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Abstract: NRF2 (Nuclear factor Erythroid 2-related Factor 2) signaling is impaired in Friedreich’s
Ataxia (FRDA), an autosomal recessive disease characterized by progressive nervous system damage
and degeneration of nerve fibers in the spinal cord and peripheral nerves. The loss of frataxin in
patients results in iron sulfur cluster deficiency and iron accumulation in the mitochondria, making
FRDA a fatal and debilitating condition. There are no currently approved therapies for the treatment
of FRDA and molecules able to activate NRF2 have the potential to induce clinical benefits in patients.
In this study, we compared the efficacy of six redox-active drugs, some already adopted in clinical
trials, targeting NRF2 activation and frataxin expression in fibroblasts obtained from skin biopsies of
FRDA patients. All of these drugs consistently increased NRF2 expression, but differential profiles of
NRF2 downstream genes were activated. The Sulforaphane and N-acetylcysteine were particularly
effective on genes involved in preventing inflammation and maintaining glutathione homeostasis,
the dimethyl fumarate, omaxevolone, and EPI-743 in counteracting toxic products accumulation, the
idebenone in mitochondrial protection. This study may contribute to develop synergic therapies,
based on a combination of treatment molecules.
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1. Introduction

The activation of the transcription factor NRF2 (Nuclear factor Erythroid 2-related Factor 2)
counteracts many of the pathological processes occurring in neurodegenerative diseases [1–3]. Thus,
targeting NRF2 signaling may provide a therapeutic option to delay onset, slow progression, and
ameliorate symptoms of several neurodegenerative disorders, whose pathogenesis is mediated by
oxidative stress [1–4].

NRF2 regulates many cytoprotective pathways through the activation of antioxidant defenses,
inhibition of inflammation, improvement of mitochondrial function, and maintenance of protein
homeostasis [1,5], thus it is an attractive pharmacologic target for neuroprotection in chronic
diseases [2,3,6].

The impairment of NRF2 is becoming an hallmark in Friedreich’s Ataxia (FRDA), a severe
neurodegenerative disease for which no cure or effective treatments are available so far [7–12].

In FRDA, an intronic GAA repeat of the FXN gene results in the deficiency of the frataxin (fxn)
protein, causing iron sulfur cluster (ISC) assembly defects, mitochondrial iron accumulation, and
impairment of the antioxidant defense [9,13–17].

Moving from our previous data [8,11] and from several lines of evidence overall showing
decreased NRF2 activity either in FXN knockdown cells and in multiple FRDA models [7,9,12], in this
study we investigate the effectiveness of several compounds, some of which are already adopted in
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clinical trials [18–24], to induce the NRF2 pathway and their impact on frataxin expression. Indeed,
NRF2-inducible ARE sequences are present in the promoter of the frataxin gene and are completely
conserved across evolution [10], thus we wanted to verify a comparative FXN expression up-regulation
with several NRF2 inducers. For this purpose, we treated in vitro cultured fibroblasts of FRDA patients
with redox-active compounds, some of those currently used for the treatment of neurodegenerative
and mitochondrial diseases.

Four classes of compounds have been selected: (1) those directly acting on Nrf2, by releasing
it from its specific inhibitor Keap-1 (sulforaphane, SFN, and dimethyl fumarate, DMF) [18–20]; (2)
those involved in mitochondrial function (idebenone and EPI-743) [25]; (3) one classical antioxidant
(N-acetylcysteine, NAC), actively involved in redox cellular balance, but whose action on NRF2 system
has not yet been established and (4) the cyclic cyanoenone RTA 408 (OMAVeloxolone, OMAV), a new
Nrf2 activator that prevents the ubiquitination of Nrf2 [26].

Many of those compounds are already adopted in clinical trials, such as DMF that is used for
the treatment of relapsing multiple sclerosis (Tecfidera, Biogen-Idec) [18–20], EPI-743 evaluated
in mitochondrial diseases [25,27,28], idebenone, in treating Leber hereditary optic neuropathy
(LHON) [29,30] and in FRDA [31,32], and NAC showing protective effects in frataxin-deficient
cell types and in ethylmalonic encephalopathy [33,34].

Exploring the NRF2 pathway in FRDA and its modulation by “old” and “new” compounds may
help to better understand the FRDA pathogenesis and contribute to develop innovative therapies, also
taking into account the emerging “mechanism-based” approach to diseases that was recently proposed
by Cuadrado et al. [2].

2. Results

2.1. The Pathway of NRF2 Is Down-Regulated in Fibroblasts of FRDA Patients

Quantitative PCR and western blot analyses were performed to measure NRF2 expression in
fibroblasts obtained from skin biopsies of three patients with FRDA (Figure 1). NRF2 function is
partially impaired, with a 71% frataxin decrease leading to a 46% defect in mRNA NRF2 (Figure 1A)
and a 60% reduction of protein level (Figure 1C). Similarly, NRF2 main target genes, NAD(P)H:
quinone oxidoreductase 1 (NQO1), Heme Oxygenase-1 (HO-1) and γ-glutamylcysteine ligase (GCL),
are reduced in patients’ cells, either as mRNA (53% NQO1, 40% HO-1, 46% GCL, Figure 1A) and as
proteins’ amount (60% Nqo1, 53% Ho-1, Figure 1C). According to GCL transcripts, even the glutathione
(GSH) content appears significantly reduced (20%) in FRDA fibroblasts with respect to controls’ cells
(34 ± 0.7 vs. 42 ± 0.4 nmol/mg prot., Figure 1B), further confirming previous evidence of imbalanced
glutathione homeostasis in this disease [9,12,35–39].
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Figure 1. NRF2 and downstream genes expression in fibroblasts of patients with Friedreich’s Ataxia 
(FRDA). (A) Real-time PCR analysis of frataxin (FXN) and NRF2-target genes (NQO1, HO-1, GCL) in 
fibroblasts obtained from skin biopsies of three patients with FRDA. (B) Glutathione (GSH) content 
in FRDA fibroblasts. (C) Representative western blot (right) and densitometric analysis (left) of fxn, 
Nqo1, and Ho-1 protein levels. Experiments were conducted in triplicates and values expressed as 
mean ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001, compared with controls’ group (Ctrls). 

2.2. The NRF2 Expression Is Modulated by Redox-Active Drugs 

Given the growing role of NRF2 as therapeutic target in FRDA and in several chronic diseases 
[2,3], we evaluated the effect of six redox compounds on NRF2 expression in order to design a 
potential drugs classification. We treated FRDA fibroblasts with SFN, DMF, NAC, EPI-743, 
Idebenone, and OMAV for 24 h and analyzed the NRF2 gene (Figure 2A) and protein amount 
(Figure 2B). All drugs significantly increased NRF2 transcripts at 24 h treatments, with SFN and 
NAC that were particularly active (3.9-fold increase SFN and 3.8-fold increase NAC, Figure 2A), 
compared to untreated cells. DMF, EPI-743, Idebenone and OMAV, although were less active than 
SFN and NAC, however consistently induced NRF2 expression, leading patients’ values close to 
controls’ level (Figure 2A). A similar trend was observed by western blot analysis, with significant 
increases of Nrf2 protein amount following all drug treatments (Figure 2B). 

 

Figure 1. NRF2 and downstream genes expression in fibroblasts of patients with Friedreich’s Ataxia
(FRDA). (A) Real-time PCR analysis of frataxin (FXN) and NRF2-target genes (NQO1, HO-1, GCL) in
fibroblasts obtained from skin biopsies of three patients with FRDA. (B) Glutathione (GSH) content
in FRDA fibroblasts. (C) Representative western blot (right) and densitometric analysis (left) of fxn,
Nqo1, and Ho-1 protein levels. Experiments were conducted in triplicates and values expressed as
mean ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001, compared with controls’ group (Ctrls).

2.2. The NRF2 Expression Is Modulated by Redox-Active Drugs

Given the growing role of NRF2 as therapeutic target in FRDA and in several chronic diseases [2,3],
we evaluated the effect of six redox compounds on NRF2 expression in order to design a potential drugs
classification. We treated FRDA fibroblasts with SFN, DMF, NAC, EPI-743, Idebenone, and OMAV for
24 h and analyzed the NRF2 gene (Figure 2A) and protein amount (Figure 2B). All drugs significantly
increased NRF2 transcripts at 24 h treatments, with SFN and NAC that were particularly active (3.9-fold
increase SFN and 3.8-fold increase NAC, Figure 2A), compared to untreated cells. DMF, EPI-743,
Idebenone and OMAV, although were less active than SFN and NAC, however consistently induced
NRF2 expression, leading patients’ values close to controls’ level (Figure 2A). A similar trend was
observed by western blot analysis, with significant increases of Nrf2 protein amount following all drug
treatments (Figure 2B).
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Figure 2. Drugs-mediated NRF2 induction in FRDA fibroblasts. (A) NRF2 mRNA and (B) densitometry
of Nrf2 protein amount after 24 h treatments with 10 µM SFN, 30 µM DMF, 100 µM NAC, 1 µM EPI-743,
1 µM IDEB, 100 nM OMAV. TBP has been used for normalization. Relative quantification of gene
expression was performed according to the 2−∆∆Ct method. Values represent mean ± SEM of three
independent experiments ** p < 0.01, *** p < 0.001, compared with controls’ group (Ctrls); # p < 0.05,
## p < 0.01, ### p < 0.001, respect to untreated patients.

2.3. Redox-Active Drugs Promote Differential Patterns of NRF2 Induction in FRDA Fibroblasts

As NRF2 deficiency negatively affects its down-stream genes (NQO1, HO-1, GCL, Figure 1) and
drugs activate NRF2 at different extent (Figure 2), we verified that NRF2 target genes could also be
differently regulated by redox drugs, driving differential responses (Figure 3). Thus, we analyzed the
molecular profiles of NQO1, HO-1 and GCL after treatments with SFN, DMF, NAC, EPI-743, Idebenone
and OMAV (Figure 3A). As expected by the extent of NRF2 activation (Figure 2A), SFN strongly
increased the expression of all genes analyzed, particularly GCL and HO-1 that showed 10.1-fold
and 6.1-fold increases, respectively, when compared to untreated FRDA cells. Also DMF significantly
increased the expression of NRF2 down-stream genes, although more addressed towards the NQO1
induction (4.5-fold increase). Surprisingly NAC, despite representing the substrate supplier for GCL,
appears to direct its action mainly towards the activation of HO-1 (3.4-fold increase), compared to NQO1
(2.0-fold increase) and GCL (1.7-fold increase). OMAV is highly efficient on all the NRF2 target genes
tested, with a preferential induction for NQO1 (5.1-fold increase), whereas EPI-743 and Idebenone,
although pushing towards the NRF2 target genes induction, exhibited a lesser extent of activation than
other drugs. These drug-driven gene profiles reflect on the GSH content (Figure 3B) and on Nqo1
protein amount (Figure 3C), which increased especially following SFN, DMF, and OMAV treatments.
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Figure 3. Differential patterns of drugs-mediated NRF2 induction. (A) Real-time PCR analysis of
NRF2 target genes following SFN, DMF, NAC, EPI-743, IDEB, and OMAV treatments. TBP was used
for normalization. Relative quantification of gene expression was performed according to the 2−∆∆Ct

method. (B) GSH content and (C) Nqo1 protein amount after treating FRDA fibroblasts for 24 h with
10 µM SFN, 30 µM DMF, 100 µM NAC, 1 µM EPI-743, 1 µM IDEB, and 100 nM OMAV. Values represent
mean ± SEM of three independent experiments. * p < 0.05, *** p < 0.001, compared with controls’ group
(Ctrls); # p < 0.05, ## p < 0.01, ### p < 0.001, compared to untreated patients.

2.4. NRF2 Inducers Increase the Expression of FXN Gene in FRDA Fibroblasts

Besides the positive effect of drugs on NRF2 induction, the hallmark in FRDA remains the fxn
deficiency. Thus we explored whether, and to what extent, drugs were able to increase the FXN
expression in FRDA fibroblasts, while also considering the important evidence provided by Sahdeo
et al. [10] showing the existence of evolutionarily conserved NRF2-binding sites (AREs) in the FXN
gene. As reported in Figure 4, SFN, DMF, NAC, and EPI-743 significantly increased FXN transcripts
(2.2-fold SFN, 3.5-fold DMF, 2.7-fold NAC, 2.9-fold EPI-743), while OMAV and Idebenone caused only
a modest increase of the FXN gene expression, not reaching statistical significance. Importantly, SFN,
DMF, NAC, and EPI-743 caused an FXN increase of more than 2 times with respect to the untreated
cells, thus leading patients’ FXN levels to become close to those of asymptomatic carriers (ranging
40–50% of normal) [40]. Of note, our results on DMF-mediated increase of FXN gene expression
confirms the recent paper by Jasoliya et al. [41] showing a significant FXN gene induction in vitro and
in vivo FRDA cells treated with DMF.
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treatment (Figure 5A). Only DMF reaches its maximum of activation at 2 h and then slowly 
decreases after 24 h drug administration. The Nqo1 expression displays a similar trend (Figure 5B), 
with a first fast enhancement at 2 h treatment for SFN and DMF and a progressive increase over time 
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Figure 4. The FXN expression increases in FRDA fibroblasts following the drugs-mediated NRF2
induction. Real-time PCR analysis of FXN after 24 h treatment with 10 µM SFN, 30 µM DMF, 100 µM
NAC, 1 µM EPI-743, 1 µM IDEB, 100 nM OMAV. TBP has been used for normalization. Relative
quantification of FXN gene expression was performed according to the 2−∆∆Ct method. Values represent
mean ± SEM of three independent experiments. *** p < 0.001, compared with controls’ group (Ctrls);
## p < 0.01, ### p < 0.001, respect to untreated patients.

2.5. The Drug-Mediated NRF2 Induction Is Time Dependent

All drugs induce a fast (2 h) Nrf2 increase, which grows up to 6 h until stabilizing after 24 h
treatment (Figure 5A). Only DMF reaches its maximum of activation at 2 h and then slowly decreases
after 24 h drug administration. The Nqo1 expression displays a similar trend (Figure 5B), with a first
fast enhancement at 2 h treatment for SFN and DMF and a progressive increase over time for NAC
and EPI-743 up to 24 h. The ability of Nrf2 to “auto-modulate” its expression may explain the Nrf2
stabilization at longer time of drugs exposition, thus ensuring a constant level of Nrf2 expression and a
correct redox balance in cells.
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Figure 5. Time-course of drugs-mediated Nrf2 induction. (A) Nrf2 and (B) Nqo1 protein levels in
FRDA fibroblasts, as quantified by Western Blot analyses after 2, 6, 24 h treatment with 10 µM SFN, 30
µM DMF (up) and 100 µM NAC, 1 µM EPI-743 (down). Experiments were performed in triplicates and
values expressed as % densitometry respect to untreated patients.
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2.6. The NRF2 Deficiency is Mediated by “Keap-1/DJ-1/p62 Axis” in FRDA Fibroblasts

To go deeper into the mechanism underlying the NRF2 down-regulation in FRDA, we further
analyzed the expression of the Nrf2 specific inhibitor Kelch-like ECH-associated protein 1 (Keap-1).
In particular, we evaluated if the decrease of Nrf2 was a consequence of the Keap-1 stabilization or
may depend on its reduced degradation [12]. Our findings show that the expression of Keap-1 was
significantly increased (21%) in FRDA fibroblasts (Figure 6A), thus supporting the study by Anzovino
et al. [12] showing Keap1 up-regulation in the fxn-deficient heart of a mouse cardiac model of FRDA.
Then, we analyzed the expression of p62, the protein responsible for Keap-1 degradation [42], and
DJ-1 that acts as a stabilizer of Nrf2 by preventing the Keap1/Nrf2 association [43]. Both DJ-1 and p62
proteins were decreased in FRDA fibroblasts (38% and 40% reduced levels, respectively), but only
DJ-1 reached statistical significance (Figure 6A). Furthermore, as DJ-1 is an important redox-sensitive
protein known to be inhibited by the formation of a disulfide bond with the oxidized GSH [44], we
analyzed the effect of redox drugs on DJ-1 protein levels. As shown in Figure 6B, among Nrf2 inducers,
only NAC significantly increased the amount of DJ-1, displaying a 45% enhancement level after 2 h
of treatment. The short response time of NAC leads us to assume a post-translational mechanism of
DJ-1 regulation in FRDA, with the protein partially inhibited by oxidation in basal conditions and
NAC acting as a reducing agent to recover the protein function. The oxidative modulation of DJ-1 has
been already described in a model of dopaminergic neuronal (Neuro2A) cells [44], with important
implications in the pathogenesis of Parkinson’s Disease.
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Figure 6. A defective “Keap-1/DJ-1/p62 axis” underlies Nrf2 deficiency in FRDA fibroblasts.
(A) Representative western blot (right) and densitometric analysis (left) of Keap-1, DJ-1 and p62
proteins in FRDA fibroblasts. (B) Representative western blot (right) and densitometric analysis (left)
of DJ-1 protein level after 2 and 6 h treatments of FRDA fibroblasts with 10 µM SFN, 30 µM DMF,
100 µM NAC, 1 µM EPI-743. Glyceraldehyde-3-phosphate dehydrogenase (Gapdh) was used as a
loading control. Experiments were conducted in triplicates and values expressed as mean ± SEM.
* p < 0.05, ** p < 0.01, compared with controls’ group (Ctrls); # p < 0.05, respect to untreated patients.
The dotted line represents the expression of DJ1 in patients (considered as 100% expression)

Overall our findings, besides confirming the impairment of NRF2 in FRDA and evidencing
a role for the “Keap-1/DJ1/p62” axis in mediating its deficiency, highlight the susceptibility of the
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transcription factor to the drugs’ induction, and provide suggestions for a “multi-target” drugs’ effect
of the NRF2-mediated protection.

3. Discussion

This study moves from the pathogenic hypothesis underlying FRDA according to which the
NRF2 dysfunction, as a consequence of fxn deficiency, leads to decreased mitochondrial antioxidant
protection, increased reactive oxygen species, and neurodegeneration [7–9,11,12,45]. NRF2 activation
is neuroprotective in models of neurological disorders such as Parkinson’s disease and multiple
sclerosis [6,46], thus, the activation of NRF2 signaling may also be an attractive pharmacological target
for neuroprotection in FRDA.

Nrf2 represents an endogenous stabilizer of cell homeostasis, depending on its multifaceted
cytoprotective roles as coordinator of many transcriptional networks [3,47]. Indeed, NRF2 affects
multiple pathways, including oxidative, inflammatory, and metabolic alterations [2], thus identifying
NRF2 as a central therapeutic target may be critical, especially in the new perspective of “the NRF2
diseasome”, a systems medicine approach where NRF2 alterations represent a common mechanism in
a network of diseases [2,3].

Defects in the pathway of NRF2 have been described in several in vitro and in vivo models of
FRDA. In Knock-in Knock-out (KIKO) and GAA repeat expansion YG8R FRDA mice, NRF2 deficiency
causes mitochondrial impairment and oxidative imbalance [48,49], such as in frataxin-silenced motor
neurons and in human fibroblasts, where defective NRF2 nuclear translocation and down regulation
of NRF2 target genes have been reported [7–9,11].

Because of the versatile role of NRF2 and its high reactivity towards many electrophilic xenobiotics,
many NRF2 inducers have been described and new agents continue to be discovered [2,50]. However,
due to this multi-target benefit, the NRF2 modulation could be considered “not specific”, which
would weaken its importance as a valuable drug target, in spite of its central role in several chronic
diseases [2,3]. Thus, understanding if drug specific profiles are activated in response to NRF2 induction
might be very useful to target therapies.

Starting from this assumption and from evidence showing the efficacy of NRF2 induction on
FRDA models [11,21,36,48,49], in this study we compared the expression profile of NRF2 and its
downstream genes after the administration of six different drugs known to modulate NRF2. Many
of the selected compounds have been already adopted in clinical trials [18–24]. DMF, for instance,
is used for the treatment of multiple sclerosis and was recently proposed for clinical validation
in PD [24]. OMAV has undergone clinical trials in non-small cell lung cancer and in a clinical
trial of FRDA (ClinicalTrials.gov registration number: NCT02255435). EPI-743 is currently under
evaluation in mitochondrial diseases [21]; (https://clinicaltrials.gov/ct2/show/NCT02352896; https:
//clinicaltrials.gov/ct2/show/NCT0164205) and many clinical trials have been performed with idebenone
in FRDA [21]. Also NAC has been used in clinical practice for many years, although the mechanisms
underlying its clinical application still remain unclear [22].

A number of drugs used in this study have been currently analyzed for their efficacy on NRF2
induction on in vitro FRDA models [10,11,36,51]. The OMAV-mediated NRF2 induction, for instance,
displayed beneficial effects on cerebellar granule neurons of KIKO FRDA mouse and in human
fibroblasts [49]; SFN was efficient in counteracting the hypersensitivity to oxidation and reducing
lipid peroxidation in FRDA fibroblasts of mouse models [48]; SFN, NAC, and EPI-743 showed
NRF2-mediated neuro-protective effects in frataxin-silenced motor neurons and in neural stem cells
isolated from KIKO mice [11,36,51].

In this study, we show that all drugs consistently increased NRF2 expression in fibroblasts of
patients with FRDA but, interestingly, differential patterns of activation were induced. SFN was
particularly effective on GCL and HO-1, whereas DMF and OMAV significantly increased NQO1,
and NAC addressed its action mainly towards HO-1.

ClinicalTrials.gov
https://clinicaltrials.gov/ct2/show/NCT02352896
https://clinicaltrials.gov/ct2/show/NCT0164205
https://clinicaltrials.gov/ct2/show/NCT0164205
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Important functional implications arise from these distinct drug-mediated activation profiles:
Nqo1, by catalyzing the reduction of quinone to hydroquinone, will prevent the toxic accumulation
of quinone products and counteract lipid peroxidation [52]; Ho-1, playing a protective role in the
early phases of immune response, will contribute to modulate the inflammation [53,54]; Gcl, which
is responsible for the de novo synthesis of glutathione, will be essential in buffering the redox
tissue imbalance [55–57]. Therefore, our findings, besides confirming a central role for NRF2 in the
pathogenesis of FRDA, can contribute to developing targeted therapies, through the use of drugs aimed
at preventing inflammation (i.e., SFN, NAC), lipid peroxidation (DMF, OMAV, EPI-743), or redox
imbalance (SFN), based on the patient’s clinical conditions and their therapeutic needs.

We are aware that fibroblasts are not the major tissue affected in FRDA, however they recapitulate
many molecular features of the disease, including the reduced frataxin expression and the NRF2
impairment, thus representing a manageable resource for drug screening [49,58].

Drugs elicit different mechanisms of actions and NRF2 is regulated at multiple levels [59,60],
thus we believe that the specific expression profiles evidenced in this study may depend on the
multi-target control underlying NRF2 modulation. SFN, for instance, displays a dual mechanism:
it directly reacts with Cys residues on Keap1, leading to the release and nuclear translocation of
NRF2 [5,61], but it also functions by a Keap1-independent mechanism due to Nrf2 phosphorylation,
inhibition of GSK3β-dependent Fyn, and Akt modulation [62,63]. Similarly, DMF has multiple
functions either acting on Keap1 thiols or also inhibiting GSK3β [64,65]. Unlike SFN and DMF, OMAV
displays a more specific activation of NRF2, through the direct inhibition of Keap1 on its primary
sensor C151, which prevents the Nrf2 ubiquitination [66]. A multifaceted activity has been described
even for NAC [22,67], whereas the NRF2 induction mediated by idebenone and EPI-743 is not still
deeply elucidated. Physiologically, idebenone acts as an electron carrier within the mitochondrial
respiratory chain [23]. It displays similar antioxidant properties as its structural analogue CoQ10, but the
decreased molecular weight and the increased water solubility make idebenone more bioavailable than
CoQ10 [68,69]. EPI-743 has been recently demonstrated preventing in vitro ferroptosis by the specific
inhibition of 15-lipoxygenase enzyme activity [70]. It was effective on a neuronal model of FRDA and
in mitochondrial diseases [27,28,36,51,71].

However, we must keep in mind that the molecular hallmark in FRDA is the low expression of
functional frataxin protein and therapeutic efforts have to be focused on attempting to increase FXN
mRNA and/or protein amount [72].

FRDA carriers remain asymptomatic up to approximately 50% protein level, thus a small increase
of FXN expression can become curative. Importantly, ARE sequences have been identified in the FXN
locus, upstream the transcription start site of FXN and are completely conserved across evolution [10].
Thus, approaches based on the NRF2 modulation may expand the therapeutic opportunities for this
disease. Among drugs tested in this study, SFN, DMF, NAC, and EPI-743 consistently elevated the
FXN gene expression in FRDA fibroblasts. Importantly, the FXN gene was increased by three times in
patients’ cells, respecting the untreated FRDA cells and thus leading to pathologic FXN levels close to
carriers’ range.

Then, we attempted to go deeper in the mechanism underlying the NRF2 impairment in FRDA.
Thus, also moving from the study by Anzovino et al. [12] that reported a dysfunctional “Nrf2-Keap1
axis” in the heart of a FXN KO mouse model, we analyzed the expression of Keap-1 and two proteins
(DJ-1 and p62) responsible for “Keap1-mediated” Nrf2 stabilization in FRDA fibroblasts [42,43].
Confirming Anzovino’s findings, we found an up-regulation of Keap-1 in FRDA fibroblasts, and
additionally, we found significant decreases of DJ-1 and p62 proteins amount, indicative of a reduction
of Nrf2 stability in the disease. Of note, the NAC treatment displayed a short-term effect on DJ-1, thus
suggesting a mechanism of DJ-1 regulation mediated by reversible oxidation [44].

Overall, this study strengthens the role of NRF2 as a central therapeutic target in FRDA and
contributes to position FRDA in the “NRF2 diseasome”, a new approach assembling disease phenotypes
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joined by NRF2 defects [2,3]. Furthermore, the identification of differential molecular profiles in FRDA
will be useful for designing innovative therapies that are also based on a drugs combination.

4. Materials and Methods

4.1. Fibroblasts Cultures

Skin biopsies were taken from three clinically affected (and genetically proven) FRDA patients
(two males and one female) (Table 1) and three age-matched controls (Ctrls). Fibroblasts were grown
in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum, 50 units/mL
penicillin, 50 µg/mL streptomycin, 0.4% (v/v), at 37 ◦C in 5% CO2. Fibroblasts were cultured to 70%
confluence and incubated for 2, 6, and 24 h with 10 µM SFN, 30 µM DMF, 100 µM NAC, 1 µM EPI-743,
1 µM Idebenone, and 100 nM OMAV diluted in culture medium (drugs dosing has been chosen
following [11,36,73]). After washing, cells were lysed in Total RNA Purification Plus Kit (Norgen
Biotek Corp., Torold, ON, Canada), according to the manufacturer’s protocol for RNA extraction
and subjected to quantitative Real-Time PCR, or lysed with RIPA buffer including DTT and protease
inhibitors for Western blotting analysis. Cells were used at similar 9–11 passage numbers and were
tested for mycoplasma contamination. The assays were performed in triplicates. All the participants
signed an informed consent and the study was approved by the Ethics Committee of “Bambino Gesù”
Children’s Hospital (code 1166/2016; date of approval 08/06/2016).

Table 1. Clinical data of patients with FRDA.

Patient Age (Yrs) Sex GAA Repeats Cardiomyopathy Diabetes

#1 19 F 680/350 No No
#2 14 M 848/848 Yes No
#3 8 M 448/848 Yes No

4.2. Quantitative Real-Time PCR (qRT-PCR)

1 µg RNA samples was reverse transcribed with the SuperScript™ First-Strand Synthesis system
and random hexamers as primers (Life Technologies, Carlsbad, CA, USA). The expression levels of
FXN, NRF2, NQO1, HO-1, and GCL were measured by qRT-PCR in an ABI PRISM 7500 Sequence
Detection System (Life Technologies) using Power SYBR Green I dye chemistry (ThermoFisher Scientific,
Walthman, MA, USA). Data were analyzed using the 2−∆∆Ct method with TBP (TATA box binding
protein) and Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as housekeeping genes, and data
are shown as fold change relative to controls. Primers used for qRT-PCR are reported in Petrillo
et al. [74].

4.3. GSH Assay

Glutathione (GSH) levels were detected in fibroblasts using the enzymatic re-cycling assay [75],
with minor modifications. Briefly, samples were resuspended in dH2O and sonicated 2 times for 2 sec,
de-proteinized with 5% (w/v) sulphosalycilic acid (SSA, Sigma-Aldrich, St. Louis, MO, USA) and
the glutathione content was determined after dilution of the acid-soluble fraction in Na-phosphate
buffer containing EDTA (pH 7.5). GSH concentrations were measured with the ThioStar® glutathione
detection reagent (Arbor Assays, Michigan, MI, USA), using GSH as standard (Sigma Chemicals, St.
Louis, MO, USA). The fluorescence was measured by an EnSpire® Multimode Plate Reader (Perkin
Elmer, Waltham, MA, USA). Protein concentration (mg·mL−1) was detected by the BCA method
(ThermoFisher, Walthman, MA, USA) and GSH levels were expressed as nmol/mg prot.
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4.4. Western Blot Analysis

Fibroblasts (1 × 106) were lysed on ice with RIPA buffer, including DTT and protease inhibitors.
40 µg proteins were subjected to SDS PAGE on 4–12% denaturing gel and probed with the following
antibodies: Nrf2 (1:500, Abcam, Cambridge, UK), Nqo1 (1:7000, Novus Biologicals, Minneapolis, MN,
USA), Ho-1 (1:3000, Abcam), Frataxin (1:500, Santa Cruz Biotechnology, Dallas, TX, USA), and GAPDH
(1:10,000, Sigma Aldrich) as loading control. Immunoreactive bands were detected using the Lite Ablot
Extend Long Lasting Chemiluminescent substrate (Euroclone, Milan, Italy). Signals derived from
appropriate HRP-conjugated secondary antibodies (Bethyl Laboratories, Montgomery, TX, USA) were
captured by Chemi DocTM XRS 2015 (Bio-Rad Laboratories, Hercules, CA, USA) and densitometric
analysis was performed using Image Lab software (Version 5.2.1, Bio-Rad Laboratories)

4.5. Statistical Analysis

Statistical analysis was performed using the GRAPHPAD/Prism 5.0 Software (San Diego, CA,
USA). Statistically significant differences between groups were analyzed using Student’s t-test for
normally distributed variables. All data are presented as mean ± standard error. Statistical significance
was defined as * p < 0.05, ** p < 0.001, *** p < 0.001 compared to healthy controls, and # p < 0.05,
## p < 0.01, ### p < 0.001 compared to untreated cells.

5. Conclusions

Different redox drugs, joined by their ability to modulate the NRF2 pathway, elicit differential
response profiles in FRDA fibroblasts. Using drugs aimed at preventing inflammation (SFN, NAC),
lipid peroxidation (DMF, OMAV, and EPI-743), or redox imbalance (SFN), “multi-target” synergic
therapies can be developed in FRDA, based on the patient’s clinical conditions and therapeutic needs.
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