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Abstract—The binary similarity problem consists in determin-
ing if two functions are similar considering only their compiled
form. Advanced techniques for binary similarity recently gained
momentum as they can be applied in several fields, such as
copyright disputes, malware analysis, vulnerability detection,
etc. In this paper we describe SAFE, a novel architecture for
function representation based on a self-attentive neural network.
SAFE works directly on disassembled binary functions, does
not require manual feature extraction, is computationally more
efficient than existing solutions, and is more general as it works on
stripped binaries and on multiple architectures. Results from our
experimental evaluation show how SAFE provides a performance
improvement with respect to previous solutions. Furthermore, we
show how SAFE can be used in widely different use cases, thus
providing a general solution for several application scenarios.

Index Terms—Binary Analysis, Binary Similarity, Deep Learn-
ing, Malware

I. INTRODUCTION

In the last years there has been an exponential increase
in the creation of new content. Software was no exception
to this trend. As an example, the number of apps available
on the Google Play Store increased from 30K in 2010 to
3 millions in 20181. This increase directly leads to more
vulnerabilities as reported by CVE2 that witnessed a 120%
growth in the number of discovered vulnerabilities from 2016
to 2017. At the same time complex software find application in
new devices: the Internet of Things has multiplied the number
of architectures on which the same program has to run and
COTS software components are increasingly integrated into
closed-source products.

This multidimensional increase in quantity, complexity and
diffusion of software makes the resulting infrastructures dif-
ficult to manage and control, as part of their internals are
often inaccessible for inspection to their administrators. As
a consequence, system integrators are looking forward to
novel solutions that take into account such issues and provide
functionalities to automatically analyze software artifacts in
their compiled form (binary code). One prototypical problem
in this regard, is the one of binary similarity [2], [3], [4],
where the goal is to find similar functions in compiled code
fragments. This problem has been recently subject to a lot of
attention [5], [6], [7] due to its centrality in several tasks, such
as the discovery of known vulnerabilities in large collection of

A preliminary version of this paper has been published in [1]
1www.statista.com/statistics/266210/number-of-available-applications-in-the-google-

play-store/
2www.cvedetails.com/browse-by-date.php

software, dispute on copyright matters, analysis and detection
of malicious software [8], etc.

In this paper, coherently with [9], [10], we focus on a
specific version of the binary similarity problem in which we
define two binary functions to be similar if they are compiled
from the same source code. As already pointed out in [10],
this assumption does not make the problem trivial.

Inspired by [9] we look for solutions that solve the binary
similarity problem using embeddings, i.e. vectors of numbers
that embed binary functions characteristics while preserving a
similarity metric. Function embeddings can be pre-computed,
and checking their similarity is relatively cheap and fast (we
consider the scalar product of two constants size vectors
as a constant time operation), thus providing an important
performance boost for several use cases. Furthermore, as we
will show, embeddings can be used as input to other machine
learning algorithms, that can in turn cluster functions, classify
them, etc.

Current solutions that adopt this approach, come with
several shortcomings. Firstly, they [10] use manually selected
features to calculate the embeddings, introducing potential bias
in the resulting vectors. Such bias stems from the possibility
of overlooking important features (that don’t get selected), or
including features that are expensive to process while not pro-
viding noticeable performance improvements. Secondly, they
[11] assume that call symbols to dynamically linked libraries
are available in binary functions (such as libc, msvc, etc.),
while this is not true for statically linked and stripped binaries,
statically linked libraries or in partial binary fragments (e.g.
extracted during volatile memory forensic analyses). Finally,
they usually work only on specific CPU architectures [11].

Considering these shortcomings, in this paper we describe
SAFE: Self-Attentive Function Embeddings, a solution we
designed to overcome all of them. In particular, we considered
two specific goals: (i) design a solution to quickly generate
embeddings for several hundreds of binaries and (ii) that
could be applicable to a vast majority of cases, i.e. able to
work with stripped binaries with statically linked libraries, and
on multiple architectures (in particular we consider AMD64
and ARM as target platforms for our study). The core of
SAFE is based on recent advancements in the area of natural
language processing. Specifically, we designed SAFE on a
Self-Attentive Neural Network recently proposed in [12].

We extensively tested SAFE showing that it provides better
performance than previous state-of-the-art systems with sim-
ilar requirements. Specifically, we compare it with the recent
Gemini [10], showing a performance improvement on several
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metrics that ranges from 6% to 29% depending on the task
at hand. Furthermore, we also tested SAFE in several other
tasks related to several diverse application scenarios to test its
general applicability.

We investigate the possibility of semantically classifying
(i.e. identifying the general semantic behavior of) binary
functions by clustering similar embeddings. To the best of
our knowledge, we are the first to investigate the feasibility
of this task through machine learning tools, and to perform a
quantitative analysis on this subject. The results are encour-
aging showing a 95% of classification accuracy for 4 differ-
ent broad classes of algorithms (namely Encryption, Sorting,
Mathematical and String Manipulation functions). We applied
our semantic classifier to known malwares, and we were
able to accurately recognize with it functions implementing
encryption algorithms. Moreover, we used a recent dataset [13]
of malwares from APT groups, and we used SAFE embedding
to build a classifier associating malwares and APT with an f1
score of 90%.

Finally, we decided to test SAFE on a task that is completely
unrelated to the binary similarity one to assess the ability to
abstract from the specific features needed to solve a particular
class of problems. For this purpose, we decided to study the
compiler provenance task (i.e., to understand which compiler
produced a given binary function [14]). This problem can be
seen as the dual of binary similarity: in one task the network
has to focus on the differences introduced by compilers, while
in the other it has to do the opposite. Our tests show an
accuracy of 97.4% for compiler family classification, reaching
performances that are comparable with the state-of-the-art
[14].

A. Contributions

The main contributions of our work are:
• we describe SAFE, a general architecture for calculating

binary function embeddings starting from disassembled
binaries;

• we publicly release SAFE source code and the datasets
used for its training and evaluation3;

• we apply SAFE to the problem of identifying vulnerable
functions in binary code, a common application task for
binary similarity solutions; also in this task SAFE pro-
vides better performance than state-of-the-art solutions.

• we show that embeddings produced by SAFE can be used
to automatically classify binary functions in semantic
classes. On a dataset of 15K functions, we can recognize
whether a function implements an encryption algorithm,
a sorting algorithm, generic math operations, or a string
manipulation, with an accuracy of 95%.

• we use SAFE to classify and cluster malwares accord-
ingly to the APT group that developed them, reaching an
f1-score of 90%.

• we provide some insights on the embedding vector space
through a qualitative analysis.

3The source code of our prototype and the datasets are publicly available
at the following address: https://github.com/gadiluna/SAFE

This paper is an extended version of [1] where we originally
introduced SAFE. The main contributions of this paper are the
investigation of the compiler provenance problem through the
SAFE model (discussed in Section VII) and the application
of SAFE function embeddings to the problem of APTs (Ad-
vanced Persistent Threats) malware classification (discussed in
Section VI-E). These two new contributions enlarge the scope
of our research on SAFE, proving its general applicability in
several contexts where the analysis of binary code is relevant.

The remainder of this paper is organized as follows. Section
II discusses related work, followed by Section III where we
define the problem and report an overview of the solution
we tested. In Section IV we describe in detail SAFE, and in
Section V we provide implementation details and information
on the training. In Section VI we describe the experiments we
performed and report their results. Finally, in Section VIII we
discuss the speed of SAFE.

II. RELATED WORK

The existing literature in the field of binary similarity can
be broadly divided in two large families: works that use and
works that do not use function embeddings. Within these
groups some works proposed cross-platform solutions, while
other focus on single-platform proposals. In this related work
section we focus on the papers that are most similar to our
approach. The interested reader can find a detailed and recent
survey in [15].

a) Works that do not use embeddings: A family of
works is based on matching algorithms for function CFGs.
In Bindiff [2] matching among vertices is based on the
syntax of code, and it is known to perform poorly across
different compilers (see [5]). Pewny et al. [16] proposed a
solution where each vertex of a CFG is represented with
an expression tree; similarity among vertices is computed by
using the edit distance between the corresponding expression
trees. Other works use different solutions that do not rely on
graph matching. David and Yahav [17] introduced the concept
of tracelets, while a related concept, namely strands, was used
by David et al. [5]. In the latter paper functions are divided in
pieces of independent code, the strands. The matching between
functions is based on how many statistically significant strands
are similar. Intuitively, a strand is significant if it is not
statistically common. Strand similarity is computed using an
SMT-solver to assess semantic similarity. A similar approach
is followed by Binjuice [18] in which each block of a CFG
is interpreted and substituted with an abstract representation
of its semantic. The use of the CFG topology for obtaining
a measure of similarity has been also used in the field of
malware analysis, see [8].

All these solutions were designed around matching proce-
dures that work pair-to-pair, and they cannot be adapted to
pre-compute a constant size signature of a binary function on
which similarity can be assessed.

Egele et al. in [7] proposed to derive a signature from
features collected during multiple independent executions of
the target function. Specifically, each function is executed
multiple times in a random environment. During the executions
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some features are collected and then used to match similar
functions. This solution can be used to compute a signature
for each function. However, it needs to execute a function
multiple times, that is both time-consuming and difficult to
perform in the cross-platform scenario. Furthermore, it is not
clear if the features identified in [7] are useful for cross-
platform comparison. Finally, Khoo et al. [3] proposed a
matching approach based on n-grams computed on instruction
mnemonics and graphlets. Even if this strategy does produce a
signature, it cannot be immediately extended to cross-platform
similarity.

Pewny et al. [19] proposed a graph-based methodology that
uses the function’s CFG: the binary code is transformed in an
intermediate representation where the semantic of each CFG
vertex is computed by using a sampling of code executions
with random inputs. Feng et al. [20] proposed a solution where
each function is expressed as a set of conditional formulas;
then it uses integer programming to compute the maximum
matching between formulas. Both solutions, [19] and [20], are
cross-platform but only allow pair-to-pair checks.

David et al. [6] propose to transform binary code to an
intermediate representation that is then partitioned in strands
(slices of independent code). Strands with the same semantics
will have similar representations, and this similarity is then
transferred to functions. This approach can generate variable-
sized signatures for functions.

b) Works based on embeddings: Ding et al. recently pro-
posed in [11] a function embedding solution called Asm2Vec
that is based on the PV-DM model [21] for natural language
processing.

Operatively, Asm2Vec computes the CFG of a function,
and then it performs a series of random walks on top of it.
Essentially, each random walk is the sequence of instructions
that are executed on a certain execution path of the CFG.

This set of random walk is interpreted as a paragraph of text
on which PV-DM is run. PV-DM transforms the paragraph
into an embedding vector following a philosophy similar to
word2vec [22]. It computes the embedding paragraph vector
that maximizes the probability of predicting an assembly token
given its context and the paragraph vector itself. We stress
that PV-DM is an unsupervised technique, which means that
the embedding architecture provided by Asm2Vec cannot be
trained specifically for a certain downstream task (such as
compiler provenance). Asm2Vec outperforms several state-
of-the-art solutions in the field of binary similarity, but still
has some important limitations: firstly it requires libc call
symbols to be present in the binary code as tokens to pro-
duce the embedding of a function and, secondly, it can only
generate single-platform embeddings (it cannot be used for
cross-architecture similarity). Moreover, it has the performance
overhead of performing random walks on graphs.

Feng et al. [9] introduced a solution that uses a clustering
algorithm over a set of functions to obtain centroids for
each cluster. Then, these centroids and a configurable feature
encoding mechanism are used to associate an embedding with
each function. This solution is not based on deep neural
networks, but it has been the first to propose the concept of
embedding in the field of binary similarity.

Xu et al. [10] proposed an architecture called Gemini,
where function embeddings are computed using a deep neural
network. Interestingly, [10] shows that Gemini outperforms [9]
both in terms of accuracy and performance (measured as time
required to train the model). In Gemini the CFG of a function
is first transformed into an annotated CFG, a graph containing
manually selected features, and then embedded into a vector
using the graph embedding model of [23]. The manual features
used by Gemini do not need call symbols. A more detailed
comparison between our architecture and Gemini is reported
in Section IV.

The recent, VulSeeker [24] builds on top of Gemini, and
extends the annotated CFG to a labeled Semantic Flow Graph,
that is a graph mixing the CFG with edges from the data
flow graph. Apart from this difference, VulSeeker uses the
exact same approach of Gemini (the same learning architecture
and training methodology). We remark that in VulSeeker, as
in Gemini, sequences of assembly instructions are abstracted
away and substituted with manually selected features. On the
performance side, VulSeeker shows some improvements on
the results of Gemini, in the vulnerability search case and on
the binary similarity test used also by Gemini.

In [25] we proposed a variation of Gemini where manual
features are replaced with an unsupervised feature learning
mechanism that provides a small advantage in terms of accu-
racy.

Finally, in InnerEye [26] the authors propose the use of a
recurrent neural network based on LSTM (Long short-term
memory) to solve a specific subtask of binary similarity that
is the one of finding similar CFG blocks.

Operatively, each CFG block is interpreted as a linear
sequence of assembly instructions, such instructions are given
as input to a LSTM network. The last internal state of the
LSTM is the embedding vector of the sequence. The training
is done similarly to Gemini using a siamese architecture.

There are several main differences between [26] and our
work. The first one is that they only design and evaluate their
architectures on the task of finding similar blocks, that is their
solution creates embeddings for the CFG blocks. It is not clear
how these embeddings should and could be aggregated to find
a representation of the entire function. Therefore, their solution
is not suited for our task. Secondly, the LSTM architecture
does not cope well with long sequences (see [12]), while
our self-attentive architecture has been explicitly designed to
address such problem (more details on this in Section IV).

Recently, a system named DeepBinDiff [27] has been pro-
posed to solve the related problem of finding the differences
between two binaries (note that these are complete binaries
and not just binary functions). DeepBinDiff uses a complex
approach based on deep neural networks and greedy graph
matching. It first computes a program-wide inter-procedural
control flow graph, it then uses such a graph to compute both
the embeddings of each assembly token, and the embedding
of each basic block. The philosophy to generate a block
level embedding is similar to the one used by InnerEye.
DeepBinDiff leverages these embedding and a greedy graph
matching algorithm between the ICFG of the two programs to
be tested. The deep learning procedure used by DeepBinDiff
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~◆4 = (0.50, . . . , 0.78)
<latexit sha1_base64="kgb7B0ywC0XYAA5rg3a1TuZdVjU=">AAACCnicbVA9SwNBEN3z2/h1ammzGoQI4diTSGyEgI1lBGMCuRD2Nptkyd7tsTsXCEdqG/+KjYUitv4CO/+Nm5hCEx8MPN6bYWZemEhhgJAvZ2l5ZXVtfWMzt7W9s7vn7h/cG5VqxmtMSaUbITVcipjXQIDkjURzGoWS18PB9cSvD7k2QsV3MEp4K6K9WHQFo2CltnscDDnLAqGAtkvjqwLxLkgRB7KjwBSJV748a7t54pEp8CLxZySPZqi23c+go1ga8RiYpMY0fZJAK6MaBJN8nAtSwxPKBrTHm5bGNOKmlU1fGeNTq3RwV2lbMeCp+nsio5Exoyi0nRGFvpn3JuJ/XjOF7mUrE3GSAo/Zz6JuKjEoPMkFd4TmDOTIEsq0sLdi1qeaMrDp5WwI/vzLi+T+3POJ59+W8hUyi2MDHaETVEA+KqMKukFVVEMMPaAn9IJenUfn2Xlz3n9al5zZzCH6A+fjG45+mCk=</latexit><latexit sha1_base64="kgb7B0ywC0XYAA5rg3a1TuZdVjU=">AAACCnicbVA9SwNBEN3z2/h1ammzGoQI4diTSGyEgI1lBGMCuRD2Nptkyd7tsTsXCEdqG/+KjYUitv4CO/+Nm5hCEx8MPN6bYWZemEhhgJAvZ2l5ZXVtfWMzt7W9s7vn7h/cG5VqxmtMSaUbITVcipjXQIDkjURzGoWS18PB9cSvD7k2QsV3MEp4K6K9WHQFo2CltnscDDnLAqGAtkvjqwLxLkgRB7KjwBSJV748a7t54pEp8CLxZySPZqi23c+go1ga8RiYpMY0fZJAK6MaBJN8nAtSwxPKBrTHm5bGNOKmlU1fGeNTq3RwV2lbMeCp+nsio5Exoyi0nRGFvpn3JuJ/XjOF7mUrE3GSAo/Zz6JuKjEoPMkFd4TmDOTIEsq0sLdi1qeaMrDp5WwI/vzLi+T+3POJ59+W8hUyi2MDHaETVEA+KqMKukFVVEMMPaAn9IJenUfn2Xlz3n9al5zZzCH6A+fjG45+mCk=</latexit><latexit sha1_base64="kgb7B0ywC0XYAA5rg3a1TuZdVjU=">AAACCnicbVA9SwNBEN3z2/h1ammzGoQI4diTSGyEgI1lBGMCuRD2Nptkyd7tsTsXCEdqG/+KjYUitv4CO/+Nm5hCEx8MPN6bYWZemEhhgJAvZ2l5ZXVtfWMzt7W9s7vn7h/cG5VqxmtMSaUbITVcipjXQIDkjURzGoWS18PB9cSvD7k2QsV3MEp4K6K9WHQFo2CltnscDDnLAqGAtkvjqwLxLkgRB7KjwBSJV748a7t54pEp8CLxZySPZqi23c+go1ga8RiYpMY0fZJAK6MaBJN8nAtSwxPKBrTHm5bGNOKmlU1fGeNTq3RwV2lbMeCp+nsio5Exoyi0nRGFvpn3JuJ/XjOF7mUrE3GSAo/Zz6JuKjEoPMkFd4TmDOTIEsq0sLdi1qeaMrDp5WwI/vzLi+T+3POJ59+W8hUyi2MDHaETVEA+KqMKukFVVEMMPaAn9IJenUfn2Xlz3n9al5zZzCH6A+fjG45+mCk=</latexit><latexit sha1_base64="kgb7B0ywC0XYAA5rg3a1TuZdVjU=">AAACCnicbVA9SwNBEN3z2/h1ammzGoQI4diTSGyEgI1lBGMCuRD2Nptkyd7tsTsXCEdqG/+KjYUitv4CO/+Nm5hCEx8MPN6bYWZemEhhgJAvZ2l5ZXVtfWMzt7W9s7vn7h/cG5VqxmtMSaUbITVcipjXQIDkjURzGoWS18PB9cSvD7k2QsV3MEp4K6K9WHQFo2CltnscDDnLAqGAtkvjqwLxLkgRB7KjwBSJV748a7t54pEp8CLxZySPZqi23c+go1ga8RiYpMY0fZJAK6MaBJN8nAtSwxPKBrTHm5bGNOKmlU1fGeNTq3RwV2lbMeCp+nsio5Exoyi0nRGFvpn3JuJ/XjOF7mUrE3GSAo/Zz6JuKjEoPMkFd4TmDOTIEsq0sLdi1qeaMrDp5WwI/vzLi+T+3POJ59+W8hUyi2MDHaETVEA+KqMKukFVVEMMPaAn9IJenUfn2Xlz3n9al5zZzCH6A+fjG45+mCk=</latexit>

~◆5 = (0.58, . . . , 0.99)
<latexit sha1_base64="9qG2NW+D/c+IvJsEtOZMe8P3wuQ=">AAACCnicbVA9SwNBEN2LXzF+RS1tVoOgIMeeGEwKQbCxVDBRyIWwt9lLluzdHrtzgXCktvGv2FgoYusvsPPfuEmu8OvBwOO9GWbmBYkUBgj5dApz8wuLS8Xl0srq2vpGeXOraVSqGW8wJZW+C6jhUsS8AQIkv0s0p1Eg+W0wuJj4t0OujVDxDYwS3o5oLxahYBSs1Cnv+kPOMl8ooJ3q+OyAuNXaEfZlV4E5Im69ftgpV4hLpsB/iZeTCspx1Sl/+F3F0ojHwCQ1puWRBNoZ1SCY5OOSnxqeUDagPd6yNKYRN+1s+soY71uli0OlbcWAp+r3iYxGxoyiwHZGFPrmtzcR//NaKYS1dibiJAUes9miMJUYFJ7kgrtCcwZyZAllWthbMetTTRnY9Eo2BO/3y39J89j1iOtdn1TOSR5HEe2gPXSAPHSKztElukINxNA9ekTP6MV5cJ6cV+dt1lpw8plt9APO+xehOJg1</latexit><latexit sha1_base64="9qG2NW+D/c+IvJsEtOZMe8P3wuQ=">AAACCnicbVA9SwNBEN2LXzF+RS1tVoOgIMeeGEwKQbCxVDBRyIWwt9lLluzdHrtzgXCktvGv2FgoYusvsPPfuEmu8OvBwOO9GWbmBYkUBgj5dApz8wuLS8Xl0srq2vpGeXOraVSqGW8wJZW+C6jhUsS8AQIkv0s0p1Eg+W0wuJj4t0OujVDxDYwS3o5oLxahYBSs1Cnv+kPOMl8ooJ3q+OyAuNXaEfZlV4E5Im69ftgpV4hLpsB/iZeTCspx1Sl/+F3F0ojHwCQ1puWRBNoZ1SCY5OOSnxqeUDagPd6yNKYRN+1s+soY71uli0OlbcWAp+r3iYxGxoyiwHZGFPrmtzcR//NaKYS1dibiJAUes9miMJUYFJ7kgrtCcwZyZAllWthbMetTTRnY9Eo2BO/3y39J89j1iOtdn1TOSR5HEe2gPXSAPHSKztElukINxNA9ekTP6MV5cJ6cV+dt1lpw8plt9APO+xehOJg1</latexit><latexit sha1_base64="9qG2NW+D/c+IvJsEtOZMe8P3wuQ=">AAACCnicbVA9SwNBEN2LXzF+RS1tVoOgIMeeGEwKQbCxVDBRyIWwt9lLluzdHrtzgXCktvGv2FgoYusvsPPfuEmu8OvBwOO9GWbmBYkUBgj5dApz8wuLS8Xl0srq2vpGeXOraVSqGW8wJZW+C6jhUsS8AQIkv0s0p1Eg+W0wuJj4t0OujVDxDYwS3o5oLxahYBSs1Cnv+kPOMl8ooJ3q+OyAuNXaEfZlV4E5Im69ftgpV4hLpsB/iZeTCspx1Sl/+F3F0ojHwCQ1puWRBNoZ1SCY5OOSnxqeUDagPd6yNKYRN+1s+soY71uli0OlbcWAp+r3iYxGxoyiwHZGFPrmtzcR//NaKYS1dibiJAUes9miMJUYFJ7kgrtCcwZyZAllWthbMetTTRnY9Eo2BO/3y39J89j1iOtdn1TOSR5HEe2gPXSAPHSKztElukINxNA9ekTP6MV5cJ6cV+dt1lpw8plt9APO+xehOJg1</latexit><latexit sha1_base64="9qG2NW+D/c+IvJsEtOZMe8P3wuQ=">AAACCnicbVA9SwNBEN2LXzF+RS1tVoOgIMeeGEwKQbCxVDBRyIWwt9lLluzdHrtzgXCktvGv2FgoYusvsPPfuEmu8OvBwOO9GWbmBYkUBgj5dApz8wuLS8Xl0srq2vpGeXOraVSqGW8wJZW+C6jhUsS8AQIkv0s0p1Eg+W0wuJj4t0OujVDxDYwS3o5oLxahYBSs1Cnv+kPOMl8ooJ3q+OyAuNXaEfZlV4E5Im69ftgpV4hLpsB/iZeTCspx1Sl/+F3F0ojHwCQ1puWRBNoZ1SCY5OOSnxqeUDagPd6yNKYRN+1s+soY71uli0OlbcWAp+r3iYxGxoyiwHZGFPrmtzcR//NaKYS1dibiJAUes9miMJUYFJ7kgrtCcwZyZAllWthbMetTTRnY9Eo2BO/3y39J89j1iOtdn1TOSR5HEe2gPXSAPHSKztElukINxNA9ekTP6MV5cJ6cV+dt1lpw8plt9APO+xehOJg1</latexit>
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<latexit sha1_base64="WBuEBwhes968T+B5jNA2SUXHVnI=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBahQglJW9GNUHDjsoJ9QBPKZDJph04yYWZSKKHgxl9x40IRt/6EO//G6WOhrQcuHM65l3vv8RNGpbLtbyO3tr6xuZXfLuzs7u0fmIdHLclTgUkTc8ZFx0eSMBqTpqKKkU4iCIp8Rtr+8Hbqt0dESMrjBzVOiBehfkxDipHSUs88cUcEZ+HkplS1nErZZQFXsnxpVZ2Lnlm0LXsGuEqcBSmCBRo988sNOE4jEivMkJRdx06UlyGhKGZkUnBTSRKEh6hPuprGKCLSy2Y/TOC5VgIYcqErVnCm/p7IUCTlOPJ1Z4TUQC57U/E/r5uq8NrLaJykisR4vihMGVQcTgOBARUEKzbWBGFB9a0QD5BAWOnYCjoEZ/nlVdKqWI5tOfe1Yr22iCMPTsEZKAEHXIE6uAMN0AQYPIJn8ArejCfjxXg3PuatOWMxcwz+wPj8Aa/PlYw=</latexit><latexit sha1_base64="WBuEBwhes968T+B5jNA2SUXHVnI=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBahQglJW9GNUHDjsoJ9QBPKZDJph04yYWZSKKHgxl9x40IRt/6EO//G6WOhrQcuHM65l3vv8RNGpbLtbyO3tr6xuZXfLuzs7u0fmIdHLclTgUkTc8ZFx0eSMBqTpqKKkU4iCIp8Rtr+8Hbqt0dESMrjBzVOiBehfkxDipHSUs88cUcEZ+HkplS1nErZZQFXsnxpVZ2Lnlm0LXsGuEqcBSmCBRo988sNOE4jEivMkJRdx06UlyGhKGZkUnBTSRKEh6hPuprGKCLSy2Y/TOC5VgIYcqErVnCm/p7IUCTlOPJ1Z4TUQC57U/E/r5uq8NrLaJykisR4vihMGVQcTgOBARUEKzbWBGFB9a0QD5BAWOnYCjoEZ/nlVdKqWI5tOfe1Yr22iCMPTsEZKAEHXIE6uAMN0AQYPIJn8ArejCfjxXg3PuatOWMxcwz+wPj8Aa/PlYw=</latexit><latexit sha1_base64="WBuEBwhes968T+B5jNA2SUXHVnI=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBahQglJW9GNUHDjsoJ9QBPKZDJph04yYWZSKKHgxl9x40IRt/6EO//G6WOhrQcuHM65l3vv8RNGpbLtbyO3tr6xuZXfLuzs7u0fmIdHLclTgUkTc8ZFx0eSMBqTpqKKkU4iCIp8Rtr+8Hbqt0dESMrjBzVOiBehfkxDipHSUs88cUcEZ+HkplS1nErZZQFXsnxpVZ2Lnlm0LXsGuEqcBSmCBRo988sNOE4jEivMkJRdx06UlyGhKGZkUnBTSRKEh6hPuprGKCLSy2Y/TOC5VgIYcqErVnCm/p7IUCTlOPJ1Z4TUQC57U/E/r5uq8NrLaJykisR4vihMGVQcTgOBARUEKzbWBGFB9a0QD5BAWOnYCjoEZ/nlVdKqWI5tOfe1Yr22iCMPTsEZKAEHXIE6uAMN0AQYPIJn8ArejCfjxXg3PuatOWMxcwz+wPj8Aa/PlYw=</latexit><latexit sha1_base64="WBuEBwhes968T+B5jNA2SUXHVnI=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBahQglJW9GNUHDjsoJ9QBPKZDJph04yYWZSKKHgxl9x40IRt/6EO//G6WOhrQcuHM65l3vv8RNGpbLtbyO3tr6xuZXfLuzs7u0fmIdHLclTgUkTc8ZFx0eSMBqTpqKKkU4iCIp8Rtr+8Hbqt0dESMrjBzVOiBehfkxDipHSUs88cUcEZ+HkplS1nErZZQFXsnxpVZ2Lnlm0LXsGuEqcBSmCBRo988sNOE4jEivMkJRdx06UlyGhKGZkUnBTSRKEh6hPuprGKCLSy2Y/TOC5VgIYcqErVnCm/p7IUCTlOPJ1Z4TUQC57U/E/r5uq8NrLaJykisR4vihMGVQcTgOBARUEKzbWBGFB9a0QD5BAWOnYCjoEZ/nlVdKqWI5tOfe1Yr22iCMPTsEZKAEHXIE6uAMN0AQYPIJn8ArejCfjxXg3PuatOWMxcwz+wPj8Aa/PlYw=</latexit>

SAFE

~If
<latexit sha1_base64="p0rabJJDT7lgam0m4Lb5lhZAMVM=">AAAB/XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNNAFiTwkx4rOl0045Xy27taRIsviK2ihokO0fAsF/4JtXEDCVKOZXe3s+JEUBm3706qsrK6tb1Q3a1vbO7t79f2DrgljzaHDQxnqvs8MSKGggwIl9CMNLPAl9Pzpde73ZqCNCNU9ziPwAjZRYiw4w0xyBzPgye0wGafpsN6wm3YBukyckjRIifaw/jUYhTwOQCGXzBjXsSP0EqZRcAlpbRAbiBifsgm4GVUsAOMlReSUnsSGYUgj0FRIWojweyNhgTHzwM8mA4YPZtHLxf88N8bxpZcIFcUIiueHUEgoDhmuRdYF0JHQgMjy5ECFopxphghaUMZ5JsZZObWsD2fx+2XSPWs6dtO5O2+0rspmquSIHJNT4pAL0iI3pE06hJOQPJFn8mI9Wq/Wm/X+M1qxyp1D8gfWxzd8sZYF</latexit><latexit sha1_base64="p0rabJJDT7lgam0m4Lb5lhZAMVM=">AAAB/XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNNAFiTwkx4rOl0045Xy27taRIsviK2ihokO0fAsF/4JtXEDCVKOZXe3s+JEUBm3706qsrK6tb1Q3a1vbO7t79f2DrgljzaHDQxnqvs8MSKGggwIl9CMNLPAl9Pzpde73ZqCNCNU9ziPwAjZRYiw4w0xyBzPgye0wGafpsN6wm3YBukyckjRIifaw/jUYhTwOQCGXzBjXsSP0EqZRcAlpbRAbiBifsgm4GVUsAOMlReSUnsSGYUgj0FRIWojweyNhgTHzwM8mA4YPZtHLxf88N8bxpZcIFcUIiueHUEgoDhmuRdYF0JHQgMjy5ECFopxphghaUMZ5JsZZObWsD2fx+2XSPWs6dtO5O2+0rspmquSIHJNT4pAL0iI3pE06hJOQPJFn8mI9Wq/Wm/X+M1qxyp1D8gfWxzd8sZYF</latexit><latexit sha1_base64="p0rabJJDT7lgam0m4Lb5lhZAMVM=">AAAB/XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNNAFiTwkx4rOl0045Xy27taRIsviK2ihokO0fAsF/4JtXEDCVKOZXe3s+JEUBm3706qsrK6tb1Q3a1vbO7t79f2DrgljzaHDQxnqvs8MSKGggwIl9CMNLPAl9Pzpde73ZqCNCNU9ziPwAjZRYiw4w0xyBzPgye0wGafpsN6wm3YBukyckjRIifaw/jUYhTwOQCGXzBjXsSP0EqZRcAlpbRAbiBifsgm4GVUsAOMlReSUnsSGYUgj0FRIWojweyNhgTHzwM8mA4YPZtHLxf88N8bxpZcIFcUIiueHUEgoDhmuRdYF0JHQgMjy5ECFopxphghaUMZ5JsZZObWsD2fx+2XSPWs6dtO5O2+0rspmquSIHJNT4pAL0iI3pE06hJOQPJFn8mI9Wq/Wm/X+M1qxyp1D8gfWxzd8sZYF</latexit><latexit sha1_base64="p0rabJJDT7lgam0m4Lb5lhZAMVM=">AAAB/XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNNAFiTwkx4rOl0045Xy27taRIsviK2ihokO0fAsF/4JtXEDCVKOZXe3s+JEUBm3706qsrK6tb1Q3a1vbO7t79f2DrgljzaHDQxnqvs8MSKGggwIl9CMNLPAl9Pzpde73ZqCNCNU9ziPwAjZRYiw4w0xyBzPgye0wGafpsN6wm3YBukyckjRIifaw/jUYhTwOQCGXzBjXsSP0EqZRcAlpbRAbiBifsgm4GVUsAOMlReSUnsSGYUgj0FRIWojweyNhgTHzwM8mA4YPZtHLxf88N8bxpZcIFcUIiueHUEgoDhmuRdYF0JHQgMjy5ECFopxphghaUMZ5JsZZObWsD2fx+2XSPWs6dtO5O2+0rspmquSIHJNT4pAL0iI3pE06hJOQPJFn8mI9Wq/Wm/X+M1qxyp1D8gfWxzd8sZYF</latexit>

Addr_1: mov eax,10
Addr_2: dec eax

Addr_3: mov [base+eax],0
Addr_4: jnz Addr_2

Addr_5: mov eax,ebx

Function

If
<latexit sha1_base64="KnejVNrQbmN/ruNaNm1+KP5KqXw=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNNAFiTykxIrWl0045fzQ3RopsvwRtFDRIVq+hoJ/wTYuIGGq0cyudna8SElDtv1pVVZW19Y3qpu1re2d3b36/kHXhLEW2BGhCnXfA4NKBtghSQr7kUbwPYU9b3ad+71H1EaGwT3NI3R9mAZyIgVQJvWS21EySdNRvWE37QJ8mTglabAS7VH9azgORexjQEKBMQPHjshNQJMUCtPaMDYYgZjBFAcZDcBH4yZF3JSfxAYo5BFqLhUvRPy9kYBvzNz3skkf6MEsern4nzeIaXLpJjKIYsJA5IdIKiwOGaFl1gPysdRIBHly5DLgAjQQoZYchMjEOCumlvXhLH6/TLpnTcduOnfnjdZV2UyVHbFjdsocdsFa7Ia1WYcJNmNP7Jm9WIn1ar1Z7z+jFavcOWR/YH18A1vrlEM=</latexit><latexit sha1_base64="KnejVNrQbmN/ruNaNm1+KP5KqXw=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNNAFiTykxIrWl0045fzQ3RopsvwRtFDRIVq+hoJ/wTYuIGGq0cyudna8SElDtv1pVVZW19Y3qpu1re2d3b36/kHXhLEW2BGhCnXfA4NKBtghSQr7kUbwPYU9b3ad+71H1EaGwT3NI3R9mAZyIgVQJvWS21EySdNRvWE37QJ8mTglabAS7VH9azgORexjQEKBMQPHjshNQJMUCtPaMDYYgZjBFAcZDcBH4yZF3JSfxAYo5BFqLhUvRPy9kYBvzNz3skkf6MEsern4nzeIaXLpJjKIYsJA5IdIKiwOGaFl1gPysdRIBHly5DLgAjQQoZYchMjEOCumlvXhLH6/TLpnTcduOnfnjdZV2UyVHbFjdsocdsFa7Ia1WYcJNmNP7Jm9WIn1ar1Z7z+jFavcOWR/YH18A1vrlEM=</latexit><latexit sha1_base64="KnejVNrQbmN/ruNaNm1+KP5KqXw=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNNAFiTykxIrWl0045fzQ3RopsvwRtFDRIVq+hoJ/wTYuIGGq0cyudna8SElDtv1pVVZW19Y3qpu1re2d3b36/kHXhLEW2BGhCnXfA4NKBtghSQr7kUbwPYU9b3ad+71H1EaGwT3NI3R9mAZyIgVQJvWS21EySdNRvWE37QJ8mTglabAS7VH9azgORexjQEKBMQPHjshNQJMUCtPaMDYYgZjBFAcZDcBH4yZF3JSfxAYo5BFqLhUvRPy9kYBvzNz3skkf6MEsern4nzeIaXLpJjKIYsJA5IdIKiwOGaFl1gPysdRIBHly5DLgAjQQoZYchMjEOCumlvXhLH6/TLpnTcduOnfnjdZV2UyVHbFjdsocdsFa7Ia1WYcJNmNP7Jm9WIn1ar1Z7z+jFavcOWR/YH18A1vrlEM=</latexit><latexit sha1_base64="KnejVNrQbmN/ruNaNm1+KP5KqXw=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNNAFiTykxIrWl0045fzQ3RopsvwRtFDRIVq+hoJ/wTYuIGGq0cyudna8SElDtv1pVVZW19Y3qpu1re2d3b36/kHXhLEW2BGhCnXfA4NKBtghSQr7kUbwPYU9b3ad+71H1EaGwT3NI3R9mAZyIgVQJvWS21EySdNRvWE37QJ8mTglabAS7VH9azgORexjQEKBMQPHjshNQJMUCtPaMDYYgZjBFAcZDcBH4yZF3JSfxAYo5BFqLhUvRPy9kYBvzNz3skkf6MEsern4nzeIaXLpJjKIYsJA5IdIKiwOGaFl1gPysdRIBHly5DLgAjQQoZYchMjEOCumlvXhLH6/TLpnTcduOnfnjdZV2UyVHbFjdsocdsFa7Ia1WYcJNmNP7Jm9WIn1ar1Z7z+jFavcOWR/YH18A1vrlEM=</latexit>

Fig. 1. Architecture of SAFE. The vertex feature extractor component refers
to the Unsupervised Feature Learning case.

is unsupervised, as the one followed by Asm2Vec. We remark
that DeepBinDiff uses information such as call symbols and
strings, that would be stripped away or obfuscated in case of
unfriendly binaries (such as a statically linked malware), and
that DeepBinDiff is a single architecture solution.

III. PROBLEM DEFINITION AND SOLUTION OVERVIEW
We say that two binary functions f1, f2 are similar,

f1 ∼ f2, if they are the result of compiling the same original
source code s with different compilers. Essentially, a compiler
c is a deterministic transformation that maps a source code
s to a corresponding binary function fs. In this paper we
consider as a compiler the specific software, e.g. gcc-5.4.0,
together with the parameters that influence the compiling
process, e.g. the optimization flags -O[0, ..., 3].

We indicate with If1 : (ι1, ι2, ι3, . . . , ιm), the list of
assembly instructions composing function f1. Our aim is to
represent f1 as a vector in Rn. This is achieved with an
embedding model that maps If1 to an embedding vector
~f1 ∈ Rn, preserving structural similarity relations between
binary functions.

A. SAFE Overview.

We use an embedding model structured in two phases; in
the first phase the Assembly Instructions Embedding compo-
nent, transforms a sequence of assembly instructions If in
a sequence of vectors, in the second phase a Self-Attentive
Neural Network, transforms a sequence of vectors in a single
embedding vector. See Figure 1 for a schematic representation
of the overall architecture of our embedding network.

Assembly Instructions Embedding (i2v): — In the first
phase of our strategy we map each instruction ι ∈ If to a
vector of real numbers ~ι, using the word2vec model [22].
Word2vec is an extremely popular feature learning technique
in natural language processing. We use a large corpus of
instructions to train our instruction embedding model (see
Section V), we call our mapping instruction2vec (i2v). The
final outcome of this step is a sequence of vectors ~If .

Self-Attentive Network: — For our Self-Attentive Network
we use the network recently proposed in [12]. In this network,
a bi-directional recurrent neural network is fed with the
sequence of assembly vectors. Intuitively, for each instruction
vector ~ιi the RNN computes a summary vector taking into
account the instruction itself and its context in If . The final

embedding of ~If is a weighted sum of all summary vectors.
The weights of such summation are computed by a two-layers
fully-connected neural network.

We selected the Self-Attentive Network for two reasons.
First, it shows state-of-the art performance on natural language
processing tasks [12]. Secondly, it suffers less of the long-
memory problem4 of classic RNNs: in the Self-Attentive case,
the RNN computes only a local summary of each instruction.
Our research hypothesis is that it would behave well over the
long sequences of instructions composing binary functions;
and this hypothesis is indeed confirmed in our experiments
(see Section VI).

IV. DETAILS OF THE SAFE, FUNCTION EMBEDDING
NETWORK

Assembly Instructions Embedding (i2v): — The first step
of our solution consists in associating an embedding vector to
each instruction ι contained in If . We achieve it by training the
embedding model i2v using the skip-gram method [22]. The
idea of skip-gram is to use the current instruction to predict
the instructions around it. A similar approach has been used
also in [28].

We train the i2v model using assembly instructions as
tokens (i.e., a single token includes both the instruction
mnemonic and the operands). Similarly to [29] we reduce our
instruction vocabulary to a reasonable size. This is a standard
practice in natural language processing to allow efficient
computation of the softmax function over all the tokens [30].
In particular, we examine the operands and replace all memory
addresses with the special symbol MEM and all immediates
whose absolute value is above some threshold (we use 5000
in our experiments, see Section V) with the special symbol
IMM. The interested reader can find in [29] an experimental
evaluation of similar pre-processing techniques, that has shown
the beneficial impact of such step. A similar normalisation step
is also used by the recent [27].

As example refer to the instructions in Figure 1 in-
struction mov EAX,10 becomes mov EAX,10; while mov
[ADDR+EAX],0 becomes mov [EAX+MEM],0, and JNZ
ADDR 2 becomes JNZ MEM. Note that in our architecture
the network does not see the address associated with each
instruction, i.e. it does not know which instruction is pointed
by ADDR 2, therefore it is of no benefit to show explicitly the
address.

As another example consider the instruction mov
EAX,[EBP−8] is not modified. Intuitively, the last
instruction is accessing a stack variable different from
mov EAX,[EBP−4], and this information remains intact
with our pre-processing. We do not perform anti-aliasing
steps to normalise registers aliases.

Self-Attentive Network: — We based our Self-Attentive
Network on the one proposed by [12] (see Figure 2). We
compute embedding ~f of a function f by using the sequence
of instruction vectors ~If : (~ι1, . . . , ~ιm). These vectors are fed

4Classic RNNs do not cope well with really long sequences.
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~◆1 = (0.32, . . . , 0.21)

~◆2 = (0.12, . . . , 0.41)
<latexit sha1_base64="4Q4RKZijeuqjMQNX52oJ42bCw+w=">AAACCnicbVBNS8NAEN34WetX1KOX1SJUKCUpBb0IBS8eK9gPaELZbLft0k027E4KJfTsxb/ixYMiXv0F3vw3btsctPXBwOO9GWbmBbHgGhzn21pb39jc2s7t5Hf39g8O7aPjppaJoqxBpZCqHRDNBI9YAzgI1o4VI2EgWCsY3c781pgpzWX0AJOY+SEZRLzPKQEjde0zb8xo6nEJpFuZ3hSdslspYU/0JOiSU666l1274JSdOfAqcTNSQBnqXfvL60mahCwCKojWHdeJwU+JAk4Fm+a9RLOY0BEZsI6hEQmZ9tP5K1N8YZQe7ktlKgI8V39PpCTUehIGpjMkMNTL3kz8z+sk0L/2Ux7FCbCILhb1E4FB4lkuuMcVoyAmhhCquLkV0yFRhIJJL29CcJdfXiXNStk1Ad5XCzUniyOHTtE5KiIXXaEaukN11EAUPaJn9IrerCfrxXq3Phata1Y2c4L+wPr8AXjvmBs=</latexit><latexit sha1_base64="4Q4RKZijeuqjMQNX52oJ42bCw+w=">AAACCnicbVBNS8NAEN34WetX1KOX1SJUKCUpBb0IBS8eK9gPaELZbLft0k027E4KJfTsxb/ixYMiXv0F3vw3btsctPXBwOO9GWbmBbHgGhzn21pb39jc2s7t5Hf39g8O7aPjppaJoqxBpZCqHRDNBI9YAzgI1o4VI2EgWCsY3c781pgpzWX0AJOY+SEZRLzPKQEjde0zb8xo6nEJpFuZ3hSdslspYU/0JOiSU666l1274JSdOfAqcTNSQBnqXfvL60mahCwCKojWHdeJwU+JAk4Fm+a9RLOY0BEZsI6hEQmZ9tP5K1N8YZQe7ktlKgI8V39PpCTUehIGpjMkMNTL3kz8z+sk0L/2Ux7FCbCILhb1E4FB4lkuuMcVoyAmhhCquLkV0yFRhIJJL29CcJdfXiXNStk1Ad5XCzUniyOHTtE5KiIXXaEaukN11EAUPaJn9IrerCfrxXq3Phata1Y2c4L+wPr8AXjvmBs=</latexit><latexit sha1_base64="4Q4RKZijeuqjMQNX52oJ42bCw+w=">AAACCnicbVBNS8NAEN34WetX1KOX1SJUKCUpBb0IBS8eK9gPaELZbLft0k027E4KJfTsxb/ixYMiXv0F3vw3btsctPXBwOO9GWbmBbHgGhzn21pb39jc2s7t5Hf39g8O7aPjppaJoqxBpZCqHRDNBI9YAzgI1o4VI2EgWCsY3c781pgpzWX0AJOY+SEZRLzPKQEjde0zb8xo6nEJpFuZ3hSdslspYU/0JOiSU666l1274JSdOfAqcTNSQBnqXfvL60mahCwCKojWHdeJwU+JAk4Fm+a9RLOY0BEZsI6hEQmZ9tP5K1N8YZQe7ktlKgI8V39PpCTUehIGpjMkMNTL3kz8z+sk0L/2Ux7FCbCILhb1E4FB4lkuuMcVoyAmhhCquLkV0yFRhIJJL29CcJdfXiXNStk1Ad5XCzUniyOHTtE5KiIXXaEaukN11EAUPaJn9IrerCfrxXq3Phata1Y2c4L+wPr8AXjvmBs=</latexit><latexit sha1_base64="4Q4RKZijeuqjMQNX52oJ42bCw+w=">AAACCnicbVBNS8NAEN34WetX1KOX1SJUKCUpBb0IBS8eK9gPaELZbLft0k027E4KJfTsxb/ixYMiXv0F3vw3btsctPXBwOO9GWbmBbHgGhzn21pb39jc2s7t5Hf39g8O7aPjppaJoqxBpZCqHRDNBI9YAzgI1o4VI2EgWCsY3c781pgpzWX0AJOY+SEZRLzPKQEjde0zb8xo6nEJpFuZ3hSdslspYU/0JOiSU666l1274JSdOfAqcTNSQBnqXfvL60mahCwCKojWHdeJwU+JAk4Fm+a9RLOY0BEZsI6hEQmZ9tP5K1N8YZQe7ktlKgI8V39PpCTUehIGpjMkMNTL3kz8z+sk0L/2Ux7FCbCILhb1E4FB4lkuuMcVoyAmhhCquLkV0yFRhIJJL29CcJdfXiXNStk1Ad5XCzUniyOHTtE5KiIXXaEaukN11EAUPaJn9IrerCfrxXq3Phata1Y2c4L+wPr8AXjvmBs=</latexit>

~◆3 = (0.22, . . . , 0.62)
<latexit sha1_base64="iFlFixtfsWjeQ33XLX2US08Yt5M=">AAACCnicbVDLSgNBEJz1GeMr6tHLaBAihGV2FfUiBLx4jGAekA1hdjLRwdmdZaY3EJacvfgrXjwo4tUv8ObfOHkcNLGgoajqprsrTKQwQMi3s7C4tLyymlvLr29sbm0XdnbrRqWa8RpTUulmSA2XIuY1ECB5M9GcRqHkjfDhauQ3+lwboeJbGCS8HdG7WPQEo2ClTuEg6HOWBUIB7ZwML0vE9f0yDmRXgSkT98w/7hSKxCVj4HniTUkRTVHtFL6CrmJpxGNgkhrT8kgC7YxqEEzyYT5IDU8oe6B3vGVpTCNu2tn4lSE+skoX95S2FQMeq78nMhoZM4hC2xlRuDez3kj8z2ul0LtoZyJOUuAxmyzqpRKDwqNccFdozkAOLKFMC3srZvdUUwY2vbwNwZt9eZ7UfdcjrndzWqyQaRw5tI8OUQl56BxV0DWqohpi6BE9o1f05jw5L8678zFpXXCmM3voD5zPH4CsmCA=</latexit><latexit sha1_base64="iFlFixtfsWjeQ33XLX2US08Yt5M=">AAACCnicbVDLSgNBEJz1GeMr6tHLaBAihGV2FfUiBLx4jGAekA1hdjLRwdmdZaY3EJacvfgrXjwo4tUv8ObfOHkcNLGgoajqprsrTKQwQMi3s7C4tLyymlvLr29sbm0XdnbrRqWa8RpTUulmSA2XIuY1ECB5M9GcRqHkjfDhauQ3+lwboeJbGCS8HdG7WPQEo2ClTuEg6HOWBUIB7ZwML0vE9f0yDmRXgSkT98w/7hSKxCVj4HniTUkRTVHtFL6CrmJpxGNgkhrT8kgC7YxqEEzyYT5IDU8oe6B3vGVpTCNu2tn4lSE+skoX95S2FQMeq78nMhoZM4hC2xlRuDez3kj8z2ul0LtoZyJOUuAxmyzqpRKDwqNccFdozkAOLKFMC3srZvdUUwY2vbwNwZt9eZ7UfdcjrndzWqyQaRw5tI8OUQl56BxV0DWqohpi6BE9o1f05jw5L8678zFpXXCmM3voD5zPH4CsmCA=</latexit><latexit sha1_base64="iFlFixtfsWjeQ33XLX2US08Yt5M=">AAACCnicbVDLSgNBEJz1GeMr6tHLaBAihGV2FfUiBLx4jGAekA1hdjLRwdmdZaY3EJacvfgrXjwo4tUv8ObfOHkcNLGgoajqprsrTKQwQMi3s7C4tLyymlvLr29sbm0XdnbrRqWa8RpTUulmSA2XIuY1ECB5M9GcRqHkjfDhauQ3+lwboeJbGCS8HdG7WPQEo2ClTuEg6HOWBUIB7ZwML0vE9f0yDmRXgSkT98w/7hSKxCVj4HniTUkRTVHtFL6CrmJpxGNgkhrT8kgC7YxqEEzyYT5IDU8oe6B3vGVpTCNu2tn4lSE+skoX95S2FQMeq78nMhoZM4hC2xlRuDez3kj8z2ul0LtoZyJOUuAxmyzqpRKDwqNccFdozkAOLKFMC3srZvdUUwY2vbwNwZt9eZ7UfdcjrndzWqyQaRw5tI8OUQl56BxV0DWqohpi6BE9o1f05jw5L8678zFpXXCmM3voD5zPH4CsmCA=</latexit><latexit sha1_base64="iFlFixtfsWjeQ33XLX2US08Yt5M=">AAACCnicbVDLSgNBEJz1GeMr6tHLaBAihGV2FfUiBLx4jGAekA1hdjLRwdmdZaY3EJacvfgrXjwo4tUv8ObfOHkcNLGgoajqprsrTKQwQMi3s7C4tLyymlvLr29sbm0XdnbrRqWa8RpTUulmSA2XIuY1ECB5M9GcRqHkjfDhauQ3+lwboeJbGCS8HdG7WPQEo2ClTuEg6HOWBUIB7ZwML0vE9f0yDmRXgSkT98w/7hSKxCVj4HniTUkRTVHtFL6CrmJpxGNgkhrT8kgC7YxqEEzyYT5IDU8oe6B3vGVpTCNu2tn4lSE+skoX95S2FQMeq78nMhoZM4hC2xlRuDez3kj8z2ul0LtoZyJOUuAxmyzqpRKDwqNccFdozkAOLKFMC3srZvdUUwY2vbwNwZt9eZ7UfdcjrndzWqyQaRw5tI8OUQl56BxV0DWqohpi6BE9o1f05jw5L8678zFpXXCmM3voD5zPH4CsmCA=</latexit>

~◆4 = (0.50, . . . , 0.78)
<latexit sha1_base64="kgb7B0ywC0XYAA5rg3a1TuZdVjU=">AAACCnicbVA9SwNBEN3z2/h1ammzGoQI4diTSGyEgI1lBGMCuRD2Nptkyd7tsTsXCEdqG/+KjYUitv4CO/+Nm5hCEx8MPN6bYWZemEhhgJAvZ2l5ZXVtfWMzt7W9s7vn7h/cG5VqxmtMSaUbITVcipjXQIDkjURzGoWS18PB9cSvD7k2QsV3MEp4K6K9WHQFo2CltnscDDnLAqGAtkvjqwLxLkgRB7KjwBSJV748a7t54pEp8CLxZySPZqi23c+go1ga8RiYpMY0fZJAK6MaBJN8nAtSwxPKBrTHm5bGNOKmlU1fGeNTq3RwV2lbMeCp+nsio5Exoyi0nRGFvpn3JuJ/XjOF7mUrE3GSAo/Zz6JuKjEoPMkFd4TmDOTIEsq0sLdi1qeaMrDp5WwI/vzLi+T+3POJ59+W8hUyi2MDHaETVEA+KqMKukFVVEMMPaAn9IJenUfn2Xlz3n9al5zZzCH6A+fjG45+mCk=</latexit><latexit sha1_base64="kgb7B0ywC0XYAA5rg3a1TuZdVjU=">AAACCnicbVA9SwNBEN3z2/h1ammzGoQI4diTSGyEgI1lBGMCuRD2Nptkyd7tsTsXCEdqG/+KjYUitv4CO/+Nm5hCEx8MPN6bYWZemEhhgJAvZ2l5ZXVtfWMzt7W9s7vn7h/cG5VqxmtMSaUbITVcipjXQIDkjURzGoWS18PB9cSvD7k2QsV3MEp4K6K9WHQFo2CltnscDDnLAqGAtkvjqwLxLkgRB7KjwBSJV748a7t54pEp8CLxZySPZqi23c+go1ga8RiYpMY0fZJAK6MaBJN8nAtSwxPKBrTHm5bGNOKmlU1fGeNTq3RwV2lbMeCp+nsio5Exoyi0nRGFvpn3JuJ/XjOF7mUrE3GSAo/Zz6JuKjEoPMkFd4TmDOTIEsq0sLdi1qeaMrDp5WwI/vzLi+T+3POJ59+W8hUyi2MDHaETVEA+KqMKukFVVEMMPaAn9IJenUfn2Xlz3n9al5zZzCH6A+fjG45+mCk=</latexit><latexit sha1_base64="kgb7B0ywC0XYAA5rg3a1TuZdVjU=">AAACCnicbVA9SwNBEN3z2/h1ammzGoQI4diTSGyEgI1lBGMCuRD2Nptkyd7tsTsXCEdqG/+KjYUitv4CO/+Nm5hCEx8MPN6bYWZemEhhgJAvZ2l5ZXVtfWMzt7W9s7vn7h/cG5VqxmtMSaUbITVcipjXQIDkjURzGoWS18PB9cSvD7k2QsV3MEp4K6K9WHQFo2CltnscDDnLAqGAtkvjqwLxLkgRB7KjwBSJV748a7t54pEp8CLxZySPZqi23c+go1ga8RiYpMY0fZJAK6MaBJN8nAtSwxPKBrTHm5bGNOKmlU1fGeNTq3RwV2lbMeCp+nsio5Exoyi0nRGFvpn3JuJ/XjOF7mUrE3GSAo/Zz6JuKjEoPMkFd4TmDOTIEsq0sLdi1qeaMrDp5WwI/vzLi+T+3POJ59+W8hUyi2MDHaETVEA+KqMKukFVVEMMPaAn9IJenUfn2Xlz3n9al5zZzCH6A+fjG45+mCk=</latexit><latexit sha1_base64="kgb7B0ywC0XYAA5rg3a1TuZdVjU=">AAACCnicbVA9SwNBEN3z2/h1ammzGoQI4diTSGyEgI1lBGMCuRD2Nptkyd7tsTsXCEdqG/+KjYUitv4CO/+Nm5hCEx8MPN6bYWZemEhhgJAvZ2l5ZXVtfWMzt7W9s7vn7h/cG5VqxmtMSaUbITVcipjXQIDkjURzGoWS18PB9cSvD7k2QsV3MEp4K6K9WHQFo2CltnscDDnLAqGAtkvjqwLxLkgRB7KjwBSJV748a7t54pEp8CLxZySPZqi23c+go1ga8RiYpMY0fZJAK6MaBJN8nAtSwxPKBrTHm5bGNOKmlU1fGeNTq3RwV2lbMeCp+nsio5Exoyi0nRGFvpn3JuJ/XjOF7mUrE3GSAo/Zz6JuKjEoPMkFd4TmDOTIEsq0sLdi1qeaMrDp5WwI/vzLi+T+3POJ59+W8hUyi2MDHaETVEA+KqMKukFVVEMMPaAn9IJenUfn2Xlz3n9al5zZzCH6A+fjG45+mCk=</latexit>

~◆5 = (0.58, . . . , 0.99)
<latexit sha1_base64="9qG2NW+D/c+IvJsEtOZMe8P3wuQ=">AAACCnicbVA9SwNBEN2LXzF+RS1tVoOgIMeeGEwKQbCxVDBRyIWwt9lLluzdHrtzgXCktvGv2FgoYusvsPPfuEmu8OvBwOO9GWbmBYkUBgj5dApz8wuLS8Xl0srq2vpGeXOraVSqGW8wJZW+C6jhUsS8AQIkv0s0p1Eg+W0wuJj4t0OujVDxDYwS3o5oLxahYBSs1Cnv+kPOMl8ooJ3q+OyAuNXaEfZlV4E5Im69ftgpV4hLpsB/iZeTCspx1Sl/+F3F0ojHwCQ1puWRBNoZ1SCY5OOSnxqeUDagPd6yNKYRN+1s+soY71uli0OlbcWAp+r3iYxGxoyiwHZGFPrmtzcR//NaKYS1dibiJAUes9miMJUYFJ7kgrtCcwZyZAllWthbMetTTRnY9Eo2BO/3y39J89j1iOtdn1TOSR5HEe2gPXSAPHSKztElukINxNA9ekTP6MV5cJ6cV+dt1lpw8plt9APO+xehOJg1</latexit><latexit sha1_base64="9qG2NW+D/c+IvJsEtOZMe8P3wuQ=">AAACCnicbVA9SwNBEN2LXzF+RS1tVoOgIMeeGEwKQbCxVDBRyIWwt9lLluzdHrtzgXCktvGv2FgoYusvsPPfuEmu8OvBwOO9GWbmBYkUBgj5dApz8wuLS8Xl0srq2vpGeXOraVSqGW8wJZW+C6jhUsS8AQIkv0s0p1Eg+W0wuJj4t0OujVDxDYwS3o5oLxahYBSs1Cnv+kPOMl8ooJ3q+OyAuNXaEfZlV4E5Im69ftgpV4hLpsB/iZeTCspx1Sl/+F3F0ojHwCQ1puWRBNoZ1SCY5OOSnxqeUDagPd6yNKYRN+1s+soY71uli0OlbcWAp+r3iYxGxoyiwHZGFPrmtzcR//NaKYS1dibiJAUes9miMJUYFJ7kgrtCcwZyZAllWthbMetTTRnY9Eo2BO/3y39J89j1iOtdn1TOSR5HEe2gPXSAPHSKztElukINxNA9ekTP6MV5cJ6cV+dt1lpw8plt9APO+xehOJg1</latexit><latexit sha1_base64="9qG2NW+D/c+IvJsEtOZMe8P3wuQ=">AAACCnicbVA9SwNBEN2LXzF+RS1tVoOgIMeeGEwKQbCxVDBRyIWwt9lLluzdHrtzgXCktvGv2FgoYusvsPPfuEmu8OvBwOO9GWbmBYkUBgj5dApz8wuLS8Xl0srq2vpGeXOraVSqGW8wJZW+C6jhUsS8AQIkv0s0p1Eg+W0wuJj4t0OujVDxDYwS3o5oLxahYBSs1Cnv+kPOMl8ooJ3q+OyAuNXaEfZlV4E5Im69ftgpV4hLpsB/iZeTCspx1Sl/+F3F0ojHwCQ1puWRBNoZ1SCY5OOSnxqeUDagPd6yNKYRN+1s+soY71uli0OlbcWAp+r3iYxGxoyiwHZGFPrmtzcR//NaKYS1dibiJAUes9miMJUYFJ7kgrtCcwZyZAllWthbMetTTRnY9Eo2BO/3y39J89j1iOtdn1TOSR5HEe2gPXSAPHSKztElukINxNA9ekTP6MV5cJ6cV+dt1lpw8plt9APO+xehOJg1</latexit><latexit sha1_base64="9qG2NW+D/c+IvJsEtOZMe8P3wuQ=">AAACCnicbVA9SwNBEN2LXzF+RS1tVoOgIMeeGEwKQbCxVDBRyIWwt9lLluzdHrtzgXCktvGv2FgoYusvsPPfuEmu8OvBwOO9GWbmBYkUBgj5dApz8wuLS8Xl0srq2vpGeXOraVSqGW8wJZW+C6jhUsS8AQIkv0s0p1Eg+W0wuJj4t0OujVDxDYwS3o5oLxahYBSs1Cnv+kPOMl8ooJ3q+OyAuNXaEfZlV4E5Im69ftgpV4hLpsB/iZeTCspx1Sl/+F3F0ojHwCQ1puWRBNoZ1SCY5OOSnxqeUDagPd6yNKYRN+1s+soY71uli0OlbcWAp+r3iYxGxoyiwHZGFPrmtzcR//NaKYS1dibiJAUes9miMJUYFJ7kgrtCcwZyZAllWthbMetTTRnY9Eo2BO/3y39J89j1iOtdn1TOSR5HEe2gPXSAPHSKztElukINxNA9ekTP6MV5cJ6cV+dt1lpw8plt9APO+xehOJg1</latexit>

c

c

c

c

c

Bi-directional Recurrent
Neural Network

softmax(Ws2 · tanh(Ws1 · HT ))
<latexit sha1_base64="PTZjAR48nOWmawF0M7zP6rp0Wnw=">AAACKHicbZA9TsNAEIXX4T/8BShpVkRIpInsCAlKBE1KkAiJFIdovJmEFeu1tTtGRJYvwhE4BS1UdIiChpPgmBQQmOrpezOamRfESlpy3XenNDe/sLi0vFJeXVvf2KxsbV/ZKDECWyJSkekEYFFJjS2SpLATG4QwUNgObs8mfvsOjZWRvqRxjL0QRloOpQDKUb9ymPp2yG00pBDus4N2P7WNjPtiEBH3CfRNgbzsmzSv08usVutXqm7dLYr/Fd5UVNm0zvuVD38QiSRETUKBtV3PjamXgiEpFGZlP7EYg7iFEXZzqSFE20uL7zK+n1igiMdouFS8gPhzIoXQ2nEY5J0h0I2d9SbwP6+b0PC4l0odJ4RaTBaRVFgsssLIPDbkA2mQCCaXI5eaCzBAhEZyECKHSZ5jOc/Dm/3+r7hq1D237l0cVk9Op8kss122xw6Yx47YCWuyc9Zigj2wJ/bMXpxH59V5c96/W0vOdGaH/Srn8ws5QKYz</latexit><latexit sha1_base64="PTZjAR48nOWmawF0M7zP6rp0Wnw=">AAACKHicbZA9TsNAEIXX4T/8BShpVkRIpInsCAlKBE1KkAiJFIdovJmEFeu1tTtGRJYvwhE4BS1UdIiChpPgmBQQmOrpezOamRfESlpy3XenNDe/sLi0vFJeXVvf2KxsbV/ZKDECWyJSkekEYFFJjS2SpLATG4QwUNgObs8mfvsOjZWRvqRxjL0QRloOpQDKUb9ymPp2yG00pBDus4N2P7WNjPtiEBH3CfRNgbzsmzSv08usVutXqm7dLYr/Fd5UVNm0zvuVD38QiSRETUKBtV3PjamXgiEpFGZlP7EYg7iFEXZzqSFE20uL7zK+n1igiMdouFS8gPhzIoXQ2nEY5J0h0I2d9SbwP6+b0PC4l0odJ4RaTBaRVFgsssLIPDbkA2mQCCaXI5eaCzBAhEZyECKHSZ5jOc/Dm/3+r7hq1D237l0cVk9Op8kss122xw6Yx47YCWuyc9Zigj2wJ/bMXpxH59V5c96/W0vOdGaH/Srn8ws5QKYz</latexit><latexit sha1_base64="PTZjAR48nOWmawF0M7zP6rp0Wnw="></latexit><latexit sha1_base64="PTZjAR48nOWmawF0M7zP6rp0Wnw="></latexit>

Self-Attentive Mechanism

A
<latexit sha1_base64="iHrF6dnSxuKNzdLP9lxXsAcQ28I=">AAAB83icbVC7TsNAEFzzDOEVoKQ5ESFRRTZCgjJAQ5lI5CElVnS+bMIp54fu9pCiKF9ACxUdouWDKPgXbOMCEqYazexqZydIlDTkup/Oyura+sZmaau8vbO7t185OGyb2GqBLRGrWHcDblDJCFskSWE30cjDQGEnmNxmfucRtZFxdE/TBP2QjyM5koJTKjWvB5WqW3NzsGXiFaQKBRqDyld/GAsbYkRCcWN6npuQP+OapFA4L/etwYSLCR9jL6URD9H4szzonJ1awylmCWomFctF/L0x46Ex0zBIJ0NOD2bRy8T/vJ6l0ZU/k1FiCSORHSKpMD9khJZpA8iGUiMRz5IjkxETXHMi1JJxIVLRppWU0z68xe+XSfu85rk1r3lRrd8UzZTgGE7gDDy4hDrcQQNaIADhCZ7hxbHOq/PmvP+MrjjFzhH8gfPxDTDQkUo=</latexit><latexit sha1_base64="iHrF6dnSxuKNzdLP9lxXsAcQ28I=">AAAB83icbVC7TsNAEFzzDOEVoKQ5ESFRRTZCgjJAQ5lI5CElVnS+bMIp54fu9pCiKF9ACxUdouWDKPgXbOMCEqYazexqZydIlDTkup/Oyura+sZmaau8vbO7t185OGyb2GqBLRGrWHcDblDJCFskSWE30cjDQGEnmNxmfucRtZFxdE/TBP2QjyM5koJTKjWvB5WqW3NzsGXiFaQKBRqDyld/GAsbYkRCcWN6npuQP+OapFA4L/etwYSLCR9jL6URD9H4szzonJ1awylmCWomFctF/L0x46Ex0zBIJ0NOD2bRy8T/vJ6l0ZU/k1FiCSORHSKpMD9khJZpA8iGUiMRz5IjkxETXHMi1JJxIVLRppWU0z68xe+XSfu85rk1r3lRrd8UzZTgGE7gDDy4hDrcQQNaIADhCZ7hxbHOq/PmvP+MrjjFzhH8gfPxDTDQkUo=</latexit><latexit sha1_base64="iHrF6dnSxuKNzdLP9lxXsAcQ28I=">AAAB83icbVC7TsNAEFzzDOEVoKQ5ESFRRTZCgjJAQ5lI5CElVnS+bMIp54fu9pCiKF9ACxUdouWDKPgXbOMCEqYazexqZydIlDTkup/Oyura+sZmaau8vbO7t185OGyb2GqBLRGrWHcDblDJCFskSWE30cjDQGEnmNxmfucRtZFxdE/TBP2QjyM5koJTKjWvB5WqW3NzsGXiFaQKBRqDyld/GAsbYkRCcWN6npuQP+OapFA4L/etwYSLCR9jL6URD9H4szzonJ1awylmCWomFctF/L0x46Ex0zBIJ0NOD2bRy8T/vJ6l0ZU/k1FiCSORHSKpMD9khJZpA8iGUiMRz5IjkxETXHMi1JJxIVLRppWU0z68xe+XSfu85rk1r3lRrd8UzZTgGE7gDDy4hDrcQQNaIADhCZ7hxbHOq/PmvP+MrjjFzhH8gfPxDTDQkUo=</latexit><latexit sha1_base64="iHrF6dnSxuKNzdLP9lxXsAcQ28I=">AAAB83icbVC7TsNAEFzzDOEVoKQ5ESFRRTZCgjJAQ5lI5CElVnS+bMIp54fu9pCiKF9ACxUdouWDKPgXbOMCEqYazexqZydIlDTkup/Oyura+sZmaau8vbO7t185OGyb2GqBLRGrWHcDblDJCFskSWE30cjDQGEnmNxmfucRtZFxdE/TBP2QjyM5koJTKjWvB5WqW3NzsGXiFaQKBRqDyld/GAsbYkRCcWN6npuQP+OapFA4L/etwYSLCR9jL6URD9H4szzonJ1awylmCWomFctF/L0x46Ex0zBIJ0NOD2bRy8T/vJ6l0ZU/k1FiCSORHSKpMD9khJZpA8iGUiMRz5IjkxETXHMi1JJxIVLRppWU0z68xe+XSfu85rk1r3lRrd8UzZTgGE7gDDy4hDrcQQNaIADhCZ7hxbHOq/PmvP+MrjjFzhH8gfPxDTDQkUo=</latexit>

Attention 
Matrix

.

M
<latexit sha1_base64="OknGFQkULsmJJrlL5IoAvPJhkzY=">AAAB83icbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04kVIwDwgWcLspBOHzD6Y6RFCyBd41ZM38eoHefBf3F33oIl1Kqq66eoKEiUNue6ns7K6tr6xWdoqb+/s7u1XDg7bJrZaYEvEKtbdgBtUMsIWSVLYTTTyMFDYCSY3md95RG1kHN3TNEE/5ONIjqTglErNu0Gl6tbcHGyZeAWpQoHGoPLVH8bChhiRUNyYnucm5M+4JikUzst9azDhYsLH2EtpxEM0/iwPOmen1nCKWYKaScVyEX9vzHhozDQM0smQ04NZ9DLxP69naXTlz2SUWMJIZIdIKswPGaFl2gCyodRIxLPkyGTEBNecCLVkXIhUtGkl5bQPb/H7ZdI+r3luzWteVOvXRTMlOIYTOAMPLqEOt9CAFghAeIJneHGs8+q8Oe8/oytOsXMEf+B8fANDhJFW</latexit><latexit sha1_base64="OknGFQkULsmJJrlL5IoAvPJhkzY=">AAAB83icbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04kVIwDwgWcLspBOHzD6Y6RFCyBd41ZM38eoHefBf3F33oIl1Kqq66eoKEiUNue6ns7K6tr6xWdoqb+/s7u1XDg7bJrZaYEvEKtbdgBtUMsIWSVLYTTTyMFDYCSY3md95RG1kHN3TNEE/5ONIjqTglErNu0Gl6tbcHGyZeAWpQoHGoPLVH8bChhiRUNyYnucm5M+4JikUzst9azDhYsLH2EtpxEM0/iwPOmen1nCKWYKaScVyEX9vzHhozDQM0smQ04NZ9DLxP69naXTlz2SUWMJIZIdIKswPGaFl2gCyodRIxLPkyGTEBNecCLVkXIhUtGkl5bQPb/H7ZdI+r3luzWteVOvXRTMlOIYTOAMPLqEOt9CAFghAeIJneHGs8+q8Oe8/oytOsXMEf+B8fANDhJFW</latexit><latexit sha1_base64="OknGFQkULsmJJrlL5IoAvPJhkzY=">AAAB83icbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04kVIwDwgWcLspBOHzD6Y6RFCyBd41ZM38eoHefBf3F33oIl1Kqq66eoKEiUNue6ns7K6tr6xWdoqb+/s7u1XDg7bJrZaYEvEKtbdgBtUMsIWSVLYTTTyMFDYCSY3md95RG1kHN3TNEE/5ONIjqTglErNu0Gl6tbcHGyZeAWpQoHGoPLVH8bChhiRUNyYnucm5M+4JikUzst9azDhYsLH2EtpxEM0/iwPOmen1nCKWYKaScVyEX9vzHhozDQM0smQ04NZ9DLxP69naXTlz2SUWMJIZIdIKswPGaFl2gCyodRIxLPkyGTEBNecCLVkXIhUtGkl5bQPb/H7ZdI+r3luzWteVOvXRTMlOIYTOAMPLqEOt9CAFghAeIJneHGs8+q8Oe8/oytOsXMEf+B8fANDhJFW</latexit><latexit sha1_base64="OknGFQkULsmJJrlL5IoAvPJhkzY=">AAAB83icbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04kVIwDwgWcLspBOHzD6Y6RFCyBd41ZM38eoHefBf3F33oIl1Kqq66eoKEiUNue6ns7K6tr6xWdoqb+/s7u1XDg7bJrZaYEvEKtbdgBtUMsIWSVLYTTTyMFDYCSY3md95RG1kHN3TNEE/5ONIjqTglErNu0Gl6tbcHGyZeAWpQoHGoPLVH8bChhiRUNyYnucm5M+4JikUzst9azDhYsLH2EtpxEM0/iwPOmen1nCKWYKaScVyEX9vzHhozDQM0smQ04NZ9DLxP69naXTlz2SUWMJIZIdIKswPGaFl2gCyodRIxLPkyGTEBNecCLVkXIhUtGkl5bQPb/H7ZdI+r3luzWteVOvXRTMlOIYTOAMPLqEOt9CAFghAeIJneHGs8+q8Oe8/oytOsXMEf+B8fANDhJFW</latexit>

Two-layers 
Fully connected 

Network
with ReLU
Activation

~f
<latexit sha1_base64="RvqXpW0fbbrQ19ogDth+NIGO290=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8psaL1ZRNOOZ+tu3WkyMpH0EJFh2j5Ggr+Bce4gISpRjO72tkJYiUtue6nU1pb39jcKm9Xdnb39g+qh0dtGyVGYEtEKjLdACwqqbFFkhR2Y4MQBgo7weR24XemaKyM9APNYvRDGGs5kgIokzr9KYp0NB9Ua27dzcFXiVeQGivQHFS/+sNIJCFqEgqs7XluTH4KhqRQOK/0E4sxiAmMsZdRDSFaP83jzvlZYoEiHqPhUvFcxN8bKYTWzsIgmwyBHu2ytxD/83oJja79VOo4IdRicYikwvyQFUZmPSAfSoNEsEiOXGouwAARGslBiExMsmIqWR/e8verpH1R99y6d39Za9wUzZTZCTtl58xjV6zB7liTtZhgE/bEntmLkzqvzpvz/jNacoqdY/YHzsc3UpuUPQ==</latexit><latexit sha1_base64="RvqXpW0fbbrQ19ogDth+NIGO290=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8psaL1ZRNOOZ+tu3WkyMpH0EJFh2j5Ggr+Bce4gISpRjO72tkJYiUtue6nU1pb39jcKm9Xdnb39g+qh0dtGyVGYEtEKjLdACwqqbFFkhR2Y4MQBgo7weR24XemaKyM9APNYvRDGGs5kgIokzr9KYp0NB9Ua27dzcFXiVeQGivQHFS/+sNIJCFqEgqs7XluTH4KhqRQOK/0E4sxiAmMsZdRDSFaP83jzvlZYoEiHqPhUvFcxN8bKYTWzsIgmwyBHu2ytxD/83oJja79VOo4IdRicYikwvyQFUZmPSAfSoNEsEiOXGouwAARGslBiExMsmIqWR/e8verpH1R99y6d39Za9wUzZTZCTtl58xjV6zB7liTtZhgE/bEntmLkzqvzpvz/jNacoqdY/YHzsc3UpuUPQ==</latexit><latexit sha1_base64="RvqXpW0fbbrQ19ogDth+NIGO290=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8psaL1ZRNOOZ+tu3WkyMpH0EJFh2j5Ggr+Bce4gISpRjO72tkJYiUtue6nU1pb39jcKm9Xdnb39g+qh0dtGyVGYEtEKjLdACwqqbFFkhR2Y4MQBgo7weR24XemaKyM9APNYvRDGGs5kgIokzr9KYp0NB9Ua27dzcFXiVeQGivQHFS/+sNIJCFqEgqs7XluTH4KhqRQOK/0E4sxiAmMsZdRDSFaP83jzvlZYoEiHqPhUvFcxN8bKYTWzsIgmwyBHu2ytxD/83oJja79VOo4IdRicYikwvyQFUZmPSAfSoNEsEiOXGouwAARGslBiExMsmIqWR/e8verpH1R99y6d39Za9wUzZTZCTtl58xjV6zB7liTtZhgE/bEntmLkzqvzpvz/jNacoqdY/YHzsc3UpuUPQ==</latexit><latexit sha1_base64="RvqXpW0fbbrQ19ogDth+NIGO290=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg8psaL1ZRNOOZ+tu3WkyMpH0EJFh2j5Ggr+Bce4gISpRjO72tkJYiUtue6nU1pb39jcKm9Xdnb39g+qh0dtGyVGYEtEKjLdACwqqbFFkhR2Y4MQBgo7weR24XemaKyM9APNYvRDGGs5kgIokzr9KYp0NB9Ua27dzcFXiVeQGivQHFS/+sNIJCFqEgqs7XluTH4KhqRQOK/0E4sxiAmMsZdRDSFaP83jzvlZYoEiHqPhUvFcxN8bKYTWzsIgmwyBHu2ytxD/83oJja79VOo4IdRicYikwvyQFUZmPSAfSoNEsEiOXGouwAARGslBiExMsmIqWR/e8verpH1R99y6d39Za9wUzZTZCTtl58xjV6zB7liTtZhgE/bEntmLkzqvzpvz/jNacoqdY/YHzsc3UpuUPQ==</latexit>

~If
<latexit sha1_base64="p0rabJJDT7lgam0m4Lb5lhZAMVM=">AAAB/XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNNAFiTwkx4rOl0045Xy27taRIsviK2ihokO0fAsF/4JtXEDCVKOZXe3s+JEUBm3706qsrK6tb1Q3a1vbO7t79f2DrgljzaHDQxnqvs8MSKGggwIl9CMNLPAl9Pzpde73ZqCNCNU9ziPwAjZRYiw4w0xyBzPgye0wGafpsN6wm3YBukyckjRIifaw/jUYhTwOQCGXzBjXsSP0EqZRcAlpbRAbiBifsgm4GVUsAOMlReSUnsSGYUgj0FRIWojweyNhgTHzwM8mA4YPZtHLxf88N8bxpZcIFcUIiueHUEgoDhmuRdYF0JHQgMjy5ECFopxphghaUMZ5JsZZObWsD2fx+2XSPWs6dtO5O2+0rspmquSIHJNT4pAL0iI3pE06hJOQPJFn8mI9Wq/Wm/X+M1qxyp1D8gfWxzd8sZYF</latexit><latexit sha1_base64="p0rabJJDT7lgam0m4Lb5lhZAMVM=">AAAB/XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNNAFiTwkx4rOl0045Xy27taRIsviK2ihokO0fAsF/4JtXEDCVKOZXe3s+JEUBm3706qsrK6tb1Q3a1vbO7t79f2DrgljzaHDQxnqvs8MSKGggwIl9CMNLPAl9Pzpde73ZqCNCNU9ziPwAjZRYiw4w0xyBzPgye0wGafpsN6wm3YBukyckjRIifaw/jUYhTwOQCGXzBjXsSP0EqZRcAlpbRAbiBifsgm4GVUsAOMlReSUnsSGYUgj0FRIWojweyNhgTHzwM8mA4YPZtHLxf88N8bxpZcIFcUIiueHUEgoDhmuRdYF0JHQgMjy5ECFopxphghaUMZ5JsZZObWsD2fx+2XSPWs6dtO5O2+0rspmquSIHJNT4pAL0iI3pE06hJOQPJFn8mI9Wq/Wm/X+M1qxyp1D8gfWxzd8sZYF</latexit><latexit sha1_base64="p0rabJJDT7lgam0m4Lb5lhZAMVM=">AAAB/XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNNAFiTwkx4rOl0045Xy27taRIsviK2ihokO0fAsF/4JtXEDCVKOZXe3s+JEUBm3706qsrK6tb1Q3a1vbO7t79f2DrgljzaHDQxnqvs8MSKGggwIl9CMNLPAl9Pzpde73ZqCNCNU9ziPwAjZRYiw4w0xyBzPgye0wGafpsN6wm3YBukyckjRIifaw/jUYhTwOQCGXzBjXsSP0EqZRcAlpbRAbiBifsgm4GVUsAOMlReSUnsSGYUgj0FRIWojweyNhgTHzwM8mA4YPZtHLxf88N8bxpZcIFcUIiueHUEgoDhmuRdYF0JHQgMjy5ECFopxphghaUMZ5JsZZObWsD2fx+2XSPWs6dtO5O2+0rspmquSIHJNT4pAL0iI3pE06hJOQPJFn8mI9Wq/Wm/X+M1qxyp1D8gfWxzd8sZYF</latexit><latexit sha1_base64="p0rabJJDT7lgam0m4Lb5lhZAMVM=">AAAB/XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNNAFiTwkx4rOl0045Xy27taRIsviK2ihokO0fAsF/4JtXEDCVKOZXe3s+JEUBm3706qsrK6tb1Q3a1vbO7t79f2DrgljzaHDQxnqvs8MSKGggwIl9CMNLPAl9Pzpde73ZqCNCNU9ziPwAjZRYiw4w0xyBzPgye0wGafpsN6wm3YBukyckjRIifaw/jUYhTwOQCGXzBjXsSP0EqZRcAlpbRAbiBifsgm4GVUsAOMlReSUnsSGYUgj0FRIWojweyNhgTHzwM8mA4YPZtHLxf88N8bxpZcIFcUIiueHUEgoDhmuRdYF0JHQgMjy5ECFopxphghaUMZ5JsZZObWsD2fx+2XSPWs6dtO5O2+0rspmquSIHJNT4pAL0iI3pE06hJOQPJFn8mI9Wq/Wm/X+M1qxyp1D8gfWxzd8sZYF</latexit>

cVector Concatenation Unit: Matrix Multiplication Unit: . RNN Cell: RNN<latexit sha1_base64="Q8yhW6zVTfG0xEXQG06gMbjze/o=">AAAB+3icbVC7TsNAEDzzDOEVoKQ5ESFRRTZCAlFFoqGKAiIPlETR+bIJp9ydrbs1UmT5K2ihokO0fAwF/4JtXEDCVKOZXe3s+KEUFl3301laXlldWy9tlDe3tnd2K3v7bRtEhkOLBzIwXZ9ZkEJDCwVK6IYGmPIldPzpVeZ3HsFYEeg7nIUwUGyixVhwhql0H/ftmN42GsmwUnVrbg66SLyCVEmB5rDy1R8FPFKgkUtmbc9zQxzEzKDgEpJyP7IQMj5lE+ilVDMFdhDngRN6HFmGAQ3BUCFpLsLvjZgpa2fKTycVwwc772Xif14vwvHFIBY6jBA0zw6hkJAfstyItAmgI2EAkWXJgQpNOTMMEYygjPNUjNJqymkf3vz3i6R9WvPcmndzVq1fFs2UyCE5IifEI+ekTq5Jk7QIJ4o8kWfy4iTOq/PmvP+MLjnFzgH5A+fjGweElIw=</latexit><latexit sha1_base64="Q8yhW6zVTfG0xEXQG06gMbjze/o=">AAAB+3icbVC7TsNAEDzzDOEVoKQ5ESFRRTZCAlFFoqGKAiIPlETR+bIJp9ydrbs1UmT5K2ihokO0fAwF/4JtXEDCVKOZXe3s+KEUFl3301laXlldWy9tlDe3tnd2K3v7bRtEhkOLBzIwXZ9ZkEJDCwVK6IYGmPIldPzpVeZ3HsFYEeg7nIUwUGyixVhwhql0H/ftmN42GsmwUnVrbg66SLyCVEmB5rDy1R8FPFKgkUtmbc9zQxzEzKDgEpJyP7IQMj5lE+ilVDMFdhDngRN6HFmGAQ3BUCFpLsLvjZgpa2fKTycVwwc772Xif14vwvHFIBY6jBA0zw6hkJAfstyItAmgI2EAkWXJgQpNOTMMEYygjPNUjNJqymkf3vz3i6R9WvPcmndzVq1fFs2UyCE5IifEI+ekTq5Jk7QIJ4o8kWfy4iTOq/PmvP+MLjnFzgH5A+fjGweElIw=</latexit><latexit sha1_base64="Q8yhW6zVTfG0xEXQG06gMbjze/o=">AAAB+3icbVC7TsNAEDzzDOEVoKQ5ESFRRTZCAlFFoqGKAiIPlETR+bIJp9ydrbs1UmT5K2ihokO0fAwF/4JtXEDCVKOZXe3s+KEUFl3301laXlldWy9tlDe3tnd2K3v7bRtEhkOLBzIwXZ9ZkEJDCwVK6IYGmPIldPzpVeZ3HsFYEeg7nIUwUGyixVhwhql0H/ftmN42GsmwUnVrbg66SLyCVEmB5rDy1R8FPFKgkUtmbc9zQxzEzKDgEpJyP7IQMj5lE+ilVDMFdhDngRN6HFmGAQ3BUCFpLsLvjZgpa2fKTycVwwc772Xif14vwvHFIBY6jBA0zw6hkJAfstyItAmgI2EAkWXJgQpNOTMMEYygjPNUjNJqymkf3vz3i6R9WvPcmndzVq1fFs2UyCE5IifEI+ekTq5Jk7QIJ4o8kWfy4iTOq/PmvP+MLjnFzgH5A+fjGweElIw=</latexit><latexit sha1_base64="Q8yhW6zVTfG0xEXQG06gMbjze/o=">AAAB+3icbVC7TsNAEDzzDOEVoKQ5ESFRRTZCAlFFoqGKAiIPlETR+bIJp9ydrbs1UmT5K2ihokO0fAwF/4JtXEDCVKOZXe3s+KEUFl3301laXlldWy9tlDe3tnd2K3v7bRtEhkOLBzIwXZ9ZkEJDCwVK6IYGmPIldPzpVeZ3HsFYEeg7nIUwUGyixVhwhql0H/ftmN42GsmwUnVrbg66SLyCVEmB5rDy1R8FPFKgkUtmbc9zQxzEzKDgEpJyP7IQMj5lE+ilVDMFdhDngRN6HFmGAQ3BUCFpLsLvjZgpa2fKTycVwwc772Xif14vwvHFIBY6jBA0zw6hkJAfstyItAmgI2EAkWXJgQpNOTMMEYygjPNUjNJqymkf3vz3i6R9WvPcmndzVq1fFs2UyCE5IifEI+ekTq5Jk7QIJ4o8kWfy4iTOq/PmvP+MLjnFzgH5A+fjGweElIw=</latexit>

�!
RNN

<latexit sha1_base64="sAaCCGHPCrYmDmMojpjGcDdQTDs=">AAACGHicbVC7TsNAEDzzJrwClDQnAhJVZCMkEFUkGioEiCRIcRStj004cb6z7tYgZPkH+AS+ghYqOkRLR8G/YIcUvKYazexqdyZKlHTk++/e2PjE5NT0zGxlbn5hcam6vNJyJrUCm8IoY88jcKikxiZJUnieWIQ4UtiOrg5Kv32N1kmjz+g2wW4MAy37UgAVUq+6EZrSRspCZfTAysElgbXmJs+y0PX56dFRnveqNb/uD8H/kmBEamyE4171I7wwIo1Rk1DgXCfwE+pmYEkKhXklTB0mIK5ggJ2CaojRdbNhmpxvpg7I8AQtl4oPRfy+kUHs3G0cFZMx0KX77ZXif14npf5eN5M6SQm1KA+RVDg85ISVRQ/IL6RFIig/Ry41F2CBCK3kIEQhpkVvlaKP4Hf6v6S1XQ/8enCyU2vsj5qZYWtsnW2xgO2yBjtkx6zJBLtjD+yRPXn33rP34r1+jY55o51V9gPe2yeW3qF0</latexit><latexit sha1_base64="sAaCCGHPCrYmDmMojpjGcDdQTDs=">AAACGHicbVC7TsNAEDzzJrwClDQnAhJVZCMkEFUkGioEiCRIcRStj004cb6z7tYgZPkH+AS+ghYqOkRLR8G/YIcUvKYazexqdyZKlHTk++/e2PjE5NT0zGxlbn5hcam6vNJyJrUCm8IoY88jcKikxiZJUnieWIQ4UtiOrg5Kv32N1kmjz+g2wW4MAy37UgAVUq+6EZrSRspCZfTAysElgbXmJs+y0PX56dFRnveqNb/uD8H/kmBEamyE4171I7wwIo1Rk1DgXCfwE+pmYEkKhXklTB0mIK5ggJ2CaojRdbNhmpxvpg7I8AQtl4oPRfy+kUHs3G0cFZMx0KX77ZXif14npf5eN5M6SQm1KA+RVDg85ISVRQ/IL6RFIig/Ry41F2CBCK3kIEQhpkVvlaKP4Hf6v6S1XQ/8enCyU2vsj5qZYWtsnW2xgO2yBjtkx6zJBLtjD+yRPXn33rP34r1+jY55o51V9gPe2yeW3qF0</latexit><latexit sha1_base64="sAaCCGHPCrYmDmMojpjGcDdQTDs=">AAACGHicbVC7TsNAEDzzJrwClDQnAhJVZCMkEFUkGioEiCRIcRStj004cb6z7tYgZPkH+AS+ghYqOkRLR8G/YIcUvKYazexqdyZKlHTk++/e2PjE5NT0zGxlbn5hcam6vNJyJrUCm8IoY88jcKikxiZJUnieWIQ4UtiOrg5Kv32N1kmjz+g2wW4MAy37UgAVUq+6EZrSRspCZfTAysElgbXmJs+y0PX56dFRnveqNb/uD8H/kmBEamyE4171I7wwIo1Rk1DgXCfwE+pmYEkKhXklTB0mIK5ggJ2CaojRdbNhmpxvpg7I8AQtl4oPRfy+kUHs3G0cFZMx0KX77ZXif14npf5eN5M6SQm1KA+RVDg85ISVRQ/IL6RFIig/Ry41F2CBCK3kIEQhpkVvlaKP4Hf6v6S1XQ/8enCyU2vsj5qZYWtsnW2xgO2yBjtkx6zJBLtjD+yRPXn33rP34r1+jY55o51V9gPe2yeW3qF0</latexit><latexit sha1_base64="sAaCCGHPCrYmDmMojpjGcDdQTDs=">AAACGHicbVC7TsNAEDzzJrwClDQnAhJVZCMkEFUkGioEiCRIcRStj004cb6z7tYgZPkH+AS+ghYqOkRLR8G/YIcUvKYazexqdyZKlHTk++/e2PjE5NT0zGxlbn5hcam6vNJyJrUCm8IoY88jcKikxiZJUnieWIQ4UtiOrg5Kv32N1kmjz+g2wW4MAy37UgAVUq+6EZrSRspCZfTAysElgbXmJs+y0PX56dFRnveqNb/uD8H/kmBEamyE4171I7wwIo1Rk1DgXCfwE+pmYEkKhXklTB0mIK5ggJ2CaojRdbNhmpxvpg7I8AQtl4oPRfy+kUHs3G0cFZMx0KX77ZXif14npf5eN5M6SQm1KA+RVDg85ISVRQ/IL6RFIig/Ry41F2CBCK3kIEQhpkVvlaKP4Hf6v6S1XQ/8enCyU2vsj5qZYWtsnW2xgO2yBjtkx6zJBLtjD+yRPXn33rP34r1+jY55o51V9gPe2yeW3qF0</latexit>

�!
RNN

<latexit sha1_base64="sAaCCGHPCrYmDmMojpjGcDdQTDs=">AAACGHicbVC7TsNAEDzzJrwClDQnAhJVZCMkEFUkGioEiCRIcRStj004cb6z7tYgZPkH+AS+ghYqOkRLR8G/YIcUvKYazexqdyZKlHTk++/e2PjE5NT0zGxlbn5hcam6vNJyJrUCm8IoY88jcKikxiZJUnieWIQ4UtiOrg5Kv32N1kmjz+g2wW4MAy37UgAVUq+6EZrSRspCZfTAysElgbXmJs+y0PX56dFRnveqNb/uD8H/kmBEamyE4171I7wwIo1Rk1DgXCfwE+pmYEkKhXklTB0mIK5ggJ2CaojRdbNhmpxvpg7I8AQtl4oPRfy+kUHs3G0cFZMx0KX77ZXif14npf5eN5M6SQm1KA+RVDg85ISVRQ/IL6RFIig/Ry41F2CBCK3kIEQhpkVvlaKP4Hf6v6S1XQ/8enCyU2vsj5qZYWtsnW2xgO2yBjtkx6zJBLtjD+yRPXn33rP34r1+jY55o51V9gPe2yeW3qF0</latexit><latexit sha1_base64="sAaCCGHPCrYmDmMojpjGcDdQTDs=">AAACGHicbVC7TsNAEDzzJrwClDQnAhJVZCMkEFUkGioEiCRIcRStj004cb6z7tYgZPkH+AS+ghYqOkRLR8G/YIcUvKYazexqdyZKlHTk++/e2PjE5NT0zGxlbn5hcam6vNJyJrUCm8IoY88jcKikxiZJUnieWIQ4UtiOrg5Kv32N1kmjz+g2wW4MAy37UgAVUq+6EZrSRspCZfTAysElgbXmJs+y0PX56dFRnveqNb/uD8H/kmBEamyE4171I7wwIo1Rk1DgXCfwE+pmYEkKhXklTB0mIK5ggJ2CaojRdbNhmpxvpg7I8AQtl4oPRfy+kUHs3G0cFZMx0KX77ZXif14npf5eN5M6SQm1KA+RVDg85ISVRQ/IL6RFIig/Ry41F2CBCK3kIEQhpkVvlaKP4Hf6v6S1XQ/8enCyU2vsj5qZYWtsnW2xgO2yBjtkx6zJBLtjD+yRPXn33rP34r1+jY55o51V9gPe2yeW3qF0</latexit><latexit sha1_base64="sAaCCGHPCrYmDmMojpjGcDdQTDs=">AAACGHicbVC7TsNAEDzzJrwClDQnAhJVZCMkEFUkGioEiCRIcRStj004cb6z7tYgZPkH+AS+ghYqOkRLR8G/YIcUvKYazexqdyZKlHTk++/e2PjE5NT0zGxlbn5hcam6vNJyJrUCm8IoY88jcKikxiZJUnieWIQ4UtiOrg5Kv32N1kmjz+g2wW4MAy37UgAVUq+6EZrSRspCZfTAysElgbXmJs+y0PX56dFRnveqNb/uD8H/kmBEamyE4171I7wwIo1Rk1DgXCfwE+pmYEkKhXklTB0mIK5ggJ2CaojRdbNhmpxvpg7I8AQtl4oPRfy+kUHs3G0cFZMx0KX77ZXif14npf5eN5M6SQm1KA+RVDg85ISVRQ/IL6RFIig/Ry41F2CBCK3kIEQhpkVvlaKP4Hf6v6S1XQ/8enCyU2vsj5qZYWtsnW2xgO2yBjtkx6zJBLtjD+yRPXn33rP34r1+jY55o51V9gPe2yeW3qF0</latexit><latexit sha1_base64="sAaCCGHPCrYmDmMojpjGcDdQTDs=">AAACGHicbVC7TsNAEDzzJrwClDQnAhJVZCMkEFUkGioEiCRIcRStj004cb6z7tYgZPkH+AS+ghYqOkRLR8G/YIcUvKYazexqdyZKlHTk++/e2PjE5NT0zGxlbn5hcam6vNJyJrUCm8IoY88jcKikxiZJUnieWIQ4UtiOrg5Kv32N1kmjz+g2wW4MAy37UgAVUq+6EZrSRspCZfTAysElgbXmJs+y0PX56dFRnveqNb/uD8H/kmBEamyE4171I7wwIo1Rk1DgXCfwE+pmYEkKhXklTB0mIK5ggJ2CaojRdbNhmpxvpg7I8AQtl4oPRfy+kUHs3G0cFZMx0KX77ZXif14npf5eN5M6SQm1KA+RVDg85ISVRQ/IL6RFIig/Ry41F2CBCK3kIEQhpkVvlaKP4Hf6v6S1XQ/8enCyU2vsj5qZYWtsnW2xgO2yBjtkx6zJBLtjD+yRPXn33rP34r1+jY55o51V9gPe2yeW3qF0</latexit>

�!
RNN

<latexit sha1_base64="sAaCCGHPCrYmDmMojpjGcDdQTDs=">AAACGHicbVC7TsNAEDzzJrwClDQnAhJVZCMkEFUkGioEiCRIcRStj004cb6z7tYgZPkH+AS+ghYqOkRLR8G/YIcUvKYazexqdyZKlHTk++/e2PjE5NT0zGxlbn5hcam6vNJyJrUCm8IoY88jcKikxiZJUnieWIQ4UtiOrg5Kv32N1kmjz+g2wW4MAy37UgAVUq+6EZrSRspCZfTAysElgbXmJs+y0PX56dFRnveqNb/uD8H/kmBEamyE4171I7wwIo1Rk1DgXCfwE+pmYEkKhXklTB0mIK5ggJ2CaojRdbNhmpxvpg7I8AQtl4oPRfy+kUHs3G0cFZMx0KX77ZXif14npf5eN5M6SQm1KA+RVDg85ISVRQ/IL6RFIig/Ry41F2CBCK3kIEQhpkVvlaKP4Hf6v6S1XQ/8enCyU2vsj5qZYWtsnW2xgO2yBjtkx6zJBLtjD+yRPXn33rP34r1+jY55o51V9gPe2yeW3qF0</latexit><latexit sha1_base64="sAaCCGHPCrYmDmMojpjGcDdQTDs=">AAACGHicbVC7TsNAEDzzJrwClDQnAhJVZCMkEFUkGioEiCRIcRStj004cb6z7tYgZPkH+AS+ghYqOkRLR8G/YIcUvKYazexqdyZKlHTk++/e2PjE5NT0zGxlbn5hcam6vNJyJrUCm8IoY88jcKikxiZJUnieWIQ4UtiOrg5Kv32N1kmjz+g2wW4MAy37UgAVUq+6EZrSRspCZfTAysElgbXmJs+y0PX56dFRnveqNb/uD8H/kmBEamyE4171I7wwIo1Rk1DgXCfwE+pmYEkKhXklTB0mIK5ggJ2CaojRdbNhmpxvpg7I8AQtl4oPRfy+kUHs3G0cFZMx0KX77ZXif14npf5eN5M6SQm1KA+RVDg85ISVRQ/IL6RFIig/Ry41F2CBCK3kIEQhpkVvlaKP4Hf6v6S1XQ/8enCyU2vsj5qZYWtsnW2xgO2yBjtkx6zJBLtjD+yRPXn33rP34r1+jY55o51V9gPe2yeW3qF0</latexit><latexit sha1_base64="sAaCCGHPCrYmDmMojpjGcDdQTDs=">AAACGHicbVC7TsNAEDzzJrwClDQnAhJVZCMkEFUkGioEiCRIcRStj004cb6z7tYgZPkH+AS+ghYqOkRLR8G/YIcUvKYazexqdyZKlHTk++/e2PjE5NT0zGxlbn5hcam6vNJyJrUCm8IoY88jcKikxiZJUnieWIQ4UtiOrg5Kv32N1kmjz+g2wW4MAy37UgAVUq+6EZrSRspCZfTAysElgbXmJs+y0PX56dFRnveqNb/uD8H/kmBEamyE4171I7wwIo1Rk1DgXCfwE+pmYEkKhXklTB0mIK5ggJ2CaojRdbNhmpxvpg7I8AQtl4oPRfy+kUHs3G0cFZMx0KX77ZXif14npf5eN5M6SQm1KA+RVDg85ISVRQ/IL6RFIig/Ry41F2CBCK3kIEQhpkVvlaKP4Hf6v6S1XQ/8enCyU2vsj5qZYWtsnW2xgO2yBjtkx6zJBLtjD+yRPXn33rP34r1+jY55o51V9gPe2yeW3qF0</latexit><latexit sha1_base64="sAaCCGHPCrYmDmMojpjGcDdQTDs=">AAACGHicbVC7TsNAEDzzJrwClDQnAhJVZCMkEFUkGioEiCRIcRStj004cb6z7tYgZPkH+AS+ghYqOkRLR8G/YIcUvKYazexqdyZKlHTk++/e2PjE5NT0zGxlbn5hcam6vNJyJrUCm8IoY88jcKikxiZJUnieWIQ4UtiOrg5Kv32N1kmjz+g2wW4MAy37UgAVUq+6EZrSRspCZfTAysElgbXmJs+y0PX56dFRnveqNb/uD8H/kmBEamyE4171I7wwIo1Rk1DgXCfwE+pmYEkKhXklTB0mIK5ggJ2CaojRdbNhmpxvpg7I8AQtl4oPRfy+kUHs3G0cFZMx0KX77ZXif14npf5eN5M6SQm1KA+RVDg85ISVRQ/IL6RFIig/Ry41F2CBCK3kIEQhpkVvlaKP4Hf6v6S1XQ/8enCyU2vsj5qZYWtsnW2xgO2yBjtkx6zJBLtjD+yRPXn33rP34r1+jY55o51V9gPe2yeW3qF0</latexit>

�!
RNN

<latexit sha1_base64="sAaCCGHPCrYmDmMojpjGcDdQTDs=">AAACGHicbVC7TsNAEDzzJrwClDQnAhJVZCMkEFUkGioEiCRIcRStj004cb6z7tYgZPkH+AS+ghYqOkRLR8G/YIcUvKYazexqdyZKlHTk++/e2PjE5NT0zGxlbn5hcam6vNJyJrUCm8IoY88jcKikxiZJUnieWIQ4UtiOrg5Kv32N1kmjz+g2wW4MAy37UgAVUq+6EZrSRspCZfTAysElgbXmJs+y0PX56dFRnveqNb/uD8H/kmBEamyE4171I7wwIo1Rk1DgXCfwE+pmYEkKhXklTB0mIK5ggJ2CaojRdbNhmpxvpg7I8AQtl4oPRfy+kUHs3G0cFZMx0KX77ZXif14npf5eN5M6SQm1KA+RVDg85ISVRQ/IL6RFIig/Ry41F2CBCK3kIEQhpkVvlaKP4Hf6v6S1XQ/8enCyU2vsj5qZYWtsnW2xgO2yBjtkx6zJBLtjD+yRPXn33rP34r1+jY55o51V9gPe2yeW3qF0</latexit><latexit sha1_base64="sAaCCGHPCrYmDmMojpjGcDdQTDs=">AAACGHicbVC7TsNAEDzzJrwClDQnAhJVZCMkEFUkGioEiCRIcRStj004cb6z7tYgZPkH+AS+ghYqOkRLR8G/YIcUvKYazexqdyZKlHTk++/e2PjE5NT0zGxlbn5hcam6vNJyJrUCm8IoY88jcKikxiZJUnieWIQ4UtiOrg5Kv32N1kmjz+g2wW4MAy37UgAVUq+6EZrSRspCZfTAysElgbXmJs+y0PX56dFRnveqNb/uD8H/kmBEamyE4171I7wwIo1Rk1DgXCfwE+pmYEkKhXklTB0mIK5ggJ2CaojRdbNhmpxvpg7I8AQtl4oPRfy+kUHs3G0cFZMx0KX77ZXif14npf5eN5M6SQm1KA+RVDg85ISVRQ/IL6RFIig/Ry41F2CBCK3kIEQhpkVvlaKP4Hf6v6S1XQ/8enCyU2vsj5qZYWtsnW2xgO2yBjtkx6zJBLtjD+yRPXn33rP34r1+jY55o51V9gPe2yeW3qF0</latexit><latexit sha1_base64="sAaCCGHPCrYmDmMojpjGcDdQTDs=">AAACGHicbVC7TsNAEDzzJrwClDQnAhJVZCMkEFUkGioEiCRIcRStj004cb6z7tYgZPkH+AS+ghYqOkRLR8G/YIcUvKYazexqdyZKlHTk++/e2PjE5NT0zGxlbn5hcam6vNJyJrUCm8IoY88jcKikxiZJUnieWIQ4UtiOrg5Kv32N1kmjz+g2wW4MAy37UgAVUq+6EZrSRspCZfTAysElgbXmJs+y0PX56dFRnveqNb/uD8H/kmBEamyE4171I7wwIo1Rk1DgXCfwE+pmYEkKhXklTB0mIK5ggJ2CaojRdbNhmpxvpg7I8AQtl4oPRfy+kUHs3G0cFZMx0KX77ZXif14npf5eN5M6SQm1KA+RVDg85ISVRQ/IL6RFIig/Ry41F2CBCK3kIEQhpkVvlaKP4Hf6v6S1XQ/8enCyU2vsj5qZYWtsnW2xgO2yBjtkx6zJBLtjD+yRPXn33rP34r1+jY55o51V9gPe2yeW3qF0</latexit><latexit sha1_base64="sAaCCGHPCrYmDmMojpjGcDdQTDs=">AAACGHicbVC7TsNAEDzzJrwClDQnAhJVZCMkEFUkGioEiCRIcRStj004cb6z7tYgZPkH+AS+ghYqOkRLR8G/YIcUvKYazexqdyZKlHTk++/e2PjE5NT0zGxlbn5hcam6vNJyJrUCm8IoY88jcKikxiZJUnieWIQ4UtiOrg5Kv32N1kmjz+g2wW4MAy37UgAVUq+6EZrSRspCZfTAysElgbXmJs+y0PX56dFRnveqNb/uD8H/kmBEamyE4171I7wwIo1Rk1DgXCfwE+pmYEkKhXklTB0mIK5ggJ2CaojRdbNhmpxvpg7I8AQtl4oPRfy+kUHs3G0cFZMx0KX77ZXif14npf5eN5M6SQm1KA+RVDg85ISVRQ/IL6RFIig/Ry41F2CBCK3kIEQhpkVvlaKP4Hf6v6S1XQ/8enCyU2vsj5qZYWtsnW2xgO2yBjtkx6zJBLtjD+yRPXn33rP34r1+jY55o51V9gPe2yeW3qF0</latexit>

�!
RNN

<latexit sha1_base64="sAaCCGHPCrYmDmMojpjGcDdQTDs=">AAACGHicbVC7TsNAEDzzJrwClDQnAhJVZCMkEFUkGioEiCRIcRStj004cb6z7tYgZPkH+AS+ghYqOkRLR8G/YIcUvKYazexqdyZKlHTk++/e2PjE5NT0zGxlbn5hcam6vNJyJrUCm8IoY88jcKikxiZJUnieWIQ4UtiOrg5Kv32N1kmjz+g2wW4MAy37UgAVUq+6EZrSRspCZfTAysElgbXmJs+y0PX56dFRnveqNb/uD8H/kmBEamyE4171I7wwIo1Rk1DgXCfwE+pmYEkKhXklTB0mIK5ggJ2CaojRdbNhmpxvpg7I8AQtl4oPRfy+kUHs3G0cFZMx0KX77ZXif14npf5eN5M6SQm1KA+RVDg85ISVRQ/IL6RFIig/Ry41F2CBCK3kIEQhpkVvlaKP4Hf6v6S1XQ/8enCyU2vsj5qZYWtsnW2xgO2yBjtkx6zJBLtjD+yRPXn33rP34r1+jY55o51V9gPe2yeW3qF0</latexit><latexit sha1_base64="sAaCCGHPCrYmDmMojpjGcDdQTDs=">AAACGHicbVC7TsNAEDzzJrwClDQnAhJVZCMkEFUkGioEiCRIcRStj004cb6z7tYgZPkH+AS+ghYqOkRLR8G/YIcUvKYazexqdyZKlHTk++/e2PjE5NT0zGxlbn5hcam6vNJyJrUCm8IoY88jcKikxiZJUnieWIQ4UtiOrg5Kv32N1kmjz+g2wW4MAy37UgAVUq+6EZrSRspCZfTAysElgbXmJs+y0PX56dFRnveqNb/uD8H/kmBEamyE4171I7wwIo1Rk1DgXCfwE+pmYEkKhXklTB0mIK5ggJ2CaojRdbNhmpxvpg7I8AQtl4oPRfy+kUHs3G0cFZMx0KX77ZXif14npf5eN5M6SQm1KA+RVDg85ISVRQ/IL6RFIig/Ry41F2CBCK3kIEQhpkVvlaKP4Hf6v6S1XQ/8enCyU2vsj5qZYWtsnW2xgO2yBjtkx6zJBLtjD+yRPXn33rP34r1+jY55o51V9gPe2yeW3qF0</latexit><latexit sha1_base64="sAaCCGHPCrYmDmMojpjGcDdQTDs=">AAACGHicbVC7TsNAEDzzJrwClDQnAhJVZCMkEFUkGioEiCRIcRStj004cb6z7tYgZPkH+AS+ghYqOkRLR8G/YIcUvKYazexqdyZKlHTk++/e2PjE5NT0zGxlbn5hcam6vNJyJrUCm8IoY88jcKikxiZJUnieWIQ4UtiOrg5Kv32N1kmjz+g2wW4MAy37UgAVUq+6EZrSRspCZfTAysElgbXmJs+y0PX56dFRnveqNb/uD8H/kmBEamyE4171I7wwIo1Rk1DgXCfwE+pmYEkKhXklTB0mIK5ggJ2CaojRdbNhmpxvpg7I8AQtl4oPRfy+kUHs3G0cFZMx0KX77ZXif14npf5eN5M6SQm1KA+RVDg85ISVRQ/IL6RFIig/Ry41F2CBCK3kIEQhpkVvlaKP4Hf6v6S1XQ/8enCyU2vsj5qZYWtsnW2xgO2yBjtkx6zJBLtjD+yRPXn33rP34r1+jY55o51V9gPe2yeW3qF0</latexit><latexit sha1_base64="sAaCCGHPCrYmDmMojpjGcDdQTDs=">AAACGHicbVC7TsNAEDzzJrwClDQnAhJVZCMkEFUkGioEiCRIcRStj004cb6z7tYgZPkH+AS+ghYqOkRLR8G/YIcUvKYazexqdyZKlHTk++/e2PjE5NT0zGxlbn5hcam6vNJyJrUCm8IoY88jcKikxiZJUnieWIQ4UtiOrg5Kv32N1kmjz+g2wW4MAy37UgAVUq+6EZrSRspCZfTAysElgbXmJs+y0PX56dFRnveqNb/uD8H/kmBEamyE4171I7wwIo1Rk1DgXCfwE+pmYEkKhXklTB0mIK5ggJ2CaojRdbNhmpxvpg7I8AQtl4oPRfy+kUHs3G0cFZMx0KX77ZXif14npf5eN5M6SQm1KA+RVDg85ISVRQ/IL6RFIig/Ry41F2CBCK3kIEQhpkVvlaKP4Hf6v6S1XQ/8enCyU2vsj5qZYWtsnW2xgO2yBjtkx6zJBLtjD+yRPXn33rP34r1+jY55o51V9gPe2yeW3qF0</latexit>
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<latexit sha1_base64="spRMtupkQvNUSYmo+hx7/3HftIM=">AAACF3icbVA9SwNBEN3z2/gVtbRZDIJVuBNBsQrYWImK0UAuhLl1Ehf3do/dOUWO+wH+BH+FrVZ2Ymtp4X/xLqbQxFc93nvDzLwoUdKR7396E5NT0zOzc/OVhcWl5ZXq6tqFM6kV2BRGGduKwKGSGpskSWErsQhxpPAyujks/ctbtE4afU73CXZi6GvZkwKokLrVWmhKGykLldF9hT0Ca81dnmWh6/Gz4+M8L1J+3R+Aj5NgSGpsiJNu9Su8MiKNUZNQ4Fw78BPqZGBJCoV5JUwdJiBuoI/tgmqI0XWywTM530odkOEJWi4VH4j4eyKD2Ln7OCqSMdC1G/VK8T+vnVJvv5NJnaSEWpSLSCocLHLCyqIG5FfSIhGUlyOXmguwQIRWchCiENOitkrRRzD6/Ti52KkHfj043a01DobNzLENtsm2WcD2WIMdsRPWZII9sCf2zF68R+/Ve/Pef6IT3nBmnf2B9/ENru2g9w==</latexit><latexit sha1_base64="spRMtupkQvNUSYmo+hx7/3HftIM=">AAACF3icbVA9SwNBEN3z2/gVtbRZDIJVuBNBsQrYWImK0UAuhLl1Ehf3do/dOUWO+wH+BH+FrVZ2Ymtp4X/xLqbQxFc93nvDzLwoUdKR7396E5NT0zOzc/OVhcWl5ZXq6tqFM6kV2BRGGduKwKGSGpskSWErsQhxpPAyujks/ctbtE4afU73CXZi6GvZkwKokLrVWmhKGykLldF9hT0Ca81dnmWh6/Gz4+M8L1J+3R+Aj5NgSGpsiJNu9Su8MiKNUZNQ4Fw78BPqZGBJCoV5JUwdJiBuoI/tgmqI0XWywTM530odkOEJWi4VH4j4eyKD2Ln7OCqSMdC1G/VK8T+vnVJvv5NJnaSEWpSLSCocLHLCyqIG5FfSIhGUlyOXmguwQIRWchCiENOitkrRRzD6/Ti52KkHfj043a01DobNzLENtsm2WcD2WIMdsRPWZII9sCf2zF68R+/Ve/Pef6IT3nBmnf2B9/ENru2g9w==</latexit><latexit sha1_base64="spRMtupkQvNUSYmo+hx7/3HftIM=">AAACF3icbVA9SwNBEN3z2/gVtbRZDIJVuBNBsQrYWImK0UAuhLl1Ehf3do/dOUWO+wH+BH+FrVZ2Ymtp4X/xLqbQxFc93nvDzLwoUdKR7396E5NT0zOzc/OVhcWl5ZXq6tqFM6kV2BRGGduKwKGSGpskSWErsQhxpPAyujks/ctbtE4afU73CXZi6GvZkwKokLrVWmhKGykLldF9hT0Ca81dnmWh6/Gz4+M8L1J+3R+Aj5NgSGpsiJNu9Su8MiKNUZNQ4Fw78BPqZGBJCoV5JUwdJiBuoI/tgmqI0XWywTM530odkOEJWi4VH4j4eyKD2Ln7OCqSMdC1G/VK8T+vnVJvv5NJnaSEWpSLSCocLHLCyqIG5FfSIhGUlyOXmguwQIRWchCiENOitkrRRzD6/Ti52KkHfj043a01DobNzLENtsm2WcD2WIMdsRPWZII9sCf2zF68R+/Ve/Pef6IT3nBmnf2B9/ENru2g9w==</latexit><latexit sha1_base64="spRMtupkQvNUSYmo+hx7/3HftIM=">AAACF3icbVA9SwNBEN3z2/gVtbRZDIJVuBNBsQrYWImK0UAuhLl1Ehf3do/dOUWO+wH+BH+FrVZ2Ymtp4X/xLqbQxFc93nvDzLwoUdKR7396E5NT0zOzc/OVhcWl5ZXq6tqFM6kV2BRGGduKwKGSGpskSWErsQhxpPAyujks/ctbtE4afU73CXZi6GvZkwKokLrVWmhKGykLldF9hT0Ca81dnmWh6/Gz4+M8L1J+3R+Aj5NgSGpsiJNu9Su8MiKNUZNQ4Fw78BPqZGBJCoV5JUwdJiBuoI/tgmqI0XWywTM530odkOEJWi4VH4j4eyKD2Ln7OCqSMdC1G/VK8T+vnVJvv5NJnaSEWpSLSCocLHLCyqIG5FfSIhGUlyOXmguwQIRWchCiENOitkrRRzD6/Ti52KkHfj043a01DobNzLENtsm2WcD2WIMdsRPWZII9sCf2zF68R+/Ve/Pef6IT3nBmnf2B9/ENru2g9w==</latexit>
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<latexit sha1_base64="spRMtupkQvNUSYmo+hx7/3HftIM=">AAACF3icbVA9SwNBEN3z2/gVtbRZDIJVuBNBsQrYWImK0UAuhLl1Ehf3do/dOUWO+wH+BH+FrVZ2Ymtp4X/xLqbQxFc93nvDzLwoUdKR7396E5NT0zOzc/OVhcWl5ZXq6tqFM6kV2BRGGduKwKGSGpskSWErsQhxpPAyujks/ctbtE4afU73CXZi6GvZkwKokLrVWmhKGykLldF9hT0Ca81dnmWh6/Gz4+M8L1J+3R+Aj5NgSGpsiJNu9Su8MiKNUZNQ4Fw78BPqZGBJCoV5JUwdJiBuoI/tgmqI0XWywTM530odkOEJWi4VH4j4eyKD2Ln7OCqSMdC1G/VK8T+vnVJvv5NJnaSEWpSLSCocLHLCyqIG5FfSIhGUlyOXmguwQIRWchCiENOitkrRRzD6/Ti52KkHfj043a01DobNzLENtsm2WcD2WIMdsRPWZII9sCf2zF68R+/Ve/Pef6IT3nBmnf2B9/ENru2g9w==</latexit><latexit sha1_base64="spRMtupkQvNUSYmo+hx7/3HftIM=">AAACF3icbVA9SwNBEN3z2/gVtbRZDIJVuBNBsQrYWImK0UAuhLl1Ehf3do/dOUWO+wH+BH+FrVZ2Ymtp4X/xLqbQxFc93nvDzLwoUdKR7396E5NT0zOzc/OVhcWl5ZXq6tqFM6kV2BRGGduKwKGSGpskSWErsQhxpPAyujks/ctbtE4afU73CXZi6GvZkwKokLrVWmhKGykLldF9hT0Ca81dnmWh6/Gz4+M8L1J+3R+Aj5NgSGpsiJNu9Su8MiKNUZNQ4Fw78BPqZGBJCoV5JUwdJiBuoI/tgmqI0XWywTM530odkOEJWi4VH4j4eyKD2Ln7OCqSMdC1G/VK8T+vnVJvv5NJnaSEWpSLSCocLHLCyqIG5FfSIhGUlyOXmguwQIRWchCiENOitkrRRzD6/Ti52KkHfj043a01DobNzLENtsm2WcD2WIMdsRPWZII9sCf2zF68R+/Ve/Pef6IT3nBmnf2B9/ENru2g9w==</latexit><latexit sha1_base64="spRMtupkQvNUSYmo+hx7/3HftIM=">AAACF3icbVA9SwNBEN3z2/gVtbRZDIJVuBNBsQrYWImK0UAuhLl1Ehf3do/dOUWO+wH+BH+FrVZ2Ymtp4X/xLqbQxFc93nvDzLwoUdKR7396E5NT0zOzc/OVhcWl5ZXq6tqFM6kV2BRGGduKwKGSGpskSWErsQhxpPAyujks/ctbtE4afU73CXZi6GvZkwKokLrVWmhKGykLldF9hT0Ca81dnmWh6/Gz4+M8L1J+3R+Aj5NgSGpsiJNu9Su8MiKNUZNQ4Fw78BPqZGBJCoV5JUwdJiBuoI/tgmqI0XWywTM530odkOEJWi4VH4j4eyKD2Ln7OCqSMdC1G/VK8T+vnVJvv5NJnaSEWpSLSCocLHLCyqIG5FfSIhGUlyOXmguwQIRWchCiENOitkrRRzD6/Ti52KkHfj043a01DobNzLENtsm2WcD2WIMdsRPWZII9sCf2zF68R+/Ve/Pef6IT3nBmnf2B9/ENru2g9w==</latexit><latexit sha1_base64="spRMtupkQvNUSYmo+hx7/3HftIM=">AAACF3icbVA9SwNBEN3z2/gVtbRZDIJVuBNBsQrYWImK0UAuhLl1Ehf3do/dOUWO+wH+BH+FrVZ2Ymtp4X/xLqbQxFc93nvDzLwoUdKR7396E5NT0zOzc/OVhcWl5ZXq6tqFM6kV2BRGGduKwKGSGpskSWErsQhxpPAyujks/ctbtE4afU73CXZi6GvZkwKokLrVWmhKGykLldF9hT0Ca81dnmWh6/Gz4+M8L1J+3R+Aj5NgSGpsiJNu9Su8MiKNUZNQ4Fw78BPqZGBJCoV5JUwdJiBuoI/tgmqI0XWywTM530odkOEJWi4VH4j4eyKD2Ln7OCqSMdC1G/VK8T+vnVJvv5NJnaSEWpSLSCocLHLCyqIG5FfSIhGUlyOXmguwQIRWchCiENOitkrRRzD6/Ti52KkHfj043a01DobNzLENtsm2WcD2WIMdsRPWZII9sCf2zF68R+/Ve/Pef6IT3nBmnf2B9/ENru2g9w==</latexit>
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<latexit sha1_base64="spRMtupkQvNUSYmo+hx7/3HftIM=">AAACF3icbVA9SwNBEN3z2/gVtbRZDIJVuBNBsQrYWImK0UAuhLl1Ehf3do/dOUWO+wH+BH+FrVZ2Ymtp4X/xLqbQxFc93nvDzLwoUdKR7396E5NT0zOzc/OVhcWl5ZXq6tqFM6kV2BRGGduKwKGSGpskSWErsQhxpPAyujks/ctbtE4afU73CXZi6GvZkwKokLrVWmhKGykLldF9hT0Ca81dnmWh6/Gz4+M8L1J+3R+Aj5NgSGpsiJNu9Su8MiKNUZNQ4Fw78BPqZGBJCoV5JUwdJiBuoI/tgmqI0XWywTM530odkOEJWi4VH4j4eyKD2Ln7OCqSMdC1G/VK8T+vnVJvv5NJnaSEWpSLSCocLHLCyqIG5FfSIhGUlyOXmguwQIRWchCiENOitkrRRzD6/Ti52KkHfj043a01DobNzLENtsm2WcD2WIMdsRPWZII9sCf2zF68R+/Ve/Pef6IT3nBmnf2B9/ENru2g9w==</latexit><latexit sha1_base64="spRMtupkQvNUSYmo+hx7/3HftIM=">AAACF3icbVA9SwNBEN3z2/gVtbRZDIJVuBNBsQrYWImK0UAuhLl1Ehf3do/dOUWO+wH+BH+FrVZ2Ymtp4X/xLqbQxFc93nvDzLwoUdKR7396E5NT0zOzc/OVhcWl5ZXq6tqFM6kV2BRGGduKwKGSGpskSWErsQhxpPAyujks/ctbtE4afU73CXZi6GvZkwKokLrVWmhKGykLldF9hT0Ca81dnmWh6/Gz4+M8L1J+3R+Aj5NgSGpsiJNu9Su8MiKNUZNQ4Fw78BPqZGBJCoV5JUwdJiBuoI/tgmqI0XWywTM530odkOEJWi4VH4j4eyKD2Ln7OCqSMdC1G/VK8T+vnVJvv5NJnaSEWpSLSCocLHLCyqIG5FfSIhGUlyOXmguwQIRWchCiENOitkrRRzD6/Ti52KkHfj043a01DobNzLENtsm2WcD2WIMdsRPWZII9sCf2zF68R+/Ve/Pef6IT3nBmnf2B9/ENru2g9w==</latexit><latexit sha1_base64="spRMtupkQvNUSYmo+hx7/3HftIM=">AAACF3icbVA9SwNBEN3z2/gVtbRZDIJVuBNBsQrYWImK0UAuhLl1Ehf3do/dOUWO+wH+BH+FrVZ2Ymtp4X/xLqbQxFc93nvDzLwoUdKR7396E5NT0zOzc/OVhcWl5ZXq6tqFM6kV2BRGGduKwKGSGpskSWErsQhxpPAyujks/ctbtE4afU73CXZi6GvZkwKokLrVWmhKGykLldF9hT0Ca81dnmWh6/Gz4+M8L1J+3R+Aj5NgSGpsiJNu9Su8MiKNUZNQ4Fw78BPqZGBJCoV5JUwdJiBuoI/tgmqI0XWywTM530odkOEJWi4VH4j4eyKD2Ln7OCqSMdC1G/VK8T+vnVJvv5NJnaSEWpSLSCocLHLCyqIG5FfSIhGUlyOXmguwQIRWchCiENOitkrRRzD6/Ti52KkHfj043a01DobNzLENtsm2WcD2WIMdsRPWZII9sCf2zF68R+/Ve/Pef6IT3nBmnf2B9/ENru2g9w==</latexit><latexit sha1_base64="spRMtupkQvNUSYmo+hx7/3HftIM=">AAACF3icbVA9SwNBEN3z2/gVtbRZDIJVuBNBsQrYWImK0UAuhLl1Ehf3do/dOUWO+wH+BH+FrVZ2Ymtp4X/xLqbQxFc93nvDzLwoUdKR7396E5NT0zOzc/OVhcWl5ZXq6tqFM6kV2BRGGduKwKGSGpskSWErsQhxpPAyujks/ctbtE4afU73CXZi6GvZkwKokLrVWmhKGykLldF9hT0Ca81dnmWh6/Gz4+M8L1J+3R+Aj5NgSGpsiJNu9Su8MiKNUZNQ4Fw78BPqZGBJCoV5JUwdJiBuoI/tgmqI0XWywTM530odkOEJWi4VH4j4eyKD2Ln7OCqSMdC1G/VK8T+vnVJvv5NJnaSEWpSLSCocLHLCyqIG5FfSIhGUlyOXmguwQIRWchCiENOitkrRRzD6/Ti52KkHfj043a01DobNzLENtsm2WcD2WIMdsRPWZII9sCf2zF68R+/Ve/Pef6IT3nBmnf2B9/ENru2g9w==</latexit>
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<latexit sha1_base64="spRMtupkQvNUSYmo+hx7/3HftIM=">AAACF3icbVA9SwNBEN3z2/gVtbRZDIJVuBNBsQrYWImK0UAuhLl1Ehf3do/dOUWO+wH+BH+FrVZ2Ymtp4X/xLqbQxFc93nvDzLwoUdKR7396E5NT0zOzc/OVhcWl5ZXq6tqFM6kV2BRGGduKwKGSGpskSWErsQhxpPAyujks/ctbtE4afU73CXZi6GvZkwKokLrVWmhKGykLldF9hT0Ca81dnmWh6/Gz4+M8L1J+3R+Aj5NgSGpsiJNu9Su8MiKNUZNQ4Fw78BPqZGBJCoV5JUwdJiBuoI/tgmqI0XWywTM530odkOEJWi4VH4j4eyKD2Ln7OCqSMdC1G/VK8T+vnVJvv5NJnaSEWpSLSCocLHLCyqIG5FfSIhGUlyOXmguwQIRWchCiENOitkrRRzD6/Ti52KkHfj043a01DobNzLENtsm2WcD2WIMdsRPWZII9sCf2zF68R+/Ve/Pef6IT3nBmnf2B9/ENru2g9w==</latexit><latexit sha1_base64="spRMtupkQvNUSYmo+hx7/3HftIM=">AAACF3icbVA9SwNBEN3z2/gVtbRZDIJVuBNBsQrYWImK0UAuhLl1Ehf3do/dOUWO+wH+BH+FrVZ2Ymtp4X/xLqbQxFc93nvDzLwoUdKR7396E5NT0zOzc/OVhcWl5ZXq6tqFM6kV2BRGGduKwKGSGpskSWErsQhxpPAyujks/ctbtE4afU73CXZi6GvZkwKokLrVWmhKGykLldF9hT0Ca81dnmWh6/Gz4+M8L1J+3R+Aj5NgSGpsiJNu9Su8MiKNUZNQ4Fw78BPqZGBJCoV5JUwdJiBuoI/tgmqI0XWywTM530odkOEJWi4VH4j4eyKD2Ln7OCqSMdC1G/VK8T+vnVJvv5NJnaSEWpSLSCocLHLCyqIG5FfSIhGUlyOXmguwQIRWchCiENOitkrRRzD6/Ti52KkHfj043a01DobNzLENtsm2WcD2WIMdsRPWZII9sCf2zF68R+/Ve/Pef6IT3nBmnf2B9/ENru2g9w==</latexit><latexit sha1_base64="spRMtupkQvNUSYmo+hx7/3HftIM=">AAACF3icbVA9SwNBEN3z2/gVtbRZDIJVuBNBsQrYWImK0UAuhLl1Ehf3do/dOUWO+wH+BH+FrVZ2Ymtp4X/xLqbQxFc93nvDzLwoUdKR7396E5NT0zOzc/OVhcWl5ZXq6tqFM6kV2BRGGduKwKGSGpskSWErsQhxpPAyujks/ctbtE4afU73CXZi6GvZkwKokLrVWmhKGykLldF9hT0Ca81dnmWh6/Gz4+M8L1J+3R+Aj5NgSGpsiJNu9Su8MiKNUZNQ4Fw78BPqZGBJCoV5JUwdJiBuoI/tgmqI0XWywTM530odkOEJWi4VH4j4eyKD2Ln7OCqSMdC1G/VK8T+vnVJvv5NJnaSEWpSLSCocLHLCyqIG5FfSIhGUlyOXmguwQIRWchCiENOitkrRRzD6/Ti52KkHfj043a01DobNzLENtsm2WcD2WIMdsRPWZII9sCf2zF68R+/Ve/Pef6IT3nBmnf2B9/ENru2g9w==</latexit><latexit sha1_base64="spRMtupkQvNUSYmo+hx7/3HftIM=">AAACF3icbVA9SwNBEN3z2/gVtbRZDIJVuBNBsQrYWImK0UAuhLl1Ehf3do/dOUWO+wH+BH+FrVZ2Ymtp4X/xLqbQxFc93nvDzLwoUdKR7396E5NT0zOzc/OVhcWl5ZXq6tqFM6kV2BRGGduKwKGSGpskSWErsQhxpPAyujks/ctbtE4afU73CXZi6GvZkwKokLrVWmhKGykLldF9hT0Ca81dnmWh6/Gz4+M8L1J+3R+Aj5NgSGpsiJNu9Su8MiKNUZNQ4Fw78BPqZGBJCoV5JUwdJiBuoI/tgmqI0XWywTM530odkOEJWi4VH4j4eyKD2Ln7OCqSMdC1G/VK8T+vnVJvv5NJnaSEWpSLSCocLHLCyqIG5FfSIhGUlyOXmguwQIRWchCiENOitkrRRzD6/Ti52KkHfj043a01DobNzLENtsm2WcD2WIMdsRPWZII9sCf2zF68R+/Ve/Pef6IT3nBmnf2B9/ENru2g9w==</latexit>
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Fig. 2. Self-Attentive Network: detailed architecture.

into a bi-directional neural network, obtaining for each vector
~ιi ∈ ~If a summary vector of size u:

hi =
−→
RNN(

→
hi−1, ιi)⊕

←−
RNN(

←
hi+1, ιi)

where ⊕ is the concatenation operand,
−→
RNN (resp.,

←−
RNN) is

the forward (resp., backward) RNN cell, and
→
hi−1,

←
hi+1 are

the forward and backward states of the RNN (we set
→
h−1 =

←
hn+1 = 0). The state of each RNN cell has size u

2 .
From these summary vectors we obtain a m × u matrix

H . Matrix H has as rows the summary vectors. An attention
matrix A of size r×m is computed using a two-layers neural
network: A = softmax(Ws2 · tanh(Ws1 · HT )) where Ws1

is a weight matrix of size da × u and the parameter da is
the attention depth of our model. The matrix Ws2 is a weight
matrix of size r × da and the parameter r is the number of
attention hops of our model.

The embedding matrix of our sequence is: B =
(b1, b2, . . . , bu) = AH and it has fixed size r × u. In order
to transform the embedding matrix into a vector ~f of size
n, we flatten the matrix M and we feed the flattened matrix
into a two-layers fully connected neural network with ReLU
activation function: ~f = Wout2·ReLU(Wout1·(b1⊕b2 . . .⊕bu))
where Wout1 is a weight matrix of size e×(r+u), and Wout2

a weight matrix of size n× e.
Learning Parameters Using Siamese Architecture: we learn
the network parameters:

Φ = {Ws1,Ws2,
−→
RNN,

←−
RNN,Wout1,Wout2}

using a pairwise approach, a technique also called siamese
network in the literature [31] (the same technique is also
used in [10]). The main idea is to join two identical function
embedding networks with a similarity score (with identical
we mean that the networks share the same parameters). The

final output of the siamese architecture is the similarity score
between the two input graphs.

In more details, from a pair of input functions < f1, f2 >
two vectors < ~f1, ~f2 > are obtained by using the same
function embedding network. These vectors are compared
using cosine similarity as distance metric, with the following
formula:

similarity( ~f1, ~f2) =

n∑
i=1

(
~f1[i] · ~f2[i]

)

√√√√ n∑
i=1

~f1[i] ·

√√√√ n∑
i=1

~f2[i]

(1)

where ~f [i] indicates the i-th component of the vector ~f .
To train the network we require in input a set of K functions

pairs, < ~f1, ~f2 >, with ground truth labels yi ∈ {+1,−1},
where yi = +1 indicates that the two input functions are
similar and yi = −1 otherwise. Then using the siamese
network output, we define the following objective function:

J =
K∑

i=1

(
similarity(~f1, ~f2)− yi

)2
+ ‖(A ·AT − I)‖F

The objective function J is minimized by using, for in-
stance, stochastic gradient descent. The term ‖(A ·AT − I)‖F
is introduced to penalize the choice of the same weights for
each attention hops in matrix A (see [12]).
Comparison with Gemini architecture:— As described in the
related work section Gemini transforms a CFG into a vector.
A CFG is a representation of a binary function as a graph
where blocks of instructions are connected accordingly to the
possible execution flow, see Figure 3. In its first step Gemini
transforms a CFG into an annotated CFG, this is done by
pre-processing each block of instructions transforming it into
a vector of manually selected features (such as numbers of
arithmetic instructions, numbers of calls, ...). The annotated
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Addr_1: mov eax,10
Addr_2: dec eax

Addr_4: jnz Addr_2
Addr_3: mov [base+eax],0

Addr_5: mov eax,ebx

Addr_1: mov eax,10

Addr_2: dec eax
Addr_3: mov [base+eax],0
Addr_4: jnz Addr_2

Addr_5: mov eax,ebx

Fig. 3. CFG example: linear code on left and CFG and right.

CFG is then embedded into a vector using a structure2vec [23]
neural network. Structure2vec takes into account the graph
structure of the annotated CFG: it computes an embedding
for each node in the network by multiple rounds in which it
averages its value with the ones of its neighbours, and then it
computes a cumulative graph embedding by aggregating the
embeddings of the nodes.

We can highlight two main differences between our ap-
proach and Gemini. Gemini uses a manual annotation ap-
proach to transform a sequence of instructions into a vector,
while we let the network decides how to do such transfor-
mation.The advantage is that we are not injecting a human
bias in the feature selection, for example preferring arithmetic
instructions over others. The self-attentive mechanism allows
the network to automatically focus on the sequences of in-
structions that are more important.

The second difference is that our network does not use
the structural information of the CFG. While this allows for
better speed, it has the potential drawback of ignoring pos-
sible important information. However, from our experimental
evaluation it seems that a self-attentive architecture reaches
performance that are better or on par with structure2vec.

V. IMPLEMENTATION DETAILS AND TRAINING

Implementation Details and i2v setup: — We developed
a prototype implementation of SAFE using Python and the
Tensorflow [32] framework. 5. For static analysis of binaries
we used the ANGR framework [33], radare2 and IDA Pro6.
To train the network we used a batch size of 250, learning
rate 0.001, Adam optimizer. In our SAFE prototype we used
the following parameters: the RNN cell is the GRU cell [34];
the u value is 100, r = 10, da = 250, e = 2000, n = 100.

We decided to truncate the number of instructions inside
each function to the maximum value of m = 150, this
represents a good trade-off between training time and accuracy,
the great majority of functions in our datasets is below this
threshold (more than 90% of the functions).

a) I2v model: – We trained two i2v models using the
two training corpora described below. One model is for the
instruction set of ARM and one for AMD64. With this choice
we tried to capture the different syntaxes and semantics of
these two assembly languages. The model that we use for

5The source code and the datasets used in the evaluation are available at
https://github.com/gadiluna/SAFE

6We designed our system to be compatible with several disassemblers,
including two opensource solutions.

i2v (for both versions AMD64 and ARM) is the skip-gram
implementation of word2vec provided in TensorFlow [35]. We
used as parameters: embedding size 100, window size 8 and
word frequency 8.

We collected the assembly code of a large number of
functions, and we used it to build two training corpora for
the i2v models, one for the i2v AMD64 model and one for
the i2v ARM model. We built both corpora by disassembling
several UNIX executables and libraries using IDA PRO. The
libraries and the executables have been randomly sampled
from repositories of Debian packages.

We avoided multiple inclusion of common functions and
libraries by using a duplicate detection mechanism; we tested
the uniqueness of a function computing an hash of all function
instructions, where instructions are filtered by replacing the
operands containing immediate and memory locations with a
special symbol.

From 2.52 GBs of AMD64 binaries we obtained the as-
sembly code of 547K unique functions. From 3.05 GBs of
ARM binaries we obtained the assembly code of 752K unique
functions. Overall the AMD64 corpus contains 86M assembly
code lines while the ARM corpus contains 104M assembly
code lines.

Training Single and Cross Platform Models: — We trained
SAFE models using the same methodology of Gemini, see
[10]. We trained both a single and a cross platform models
that were then evaluated in several tasks (see Section VI for
the results).
We considered two different datasets:

AMD64multipleCompilers Dataset: – This is dataset
has been obtained by compiling the following libraries for
AMD64: binutils-2.30, ccv0.7, coreutils-8.29, curl-7.61.0, gsl-
2.5, libhttpd-2.0, openmpi-3.1.1, openssl-1.1.1-pre8, valgrind-
3.13.0. The compilation has been done using 3 different
compilers, clang-3.9, gcc-5.4, gcc-3.47 and 4 optimization
levels (i.e., -O[0-3]). The compiled object files have been dis-
assembled with ANGR, obtaining a total of 452598 functions.

AMD64ARMOpenSSL Dataset: – To align our experi-
mental evaluation with state-of-the-art studies we built the
AMD64ARMOpenSSL Dataset in the same way as the
one used in [10]. In particular, the AMD64ARMOpenSSL
Dataset consists of a set of 95535 functions generated from
all the binaries included in two versions of Openssl (v1 0 1f
- v1 0 1u) that have been compiled for AMD64 and ARM
using gcc-5.4 with 4 optimizations levels (i.e., -O[0-3]). The
resulting object files have been disassembled using ANGR;
we discarded all the functions that ANGR was not able to
disassemble.

Training: – We generate our training and test pairs as
reported in [10]. The pairs can be of two kinds: similar pairs,
obtained pairing together two binary functions originated by
the same source code, and dissimilar pairs, obtained pairing
randomly functions that do not derive from the same source
code. Specifically, for each function in our datasets we create
two pairs, a similar pair, associated with training label +1 and
a dissimilar pair, training label −1; obtaining a total number of

7Note that gcc-3.4 has been released more than 10 years before gcc-5.4.
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pairs that is twice the total number of functions. The functions
in AMD64multipleCompilers Dataset are partitioned in three
sets: train, validation, and test (75%-15%-15%). The functions
in AMD64ARMOpenSSL Dataset are partitioned in two
sets: train and test (80%-20%), in this case we do not need the
validation set because in Task 1 Section VI-A we will perform
a cross-validation. The test and validation pairs will be used to
assess performances in Task 1, see Section VI-A. As in [10],
pairs are partitioned preventing that two similar functions are
in different partitions (this is done to avoid that the network
sees during training functions similar to the ones on which it
will be validated or tested).

We train our models for 50 epochs (an epoch represents a
complete pass over the whole training set). In each epoch we
regenerate the training pairs, that is we create new similar and
dissimilar pairs using the functions contained in the training
split. We pre-compute the pairs used in each epoch, in such a
way that each method is tested on the same data. Note that,
we do not regenerate the validation and test pairs.

Inlining and function boundaries: – During the compilation
process, if an high optimisation level is selected O2,O3, it
is possible that simple functions are “inlined”. That is if a
function B calls a function A, the optimizer may decide to
inline the assembly code of function A in B, obtaining a
resulting function B(A). In this case, we decided to use the
convention that only the matches between functions similar to
B and function B(A) is correct. This means that our results
could slightly underrepresent the actual performance of SAFE,
since one could argue that B(A) is also similar to A, since it
is performing also the functionalities of A.

A clarification is needed on how we detect functions inside
a binary. During the compilation process the compiler is free
to decide the layout of the binary, at function level this means
that the compiler decides where to place the function, and
it could even partition a single function in several locations.
Therefore, to disassemble a function is necessary to detect its
boundaries. This problem is orthogonal to our. In this paper
we relay on the disassembler to find the correct boundaries.
Papers have shown [36], [37] that modern disassemblers have
around 94% of accuracy in detecting boundaries. In case of an
occasional miss, we could lose the function or get a function
with a corrupted assembly code. We accept this last outcome
since it is not frequent and a limited quantity of corrupted data
does not jeopardize the training.

VI. EVALUATION OF REPRESENTATION LEARNING USING
SAFE

In this section we evaluate SAFE as a representation learn-
ing model (training it to create embedding vectors that are then
tested on several different tasks). Regarding the representation
learning power, we evaluate SAFE performances on several
tasks, comparing our evaluation with the state of the art system
Gemini8

8Gemini has not been distributed publicly. We implemented it using the
information contained in [10]. For Gemini the parameters are: function
embeddings of dimension 64, number of rounds 2, and a number of layers
2. These parameters are the ones that give the best performance for Gemini,
according to our experiments and the one in the original Gemini paper.

• Task 1 - Single Platform and Cross Platform Models
Tests: we test our single platform and cross platform
models following the same methodology of [10]. We
achieve a performance improvement of 6.8% in the single
platform case and of 4.4% in the cross platform case.
We remark that in these tests our models behave almost
perfectly (within 1% from what a perfect model may
achieve).

• Task 2 - Function Search: in this task we are given a
certain binary function and we search for similar on a
large dataset created using several compilers (including
compilers that were not used in the training phase). We
achieve a precision above 80% for the first 15 results,
and a recall of 47% in the first 50 results.

• Task 3 - Vulnerability Search: in this task we evaluate
our system on a use-case scenario in which we search for
vulnerable functions. Our tests on several vulnerabilities
show a recall of 84% in the first 10 results.

• Task 4 - Semantic Classification: in this task we classify
the semantic of binary functions using the embeddings
built with SAFE. We reach an accuracy of 95% on our
test dataset. Moreover, we test our classifier on real-
world malware, showing that we can identify encryption
functions.

• Task 5 - Advanced Persistent Threat (APT) Classifi-
cation: Leveraging the learned function embeddings, we
build a classifier that given a malware, it outputs the
possible APT group behind its development. We reach
an f1 score of 89%

Finally, in Section VI-F we discuss the robustness of SAFE
in the scenario of statically linked and stripped binaries.

A. Task 1 - Single and Cross Platform tests
In this task we evaluate the performance of SAFE using the

same testing methodology of Gemini. We split our dataset as
discussed in Section V-0a.

We perform two disjoint tests. (i) Using
AMD64multipleCompilers Dataset, we first compute
performance metrics on the validation set for all the
epochs, then we use the model hyper parameters that led
to the best performance on the validation set to compute
a final performance score on the test set. (ii) Using
AMD64ARMOpenSSL Dataset, we perform a 5-fold cross
validation: we partition the dataset in 5 sets; for all possible
set union of 4 partitions we train the classifiers on such union
and then we test it on the remaining partition. The reported
results are the average of 5 independent runs, one for each
possible fold chosen as test set. This approach is more robust
than a fixed train/validation/test split since it reduces the
variability of the results.

As in [10], we measure the performance using the Receiver
Operating Characteristic (ROC) curve [38]. Following the
best practices of the field we measure the area under the
ROC curve, or AUC (Area Under Curve). Loosely speaking,
higher the AUC value, better the predictive performance of the
algorithm.

Results:
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(a) AMD64multipleCompilers Dataset.
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(b) AMD64ARMOpenSSL Dataset.

Fig. 4. ROC curves for Task 1 - Validation and Test of Single Platform and Cross Platform Models.
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(a) Precision for the top-k answers with k ≤ 50.
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(b) nDCG for the top-k answers with k ≤ 50.
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(c) Recall for the top-k answers with k ≤ 200.

Fig. 5. Results for Task 2 - Function Search, on AMD64FuntionSearch Dataset (581K functions) average on 160K queries.

AMD64multipleCompilers Dataset: – The results for the
single platform case are in Figure 4a. Our AUC is 0.99, the
AUC of Gemini is 0.932.

AMD64ARMOpenSSL Dataset: – We compare ourselves
with Gemini in the cross-platform case. The results are in
Figure 4b and they show the average ROC curves on the five
runs of the 5-fold cross validation. The Gemini results are
reported with orange dashed line while we use a continuous
blue line for our results. For both solutions we additional
highlighted the area between the ROC curves with minimum
AUC maximum AUC in the five runs. The better prediction
performance of SAFE is clearly visible; the average AUC
obtained by Gemini is 0.948 with a standard deviation of
0.006, while the average AUC of SAFE is 0.992 with a
standard deviation of 0.002. The average improvement with
respect to Gemini is of 4.4%.

We also compared SAFE and VulSeeker [24] using
AMD64ARMOpenSSL Dataset. We used the pretrained
model provided in their repository9. Results show that
VulSeeker reaches an AUC of 0.85%, lower than the one
reached by Gemini.

9https://github.com/buptsseGJ/VulSeeker

B. Task 2 - Function Search

In this task we evaluate the function search capability of
the model trained on AMD64multipleCompilers Dataset. We
take a target function f , we compute its embedding ~f and
we search for similar functions in the AMD64FuntionSearch
Dataset (details of this dataset are given below). Given
the target ~f , a search query returns R~f : (r1, r2, . . . , rk),
that is the ordered list of the k nearest embeddings in
AMD64FuntionSearch Dataset.

We built AMD64FuntionSearch Dataset by compiling
multiple projects 10 for AMD64 using 10 compilers11 For
each compiler we used all 4 optimization levels. We took the
object files, i.e. we did not create the executable by linking
objects file together, and we disassembled them with radare2,
obtaining a total of 581640 functions. For each function the
AMD64FuntionSearch Dataset contains an average number
of 33 similars. We do not reach an average of 4812 similars
because of inlining and disassembler fails on some functions.

10 adns-1.5.0, dietlibc-0.34, ffmpeg-4.0.2, glib-2.5.0, libogg-1.3.4, musl-
1.2.1, nginx-052, postgresql 9.6, tcc-0.9.27

11gcc-3.4, gcc-4.7, gcc-4.8, gcc-4.9, gcc-5.4, gcc-6, gcc-7, clang-3.8, clang-
3.9, clang-4.0, clang-5.0, clang-6.0.

1248= 12 compilers × 4 optimizations level
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(a) Precision for the top-k answers with k ≤ 50.
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(b) nDCG for the top-k answers with k ≤ 50.
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(c) Recall for the top-k answers with k ≤ 200.

Fig. 6. Results for Task 3 - Vulnerability Search.

We compute the usual measures of precision, fraction of
similar functions in R~f over all functions in R~f , and recall,
fraction of similar functions in R~f over all similar functions
in the dataset. Moreover, we also compute the normalised
Discounted Cumulative Gain (nDCG) [39]:

nDCG(R~f ) =

∑k
i=1

isSimilar(ri, ~f)
log(1+i)

IdealDCGk

Where isSimilar is 1 if ri is a function similar to ~f or 0
otherwise, and, IdealDCGk is the Discounted Cumulative
Gain of the optimal query answering. This measure is between
0 and 1, and it takes into account the ordering of the similar
functions in R~f , giving better results to responses that put
similar functions first. As an example let us suppose we have
two results for the same query: (1, 1, 0, 0) and (1, 0, 0, 1)
(where 1 means that the corresponding index in the result
list is occupied by a similar function and 0 otherwise). These
results have the same precision (i.e., 1

2 ), but nDCG scores the
first better.

Results: – our results on precision, nDCG and recall are
reported in Figure 5. Performances were calculated by averag-
ing the results of 160K queries. The queries are obtained by
sampling, in AMD64FuntionSearch Dataset, 10K functions
for each compiler and optimization level in the set {clang-
4.0,clang-6.0,gcc-4.8,gcc-7} × {O0,O1,O2,O3}.
Precision: The results are reported in Figure 5a. The pre-
cision is above or around 70% for k ∈ [0, 10], and
it is above 60% for k ∈ [0, 20]. The increase of per-
formance on Gemini is around 10% on the entire range
considered. Specifically at k ∈ {10, 20, 30, 40, 50} we
have values {69%, 61%, 48%, 40%, 34%} for SAFE and
{53%, 43%, 33%, 27%, 22%} for Gemini.
nDCG: The tests are reported in Figure 5b. Our solution has
a performance above 70% for k ∈ [0, 15]. This implies that
we have a good order of the results and the similar functions
are among the first results returned. The value is always above
or around 50%. There is a clear improvement with respects
to Gemini, the increase is around 10% on the entire range
considered. Specifically, at k ∈ {10, 20, 30, 40, 50, 100, 200}
we have values {73%, 66%, 55%, 49%, 50%, 54%, 57%} for
SAFE and {56%, 48%, 40%, 34%, 35%, 37%, 39%} for Gem-
ini.

Recall: The tests are reported in Figure 5c. We have a
recall at k = 40 of 40% (vs. 28% Gemini), the re-
call at k = 200 is 56% (vs. 45% Gemini). Specifi-
cally at k ∈ {10, 20, 30, 40, 50, 100, 200} we have val-
ues {17%, 30%, 36%, 40%, 42%, 49%, 55%} for SAFE and
{13%, 22%, 25%, 27%, 28%, 32%, 35%} for Gemini.

C. Task 3 - Vulnerability Search

In this task we evaluate our ability to look up for vulnerable
functions on a dataset specifically designed for this purpose.
The methodology and the performance measures of this test
are the same of Task 2.

The dataset used is the vulnerability dataset of [5]. It con-
tains several vulnerable binaries compiled with 11 compilers
in the families of clang, gcc and icc. The total number of
different vulnerabilities is 813. We disassembled the dataset
with ANGR, obtaining 3160 binary functions. The average
number of vulnerable functions for each of the 8 vulnerabilities
is 7.6; with a minimum of 3 vulnerable functions and a
maximum of 1314. We performed a lookup for each of the
8 vulnerabilities, computing the precision, nDCG, and recall
on each result. Finally, we averaged these performance over
the 8 queries.

Results: – the results of our experiments are reported in
Figure 6. We can see that SAFE outperforms Gemini for all
values of k in all tests. Our nDCG is very large, showing
that SAFE effectively finds most of the vulnerable functions
in the nearest results. For k = 10 we reach a recall of 84%,
while Gemini reaches a recall of 55%. For k = 15 our recall
is 87% (vs. 58% recall of Gemini, with an increment of
performance of 29%), and we reach a maximum of 88% (vs.
76% of Gemini). One of the reasons why the accuracy quickly
decreases is that, on average, we have 7.6 similar functions;
this means that even a perfect system at k = 20 will have
an accuracy that is less than 50%. This metric problem is not
shared by the nDCG reported in Figure 6b, recall that the
nDCG is normalized on the behaviour of the perfect query
answering system. During our tests we have seen that on the
infamous hearthbleed vulnerability we have an ideal behaviour,

13cve-2014-0160, cve-2014-6271, cve-2015-3456, cve-2014-9295, cve-
2014-7169, cve-2011-0444, cve-2014-4877, cve-2015-6862.

14Some vulnerable functions are lost during the disassembling process

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on January 16,2021 at 11:28:17 UTC from IEEE Xplore.  Restrictions apply. 



1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3051852, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE I
NUMBER OF FUNCTION FOR EACH CLASS IN THE SEMANTIC DATASET

Class Number of functions
S (Sorting) 4280

E (Encryption) 2868
SM (String Manipulation) 3268

M (Math) 4742
Total 15158

SAFE found all the 13 vulnerable functions in the first 13
results, while Gemini had a recall at 13 around 60%.

D. Task 4 - Semantic Classification

Loosely speaking, a function f can be seen as an imple-
mentation of an algorithm. We can partitions algorithms into
classes, where each class is a group of algorithms solving
related problems. In this paper we focus on four classes
{E (Encryption), S (Sorting), SM (String Manipulation), M
(Mathematical)}. A function belongs to class E if it is the
implementation of an encryption algorithm (e.g., AES, DES);
it belongs to S class if it implements a sorting algorithm (e.g.,
bubblesort, mergesort); it belongs to SM class if it implements
an algorithm to manipulate a string (e.g., string reverse, string
copy); it belongs to M class if it implements math operations
(e.g., computing a bessel function); We say that a classifier,
recognizes the semantic of a function f , with f taken from
one of the aforementioned classes, if it is able to guess the
class to which f belongs.

Test description and dataset: – In Task 4 we evaluate the
semantic classification using the embeddings computed with
the model trained on AMD64multipleCompilers Dataset.
We calculate the embeddings for all functions in Semantic
Dataset (details on the dataset below). We split our em-
beddings in train set and test set and we train and test an
SVM classifier using a 10-fold cross validation. We use an
SVM classifier with kernel rbf, and parameters C = 10
and γ = 0.01. We compare our embeddings with the ones
computed with Gemini.

The Semantic Dataset has been generated from a source
code collection containing 443 functions that have been
manually annotated as implementing algorithms in one of
the 4 classes: E (Encryption), S (Sorting), SM (String
Manipulation), M (Mathematical). Semantic Dataset con-
tains multiple functions that refer to different implementa-
tions of the same algorithm. We compiled the sources for
AMD64 using the 12 compilers and 4 optimizations used
for AMD64FuntionSearch Dataset, we took the object files
and after disassembling them with ANGR we obtained a
total of 15158 binary functions, see details in Table I. It
is customary to use auxiliary functions when implementing
complex algorithms (e.g. a swap function used by a quicksort
algorithm). When we disassemble the Semantic Dataset we
take special care to include the auxiliary functions in the
assembly code of the caller. This step is done to be sure that
the semantic of the function is not lost due to the scattering of
the algorithm semantic among helper functions. Operatively,
we include in the caller all the callees up to depth 2. As

performance measures we considered precision, recall and F-1
score.

TABLE II
RESULTS OF SEMANTIC CLASSIFICATION USING EMBEDDINGS COMPUTED

WITH SAFE MODEL AND GEMINI. THE CLASSIFIER IS AN SVM WITH
KERNEL rbf, C = 10 AND gamma = 0.01.

Class Emb. Model Precision Recall F1
E

(Encryption)
SAFE 0.92 0.94 0.93
Gemini 0.82 0.85 0.83

M
(Math.)

SAFE 0.98 0.95 0.96
Gemini 0.96 0.90 0.93

S
(Sorting)

SAFE 0.91 0.93 0.92
Gemini 0.87 0.92 0.89

SM (String
Manipulation)

SAFE 0.98 0.97 0.97
Gemini 0.90 0.89 0.89

Weighted
Average

SAFE 0.95 0.95 0.95
Gemini 0.89 0.89 0.89

Results: – The results of our semantic classification tests
are reported in Table II. First and foremost, we have a
strong confirmation that is indeed possible to classify the
semantic of the algorithms using function embeddings. The
use of an SVM classifier on the embedding vector space
leads to good performance. There is a limited variability of
performances between different classes. The classes on which
SAFE performs better are SM and M. We speculate that
the moderate simplicity of the algorithms belonging to these
classes creates a limited variability among the binaries. The M
class is also one of the classes where the Gemini embeddings
are performing better, this is probably due to the fact that
one of the manual features used by Gemini is the number
of arithmetic assembly instructions inside a code block of the
CFG. By analyzing the output of the classifier we find out that
the most common error, a mistake common to both Gemini
case and SAFE, is the confusion between encryption and
sorting algorithms. A possible explanation for this behaviour
is that simple encryption algorithms, such as RC5, share many
similarities with sorting algorithms (e.g., nested loops on an
array). Finally, we can see that, in all cases, the embeddings
computed with our architecture outperform the ones computed
with Gemini; the improvement range is between 10% and 2%.
The average improvement, weighted on the cardinality of each
class, is around 6%.

Ablation study on callee inclusion: – We assessed the im-
pact of inserting the callee on the caller function by performing
an experiment without such inclusion. In this case the weighted
average of the performances of safe goes from 95% to 90%
with an average loss of performances of 5% percent. The new
f1-scores are: E 87%, M 95%, S 86%, SM 91%. As we can
see the classes that are more impacted are E and S, a likely
reason is that these functionalities are usually implemented
using helper functions.

Qualitative Analysis of the Embeddings: – We performed a
qualitative analysis of the embeddings produced with SAFE.
Our aim is to understand how the network captures the
information on the inner semantics of the binary functions,
and how it represents such information in the vector space.

To this end we computed the embeddings for all func-
tions in Semantic Dataset. In Figure 7 we report the two-
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Fig. 7. 2-dimensional visualization of the embedding vectors for all binary
functions in Semantic Dataset. The four different categories of algorithms
(Encryption, Sorting, Math and String Manipulation) are represented with
different symbols and colors.

dimensional projection of the 100-dimensional vector space
where binary functions embeddings lie, obtained using the t-
SNE 15 visualisation technique [40]. From Figure 7 is possible
to observe a quite clear separation between the different classes
of algorithms considered. We believe this behaviour is really
interesting and it further confirms our quantitative experiments
on semantic classification.

Real use case of Task 4 - Detecting encryption functions
in Windows Malware: – We tested the semantic classification
on a real use case scenario. We trained a new SVM classifier
using the semantic dataset with only two classes, encryption
and non-encryption. We then used this classifier to analyze
two samples of window malware found in famous malware
repositories: the TeslaCrypt and Vipasana ransomwares. We
disassembled the samples with radare2, we included in the
caller the code of the callee functions up to depth 2. We pro-
cessed the disassembled functions with our classifier, and we
selected only the functions that are flagged as encryption with
a probability score greater than 96%. Finally, we manually
analyzed the malware samples to assess the quality of the
selected functions.
TeslaCrypt16. On a total of 658 functions, the classifier flags
the ones at addresses 0x41e900, 0x420ec0, 0x4210a0,
0x4212c0, 0x421665, 0x421900, 0x4219c0. We confirmed
that these are either encryption (or decryption) functions
or helper functions directly called by the main encryption
procedures.
Vipasana 17. On a total of 1254 functions, the classifier flags
the ones at addresses 0x406da0, 0x414a58, 0x415240.
We confirmed that two of these are either encryption (or

15We used the TensorBoard implementation of t-SNE
16Sample available at https://github.com/ytisf/theZoo/tree/master/malwares/

Binaries/Ransomware.TeslaCrypt – Hash: 3372c1eda...4a370
17Sample available at https://github.com/ytisf/theZoo/tree/master/malwares/

Binaries/Ransomware.Vipasana – Hash: 0442cfabb...4b6ab

TABLE III
APT CLASSIFICATION RESULTS. AVERAGE OF OUR 5-FOLD CROSS

VALIDATION TESTS. THE SUPPORT IS A DECIMAL NUMBER BEING AN
AVERAGE OVER 20 TESTS. SVM CLASSIFIER WITH KERNEL rbf, C = 10

AND γ = 0.01.

f1-score precision recall support

APT28 0.845 0.735 1.000 9.560
APT29 0.876 0.878 0.875 28.209
APT30 0.945 0.984 0.910 17.354
Carbanak 0.664 0.527 0.901 7.585
Desert Falcon 0.775 0.670 0.937 5.862
Hurricane Panda 0.976 0.960 0.992 60.002
Lazarus Group 0.872 0.986 0.783 13.910
Mirage 0.740 0.681 0.812 8.446
Patchwork 0.953 0.971 0.936 98.595
Sandworm 0.624 1.000 0.455 17.774
Shiqiang 0.718 0.625 0.858 3.758
Transparent Tribe 0.852 0.794 0.927 9.483
Violin Panda 0.854 0.768 0.969 3.210
Volatile Cedar 0.964 1.000 0.934 7.529
Winnti Group 0.905 0.903 0.910 34.857

macro avg 0.837 0.832 0.880 326.134
weighted avg 0.898 0.917 0.899 326.134

accuracy 0.899

decryption) functions or helper functions directly called by the
main encryption procedures. The false positive is 0x406da0.

As final remark, we want to stress that these malware are
for windows and they are 32-bit binaries, while we trained our
entire system on ELF executables for AMD64. This shows that
our model is able to generate good embeddings also for cases
that are largely different from the ones seen during training.

E. Task 5 - APT Classification
Dataset: – We use the APT dataset from [13]. The dataset

contains the mapping between malware and APT developers,
it has been created by using public reports18 of APT activites.
From the reports the authors have obtained an attribution for
each malware sample in their dataset; they have taken special
care to remove malware for which the attribution was doubtful
or shared among more than one APT.

We extracted a set of malware and the corresponding APT
developers, and successfully disassembled, using IDA pro,
1656 malware. For each malware all functions recognised by
IDA as library functions have been discarded. Finally, using
SAFE model trained on AMD64multipleCompilers Dataset,
we computed the embeddings of all the functions containing
more than 20 instructions. We released the code used in our
experiments19.

Program Representation: – Embeddings are representa-
tions of functions, but to classify a malware we need to
represent a whole program. For us a program Pj is a set
of functions embeddings Pj = {~f0, ..., ~fnj}. A function that
indicates whether Pj contains function ~f can be defined as:

α(~f, Pj) =

{
1 if ∃ ~fx ∈ Pj s.t. ~f · ~fx > τ
0 else

(2)

18The sources reported in [13] are: MITRE ATT&CK, PT Groups and
Operations, APT Notes, MISP Galaxy Cluster.

19https://github.com/lucamassarelli/safe apt classification
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Fig. 8. Confusion Matrix. Average of our 5-fold cross validation tests.

Where τ is a threshold (equal to 0.95 in our experiments).
Given α the similarity between two programs is:

S(Pi, Pj) =

∑
∀~f∈Pi

α(~f, Pj)

max(|Pi|, |Pj |)
(3)

Classify programs: – The non-trivial difficulty is to deal
with a representation of programs that has a well defined
similarity metric (see above), but where programs are not
points in a metric space. The latter is a desirable requirement
to use features based classification techniques. From our
similarity measure we obtained a feature-based representation
of programs using a known trick [41]. We randomly sample
a subset of programs and use them as a “base” and then we
represent any other program as a vector of distances from base
programs. On such vectors we trained an SVM classifier with
kernel rbf, C = 10 and γ = 0.01.

Test setting and results: – We split randomly our dataset in
five different folds. The distribution of classes between the 5
different fold is the same. In each experiment we use one fold
as test, one fold as base and the 3 remaining fold for training
the classifier. We tested all possible 20 combinations. Results
in Table III are the average over all the experiments, while in
Figure 8 there is the average of the confusion matrices of our
experiments.

From the average confusion matrix we can see that there
are specific APT on which our classifier performs badly.
The most egregious example are Violin Panda, Sandworm,
and Carbanak. For Violin Panda, the nationality of the group
has been attributed to China, and it is mostly confused with
Patchwork. Patchwork is a group known to copy code from
public sources. The second reason is that we found our

classifier to be unbalanced toward Patchwork, this is probably
due to the highest number of samples available for this APT.

For Sandworm, the group is allegedly based in Russia and
nationally sponsored. It is confused with Patchwork (for the
same reasons explained above); with APT29, that is also a
group of russian origin and nationally, and with Carbanak. The
similarity with APT29 could be explained by code sharing.

Carbanak is confused only with APTs groups related to Rus-
sia (Sandworm, APT28, APT29), there are reports indicating
that the part of their codebase was leaked by russian ip-
addresses (https://www.entrada.co.ke/2019/05/07/kaspersky-
lab-carbanak-source-code-leak-whats-next/).

In general, we can observe that russian attributed APTs are
more prone to be confused between each other (see APT28,
APT29).

F. Robustness to static linking and stripping

We tested SAFE when applied to statically linked and
stripped binaries. This has been done to confirm that our
solution is agnostic with respect to debug symbols and static
linking. We compiled the botnet Mirai with multiple compilers
and optimization levels; using the flag “-static” to statically
link the libraries inside the final executable. After compi-
lation we obtained a stripped copy removing all references
to symbols in the binary using the unix strip command. At
the end of this process we have two datasets, one containing
functions of the stripped binaries and one with functions from
unstripped binaries. We perform three different function-search
experiments aimed at understanding if there is a difference of
results when using unstripped or stripped functions.

We selected a subset of 800 functions to be used as
queries, for each of this source function we obtained a set of
binary functions taking the source compiled with 4 compilers
and 4 optimizations levels. In each experiment we search
using these query function to find their similars (this is
analogous to Task 2). What we variate is the combination
between stripped/unstripped functions used for the query over
a database of stripped/unstripped functions. In the first exper-
iment we use unstripped query functions over an unstripped
dataset. In the second experiment we strip the query functions
and we search over an unstripped dataset. In the third we strip
both the queries and the dataset. In all cases we obtain the
same results for recall, nDCG and precision. This confirms
that SAFE is not sensible to symbols in the binary and static
linking, as a matter of fact the embeddings computed for
stripped and unstripped functions are equals.

VII. EVALUATION OF SAFE ON COMPILER PROVENANCE

We decided to test SAFE on a task that is completely unre-
lated to the binary similarity one to assess the ability to abstract
from the specific features needed to solve a particular class
of problems. For this purpose we investigated the compiler
provenance task (i.e., to understand which compiler produced
a given binary function [14]). This problem can be seen as the
dual of binary similarity: in one task the network has to focus
on the differences introduced by compilers, while in the other
it has to do the opposite. Our tests show an accuracy of 97.4%
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for compiler family classification, reaching performances that
are comparable with the state-of-the-art [14].

We ran two compiler provenance tests. In one we aim to
detect the compiler family that generated a binary (i.e., gcc,
clang, icc), in the second the optimisation level (as common
in the literature we map {O0,O1} to Low optimization level,
and {O2,O3} to High).

DNN details: – For this problem we train SAFE end-
to-end with a feed-forward two-layers neural network. Given
the embedding vector ~f we obtain a vector of classification
probabilities as follows:

p = softmax(Wout · ReLU(Whidden · ~f))

The loss function is the usual cross-entropy.

Dataset, methodology and performance measure: – We
built a dataset using AMD64 binaries. The dataset con-
tains 11 projects: binutils-2.30, ccv7.0, coreutils-8.29, curl-
7.61.0, ffmpeg-4.0.2, gdb-8.2, gsl-2.5, libhttpd-2.0, openssl-
1.1.1-pre8, postgresql-10.4, valgrind-3.13.0, compiled with the
following compilers: gcc-3.4, gcc-4.7, gcc-4.8, gcc-4.9, gcc-
5.0, clang-3.8, clang-3.9, clang-4.0, clang-5.0, icc-17 and icc-
19 with all 4 optimization flags. We disassembled the obtained
binaries and removed duplicates, totalising 1587648 binary
functions.

We randomly split the dataset in train set, validation set
and test set (the split is 70%-15%-15%). We keep functions
generated by the same source in a single split.

We trained our models for 50 epochs and computed the
performance metric on the validation set for all the epochs.

The model with the best accuracy on the validation split
is used to compute the final performance score on the test
split. We tested our multi-class classifier using the standard
measures: precision, recall, and f1-score. For the selection of
the best model we considered the overall accuracy, defined as
the fraction of predictions our model got right. The hidden
layer of the feed forward classifier has size 3000.

Results: – The results are reported in Tables IV, V. For
the compiler family classification task we obtain an overall
weighted accuracy of 97.4% (Table IV). The breakdown
of classification performance is reported in the confusion
matrices of Figure 9. In Figure 9a there is the confusion
matrix for the compiler family identification, as we can see
the classifier has more problem to discriminate between clang
and gcc than icc. This is not surprising as they are both
open-source projects that use similar techniques in the code
generation. We think that the classifier is less precise on
clang than gcc due to the difference in the support size. This
result is inline with the state-of-the-art [14] (reported 98%
of accuracy). Unfortunately, a direct comparison with [14] is
unfeasible: their source code is not available; additionally, the
reconstruction of their specific dataset is not possible (versions
of software included in the dataset are not specified, and they
used compilers that are not anymore commercially available;
e.g., Visual Studio 2003). As reported in [25], Gemini reaches
an accuracy of 80% on the compiler family classification
task. s For the task of identifying the optimization we reach

TABLE IV
COMPILER CLASSIFICATION RESULT

Class Precision Recall F1 Support
clang 0.96 0.97 0.97 66864
gcc 0.98 0.98 0.98 123490
icc 0.97 0.97 0.97 47646

avg / total 0.97 0.97 0.97 238000

TABLE V
OPTIMIZATION RESULT

Class Precision Recall F1 Support
H 0.88 0.89 0.89 97090
L 0.93 0.92 0.92 140910

avg / total 0.91 0.91 0.91 238000

an overall accuracy of 91% (Table IV); this result beats the
one reported by [42] where DNNs are used to identify the
optimization level of binaries compiled uniquely with gcc
(they report an accuracy of 89% on their dataset). Our accuracy
is slightly worse than the one reported by [14] (reported
accuracy of 98%).

VIII. SPEED CONSIDERATIONS.

As reported in the introduction, an advantage of SAFE
is ditching the use of CFGs. From our tests on radare2
disassembling a function is 10 times faster than asking for its
CFG. Once functions are disassembled an Nvidia K80 running
our model computes the embeddings of 1000 functions in
around 1 second. More precisely, we run our tests on a virtual
machine hosted on Google cloud platform. The machine has 8
core Intel Sandy Bridge, 30gb of ram, an Nvidia K80 and SSD
hard-drive. We disassembled all object files in postegres 9.6
compiled with gcc-6 for all optimizations. The time needed to
disassemble and pre-process 3432 binaries is 235 seconds, the
time needed to compute the embeddings of the resulting 32592
functions is 33.3 seconds. The end-to-end time to compute
embeddings for all functions in postgres starting from binary
files is less than 5 minutes. We repeated the same test with
openssl 1.1.1 compiled with gcc-5 for all optimizations. The
end-to-end time to compute the embeddings for all functions in
openssl is less than 4 minutes. Our implementation of Gemini
is up to 10 times slower, it needs 43 minutes for postgres and
26 minutes for openssl.

IX. CONCLUSIONS

In this paper we introduced SAFE an architecture for
computing embeddings of functions in the cross-platform case
that does not use debug symbols. SAFE does not need the
CFG, and this leads to a considerable speed advantage. It cre-
ates thousand embeddings per second on a mid-COTS GPU.
This considerable speed comes with a significant increase of
predictive performances with respect to the state of the art.
There are several immediate lines of improvement that we
plan to investigate in the immediate future. The first one is
to retrain our i2v model to make use of libc call symbols.
This will allow us to quantify the impact of such information
on embedding quality. We believe that symbols could lead
to a further increase of performance, at the cost of assuming
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(a) Compiler Family Classification, accuracy 0.97 (b) Optimization Classification, accuracy 0.91

Fig. 9. Confusion matrices of the Compiler Family classification tasks, and Optimization classification test.

more information and the integrity of the binary that we are
analyzing.

Acknowledgments. This work has been partially funded by
the AXA Postdoctoral Fellowship of Giuseppe Di Luna, by
Sapienza project RM11916B75A3293D, and by the PNRM
project “SAFE”. The authors thank Google for its support
through the Academic Research Credits Program and NVIDIA
Corporation for the donation of a GPGPU.

REFERENCES

[1] L. Massarelli, G. A. Di Luna, F. Petroni, R. Baldoni, and L. Querzoni,
“Safe: Self-attentive function embeddings for binary similarity,” in
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2019, pp. 309–329.

[2] T. Dullien, R. Rolles, and R. universitaet Bochum, “Graph-based
comparison of executable objects,” in Proceedings of Symposium sur
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