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Abstract 

ACTA1 gene encodes the skeletal muscle alpha-actin, the core of thin filaments of the sarcomere. ACTA1 mutations are responsible 
of several muscle disorders including nemaline, cores, actin aggregate myopathies and fiber-type disproportion. We report clinical, muscle 
imaging, histopatological and genetic data of an Italian family carrying a novel ACTA1 mutation. All affected members showed a late- 
presenting, diffuse muscle weakness with sternocleidomastoideus and temporalis atrophy. Mild dysmorphic features were also detected. The 
most affected muscles by muscle MRI were rectus abdominis, gluteus minimus , vastus intermedius and both gastrocnemii . Muscle biopsy 
showed the presence of nemaline bodies with several unusual dark areas at Gomori Trichrome, corresponding to unstructured cores with 
abundant electrodense material by electron microscopy. The molecular analysis revealed missense variant c.148G > A ; p.(Gly50Ser) in the 
exon 3 of ACTA1 , segregating with affected members in the family. We performed a functional essay of fibre contractility showing a higher 
pCa 50 (a measure of the calcium sensitivity of force) of type 1 fibers compared to control subjects’ type 1 muscle fibers. Our findings expand 
the clinico-pathological spectrum of ACTA1 -related congenital myopathies and the genetic spectrum of core-rod myopathies. 
© 2020 Elsevier B.V. All rights reserved. 

Key Words: Acta1; Nemaline myopathy; Central core; Congenital myopathy; Core-rod myopathy; Central core disease. 
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. Introduction 

Actinopathies represent a specific subgroup of congenital 
yopathies with protein accumulation in muscle biopsy 

ue to mutations in the skeletal muscle α-actin gene 
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 ACTA1 ) [1 , 2] . Both dominant and recessive traits have been 

eported, resulting in variable protein expression [3–9] and 

ysfunctional sarcomere contractility [10 , 11] . The observation 

f sporadic patients with de novo dominant mutations 
uggests a high new mutation rate in ACTA1 [12 , 13] . 
he most common morphological findings are nemaline 
odies - rod-like structures - which typically accumulates in 

ubsarcolemmal areas [2 , 8 , 14 , 15] . Intranuclear rods have also
TA1 mutation causes late-presenting nemaline myopathy with unusual dark 
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een described [4 , 16–18 ]. Besides nemaline bodies, several 
istopathological findings have been reported in association 

o ACTA1 mutations including actin filament aggregates 
9 , 19] , cores [20] , caps [21] , fiber type disproportion 

22–24] and zebra bodies [25] . ACTA1 -related nemaline 
yopathies account for about 20% of all nemaline myopathies 

nd 50% of the severe cases, representing the most 
ommon clinical presentation [6 , 9 , 14 , 26] . Clinical picture 
s characterized by marked hypotonia at birth, myopathic 
ace, high arched palate, respiratory failure and feeding 

ifficulties, with death occurring within the first year of life 
r severe muscular weakness requiring mechanical ventilation 

n those who survive [13 , 17 , 27 , 28] . However, a wide range
f clinical presentations has been reported, ranging from 

etal akinesia syndrome [29] to milder phenotypes with 

dult onset [8 , 30 , 31] . Infrequently, ACTA1 -myopathies can 

anifest with atypical clinical and histopathological findings, 
s facioscapuloperoneal myopathy [30] , congenital muscular 
ystrophy with rigid spine [7] , muscular stiffness and 

ypertonia [32] , distal weakness with rimmed vacuoles [33] , 
yofibrillar aggregates [28] or cytoplasmic bodies without 

emaline bodies [34] . 
Herein we describe an Italian family manifesting a late- 

resenting core-rod myopathy with peculiar morphological 
lements at muscle biopsy due to a novel ACTA1 

utation. 

. Materials and methods 

.1. Patients 

All patients underwent a complete clinical examination 

ncluding extensive manual muscle test scored by Medical 
esearch Council (MRC) and laboratory analysis including 

reatine kinase (CK). Proband and her sister (the most 
ffected patients) also underwent a neurophysiological 
tudy including nerve conduction study (NCS) and 

lectromyography (EMG), whole body muscle MRI including 

1 and STIR sequences, open muscle biopsy and targeted- 
GS panel for congenital myopathies. In order to confirm the 

orrect segregation of novel ACTA1 mutation in the family 

e searched for ACTA1 mutation by Sanger analysis in all 
ffected members. 

.2. Morphological study 

Open muscle biopsies were obtained from two patients: 
roband (PII.4) and her older sister (PII.1) at age of 39 ( vastus 
ateralis and biceps brachii) and 55 years ( vastus lateralis) 
espectively, basing on clinical and muscle MRI findings. 
or conventional histological and histochemical techniques we 
sed the already reported protocol [35] , as well as Congo 

ed stain and immunohistochemical (IHC) study to better 
haracterize the atypical cores, including myosins fast (WB- 
HCf, Monosan), slow (WB-MHCs, Monosan), neonatal 

WB-MHCn, Monosan) and developmental (RNMy2/9D2, 
2 
onosan), myotilin (polyclonal, GeneTex), desmin (D33, 
ako), alpha-B crystallin (CRYAB Polyclonal Antibody, 
hermoFisher Scientific) revealed by peroxidase. Digital 
hotographs of biopsies were obtained with a Nikon Eclipse 
-200 microscope linked to a Nikon Digital Sight DS-Fi1 

Nikon Corporation, Japan). 

.3. Muscle MRI 

Lower limbs and scapular girdle muscle imaging was 
btained by a 1.5T MRI device, following the already 

eported internal protocol in accordance to the international 
onsensus recommendations [36 , 37] . Fibro-fatty replacement 
as evaluated in T1-sequences accordingly to Mercuri 

cale modified by Fisher [38] , whereas muscular oedema- 
nflammation was evaluated in STIR images as positive 
yperintense signal. 

.4. Molecular analysis 

Genomic DNA was extracted from peripheral blood with 

tandard methods after receiving informed consent. 
Next Generation Sequencing analysis was performed using 

arget enrichment method on Illumina platform with a 
niquely customized panel for congenital myopathy including 

5 genes ( NEB, MYO18B, ACTA1, TPM2, TPM3, KBTBD13, 
LHL40, KLHL41, LMOD3, TNNT1, CFL2, MYPN, DNM2, 
TM1, SPEG1, CCDC78, BIN1, RYR1, MYH2, MYH7, 

EPN1, STIM1, ORAI1, PGAM2, MEGF10, MTMR14, 
RIM32, FHL1, HACD1, C-term TTN, DNA2, STAC3, 
ACNA1S, ZAK, VMA21, SCN4A, CLCN1, VCP, GNE, 
LHL9, HSPB8, ADSSL1, SQSTM1, MATR3, TIA1, BAG3, 
RYAB, DES, FLNC, PYROXD1, KY, LDB3, HNRPDL, 
MNA, FKRP, DYSF, CAPN3, FKTN, TOR1AIP1, GTDC2, 
MPPB, LAMA2, COL6A1, COL6A2, COL6A3, COL12A1, 
NO5, PYGM, CPT2, CAV3, DMD, EMD, CHKB, INPP5K, 
LEC, POMT1, POMT2, POMGNT1, DPM1, DPM2, DPM3 

CMD, LARGE, B3GALNT2, B4GAT1, COL4A1, DAG1, 
SPD, POMK, TMEM5, SGCG, SGCA, SGCB, SGCD, 
YNE1, SYNE2, TMEM43, PTRH2, ITGA7, TRAPPC11, 
NAJB6, MYOT, TNPO3, TCAP, RAPSN, MUSK, DOK7, 
AMB2, COLQ, GFPT, CHRNE, DPAGT1, CHAT, AGRN, 
HRNA1, CHRNB1, CHRND, SMN1, ASCC1, TRIP4 .). DNA 

ample was enriched using custom probes with the Nextera 
apid Capture Custom Enrichment Kit (Illumina, San Diego, 
alifornia, USA) following the manufactures instructions. 
pecific regions of interest were captured by hybridization to 

iotinylated probes and then isolated by magnetic pulldown. 
NA capture, enrichment and paired-end sequencing with 

ead length of 151 bp were performed using Illumina MiSeq 

ith a sequencing depth of 100 X. The Illumina VariantStudio 

ata analysis software was used to annotate the variants. 
anger sequencing of exon 3 of ACTA1 (NM_001100.3) was 
erformed to confirm the novel variant identified by NGS in 

roband and in her relatives. 
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.5. Functional assay of fiber contractility 

We adapted previously described methods to investigate 
he contractile properties of myofibers from the PII.1 muscle 
iopsy and from biopsies of healthy controls [39] . Small 
ections (2 ×2 mm) were isolated from the biopsies and 

lycerinated for 24 h at −20 °C. Single myofibers from 

ontrol subjects (average age at biopsy: 47 ± 8 years) 
nd the patient were dissected from the muscle strips and 

lipped between aluminium foil T-clips. Myofibers were 
ermeabilized in 1% (v/v) Triton 

TM X100/relaxing solution, 
hen mounted between a length motor (ASI 315C I; Aurora 
cientific, Aurora, ON, Canada) and a force transducer 
lement (ASI 403A, Aurora Scientific) in a permeabilized 

yofiber apparatus (ASI 802D, Aurora Scientific) mounted 

n top of an inverted microscope (Axio Observer A1; Zeiss, 
berkochen, Germany). Sarcomere length was set to 2.5 μm 

sing a 40x objective, high-speed VSL camera and ASI 
00B software (Aurora Scientific). Myofiber length, width, 
nd depth were measured at three points along the myofiber 
sing a 10x objective, a prism, and a custom-made mirror 
ounted in the bath. Cross-sectional area was calculated 

ith the average width and depth of the myofiber assuming 

n elliptical cross-section. To determine the Ca 2 + -sensitivity 

f force generation and Hill slope, permeabilized single 
yofibers were exposed to solutions with incremental Ca 2 + - 

oncentration increases. Steady-state forces were measured 

t each Ca 2 + -concentration, then these steady-state values 
ere normalized to the maximal force obtained at pCa 4.5. 
he force-pCa data were fitted to the Hill equation ( Y = 1 /

1 + 10n H 

(pCa - pCa 50 )]) [40 , 41] . The criteria of acceptance
egarding the myofiber contractility studies included: (1) 
reserved structural integrity of the myofiber as indicated 

y the striation pattern (also required to set sarcomere 
ength); (2) the force at the final pCa 4.5 had to be higher 
han 90% of the force during pre-activation. Each myofiber 
nderwent two maximal activations (pCa 4.5) and five 
ubmaximal activations (pCa 7.0 – 6.0 – 5.8 – 5.6 – 5.4); (3) 
reserved sarcomere length in the myofibers after completion 

f the experimental protocol (to assure that the myofiber 
as well set in the clip). Applying these criteria, ∼80% 

f the myofiber experiments were included in the results 
hown. Determination of myosin heavy chain composition of 
easured myofibers was performed as described previously 

42 , 43] . 

. Results 

.1. Clinical findings 

Proband (PII.4) is a 53-year-old woman, with a negative 
edical history, referred to our neuromuscular centre at 

he age of 39 just because of occasional Creatin Kinase 
CK) elevation (range 90–1500 U/l). Since her infancy, she 
as having some difficulties in physical activities and 

resented mild rhinolalia, which had never been considered 
3 
athological by the patient. Clinical examination at age of 
9 revealed a mild myopathic face with high arched palate, 
trophy of sternocleidomastoideus (SCM) and temporalis 
uscles, weakness of neck flexors and mild diffuse muscle 
eakness, never noticed before by the patient. Clinical 

volution over 14 years of follow-up consisted in a very slow 

rogression of muscle weakness. Electromyography (EMG) 
evealed myopathic changes and occasional pseudomyotonic 
ischarges. 

Her 57-years-old sister (PII.1) presented similar but more 
evere clinical phenotype consisting in mild myopathic face, 
CM atrophy and diffuse, proximal-predominant, muscular 
eakness since her fifties ( Fig. 1 ). Her 33 years-old son 

PIII.2), referred as asymptomatic, had myopathic face with 

igh arched palate, SCM atrophy with neck flexor weakness, 
nd mild distal weakness of upper limbs. Similarly, the 
on of the proband (PIII.4; 31 years-old) presented a 
yopathic face with high arched palate and SCM atrophy 

ith neck flexor weakness, without limb muscular weakness. 
he 72-years-old father of the proband (PI.1) and the 
ld aunt (p.I.2; 64 years old) presented similar findings 
ith late-manifesting diffuse muscular weakness ( Fig. 2 ). 
ll proband’s relatives had normal CK level. Respiratory 

nd cardiac evaluations were unremarkable in all affected 

ubjects. 

.2. Muscle imaging data 

Muscle MRI of lower limbs was obtained from patient 
I.1 and II.4. The most affected muscles in both studies 
ere gluteus minimus , rectus abdominis , gastrocnemii , and 

astus intermedius ( Fig. 3 ). This pattern was more evident 
n the older sister (PII.1) who also showed a prominent 
nvolvement of the other vasti, whereas in the proband (PII.4) 
nly the distal part of vastus intermedius was affected. 
osterior muscles of the thighs were also mildly affected, 
articularly biceps femoris (long head). In lower legs, both 

edial and lateral gartrocnemi were selectively involved 

nd represented the most affected muscles in both patients 
espectively. 

Scapular girdle study, available for PII.1, showed complete 
trophy of SCM, and mild to moderate fibro-fatty replacement 
f paravertebralis , latissimus dorsi and serratus anterior 
uscles ( Fig. 3 ). 
The overall muscle involvement was symmetric and STIR 

equences did not show any positive signal in both patients. 

.3. Morphological features 

Muscle biopsy in PII.4, performed in biceps brachii 
nd vastus lateralis at 39 years, revealed myopathic 
hanges with fibre size variability and prominent nuclear 
nternalization, without fiber type predominance ( Fig. 4 ,A). 
cattered cytoplasmic and subsarcolemmal nemaline bodies 
ere detected in some fibres ( Fig. 4 ,B). Several muscle fibres 

howed cytoplasmic areas of dark material deposition with 
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Fig. 1. Clinical picture. 
Clinical manifestations in PII.1: mild proximal weakness (A,B) neck flexors (C) and orbicularis oculi (D) weakness with sternocleidomastoideus atrophy (E, 
arrow). 

Fig. 2. Family pedigree. 
All affected family members in black: the proband (PII.4, arrow), her older sister(PII.1), her father (PI.1), her aunt (PI.2), her son (PIII.4) and nephew (PIII.2). 
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erilesional halo at Gömöri trichrome (GT) stain ( Fig. 4 ,C,D), 
orresponding to irregular areas lacking enzymatic activity at 
xidative stains ( Fig. 4 ,E). Similar histopathological findings 
ere detected in the muscle biopsy of the older sister II.1 

ollected from vastus lateralis at 55 years ( Fig. 4 ,F,G). 
ark material showed positive immunostaining for all 

arcomeric proteins (desmin, myotilin and alpha-B crystallin) 
 Fig. 4 ,H,I) and presented a mild congophilia without 
pple-green birefringence under polarized light ( Fig. 4 ,L,M). 
HC for myosins revealed a large predominance of fibers 
xpressing slow myosin in PII.1 with few immature small 
bers expressing neonatal myosin. Ultrastructural study in 

II.1 confirmed the presence of small nemaline bodies and 

evealed large areas of sarcomeric disorganization devoid of 
itochondria with abundant electrodense material consistent 
ith unstructured cores, probably corresponding to the dark 

reas devoid of enzymatic activity at optic microscopy 

 Fig. 4 ,N,O) 
4 
.4. Molecular data 

In order to identify the molecular cause of this peculiar 
ore-rod myopathy, we performed a target NGS sequencing 

n the proband. The customized NGS panel for congenital 
yopathy allowed to identify a novel heterozygous missense 
utation c.148G > A p.(Gly50Ser) in exon 3 of ACTA1 gene, 

egregating in all affected members in the family, consistent 
ith a dominant inheritance. This variant is predicted to 

e pathogenic by Polyphen-2 and SIFT software and Gly50 

s a highly conserved amino acid into the subdomain 2 

f the α-actin. Because of the peculiar clinical phenotype 
myopathic face with SCM atrophy) and pseudomyotonic 
ischarges at EMG study we also ruled out triplet and 

etraplet expansions in DMPK and ZNF9 genes causing 

yotonic Dystrophy type 1 and 2 respectively. No variants in 

ther genes causing nemaline myopathies or non-dystrophic 
yotonias were detected. 
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Fig. 3. Muscle MRI. 
Similar pattern of fibro-fatty replacement in PII.1 (A) and PII.4 (B): rectus abdominis, gluteus minimus, vastus intermedius and gastrocnemii. This pattern 
was more evident in the older sister PII.4 (B) with more prominent quadriceps involvement. Posterior muscles of the thighs were also mildly affected. 

3
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.5. Functional assays of fibre contractility 

To study whether sarcomeric changes contribute to muscle 
eakness, we isolated permeabilized single muscle fibers 

rom the biopsy of the patient. These fibers were exposed to 
5 
ncremental Ca 2 + concentrations and the resulting forces were 
ecorded. Note that of the 39 fibers isolated, 34 were type 
 fibers based on myosin heavy chain isoform composition 

in accordance to type I fibers predominance in the biopsy). 
hus, because of the low number of type II fibers, for the 
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Fig. 4. Muscle biopsy. 
A-E: proband’s muscle biopsy (PII.4: biceps brachii and vastus lateralis, 39 ys). F-I: older sister’s muscle biopsy (PII.1, vastus lateralis , 55ys). Prominent 
nuclear internalization (A), clusters of cytoplasmic and subsarcolemmal nemaline bodies (B) and cytoplasmic areas of dark material deposition with perilesional 
halo at GT stain (C,D,F,J), corresponding to irregular areas devoid of enzymatic activity at oxidative stains (E). Similar histopathological findings in the muscle 
biopsy of the older sister (F,G). Positive immunostaining for desmin (H) myotilin (I) of dark material with congophilia (K). Electron microscopy confirmed the 
presence of small nemaline rods (L) and revealed large areas of sarcomeric disorganization with abundant smeared electrodense material (M). [Serial sections: 
F-G, H-I, J-K. Stains, magnifications: HE,10x (A); GT, 20x (B,C,F), 40x (D,L); NADH, 20x (E,G); Myotilin, 40x (H); Desmin, 40x (I); Congo Red, 40x 
(M)]. 

6 
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Fig. 5. Functional assays of fiber contractility. 
Maximal active tension in type1 fibers from PII.1 muscle biopsy. Maximal active tension of type 1 muscle fiber from PII.4 (left panel, filled blue column) was 
comparable to type I fibers from control subjects (empty blue column) (A). Higher pCa 50 in the PII.1 type1 fibers (right panel, filled blue column) compared 
to the type I fibers of the control subjects (empty blue column) (B). [Each dot in the patient bar reflects the result of one myofiber; each dot in the control 
bar reflects the average of one patient (with the average based on 8–15 myofibers)]. 
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atient we only show data from the type I fibers. Maximal 
ctive force (at pCa 4.5) was normalized to the cross-sectional 
rea of the fiber (i.e. tension). In our patient, maximal active 
ension was comparable to the tension of type I fibers from 

ontrol subjects ( Fig 5 ,A) but the pCa 50 , a measure of the
alcium sensitivity of force, appears slightly higher in the 
atient’s type I fibers compared to those of control subjects 
 Fig 5 ,B). 

. Discussion 

Late, adult-manifesting congenital myopathy represents the 
ilder spectrum of ACTA1 myopathies and the minority 

f ACTA1 cases reported [8 , 15] . Most of these cases 
ad mild facial involvement with proximal weakness of 
pper limbs and variable proximo-distal weakness in lower 
imbs, most frequently reported as facioscapuloperoneal 
resentation [3 , 30 , 30 , 44 , 45] . Accordingly, the few reports
ncluding a muscle MRI study showed diffuse fibro-fatty 

eplacement in lower limbs predominant in the anterolateral 
ompartment of the lower legs associated to posterior 
ompartment of the thighs, sartorius and gluteus maximus 
3 , 46] . Conversely, our patients shared a different pattern 

f muscle involvement characterized by gluteus minimus , 
ectus abdominis , quadriceps and gastrocnemii as the most 
ffected muscles of the lower limbs. Moreover, clinical 
eatures presented some peculiarities: first, none of the 
ffected subjects in our family presented distal lower limb 

eakness, due to prevalent involvement of gastrocnemii and 

ossible compensation by soleus muscle; second, all patients 
7 
resented predominant involvement of head-neck involvement 
ith mild facial weakness, dysmorphic features and SMC 

trophy, as frequently observed in myotonic dystrophy [47] . 
istopathological study revealed unique findings. Besides 

low fiber predominance and nemaline bodies, frequently 

bserved in ACTA1 myopathies, we observed in both muscle 
amples the presence of unusual cores characterized by of 
ark material with peripheral halo at GT stain,. Similar 
istopathological lesions had been described in another family 

arbouring a different mutation c.(757G > C ) in ACTA1 

anifesting as distal nemaline myopathy [44] . Cores with 

imilar dark appearance have also been reported in RYR1 

ecessive myopathies (dusty cores) [48] and other conditions 
ike neurogenic disorders can mimic core-like lesions with 

entral dark area and peripheral halo (target fibers) [49] . 
YR1 mutations can also lead to core-rod myopathy, as well 
s mutations in NEB, CFL2 , and KBTBD13 genes [50] . 

hile core-rod myopathy most frequently manifests as early 

nset severe congenital myopathy, late-adult onset core-rod 

yopathy has been less frequently observed in association to 

ertain RYR1 and KBTBD13 mutations [51–53] . 
On the other hand, two different missense mutations 

ffecting the Gly50 residue have been reported with different 
r uncertain phenotypes: 1) the p.(Gly50Asp), recently 

escribed in association with actinopathy with rimmed 

acuoles and prominent finger flexor weakness [33] and 2) 
he p.(Gly50Cys), reported on the Leiden Open Variation 

atabase without confirming its pathogenicity (https:// 
atabases.lovd.nl/ shared/ genes/ACTA1). The high variability 

n clinico-pathological spectrum of ACTA1 myopathies seems 
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[

[

[

[

[

[

[

o be due, at least in part, to different mutations in 

CTA1 gene, because of similar phenotype among subjects 
f the same family. Nevertheless, different age at onset or 
linical severity in the affected members of the same family 

uggest that other genetics or environmental factors would 

ontribute to the individual phenotype. To date, more than 200 

athogenic variants in the ACTA1 gene have been reported. 
s few polymorphic amino acid variants have been identified 

mong hundreds of normal ACTA1 alleles, it seems that 
ost actin residues are critical for its function, in accordance 
ith its high evolutionary conservation [54] . Mechanisms by 

hich mutations in ACTA1 contribute to contractile weakness 
epends on the type of mutation and include reduction 

n length of the thin filament and structural damage to 

yofibrils [10] . Knowledge on sarcomere contractility in 

EM3 patients could have therapeutic implications [11] . The 
ovel p.(Gly50Ser) variant in ACTA1 reported in our family, 
redicted to be deleterious by in silico analysis, affects a 
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 small domain of the helical filament of the protein where 
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he C-terminus, suggesting that intranuclear rod formation 

ould be functionally linked to nucleotide binding [54] . 
imilarly we speculate that Gly50ser mutation could lend 

inding properties for other sarcomeric proteins to subdomain 

, possibly resulting in unusual cores formation, as detected 

y positive immunostaining for sarcomeric proteins in muscle 
iopsy. 

Functional study in muscle fibers of our patient, 
urprisingly do not show alterations in type1 fiber contractility 

s observed in the majority of ACTA1 patients and other 
emaline myopathies, but just a higher calcium sensitivity 

orce observed only in the minority of ACTA1 patients 
10 , 11 , 55] . The findings suggest no major changes in thin
lament length, but perhaps structural changes that enhance 

he binding of myosin. 
In conclusion our findings expand the clinico-pathological 

pectrum of ACTA1 -related myopathies and the genetic 
pectrum of core-rod myopathies. 
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