
 

 

 

  

Abstract— This paper presents a controller for the problem 

of Network Selection in 5G Networks, based on Reinforcement 

Learning. The problem of Network Selection and Traffic 

Steering is modeled as a Markov Decision Process and a Q-

Learning based control solution is designed to meet 5G 

requirements, such as Quality of Experience (QoE) 

maximization, Quality of Service (QoS) assurance and load 

balancing. Numerical simulations preliminarily validate the 

proposed approach on a simulated scenario considered in the 

European project H2020 5G-ALLSTAR. 

I. INTRODUCTION 

RAFFIC steering is a fundamental functionality of 5G 

networks and consists in the ability of routing, or 

steering, a given traffic flow over one of the several different 

Radio Access Technologies (RATs) available to the User 

Equipment (UE). In fact, in 5G scenarios it is envisaged that 

modern UEs may connect to several different technologies 

(e.g., 5G, LTE, satellite networks, …), potentially at the same 

time, in what is defined as the heterogeneous network 

framework. Traffic steering is then heavily linked to the 

concept of network selection, as the routing/steering decisions 

over the Access Points (APs) of the available RATs shall be 

driven by a feedback-based analysis of the network state and 

performances, potentially also taking into account user 

preferences.  

In this paper, the state of the network will be represented 

by the downlink cell allocated bitrate, while the performances 

will be measured in terms of connection quality to capture the 

satisfaction level of the users. The traffic steering problem 

will be modeled with the Markov Decision Processes (MDP) 

formalism and Reinforcement Learning (RL) was selected for 

the controller design due to its ability to deal with complex 

scenarios without requiring an explicit model. The main 

motivation behind this work is then to characterize and show 

the effectiveness of such an approach through its application 

to a simulated 5G network scenario. For the model 
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development, in order to account for services which can be 

offered with multiple bitrates and consequently with different 

qualities, several classes of utility functions were defined to 

capture the Quality of Experience (QoE) perceived by the 

users. Additionally, the MDP was formulated, to overcome 

the scalability problem, utilizing Approximate Dynamic 

Programming (ADP) techniques, and, in particular, state 

space aggregation.  

The paper is organized as follows: Section II presents the 

state of the art on Traffic Steering in 5G-networks, as well as 

the proposed novelties; Section IV presents the problem 

modelling and the network selection algorithm; Section IV 

shows some simulation results to validate the proposed 

algorithm; Section V draws the conclusions and highlights 

future works. 

The work presented in this paper was carried out within the 

H2020 5G-ALLSTAR project (www.5g-allstar.eu), aimed at 

ensuring the seamless integration of satellite and cellular 

connections in a heterogeneous network framework. 

II. STATE OF THE ART, INNOVATIONS AND LIMITATIONS 

OF THE PROPOSED APPROACH 

Traffic steering is the process of distributing traffic load in 

order to exploit the available network resources on a set of 

heterogeneous RATs that constitute a Radio Access Network 

(RAN) [1]. The enabling procedure for the process of traffic 

steering is the so-called network selection [2], [3], a feedback-

based analysis of the network aimed at identifying the best 

APs for the connections, also referred to as Protocol Data Unit 

(PDU) sessions. Such feedback analysis is conducted based 

on the level of usage of the various APs, together with their 

characteristics (e.g., operating prices, reliability) and both 

user and operator preferences.  

In 5G networks, the network selection shall be done in such 

a way that the Quality of Service (QoS) requirements of the 
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various connections (e.g., minimum required bitrate or 

maximum tolerated delay) are satisfied, and, to univocally 

define such QoS requirements, the concept of QoS-flow was 

introduced [4]. Each PDU session is divided into several QoS-

flows, each characterized by a standardized set of QoS 

requirements depending on its service characteristics [4], 

leading to the identification of, as of now, 22 different QoS 

flow types identified by a corresponding 5G QoS Identifier 

(5QI). 

Several approaches were already studied for the problems 

of traffic steering and network selection, ranging from 

Multiple Attribute Decision Making (MADM) [5], [6] and 

Fuzzy Logic [7] to Game Theory [8], [9]. MDPs and RL were 

also already explored, for example, in [10] and [11]. 

An important feature for traffic steering in 5G networks is 

the ability to support multiple bitrates for the supported 

services. An example of such service is multi-codec video 

streaming, whose streaming quality should be dynamically 

varied based on user needs, preferences and on network 

conditions. As introduced in [12] for generic resource 

allocation problems, a possible approach is to associate utility 

functions to the services to model how the amount of assigned 

resources impacts on the user satisfaction.  

From the modelling perspective, this work takes into 

account 5G requirements by supporting a heterogeneous 

network scenario while also being able to offer flexibility in 

service requirements. In this last respect, the network 

controller presented in this work aims at maximizing the 

perceived connection quality of the network users, thanks to 

an ad hoc utility function-based modelling of the 

performances of the considered classes of services, inspired 

by [12] and expanding the modelling of [11], which defined 

user satisfaction based on  a throughput threshold. From the 

MDP and RL perspective, this work expands the algorithm 

presented in [10], thanks to the concepts of state aggregation 

and ADP, aimed at avoiding the so-called curse of 

dimensionality (e.g., see [13]), which affects the solutions 

based on Dynamic Programming (DP) and tabular RL in 

realistic scenarios. 

 The evaluation of RL approaches relies on the availability 

of a realistic environment, i.e., in our case, of a representative 

5G network simulator. This paper presents a preliminary 

evaluation of the proposed concepts by using numerical 

simulations considering a limited set of 5G network 

characteristics. Moreover, by considering some of the 

neglected characteristics, such as, for instance, the user 

mobility, the developed RL algorithm would probably be not 

adequate but its ideas will serve as a starting point for other 

improvements, as specified in the future work part of Section 

V. 

III. PRELIMINARIES ON MARKOV DECISION PROCESSES 

AND REINFORCEMENT LEARNING 

A MDP is a discrete-time stochastic control process 

defined by the tuple {𝑆, 𝐴, 𝑇, 𝑟, Σ, 𝛾}, where 𝑆 is a discrete, 

finite state set, 𝐴 = ⋃ 𝐴𝑠𝑠∈𝑆  is the finite action set in state 𝑠, 
𝑇 is the state transition probability matrix, 𝑟 is the reward 

function, such that 𝑟(𝑠, 𝑎, 𝑠′) is the immediate reward 

obtained in 𝑠 when action 𝑎 ∈ 𝐴𝑠 is taken and state 𝑠′ is the 

next state, Σ is the initial state distribution over the state space 

𝑆, and 𝛾 ∈ (0,1) is the discount factor, which weights 

immediate rewards versus future rewards. Standard MDP 

definitions rely on the Markovian (or memory-less) property 

and on the stationary distribution of the stochastic process. 

Under these assumptions, the transition probabilities are 

stationary. 

A stationary policy 𝑢 is a mapping of each state to an 

action, i.e., 𝑢(𝑠) = 𝑎, 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴𝑠. The MDP problem is 

aimed at finding an optimal policy 𝑢∗: 𝑆 → 𝐴 that maximizes, 

in the long run, the expected discounted reward: 

 

𝑅(𝑢) ≔ 𝐸𝑢,Σ{∑ 𝛾𝑡𝑟(𝑠(𝑡), 𝑎(𝑡), 𝑠(𝑡 + 1))𝑡=0,1,…,∞ }, (1) 

 

where 𝑠(𝑡) and 𝑎(𝑡) denote the state and the action at time 𝑡, 
respectively, and 𝐸𝑢,Σ{⋅} denotes the expected value under 

policy 𝑢 with initial state distribution Σ. 

The value function 𝑉𝑢(𝑠) is the expected discounted reward 

starting from 𝑠 and following policy 𝑢 thereafter, and the 

action-value function 𝑄𝑢(𝑠, 𝑎) is the expected discounted 

reward, starting from 𝑠, taking action 𝑎 ∈ 𝐴𝑠 and following 

policy 𝑢 thereafter: 

 

𝑉𝑢(𝑠) ≔ 𝐸𝑢{∑ 𝛾𝑡 ⋅ 𝑟(𝑠(𝑡), 𝑎(𝑡), 𝑠(𝑡 + 1))𝑡=0,1,…,∞ | 𝑠(0) =

𝑠},  (2) 

 

𝑄𝑢(𝑠, 𝑎) ≔ 𝐸𝑢{∑ 𝛾𝑡 ⋅ 𝑟(𝑠(𝑡), 𝑎(𝑡), 𝑠(𝑡 +𝑡=0,1,…,∞

1)) | 𝑠(0) = 𝑠, 𝑎(0) = 𝑎}, (3) 

 

where 𝐸𝑢{⋅} denotes the expected value under policy 𝑢. 

As mentioned in Section 1, the paper interest is in solving 

the MDP by means of RL algorithms. Let the system be in a 

given state 𝑠 ∈ 𝑆; RL algorithms take an action 𝑎 ∈ 𝐴𝑠 based 

on a the current policy and then, after the transition, observe 

the next state 𝑠′ ∈ 𝑆 and the obtained reward 𝑟(𝑠, 𝑎, 𝑠′). Based 

on the observations, the RL algorithms update an estimate of 

the value function of state 𝑠 or of the action-value function of 

the pair (𝑠, 𝑎). 
RL algorithms differ by the rule used to decide the control 

action and by the rule used to update the value (or action-

value) function. In this paper, the Q-learning algorithm is 



 

 

 

considered, but more complex RL algorithms are foreseen for 

the algorithm improvements (see Section VI). The Q-

Learning update rule is 

 

𝑄(𝑠(𝑡), 𝑎(𝑡)) ← (1 − 𝛼(𝑡))𝑄(𝑠(𝑡), 𝑎(𝑡)) + 𝛼(𝑡) ⋅  

⋅ [𝑟(𝑠(𝑡), 𝑎(𝑡), 𝑠(𝑡 + 1)) + 𝛾 max
𝑎′∈𝐴𝑠(𝑡+1)

𝑄(𝑠(𝑡 + 1), 𝑎′)]. (4) 

 

In equation (4), 𝛼(𝑡) > 0 is the learning rate and is the key 

parameter for the algorithm convergence: if ∑ 𝛼(𝑡)𝑡=1,…,∞ =

∞ and ∑ (𝛼(𝑡))
2

𝑡=1,…,∞ < ∞, the estimate (4) converges to 

the optimal action-value function as 𝑡 → ∞ [13]. The action 

is then decided based on the current estimate of the state-

action value function, and, at time 𝑡, the current best policy 

is: 

 

𝑢(𝑠(𝑡)) = argmax
𝑎∈𝐴𝑠

𝑄(𝑠(𝑡), 𝑎) , 𝑠 ∈ 𝑆. (5) 

 

As the estimate (4) converges to the optimal action-value 

function, the policy (5) converges to an optimal policy. 

To guarantee a certain degree of exploration of the state 

space set, an ε-greedy rule is followed for the action selection: 

in state 𝑠 ∈ 𝑆, the current best action (5) is taken by the 

controller with probability 1 − ε, where ε ∈ (0,1) is the 

exploration rate; a random action 𝑎 ∈ 𝐴(𝑠) is chosen with 

probability ε, i.e.: 

 

𝑢(𝑠) ← {
argmax
𝑎∈𝐴(𝑠)

𝑄(s, a) , with prob.  1 − 𝜀

rand{𝑎 ∈ 𝐴(𝑠)} , with prob.  𝜀     
, 𝑠 ∈ 𝑆. (6) 

 

A large value of 𝜀 guarantees that different policies with 

respect to the current best one are explored, and thus avoids 

that the system remains stuck in a local minimum. A small 

value of ε, on the other hand, lets the system choose the best 

action based on the current estimates of the action-value 

function and favors the exploitation of the current best policy. 

The choice of 𝛼(𝑡) and 𝜀 depends on the specific 

application. 

IV. PROPOSED RL-BASED TRAFFIC STEERING 

ALGORITHM 

A. Problem Model 

Let 𝐼 be the set of UEs connected within a RAN, let 𝐾 be 

the set of different services available to each UE, let 𝑃 be the 

set of different APs of the RAN and let 𝑃𝑖 ⊆ 𝑃 be the set of 

APs available to UE 𝑖 ∈ 𝐼. 
Each AP is characterized by the amount of available 

resources in terms of bitrate, denoted with 𝑊𝑝 , 𝑝 ∈ 𝑃. 

Similarly, the services are characterized in terms of required 

bitrate. Different types of services are considered: elastic 

services, such as web browsing, for which the user-perceived 

quality improves with the assigned bitrate, and non-elastic 

services, such as augmented reality streams, for which a fixed 

bitrate is needed for the transmission. Among the elastic 

services it is also possible to discern services in which the 

service quality varies depending on the encoding that is 

available at the considered bitrate, as for example multi-codec 

video streams. 

Let 𝑤𝑝𝑘  be the amount of bitrate allocated on AP 𝑝 for a 

service of type 𝑘 and 𝑟𝑝𝑘(𝑤𝑝𝑘) be the perceived quality of 

connection experienced by the users. It is possible to 

characterize the three types of services as follows. 

 

Elastic traffic: this kind of QoS-flows benefits from having 

more dedicated resources, therefore its user-perceived quality 

function grows with the allocated bitrate 𝑤𝑝𝑘 starting from a 

minimum value and up to a maximum one: 

 

𝑟𝑝𝑘(𝑤𝑝𝑘) = {

0 if 𝑤𝑝𝑘 < 𝑤𝑘
1          

𝑓(𝑤𝑝𝑘) if 𝑤𝑘
1 ≤ 𝑤𝑝𝑘 ≤ 𝑤𝑘

2

𝑓(𝑤𝑘
2) otherwise  

. (7) 

 

An example of this kind of utility function is represented in 

Figure 1, where the utility function is proportional to the 

allocated bitrate, i.e., 𝑟𝑝𝑘(𝑤𝑝𝑘) = 𝑐𝑤𝑝𝑘 up to a maximum 

bitrate 𝑤𝑘
1. 

 

𝑟𝑝𝑘 𝑤𝑝𝑘

𝑤𝑝𝑘0 𝑤𝑘
1

𝑐𝑤𝑘
1

 
Figure 1. User-perceived quality of connection for service with elastic traffic. 

 

Real-time traffic with guaranteed bitrate (fixed bitrate 

service):  this kind of QoS-flows requires a fixed amount of 

bitrate, therefore its utility function is positive and constant if 

enough bitrate is allocated onto a suitable access network, 0 

otherwise, as reported in Figure 2. 

 

𝑟𝑝𝑘(𝑤𝑝𝑘) = {
0 if 𝑤𝑝𝑘 < 𝑤𝑘

1

 𝑟𝑝𝑘
1 > 0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,  (8) 



 

 

 

𝑤𝑝𝑘𝑤𝑘
10

𝑟𝑝𝑘(𝑤𝑝𝑘)

𝑟𝑝𝑘
1

 
Figure 2. User-perceived quality of connection for service with transmission 

bitrate threshold. 

 

Multi-codec traffic: this kind of QoS-flows improves its 

quality depending on its encoding. The available encodings 

depend on the amount of resources allocated for the service, 

according to a distribution with multiple thresholds as 

reported in Figure 3. 

 

𝑟𝑝𝑘(𝑤𝑝𝑘) =

{
 
 

 
 

0 if 𝑤𝑝𝑘 < 𝑤𝑘
1

𝑟𝑝𝑘
1 > 0 if  𝑤𝑘

1 ≤ 𝑤𝑝𝑘 < 𝑤𝑘
2

𝑟𝑝𝑘
2 > 𝑟𝑝𝑘

1 if  𝑤𝑘
2 ≤ 𝑤𝑝𝑘 < 𝑤𝑘

3

𝑟𝑝𝑘
𝑐 > 𝑟𝑝𝑘

𝑐−1 if 𝑤𝑝𝑘 ≥ 𝑤𝑘
𝐶

,  (9) 

 

𝑟𝑝𝑘(𝑤𝑝𝑘)

𝑤𝑝𝑘0 𝑤𝑘
3𝑤𝑘

1 𝑤𝑘
2

𝑟𝑝𝑘
1

𝑟𝑝𝑘
2

𝑟𝑝𝑘
3

 
Figure 3. User-perceived quality of connection for service with multi-codec 

traffic. 

 

The reward associated with each state is represented by the 

cumulative QoE of the network users, obtained by summing 

all perceived quality of connection for all ongoing PDU 

sessions.  

At time 𝑡, we denote with 𝑛𝑝𝑘
𝑐 (𝑡) the number of on-going 

QoS-flows of type 𝑘 on AP 𝑝, considering the level 𝑐 of the 

allocated bitrate, and with 

 

𝑛𝑝𝑘 = ∑ 𝑛𝑝𝑘
𝑐

𝑐=1,…,𝐶𝑘
, 

 

where 𝐶𝑘 is the number of bitrate threshold levels that 

characterize the reward function 𝑟𝑝𝑘. 

By defining 𝜂𝑝
1(𝑠(𝑡)) as the minimum amount of bitrate 

required to support the on-going QoS-flows at the minimum 

bitrate level in state 𝑠, i.e, 

 

𝜂𝑝
1(𝑠(𝑡)) = ∑ 𝑛𝑝𝑘𝑤𝑘

1
𝑘∈𝐾 , 𝑝 ∈ 𝐶, (10) 

 

the state space S is defined as 

 

𝑆 = {𝑠 = (𝑛𝑝𝑘)𝑝∈𝑃,𝑘∈𝐾|𝜂𝑝
1(𝑠) ≤ 𝑊𝑝} = {𝑠1, 𝑠2, … , 𝑠|𝑆|}.(11) 

 

Since the considered resource (bitrate) is additive, and 

since the AP resources 𝑊𝑝 are finite, the discrete state space 

𝑆 is finite as well. With little abuse of notation, the number of 

QoS-flows of type 𝑘 on AP 𝑝 in state 𝑠 is denoted with 

𝑛𝑝𝑘(𝑠). 

At each service request, the RAN controller has to decide 

whether to admit or reject the service request, and also, in case 

of admission, the AP which has to transmit the service to the 

UE. Let 𝛿𝑝𝑘 be a |𝑃| ⋅ |𝐾| vector of all zeros but the element 

associated to the AP 𝑝 and the service type 𝑘. Then, in each 

state 𝑠, a request of service 𝑘 can be allocated on AP 𝑝 only 

if 𝑠 + 𝛿𝑝𝑘 ∈ 𝑆; otherwise, the request must be rejected. The 

action set in state 𝑠𝑗 ∈ 𝑆 is then defined as 

 

𝐴𝑠𝑖 = {𝑎 = (𝑎𝑝𝑘)𝑝∈𝑃,𝑘∈𝐾|𝑎𝑝𝑘 ∈
{0,1} if 𝑠𝑖 + 𝛿𝑝𝑘 ∈ 𝑆, 𝑎𝑝𝑘 =

0 if 𝑠𝑖 + 𝛿𝑝𝑘 ∉ 𝑆, ∀𝑝 ∈ 𝑃, ∀𝑘 ∈ 𝐾,∑ 𝑎𝑝𝑘 ≤ 1, ∀𝑘 ∈ 𝐾𝑝∈𝑃 } , 𝑖 =

1,… , |𝑆|,  (11) 

 

where 𝑎𝑝𝑘 denotes the action of admitting a request of service 

𝑘 on AP 𝑝. The constraints 

 

∑ 𝑎𝑝𝑘 ≤ 1, ∀𝑘 ∈ 𝐾𝑝∈𝑃   

 

in (11) states that, for each service 𝑘, the request can be either 

allocated to a single AP 𝑝 or rejected. 

For the sake of the analysis, it is assumed that, for each 

service type 𝑘 ∈ 𝐾, the service requests arrive according to a 

Poisson distribution in time with intensity 𝜈𝑘 and their 

duration is exponentially distributed with mean termination 

frequency 𝜇𝑘. Under a given policy 𝑢, when the system is in 

state 𝑠, the transition frequencies between states occur 

according to the arrival and termination frequencies and to the 

admission decisions: 

- if the action 𝑢(𝑠) is to allocate the service 𝑘 on AP 𝑝, 

the transition from state 𝑠 to state 𝑠 + 𝛿𝑝𝑘 occurs with 

frequency 𝜈𝑘; 

- since a mapped service 𝑘 on AP 𝑝 terminates with 

termination frequency 𝜇𝑘, the transition from state 𝑠 to 

state 𝑠 − 𝛿𝑐𝑘 occurs with frequency 𝑛𝑐𝑘(𝑠)𝜇𝑘, 

regardless of the policy 𝑢. 

For the sake of the analysis of the MDP properties, a 



 

 

 

procedure known as uniformization can be applied to 

transform a continuous-time MDP to a discrete-time one, and 

it can be shown (see, e.g., [14]) that the two MDPs are 

equivalent. The procedure consists in defining discrete-time 

transitions, i.e., in defining a transition matrix 𝑇, by following 

a two-step procedure: in the first step, the transition 

frequencies of each state must be divided by constant value 

which is larger than the sum of the outgoing transition 

frequencies of any state 𝑠 ∈ |𝑆|; in the second step, self-

transitions are added to each state in such a way that the 

outgoing probability is 1. Thanks to the RL approach, the 

computation of the transition probabilities is not necessary. 

Given a state 𝑠(𝑡), we are also interested in computing the 

bitrate which is actually used by the APs for the on-going 

services and in the fact that the user experience for some 

services can be improved if the APs assign more bitrate than 

the minimum required one, in order to maximize the 

associated reward. Therefore, an allocation procedure must be 

defined at every admission decision or QoS-flow termination 

to decide the allocation of the bitrate exceeding the minimum 

one 𝜂𝑝
1(𝑠(𝑡)) to the on-going QoS-flows. In state 𝑠(𝑡), the 

bitrate allocation procedure returns 𝑛𝑝𝑘
𝑐 (𝑡) and 𝑟𝑝𝑘

c  (the 

number of QoS-flows of service 𝑘 on-going on AP 𝑝 with 

granted bitrate level 𝑐 and their associated rewards), for all 

𝑝 ∈ 𝑃, 𝑘 ∈ 𝐾 and 𝑐 = 1,… , 𝐶𝑘. It is then possible to associate 

each state 𝑠(𝑡) with an amount of bitrate required at the time 

t by all the allocated QoS-flows on AP p: 

 

𝜂𝑝(𝑠(𝑡)) = ∑ ∑ 𝑛𝑝𝑘
𝑐 (𝑡)𝑤𝑘

c
𝑐=1,…,𝐶𝑘𝑘∈𝐾 , 𝑝 ∈ 𝑃. (12) 

 

Consistent with this idea, we define a state-dependent reward 

𝑟(𝑠) in state 𝑠 considering the whole capacity allocation and 

not only the minimum one 𝜂𝑝
1(𝑠):  

 

𝑟(𝑠) = ∑ ∑ ∑ 𝑛𝑝𝑘
𝑐 (𝑡)𝑟𝑝𝑘

c
𝑐=1,…,𝐶𝑘𝑘∈𝐾𝑝∈𝑃 , (13) 

 

The described stationary MDP is ergodic and unichain (i.e., 

under all stationary policies, it is aperiodic and has a single 

recurrent class and possibly a non-empty set of transient 

states, see [15] for details), since the transitions are stochastic 

– and, therefore, aperiodic – and the transitions due to service 

terminations are always positive and independent of the 

policy. Thus, the expected state sojourn times under policy 𝑢, 

denoted with 𝑦𝑢’s, exist and are finite. In this paper, the 

interest is in maximizing the expected discounted reward (1)1, 

computed as 

 
1 With some awareness, the proposed method is applicable also to the  

undiscounted and finite-horizon cases. 
 

 

𝑅(𝑢) = (1 − 𝛾)∑ 𝑦𝑢(𝑠𝑗)𝑟(𝑠𝑗)𝑗=1,…,𝑁 , 𝑢 ∈ 𝑈. (14) 

 

B. Proposed Algorithms 

We note that the described MDP could be computed by 

means of DP algorithms or of its linear programming 

formulation [15], which however would require the 

knowledge of the transition matrix. Even if the transition 

matrix were known, the MDP model described in Section 

IV.A would not be tractable by standard DP methods due to 

scalability reasons. Therefore, this paper proposes to apply 

ADP techniques to reduce the problem dimension and RL to 

obtain a data-driven algorithm. 

Concerning ADP, we reduce the state space dimension by 

aggregating the states with similar minimum capacity 

allocation. For every AP 𝑝 ∈ 𝑃, by defining a granularity Δ𝑝 

and using ⌊ ⌋ as the truncation operator to the next lower 

integer, the aggregate state set with ⌊
𝑊𝑝

Δ𝑝
⌋ bitrate levels is 

obtained as 

 

𝑆̃ = {𝑠̃ = (𝑙𝑝)𝑝∈𝑃 |𝑙𝑝 =

⌊
∑ 𝑛𝑝𝑘𝑤𝑘

1
𝑘∈𝐾

Δ𝑝
⌋ , with (𝑛𝑝𝑘)𝑘∈𝐾 s. t.

∑ 𝑛𝑝𝑘𝑤𝑘
1

𝑘∈𝐾 < 𝑊𝑝, ∀𝑝 ∈

𝑃}. (15) 

 

Clearly, the number of states decreases as the granularities 

Δ𝑝’s grow. 

Due to the state space aggregation, also the action space 

(which we recall is dependent on the state) needs to be 

changed. Since different bitrate levels can be associated to a 

single aggregate state 𝑠̃, it might happen that, at two time 

instants 𝑡′ and 𝑡′′, for a given service 𝑐, the system is in state 

𝑠̃ with minimum load 𝜂𝑝(𝑠̃(𝑡
′))𝑤𝑘

1 < 𝑊𝑝 − 𝑤𝑝𝑘 and 

𝜂𝑝(𝑠(𝑡
′′))𝑤𝑘

1 > 𝑊𝑝 − 𝑤𝑝𝑘, respectively: only at time 𝑡′′, the 

system could accept a new service 𝑘 request. Since the action 

set is associated to a state, standard approaches would be 

either to consider the admission action for service 𝑐 as not 

available in state 𝑠̃, regardless of the availability of the 

necessary capacity, or to “disaggregate” these states.  

To account for these occurrences without increasing the 

dimension of the state space, we define a state-dependent 

action space which also depends on the actual measured AP 

transmission bitrate: 

 

 



 

 

 

𝐴̃(𝑠̃(𝑡)) = {(𝑎̃𝑝𝑘)𝑝∈𝑃,𝑘∈𝐾|𝑎̃𝑝𝑘 ∈
{0,1} if 𝜂𝑝(𝑠̃(𝑡))𝑤𝑘

1 < 𝑊𝑝 −

𝑤𝑝𝑘 , 𝑎̃𝑝𝑘 = 0 otherwise, ∀𝑘 ∈ 𝐾,∑ 𝑎̃𝑝𝑘 ≤ 1, ∀𝑘 ∈ 𝐾𝑝∈𝑃 }. (16) 

 

Correspondingly, at time 𝑡, the observed reward in state 

𝑠̃(𝑡) is computed as 

 

𝑟(𝑡) = ∑ ∑ ∑ 𝑛𝑝𝑘
𝑐 (𝑡)𝑟𝑝𝑘

c
𝑐=1,…,𝐶𝑘𝑘∈𝐾𝑝∈𝑃 , (17) 

 

The action set approximations introduced so far require 

modifications of the standard Q-learning algorithm, since an 

action might not be available at every visit of state 𝑠̃. In 

particular, the update rule (4) of the Q-table needs to be 

modified. At time 𝑡, for each state 𝑠̃ and service 𝑘, let 𝑛𝑠̃(𝑡) 
be the number of visits of state 𝑠̃ and 𝑛𝑠̃,𝑎̃(𝑡) be the number 

of visits of state 𝑠̃ when the action 𝑎̃𝑝𝑘 was available. Let 

𝑠̃(𝑡) = 𝑠̃′ and 𝑎̃(𝑡) = 𝑎̃′; the quantity 𝑁𝑠̃′,𝑎̃′(𝑡) =
𝑛
𝑠̃′
(𝑡) 

𝑛𝑠̃′,𝑎̃′(𝑡)
 is 

then used in the update rule: 

 

𝑄(𝑠̃′, 𝑎̃′) = (1 − 𝛼(𝑡))𝑄(𝑠̃′, 𝑎̃′) + 𝛼(𝑡) (𝑟(𝑡) +    

+(∑ 𝛾𝑛𝑛=1,…,⌊𝑁𝑠̃′,𝑎̃′⌋
+ 𝛾

(𝑁𝑠̃′,𝑎̃′− ⌊𝑁𝑠̃′,𝑎̃′⌋) )) max
𝑎̃∈𝐴(𝑠̃(𝑡+1))

𝑄(𝑠̃(𝑡 +

1), 𝑎̃). (18) 

 

In this way, the actions which are less often available in a state 

𝑠̃′ are not penalized. An example is presented to clarify the 

proposed update rule. Let 𝑎̃′ an action that is always available 

in state 𝑠̃′, i.e., 𝑁𝑠̃′,𝑎̃′ = 1. When 𝑠̃(𝑡) = 𝑠̃′ and 𝑎̃(𝑡) = 𝑎̃′, the 

standard Q-learning update rule is enforced and𝑄(𝑠̃′, 𝑎̃′) is 

updated using the best next-value of 𝑄 discounted by 𝛾: 

 

𝑄(𝑠̃′, 𝑎̃′) ← (1 − 𝛼(𝑡))𝑄(𝑠̃′, 𝑎̃′) +  

+𝛼(𝑡) [𝑟(𝑡) + 𝛾 max
𝑎̃∈𝐴(𝑠̃(𝑡+1))

𝑄(𝑠̃(𝑡 + 1), 𝑎̃)]. 

 

Conversely, let another action 𝑎̃′′ be available, on the average, 

about half of the times the state 𝑠̃′ is visited, with 𝑁𝑠̃′,𝑎̃′′ =

2.3. The rule (18) states that, if 𝑠̃(𝑡) = 𝑠̃′ and 𝑎̃(𝑡) = 𝑎̃′′, 
𝑄(𝑠̃′, 𝑎̃′′) is updated with the best next-value of 𝑄 discounted 

by a larger 𝛾, as if the pair (𝑠̃′, 𝑎̃′′) was visited 2.3 times:  

 

𝑄(𝑠̃′, 𝑎̃′′) ← (1 − 𝛼(𝑡))𝑄(𝑠̃′, 𝑎̃′′) +  

+𝛼(𝑡) [𝑟(𝑡) + (𝛾 + 𝛾2 + 𝛾0.3) max
𝑎̃∈𝐴(𝑠̃(𝑡+1))

𝑄(𝑠̃(𝑡 + 1), 𝑎̃)] 

 

The proposed rule avoids that action 𝑎̃′′ is not chosen even if 

available because of infrequent visits. 

V. SIMULATIONS 

 

We assume that the three considered services are 

prioritized, with the CBR service having the maximum 

priority and the elastic service having the minimum priority, 

and that, for each service, the service sessions have the same 

priority. Therefore, for a given AP 𝑝, if 𝜂𝑝
1(𝑠) < 𝑊𝑝, the 

remaining bitrate is allocated in a fair way to the multi-coded 

services; if all the multi-coded service instances receive their 

maximum bitrate, the remaining resource is equally shared 

among the elastic service instances. The pseudo-code in Table 

1 details the bitrate implemented allocation algorithm, which 

allocates the available resources to the services with strict 

priorities (e.g., all service connections 𝑘 + 1 are served before 

service connections 𝑘, 𝑘 = 1,… , 𝐾 − 1) and in a fair way 

among the connections of the same service.  

 
Table 1. Bitrate allocation algorithm for AP 𝑝 ∈ 𝑃 in state 𝑠 ∈ 𝑆. 

• Assign the minimum required bitrate to all the on-going 

connections of AP 𝑝: 

 

𝑛𝑝𝑘
𝑐 (𝑠) = {

𝑛𝑝𝑘  if 𝑐 = 1

0 otherwise
, 𝑘 = 1,… , 𝐾 

 

• For 𝑘 = 1,… , 𝐾 

- Set 𝑐 = 2 

- While 𝑛𝑝𝑘
𝑐 = 𝑛𝑝𝑘 and 𝑐 ≤ 𝐶𝑘 

▪ Compute the bandwidth already assigned to all the 

connections of each service 

 

𝜂𝑝(𝑠) = ∑ ∑ 𝑛𝑝𝑘
𝑐 𝑤𝑘

𝑐
𝑐=1,…,𝐶𝑘𝑘∈𝐾   

 

▪ Share the leftover bandwidth 𝑊𝑝 − 𝜂𝑝(𝑠(𝑡)) in a round-

robin fashion among the 𝑛𝑝𝑘
𝑐−1 multi-codec PDU 

sessions on-going on AP 𝑝 (after the round, all the 

connections codec are upgraded only if 𝑛𝑝𝑘
𝑐 = 𝑛𝑝𝑘) 

▪ Evaluate 𝑟𝑝𝑘
𝑐  

▪ Set 𝑐 = 𝑐 + 1 

- End 

• End 
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Figure 4. Reference scenario used in the simulations. 

 

The simulations ran over a scenario of 1 hour, during which 

the various service types arrive according to Poisson 

distributions of mean values 2𝑠, 6𝑠 and 4𝑠 for service 1, 2 and 

3, respectively. Service dwelling time was determined, for 

each service type, according to exponential distributions of 

mean values 30𝑠, 120𝑠 and 90𝑠.  
The Considered RAN is reported in Figure 4 and is 

characterized by the presence of three Micro-cells, one 

Macro-cell and the availability of satellite coverage in the 

whole area. The UE of the connection requests was uniformly 

distributed in the area covered by the Macro-cell; depending 

on the position of the UE, it can connect to either one of the 

Micro-cell, or to a pair of Micro-cells or to all three of them. 

It was assumed that Micro-cells offer 2GBps, whereas the 

Macro-cell and the satellite cell are limited to 1GBps. 

The reward associated to the elastic services is set as  

 

𝑟𝑝1(𝑤𝑝1) = {

0 if 𝑤𝑝1 < 0.01 𝐺𝐵𝑝𝑠                

200𝑤𝑝1 if 0.01 𝐺𝐵𝑝𝑠 ≤ 𝑤𝑝1 < 0.01 𝐺𝐵𝑝𝑠

 20  if 𝑤𝑝1 ≥ 0.1 𝐺𝐵𝑝𝑠 otherwise   

. 

 

Multi-codec services are characterized by a reward of 

 

𝑟𝑝2(𝑤𝑝2) =

{
 
 

 
 0 if 𝑤𝑝2 < 0.1 𝐺𝐵𝑝𝑠                         

6  if 0.1 𝐺𝐵𝑝𝑠 ≤ 𝑤𝑝2 < 0.12 𝐺𝐵𝑝𝑠

12  if 0.12 𝐺𝐵𝑝𝑠 ≤ 𝑤𝑝2 < 0.18 𝐺𝐵𝑝𝑠

25  if 𝑤𝑝2 ≥ 0.18 𝐺𝐵𝑝𝑠                          

. 

 

Finally, fixed bitrate services have the following reward: 

 

𝑟𝑝3(𝑤𝑝3) = {
  0 if 𝑤𝑝3 < 0.2 𝐺𝐵𝑝𝑠

20  if 𝑤𝑝3 ≥ 0.2 𝐺𝐵𝑝𝑠
. 

 

 

 

 
Figure 5. Percentage of blocked connections for the RL and the LL 

controllers. 

 

Additionally, the rewards were scaled depending on the AP 

on which their corresponding service was allocated, to capture 

also the trade-off between user satisfaction and operative cost 

incurred by the operator, which changes depending on RATs 

and the specific APs. The scaling factors were set to 

0.75, 1, 1.25 for the micro cells, 2 for the Macro-cell and 0.5 

for the satellite.  

The design parameters of the Q-Learning controller were 

set as 𝛾 = 0.9, 𝜀 = 0.05 and 𝛼(𝑡) = 1/(1 + ⌊𝜏(𝑡)/
100⌋) where 𝜏(𝑡) represents the number of connection 

requests processed by the system at time 𝑡. 
The simulation results in terms of total cumulative reward, 

averaged over 100 simulation runs, showed that the proposed 

RL controller attains an increase in performance of around 

5.3% compared to a baseline Least-Loaded (LL) balancer 

controller, which allocate each new connection on the 

currently least-loaded AP. 

 Figure 5 shows how the strategies of the two controllers 

(RL and LL) impact on the connection blocking rates. It can 

be noted that, not being forced to accept any incoming call on 

the least loaded APs, the RL controller manages to attain a 

higher reward by reserving the most profitable (in terms of 

reward scaling factor) network resources for the services 

associated with the highest rewards. From the figure, it can be 

observed that, using the RL controller, the rejection rate for 

services of type 3 halves, meaning that overall the network 

resources are better managed. 

VI. CONCLUSIONS AND FUTURE WORKS 

This paper presents a Reinforcement Learning controller 

for the problem of traffic steering and network selection in the 

5G framework of Heterogeneous Networks. The problem is 

modelled as a Markov Decision Process with a novel state-

space aggregation approach, and a load-balancing algorithm 

to allocate the network resources is designed, taking into 

account three classes of services typical of telecommunication 

networks (fixed bitrate, multi-codec and elastic traffic). 

Future research directions could cover the introduction of 

the Deep Reinforcement Learning framework to the problem 



 

 

 

to deal with more realistic scenarios (e.g., with moving users, 

on larger scales) and the algorithm validation on the 5G-

ALLSTAR testbed.  
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