferation and
hyaline membrane formation (Menter et al., 2020; Tian et al.,
2020). Significant proliferation of type II alveolar epithelia and
focal desquamation of alveolar and bronchial epithelia and hyaline
membrane formation are seen (Xu et al., 2020); with predomi-
nantly macrophage and monocyte immune cell infiltration in
alveoli with multinucleated giant cells; lymphocytes (mostly CD4-
positive T cells), and some eosinophils and neutrophils. The blood
vessels of alveolar septum were congested, edematous and
widened, with modest infiltration of monocytes and lymphocytes.
Hyaline thrombi in microvessels and focal hemorrhage in lung
tissue, organization of exudates, and pulmonary interstitial fibrosis
have been observed. Furthermore, degeneration and necrosis of
parenchymal cells and formation of hyaline thrombus in small
vessels were observed in other organs and tissues (Menter et al.,
2020; Tian et al., 2020). Immunohistochemical staining showed
alveolar epithelia and macrophages positive for SARS-CoV-2
antigen. Evidence of SARS-CoV-2 antigens in other organs and
tissues has been detected which suggests that host immune
responses evoked by SARS-CoV-2 infection are involved in the
pathogenesis of multi-organ injury (Yao et al., 2020).

COVID-19 Pathogenesis and aberrant immune responses

SARS-CoV-2 enters the host cells via the cell surface angiotensin
converting enzyme 2 (ACE2) receptor on the target cell surface
(Zhang et al., 2020). ACE2 as a cardio-regulator, so there are
numerous cells with ACE2 receptors in blood vessels, alveolar type
II cells (AT2) in the lungs and several other organs, such as heart,
kidneys. It appears that all three lethal zoonotic coronaviruses,
MERS-CoV, SARS-CoV and SARS-CoV-2 seem to induce excessive
and aberrant host immune responses which are associated with
severe lung pathology leading to acute respiratory distress
syndrome (ARDS) (Memish et al., 2020; Liu et al., 2020; Li et al.,
2020a,b). Characteristic findings on chest imaging in COVID 19
include bilateral ground glass and consolidative changes (Shi et al.,
2020). An associated cytokine storm may play a role in
pathogenesis. Elevated proinflammatory cytokines and chemo-
kines including tumour necrosis factor (TNF)α, interleukin 1β
(IL-1β), IL-6, granulocyte-colony stimulating factor, interferon
gamma-induced protein-10, monocyte chemoattractant protein-1,
and macrophage inflammatory proteins 1-α were significantly
elevated in COVID-19 patients. (Huang et al., 2020; Liu et al., 2020;
Ye et al., 2020; Zhou et al., 2020). Patients with evidence of
hyperinflammation have an increased risk of mortality (Mehta
et al., 2020; Ruan et al., 2020). In those who survive intensive care,
the consequences of these aberrant and excessive immune responses
maylead to long termpulmonary damage and fibrosis, with functional
disability and reduction of quality of life (Batwai et al., 2019). It is
important that therapeutic interventions which can dampen the
excess inflammation, thus preventing  end organ damage and long-
term functional disability in those who survive severe disease.

Cellular based therapies to reduce excessive inflammation and
immune-mediated tissue damage

For the past decade the medical and pharma communities have
focused on developing therapeutics targeting the pathogen rather
than on the role of underlying host factors (Zumla et al., 2015,
2020). Human immune defenses are dependent on a complex array
of mechanical, innate and acquired immune mechanisms and any
disturbance of this internal lung milieu results in serious and fatal
consequences. Improved understanding of inflammatory and
immune pathways governing protective or deleterious outcomes,
provide novel opportunities to target specific pathways that
mediate immune pathology (Figure 1). Advances in host-directed
therapies (HDTs) now provide a range of options to enhance
immune responses or reduce excessive inflammation A range of
HDTS with different mechanisms of action are under consideration
from cellular therapy with mesenchymal stromal (stem) cells
(MSCs), biologics, and repurposed drugs with HDT potential (Lérias
et al., 2020; Hui et al., 2020).

Mesenchymal Stromal (Stem) Cells (MSCs)

Mesenchymal stromal cells (MSCs) are being widely used in
basic research and clinical application (Pittinger et al., 2019;
Galipeau and Sensebe, 2018; Yip et al., 2020; Wlater et al., 2014).
MSCs are non haemopoetic cells which are derived from bone
marrow, adipose tissue, lung, umbilical cord tissue, dental pulp,
and placenta. MSCs express certain markers such as CD73, CD90
and CD105 and test negative for CD14 (monocytes), CD19
(B-cells), CD34 (stem cells), CD11b (expressed on leukocytes
including monocytes, neutrophils, natural killer cells, granulo-
cytes and macrophages).and CD45 expressed on all leucocytes
(Ullah et al., 2015; Dominici et al., 2006; Hoogduijn, 2015). They
appear to exert anti-inflammatory and immunoregulatory
functions, promote the regeneration of damaged tissues and
inhibit tissue fibrosis. The immunomodulatory effects of MSCs
involve direct and indirect effects on the host immune cells (Le
Blanc and Mougiakakos, 2012). The use of MSCs have been
approved as Advanced Therapy Medical Products (ATMP) and the
guidelines from the Food and Drug Administration (FDA) require
MSCs to be produced under good manufacturing Practice (GMP)
with quality control measures, reproducibility and (Torre et al.,
2015; Codinach et al., 2016). There have been FDA Regenerative
Medicine Advanced Therapy (RMAT) designation to 42 products
as of 6 May 2020, and 4/42 products are Mesenchymal stromal
cells (MCS) (https://ipscell.com/rmat-list). In 2018 the first
allogeneic MSC product received marketing approval in the
European Union. Since some commercial stem cell clinics

https://ipscell.com/rmat-list


Figure 1. Overview of mechanisms of Action of Mesenchymal Stromal cells.
Viable MSCs rescue injured cells by mitochondrial transfer and produce a broad array of immuno-modulatory cytokines. MSCs may be taken up by phagocytic cells – that may
prolong and augment their biological effect after intravenous delivery. Risks include generally reduced immune – competence including anti-viral/bacterial/fungal activity, as
well as potential pro-tumorigenic effects. Beneficial reduction of pro-inflammatory cytokines, increased Treg and IL-10 production.
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are marketing dubious therapies for cardiovascular disease and
cancer (Sissung and Figg, 2020) there are FDA and CDC cautions
regarding their use (https://www.fda.gov/consumers/consumer-
updates/fda-warns-about-stem-cell-therapies) (https://www.
cdc.gov/hai/outbreaks/stem-cell-products.html).

Mechanism of action of Mesenchymal Stromal Cells

Mesenchymal stromal cells interact with most of the cell
types of the innate and acquired immune system, including B
cells, T cells, dendritic cells (DCs), natural killer (NK) cells,
neutrophils, and macrophages, moderating their response to
pathogens (deWitte et al., 2018; Dominici et al., 2006;
Hoogdujin and Lombardo, 2019; Jiang et al., 2020; Le Blanc
and Mougiakakos, 2012). MSCs also play a role in the control of
tissue inflammation (Jiang et al., 2004). The therapeutic effects
of MSCs have largely been attributed to their secretion of
immunomodulatory and regenerative factors, and some of the
effects may be mediated through host phagocytic cells which
clear administered MSCs and in the process adapt an immuno-
regulatory and regeneration supporting function (Weiss and
Dahlke, 2019; Walter et al., 2014; Wang et al., 2018). In response
to inflammatory factors such as Interferon (IFNg) and Tumour
Necrosis Factor (TNFα) secreted by activated immune cells and
tissue cells, MSCs can adopt an immunoregulatory phenotype
(Ankrum et al., 2014). They increase the expression of
anti-inflammatory factors including programmed death ligand
1 and prostaglandin E2 and inhibit immune cell activity and
proliferation through metabolic regulation, such as via indol-
amine 2,3-dioxygenase-dependent catabolism of tryptophan
(Weiss and Dahlke, 2019). MSCs also express ATPases and
possess ecto-nucleotidase activity through CD73 expression,
through which they have the capacity to deplete ATP. The
immunomodulatory effects of MSCs may also be triggered
further by the activation of TLR receptor in MSCs, which is
stimulated by pathogen-associated molecules such as LPS
Importantly, MSCs do not have an ACE2 receptor, which makes
them immune to SARS-CoV-2.
Human therapeutic Trials of Mesenchymal stromal cells- safety,
efficacy and regulatory approval

Whilst generally regarded as safe (Editorial, 2019), MSCs are not
immunologically inert as previously thought (Lohan et al., 2017;
Ankrum et al., 2014). A recent systematic review and meta-analysis
of intravascular MSC therapy reviewed 55 randomised controlled
trials of MSC therapy compared to controls (Thompson et al.,
2020), MSCs compared to controls were associated with an
increased risk of fever but not non-fever acute infusional toxicity,
infection, thrombotic/embolic events or malignancy.

In ARDS, MSCs have beenevaluated in several Phase 1 and Phase 2
trials. Wilson et al. (2015) reported the results of the phase-I Stem
cells for ARDS Treatment (START) study. Patients with moderate-to-
severe ARDS received a single intravenous administration of
allogeneic bone marrow derived MSCs at either a low-dose [10e6
MSCs/kgpredictedbodyweight(PBW)], intermediate-dose(5�10e6
MSCs/kg PBW), or high-dose (10e7 MSCs/kg PBW) (n = 3/dose). No
adverse events or toxicity was observed at any of the doses tested.
High-dose MSCs improved daily SOFA score compared to lower
doses. In the Phase 2 START trial, a randomized placebo controlled
evaluating a single intravenous infusion of allogeneic bone marrow
derived MSCs (107 cells/PBW) compared with placebo (2:1 ratio),
with primary outcome of safety and secondary clinical outcomes
including all-cause mortality at day 28 and day 60, no adverse
respiratory or haemodynamic events were observed (Matthay et al.,
2019). The ‘MUST-ARDS’ clinical trial (https://clinicaltrials.gov/ct2/
show/NCT02611609) tested safety of MultiStem (multi-potent adult
progenitor cells, related to MSCs) cells in patients with ARDS. The
results have been published in abstract form (Bellingan et al., 2020)
andresultsof1 yearfollowupareawaited.30patientswithmoderate
to severe ARDS were recruited: 20 randomised to MultiStem cell
therapy (at a dose of 900 million cells) and 10 to placebo. The therapy
was well tolerated, and the authors reported trends to improvement
in mortality in the MultiStem treated group, although the study was
not powered for mortality.

Additionally Phase 1 studies of MSCs in ARDS have been
conducted by investigators in China and Taiwan. Zheng et al. (2014)
investigated allogeneic adipose derived MSCs in a randomized,
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placebo-controlled study (total recruitment n = 12, randomized
1:1). No serious adverse events related to MSC administration were
reported. Yip et al. investigated UC derived MSCs in a dose
escalation study (1, 5 and 10 � 106 cells/kg) recruiting a total of 9
patients (3 patients per dose cohort). MSC infusion was associated
with mild adverse reactions in 3 patients however no serious
treatment related adverse events were identified.

The use of MSCs for treatment of COVID-19 patients

MSCs are now being used as a potential therapy for treating
COVID-19 patients in order to reduce mortality. Although the use
of MSCs has been found to be safe when used for treatment of
other diseases, it is important to evaluate whether they are safe
to use specifically in COVID-19 patients. There have been reports
of early Phase studies in COVID-19 patients from China
(NCT04252118 and NCT04288102). Leng et al. (2020) investigat-
ed the use of MSCs in hospitalized patients with COVID 19 who
were not improving despite standard therapy. Seven patients
were administered intravenous MSCs at a dose of 1 �106 cells
per kg. MSC infusion was well tolerated in all patients with no
acute infusion related reactions. A study published in Aging and
Disease claimed the effectiveness of MSCs therapy was safe and
attributed the recovery of all 7 patients who were administered
MSCs. This was led by researchers from Shanghai University and
Peking Union Medical College (PUMC) and Chinese Academy of
Table 1
Mesenchymal stromal (Stem) cell trials registered on ClinicalTrials.Gov related to treatme
and Primary endpoints.

Trial ID No Responsible institution Patient population Source of MSCs 

NCT04315987 Azidus Brasil COVID 19
pneumonia

NestCell 1

NCT04288102 Beijing 302 Hospital COVID 19
pneumonia

Human MSCs 

NCT04313322 Stem Cells Arabia COVID 19 Wharton's Jelly-M

NCT04336254 Renmin Hospital of Wuhan
University

COVID 19
pneumonia

Allogeneic Human
Pulp MSCs

NCT04302519 CAR-T (Shanghai)
Biotechnology Co., Ltd.

COVID 19
pneumonia

Dental Pulp MSCs

NCT04339660 Puren Hospital Affiliated to
Wuhan University of Science
and Technology

COVID 19
pneumonia

Umbilical cord de
MSCs

NCT04252118 Beijing 302 Hospital COVID 19
pneumonia

Human MSCs 

NCT04333368
STROMA-
CoV2

Assistance Publique -
Hôpitaux de Paris

COVID 19 -ARDS Umbilical Cord-W
Jelly derived MSC

NCT04273646 Wuhan Union Hospital,
China

COVID 19
pneumonia

Umbilical Cord-de
MSCs

NCT04341610
ASC COVID-19

Rigshospitalet, Denmark COVID 19
pneumonia

Adipose derived M
Medical Sciences (CAMS). Seven COVID-19 patients aged
between 45 to 65 (four severe cases, one critically severe case)
received with allogenic MSC therapy and three were in the
control group. Since the study had several limitations, no
conclusions on efficacy can be drawn. It was a small study with
7 patients with no blinding or randomization, and the control
group of 3 patients was selected after all MSC patients were
treated. The Chinese Medical Association has issued guidelines to
standardize stem cell treatment for COVID-19. On April 5, 2020,
the US-FDA approved MSC treatment for use in seriously ill
COVID-19 patients under what is known as ‘expanded access
compassionate use’.

Ongoing trials of Mesenchymal stromal (stem) Cell Therapies
for COVID-19

The excessive host response seen in patients with COVID-19
appears to have induced a paradigm shift in longstanding focus of
drug treatment interventions targeting the pathogen (SARS-CoV-2
in this case) to targeting the host response. Currently, ClinicalTrials.
gov and the World Health Organization International Clinical Trials
Registry Platform (WHO ICTRP) report a combined 28 trials
exploring the potential of MSCs and their products for treatment or
prevention of COVID-19.

Table 1 lists clinical trials of MSCs or their products which have
been registered on clinicaltrials.gov. Not all of the registered trials
nt of COVID-19 Disease – Trial number, source of MSCs, Dose, route of administration

Dose of MSCs Route of
administration
Number of
treatments

Primary endpoint(s)

2 � 107 cells/
dose

IV
3/4 (days 1, 3, 5; day
7 optional)

Change in clinical condition
(WHO ordinal scale) (day 10)

4 � 107 cells/
dose

IV
3 (days 0, 3 and 6)

Size of lesion area and severity
of pulmonary fibrosis by chest
CT (day 6, 10, 14, 28 and 90)

SCs 1 � 106 cells/
kg/dose

IV
3 (3 days apart from
each other)

Clinical Outcome
CT Scan changes
RT-PCR results
(All at 3 weeks)

 Dental 3 � 107 cells/
dose

IV
3 (days 1, 4 and 7)

Time to Clinical Improvement
(day 1 to 28)

 1 � 106 cells/
kg/dose

IV
3 (days 1, 3 and 7)

Disappearance time of ground-
glass shadow in the lungs
(day 14)

rived 1 � 106 cells/
kg/dose

IV
1/2 (Second
infusion after 1
week optional)

Immune function (TNF-α, IL-1β,
IL-6, TGF-β, IL-8, PCT, CRP)
(within 4 weeks)
Blood oxygen saturation
(within 4 weeks)

3 � 107 cells/
dose

IV
3 (Days 0, 3 and 6).

Size of lesion area by chest
radiograph or CT (day 3, 6, 10,
14, 21 and 28)
Side effects in the MSCs
treatment group (indicated by
treatment related adverse
events) (day 3, 6, 10, 14, 21, 28,
90 and 180)

harton's
s

1 � 106 cells/
kg/dose

IV
3 (Days 1, 3 and 5)

PaO2/FiO2 ratio
(baseline to day 7)

rived 0.5 � 106 cells/
kg/dose

IV
4 (Days 1, 3, 5 and
7)

Pneumonia severity index
(baseline to week 12)
Oxygenation index (PaO2/FiO2)
(baseline to week 12)

SCs 100 � 106

cells/dose
IV
1

Changes in clinical critical
treatment index (at day 7)



Table 1 (Continued)

Trial ID No Responsible institution Patient population Source of MSCs Dose of MSCs Route of
administration
Number of
treatments

Primary endpoint(s)

NCT04269525 Zhongnan Hospital COVID 19
pneumonia in ICU

Umbilical Cord-derived
MSCs

9.9 � 107 cells/
dose

IV
4 (days 1, 3, 5 and 7)

Oxygenation index (PaO2/FIO2)
(day 14)

NCT04299152 Tianhe Stem Cell
Biotechnologies Inc.

Symptomatic
COVID 19 patients

‘Educated’ autologous
immune cells

SCE therapy circulates a patient's
blood through a blood cell separator,
briefly cocultures the patient's
immune cells with adherent cord-
blood stem cells (CB-SC) in vitro,
and returns the "educated"
autologous immune cells to the
patient's circulation.

Determine the number of
Covid-19 patients who were
unable to complete SCE
Therapy

NCT04276987 Ruijin Hospital COVID 19
pneumonia

Exosomes Derived from
Allogenic Adipose MSCs

2 � 108

nano
vesicles/
3 mL

Inhalational
5 (days 1, 2, 3, 4 and 5)

Adverse reaction and severe
adverse reaction (day 28)
Time to clinical improvement
(day 28)

NCT03042143
COVID 19
REALIST

Belfast Health and Social
Care Trust

COVID 19 - ARDS REALIST Orbcel-C Human
umbilical cord derived
CD362 enriched MSCs

400 � 106

cells/dose
IV
1

Oxygenation index at day 7
(defined as (Mean Airway
Pressure*FiO2*100)/PaO2)
Incidence of Serious Adverse
Events (day 28)

NCT04345601 Baylor College of Medicine COVID 19 ARDS Bone marrow derived MSCs 1 � 108

cells/dose
IV
1

Incidence of unexpected
adverse events (day 28)
Improved oxygen saturations
�93% (day 7)

NCT04362189 Hope Biosciences Hospitalised
COVID 19

Allogeneic Adipose derived
MSCs

100 � 106/
dose

IV
Day 0, 3, 7, and 10.

Mortality rate (day 28)
Need for Invasive mechanical
ventilation
(day 0, 3, 7, 10 and 28)

NCT04371393 Icahn School of Medicine at
Mount Sinai

COVID 19 ARDS Mesoblast
Remestemcel-L
Bone marrow derived MSCs

2 � 106

cells/kg/
dose

IV
2 (day 1 and 4 days
following first
infusion � 1 day)

All-cause mortality (day 30)

NCT04371601 Fuzhou General Hospital COVID 19
pneumonia

Umbilical cord derived
MSCs

10 � 106

cells/kg/
dose

IV
4 (once every 4 days)

Oxygenation index (PaO2/FiO2)
(12 months)

NCT04377334 University Hospital
Tuebingen

COVID 19 ARDS Allogeneic bone marrow
derived MSCs

Not
specified

Not specified Lung injury score (day 10)

NCT04355728 University of Miami COVID 19 ARDS Umbilical cord derived
MSCs

100 � 106

cells/dose
IV
2 (day 1 and 3)

Incidence of pre-specified
infusion associated adverse
events (day 5)
Incidence of Severe Adverse
Events (day 90)

NCT04349631 Hope Biosciences Risk of
occupational
exposure COVID 19
No signs or
symptoms of
COVID 19

Autologous Adipose
derived MSCs

Not
specified

IV
5 (time points not
specified)

Incidence of hospitalization for
COVID-19 (week 26)
Incidence of symptoms for
COVID-19 (week 26)

NCT04348435 Hope Biosciences Risk of
occupational
exposure COVID 19
No signs or
symptoms of
COVID 19

Allogeneic Adipose derived
MSCs

50, 100 or
200 � 106

cells/dose

IV
5 (0, 2, 6, 10 and
14 weeks)

Incidence of hospitalization for
COVID-19 (week 26)
Incidence of symptoms
associated with COVID-19
(week 26)

NCT04366063 Royan Institute COVID 19 ARDS MSCs (source not specified)
MSC derived extracellular
vesicles

MSCs – 100
� 106 cells/
dose
EVs – dose
not
specified

IV
2 (days 0 and 2)
� 2 EV infusions (on
day 4 and 6)

Adverse events assessment
(day 28)
Blood oxygen saturation
(day 14)

NCT04346368 Guangzhou Institute of
Respiratory Disease

COVID 19
pneumonia

Bone marrow derived MSCs 1 � 106

cells/kg/
dose

IV
1

Oxygenation index (PaO2/FiO2)
(baseline, 6 h, Day 1 and 3,
Week 1, 2, 4 and 6 months)
Side effects (treatment related
adverse events) (6 months)

NCT04348461 Instituto de Investigación
Sanitaria de la Fundación
Jiménez Díaz

COVID 19 ARDS Allogeneic Adipose derived
MSCs

1.5 � 106

cells/kg/
dose

IV
2

Survival rate (day 28)
Adverse event rate (day 28)

NCT04366271
MESCEl-
COVID19

Hospital Infantil
Universitario Niño Jesús,
Madrid, Spain

COVID 19
pneumonia

Umbilical cord derived
MSCs

Not
specified

IV
1

Mortality rate (day 28)

NCT04361942 Red de Terapia Celular COVID 19
pneumonia in ICU

Allogeneic MSCs (source
not specified)

1 � 106/kg/
dose

IV
1

Proportion of patients who have
achieved withdrawal of invasive
mechanical ventilation (day 7)
Mortality rate (day 28)
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Table 1 (Continued)

Trial ID No Responsible institution Patient population Source of MSCs Dose of MSCs Route of
administration
Number of
treatments

Primary endpoint(s)

NCT04366323 Andalusian Network for
Design and Translation of
Advanced Therapies

COVID 19
pneumonia

Allogeneic Adipose derived
MSCs

80 � 106

cells/dose
IV
2

Adverse Event Rate (12 months)
Survival Rate (day 28)

NCT04352803 Regeneris Medical Hospitalized
COVID 19

Autologous Adipose
derived MSCs

0.5 � 106

cells/kg/
dose

IV
1

Incidence of unexpected
adverse events (day 28)
Progression to mechanical
ventilation (day 28)
Length of mechanical
ventilation (day 28)
Length of weaning of
mechanical ventilation (day 28)
Length of hospital stay (day 28)
Mortality rate (day 28)
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will be pursued and in recent weeks, five trials registered on the
Chinese Clinical Trial Register (“ChiCTR”) and one trial registered
on ClinicalTrials.gov have been marked as “Cancelled by the
Investigator”.
Table 2
Priority needs for advancing Mesenchymal Stromal Cell and Cellular therapies for COV

1 Taking forward the Global Network for Cellular and other Host-Directed Thera
between clinical infectious disease and cancer research investigators with interes
developing common protocols, and having regular ‘out of the box’ thinking exchange
open to any interested party to join and help take forward the growing portfolio of ce
infectious diseases. Current focus of the consortium is on HDTs for COVID-19.

2 Opportunities for conduct of common scientific studies and defining unanswered
2 Omics approach: RNAseq data/Proteomics shared or centrally conducted from M

expression/proteomics in freshly prepared versus cryopreserved and subsequently t
products; use different tissue origins and culture methods that may lead to differ
cytokine-edited MSCs

3 Host responses: RNAseq expression pattern, immuno-phenotyping and functional
longitudinally sampled blood prior and after MSC infusion to gauge for systemic 

4 Measuring CMV DNA in patients prior to MSC delivery and in the clinical followup a
readout.

5 Tagging or barcoding MSCs. Better understanding of MSC-MoA, e.g. phagocytosis 

6 Differences in Dendritic Cells and Macrophage responses in vitro and ex vivo using v
most suitable and safest MSC profile for COVID-19 treatment.

3 Better definition of MSC delivery and dosing
a Smart clinical studies to address different modes of MSC delivery, e.g. single or re

Role of identical MSC donor in repeated dosing? Increased efficacy and safety i
b *Conditioning' patients prior to MSCs delivery. Can MSC-associated effects be im

MSCs effects, e.g. decreasing damaging inflammation, while preserving pathoge

4 Better definition of selection of patients receiving MSCs
5 Concise study design considering COVID pathophysiology. Which patients benefit

patients with COVID-19 that allows comparison of trials. Differences associated wi
status or the patients ‘inflammatory phenotype’ (e.g. high IL-6 or IL-17 levels)? Rol
pathophysiology may aid to offer improved treatment modalities.

5 Attracting pharma and funder attention: Convincing donors that cellular therapies 

lethal infectious diseases

6 Gathering trials evidence base on MSC therapy for COVID-19 (the Acronym ‘DOSES’:
of Delivery has been proposed to define optimal MSCs therapy (Murray et al., 201

7 Adverse events monitoring and analysis: short term and long-term folllowup of pat
anti-SARS-CoV-2 humoral and cellular responses, long term observation concerni

8 Creation of Biobanks and Access to biological material from patients with COVID-1
samples (or BAL) for unbiased gene expression analysis, proteomics and molecular 

effects, different reactivity and biology of neutrophils, macrophages and dendritic ce
view with other, complementary assays gauging pulmonary recovery, immuno-co

9 Advancing HDT trial activities to application of MSCs or MSC-associated produc
host response underlies end organ damage causing death or long term functi
The registered trials are different in design, have different
sources of MSCs, different dose administration schedules, selection
of patients and primary outcomes highlighting the need for
standardizing protocols through a global consortium network.
ID-19 and other infectious diseases.

pies: Advancing an international multidisciplinary, multi-continental consortium
ted stakeholders for proactively defining the landscape, priorities for R&D,
s'. (Website: https://fchampalimaud.org/covid19/aci). This consortium network is
llular therapies for improving treatment outcomes for a range of acute and chronic

 questions regarding MSC therapy:
SCs products for better definition of: cellular products; differences in gene
hawed MSCs; microRNAs in MSCs; Investigator – initiated studies and commercial
ent MSC phenotypes and gene expression patterns; difference of ‘edited’, e.g.

 T-cells assays gauging immuno-competence (e.g. anti-CMV responses) in
MSC effects
fter MSC infusion. Gauges immune-competence using CMV control as a biological

of MSCs by macrophages and systemic effects.
iable MSC or MSC-derived products (e.g. exosomes, apoptotic bodies). Gauging the

peated doses, escalating dosing? Improved clinical efficacy by repeated infusions?
f MSCs are used from different donors in the case of repeated infusions?
proved by using repurposed drugs or biologicals that would augment the desired
n directed immune responses?

 most from MSC treatment? Concise clinical documentation needed concerning
th MSC products (viable, MSC – apoptotic bodies, exosomes), (COVID-19), disease
e of lymphopenia in response to MSCs? Smarter patient selection associated with

are viable options for the adjunct treatment of patients with COVID-19 and other

 D = Donor, O = Origin, S = Separation Method, E = Exhibited Characteristics, S = Site
9)

ients, e.g. short term analysis of general immuno-competence (e.g. anti-CMV and
ng infectious complications, increased premalignant or malignant diseases?

9 infection: Creating repository of samples obtained during MSC trials e.g. blood
analysis of T-cell responses, e.g. defined by deep TCR sequencing to gauge for MSC
lls from patients with COVID-19 as compared to non-Covid-19 patients? Synoptic
mpetence and capacity to mount long-term anti-SARS-CoV immune responses.

ts with identical biological readouts, for other infectious diseases where the
onal disability. e.g. MERS, MDR-TB.

https://fchampalimaud.org/covid19/aci
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There is an urgent need for reaching global consensus on
advancing Mesenchymal Stromal Cell and Cellular therapies for
COVID-19 and other infectious diseases.

Advancing MSC therapeutics and achieving global consensus
and visibility for cellular host-directed therapies

Table 2 highlights the priority needs for advancing
Mesenchymal Stromal Cell and Cellular therapies for COVID-
19 and other infectious diseases. We have created an
international consortium between clinical cancer and infec-
tious disease research investigators (Website: https://www.
fchampalimaud.org/covid19/aci) is open to any interested
parties to join us to help define optimal MSC therapy regimens
and change the course of COVID-19 and sustain the growing
portfolio of cellular therapies for a range of acute and chronic
infectious diseases.

Conclusions

Despite intense research and pharma activity on developing
effective antiviral drug and biologics treatments for the two
previous novel lethal coronavirus infections of humans, SARS-
CoV-1 and MERS-CoV, all efforts have been fruitless. Novel
treatments which can save lives and prevent long-term
functional disability in those who survive are urgently required.
The COVID-19 pandemic has provided an opportunity for a
paradigm shift in focus from targeting the pathogen to the
tackling host immune and inflammatory responses which
underlie the pathogenesis of SARS-CoV-2. The increasing
interest in therapeutic use of MSCs is a promising sign that
COVID-19 pandemic and the year 2020 may be the dawn of the
new therapeutic era of MSCs treatment for lethal infectious and
inflammatory diseases. MSCs should also be advanced and
trialed for treatment of severe cases of MERS, where mortality
rates are up to 34% since MERS-CoV remains a WHO priority
Blueprint pathogen (Memish et al., 2020; Zumla et al., 2015;
Azhar et al., 2017). It’s about time funding agencies now invested
more into accelerate trailing of MSC per se, and combinations of
MSCs with other therapeutics. MSC therapy could turn out to be
an important contribution to bringing an end to the high
COVID-19 and MERS death rates.
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