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Abstract—Granger causality (GC) is a method for determining
whether and how two time series exert causal influences one over
the other. As it is easy to implement through vector autoregressive
(VAR) models and can be generalized to the multivariate case,
GC has spread in many different areas of research such as
neuroscience and network physiology. In its basic formulation,
the computation of GC involves two different regressions, taking
respectively into account the whole past history of the investigated
multivariate time series (full model) and the past of all time
series except the putatively causal time series (restricted model).
However, the restricted model cannot be represented through
a finite order VAR process and, when few data samples are
available or the number of time series is very high, the estimation
of GC exhibits a strong reduction in accuracy. To mitigate these
problems, improved estimation strategies have been recently
implemented, including state space (SS) models and partial
conditioning (PC) approaches. In this work, we propose a new
method to compute GC which combines SS and PC and tests it
together with other four commonly used estimation approaches.
In simulated networks of linearly interacting time series, we
show the possibility to reconstruct the network structure even
in challenging conditions of data samples available.

Index Terms—Granger Causality, Dynamical Networks, Vector
Autoregressive Processes, Multivariate Time Series

I. INTRODUCTION

The evaluation of the direction and strength of the inter-
actions among simultaneously observed dynamical systems is
an important topic currently under investigation in many fields
of science. Granger causality (GC) [1] is a very versatile tool
for analysing the cause-effect relationships between different
time series descriptive of the system dynamics. GC was firstly
formulated in the framework of linear bivariate autoregressive
modelling, stating that a time series X G-causes another series
Y if the past of X contains information that helps predict
the future of Y above and beyond the information already
contained in the past of Y [1]. To account for the influence of
other time series which are potentially affecting the two series
under analysis, the bivariate formulation has been extended to
the multivariate case through the use of vector autoregressive
(VAR) models which lead to the computation of a conditional
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form of GC [1]. Being based entirely on a liner framework,
GC is very easy to implement, with very few parameters to be
estimated if compared with model-free approaches and with
a reduced computational cost. These features have allowed
its extensive employment in the neurosciences and in the
emergent field of network physiology, where the time series
to be analyzed are often highly multivariate [2].

GC from a driver to a target time series is typically
quantified by comparing the prediction error variance obtained
from two different linear regression models: a model where
the present sample of the target series is regressed on the
past samples of all time series in the dataset (full model),
and a model where the present of the target is regressed on
the past of all series excluding the driver (restricted model).
Unfortunately, since the restricted model is theoretically of
infinite order, the finite sample estimation of GC based on
performing two separate regressions leads to strong bias or
very large variability of the estimates, depending on whether
small or high model orders are used to identify the restricted
model [3]. To counteract this problem, approaches based on
the identification of a single VAR model have been recently
proposed to estimate the GC. The first approach exploits the
relation between the prediction error variance of the restricted
model and the autocovariance function (ACF) of the whole
vector process estimated at arbitrarily high time lags [4], [5].
The second approach exploits the state space (SS) modelling
of the observed VAR process, and the possibility to provide
a closed form SS representation also for the restricted model
[6]. Another relevant issue for the practical computation of the
multivariate form of GC is related to the computational and
numerical problems to be faced when dealing with a large
number of time series and/or a small amount of data samples
available. This issue can be tackled by strategies limiting the
number of time series to be involved in the linear regressions.
One of such strategies is the so-called partial conditioning GC
(PCGC), which computes GC after selecting only the most
informative processes for the driver series [6].

Of the GC estimation strategies above presented, the meth-
ods based on ACF and SS models do not deal with the
numerical problems related to high dimensionality and small
data samples, while PCGC does not overcome the problem
related with identifying the restricted model by means of finite



order regressions. In this paper, to overcome the limitations
of existing GC estimation strategies, we propose to combine
them by including the partial conditioning into a framework
based on SS models. The performance of this combined esti-
mator, denoted as PCGC-SS, is assessed in comparison with
the standard double regression (GC-DR), the autocovariance-
based method (GC-ACF), the state-space method (GC-SS) and
the partial conditioning method (PCGC), in a simulation study
reproducing linear GC interactions among multivariate time
series under different conditions of data samples available for
the estimation process.

II. GRANGER CAUSALITY

Let us consider a discrete-time, stationary vector stochastic
process composed of M real-valued zero-mean scalar pro-
cesses, Yn = [y1,n . . . yM,n]T . Assuming that Yn is a Markov
process of order p, in the linear signal processing framework
it can be completely described by the VAR model:

Yn =

p∑
k=1

AkYn−k + Un, (1)

where Ak is an M ×M matrix containing the autoregressive
(AR) coefficients aji,k that relate yj,n to yi,n−k (i, j ∈
(1, . . . ,M),k ∈ (1, . . . , p)), and Un = [u1,n . . . uM,n]T is a
vector of M zero-mean gaussian innovation processes with
covariance matrix Σ ≡ E[UnU

T
n ] (where E is the expectation

value). The problem (1) can be solved by means of ordinary
least squares (OLS), computing the matrix of coefficients that
minimizes the residual error term [8].

Let us assume the process yj,n as the target and the
process yi,n as the driver process, with the remaining M − 2
processes collected in the vector Yk,n, where k = {1, ..,M}
\{i, j}. Then, denoting y−m,n = [ym,n−1ym,n−2 . . .]

T as the
past history of the generic process ym, we state that the ith

process G-causes the jth process (conditional on the other
k processes), if y−i,n conveys information about yj,n above
and beyond all information contained in y−j,n and Y −k,n. This
definition leads to perform a regression of the present of the
target on the past of all processes, yielding to the prediction
error ej|ijk,n = yj,n − E[yj,n|Y −n ], and on the past of all
processes except the driver, yielding to the prediction error
ej|jk,n = yj,n − E[yj,n|y−j,n, Y

−
k,n]. The prediction error vari-

ances resulting from these ”full” and ”restricted” regressions,
λj|ijk = E[e2j|ijk,n] and λj|jk = E[e2j|ik,n] are then combined
to obtain the definition of GC from yi to yj [8]:

Fi→j = ln
λj|jk

λj|ijk
. (2)

III. COMPUTATION OF GRANGER CAUSALITY

In this Section we describe five different approaches for
the computation of Fi→j defined in (2). For all of them,
given that ej|ijk,n = uj,n the error variance of the full
regression can be obtained as the jth diagonal element of the
error covariance matrix, λj|ijk = Σ(j, j), solving (typically
through OLS estimation) the identification problem (1). The

approaches differ in the computation of the error variance of
the restricted regression, λj|jk, whose evaluation is described
in the following.

A. GC based on double regression (GC-DR) [1]

The restricted model is formulated as follows:

yj,n =

M∑
m=1,m6=i

p∑
k=1

cmkym,n−k + ej|jk,n, (3)

from which the (M − 1)p coefficients cmk and the residuals
ej|jk,n can be obtained from a realization of length N of the
multivariate process using OLS estimation. Then, the desired
error variance λj|jk is computed simply as the variance of
the estimated residuals. Note that, with this approach, λj|jk
is computed after approximation of the whole past history
of the observed processes with p lags, i.e., y−m,n ≈ ypm,n =
[ym,n−1 . . . ym,n−p].

B. GC based on Autocovariance Function (GC-ACF) [4]

The restricted error variance can be obtained starting from
the ACF of the process Yn, which is a matrix containing the
covariance between time-lagged variables taken from the entire
process at each lag k > 0: Γk = E[YnY

T
n−k]. Applying this

definition to (1) it is easy to show that the ACF is related to the
VAR parameters via the well-known Yule-Walker equations:

Γk =

p∑
l=1

AlΓk−l + δk0Σ, (4)

where δk0 is the Kronecher product. The ACF matrices
Γ0, ...,Γp−1 can be computed from the estimated VAR pa-
rameters Ak and Σ by solving a discrete-time Lyapunov
equation as demonstrated in [9]. Then, the ACF matrices can
be calculated recursively for any lag k > p by repeatedly
applying (4); the recursion is typically performed up to a lag
q such that the spectral radius of the VAR process is smaller
than 10−8 [4]. Then, the desired prediction error variance is
computed exploiting a result which states that, given a scalar
variable V and a vector variable W the variance of a linear
regression of V on W is given by [5], [9]:

σ(V |W ) = σ(V )− Σ(V ;W )Σ(W )−1Σ(V ;W )T , (5)

where Σ(·), Σ(·; ·) and σ(·) denote respectively covariance
matrix, cross-covariance matrix and variance. Here, (5) is
exploited assuming V = yj,n and W = [yqj,nY

q
k,n], so that

the covariance and cross-covariance matrices can be obtained
by rearranging the elements of the ACF matrices Γ0, ...,Γq ,
and the partial variance σ(V |W ) is equivalent to the desired
error variance λj|jk [5].

C. GC based on State Space models (GC-SS) [6]

The VAR model (1) can be represented equivalently as
an SS model which relates the observed process Yn to an
unobserved state process Zn through the equations [6]

Zn+1 = AZn + KEn (6)



Yn = CZn + En, (7)

where the innovations En = Yn − E[Yn|Y −n ] are equivalent
to the innovations Un in (1) and thus have covariance matrix
Φ ≡ E[EnE

T
n ] = Σ. This representation, typically denoted

as ”innovation form” SS model (ISS) [6], also evidences the
Kalman Gain matrix K, the state matrix A and the observation
matrix C, which can all be computed from the original VAR
parameters in (1). The advantage of this representation is that it
allows to form ”submodels” which exclude one or more scalar
processes from the observation equation (7) leaving the state
equation (6) unaltered. In particular, the submodel excluding
the driver process yi has observation equation:

Yjk,n = C(jk)Zn + Ejk,n, (8)

where the subscript (jk) denotes the selection of the rows
with indices j and k in a matrix. As demonstrated in [6], the
submodel (6-8) is not in ISS form, but can be converted into
ISS by solving a Discrete Algebric Riccati equation (DARE).
Then, the covariance matrix of the innovations Ejk,n includes
the desired error variance λj|jk as the first diagonal element.

D. Partial Conditioning GC (PCGC) [7]

Partial conditioning is an approach whereby GC is com-
puted, for any assigned pair of driver and target processes,
including only a subset of the M observed processes in the
VAR representation. Specifically, to compute GC from the ith

to the jth process in Y , a VAR model in the form of (1) is
identified starting from a vector process which comprises yi,
yj and the nd processes which are deemed as most informative
for the driver yi. Such other processes, which are collected in
the vector Yc, are identified maximizing the mutual informa-
tion between y−i,n and Y −c,n [7]; maximal mutual information
is obtained, under the Gaussian assumption, when the matrix
formulation of the partial variance in (5) is minimized [5].
Moreover, the number of conditioning processes is selected
automatically finding the knee of the curve that measures
the MI values as a function of the number of processes in
Yc (up to M − 1). Then, a double regression limited to the
subset of identified processes is performed defining the full
and restricted regression models:

yj,n =

nd+2∑
m=1

p∑
k=1

cmkym,n−k + ej|ijc,n, (9)

yj,n =

nd+2∑
m=1,m 6=i

p∑
k=1

c̃mkym,n−k + ej|jc,n. (10)

After identification of these models through the OLS method,
the variance of the residuals λj|ijc = E[e2j|ijc,n] and λj|jc =

E[e2j|jc,n] are estimated and used to compute the GC measure

FC
i→j = ln

λj|jc

λj|ijc
. (11)

E. Partial Conditioning GC based on SS models (PCGC-SS)

Starting from Yc and from the same nd processes selected
for the computation of PCGC, the idea here is to evaluate FC

i→j

with an SS approach. In this case the full model is described by
(9) and the full error variance is λj|ijc = E[e2j|ijc,n]. The error
variance of the restricted regression is obtained considering an
SS model with state and observation equations as follows:

Zijc,n+1 = AZijc,n + KEijc,n (12)

Yjc,n = C(jc)Zijc,n + Ejc,n (13)

Also in this case, by solving a DARE equation is it possibile
to bring the model (12)-(13) into an ISS form, so that the
covariance matrix of the innovations Ejc,n includes the desired
λj|jc as the first diagonal element.

F. Testing the significance of GC values

Since the multivariate GC is a measure of the information
transferred directly (i.e., not through indirect paths) from the
driver to the target process, the assessment of its statistical
significance is useful establish the existence of a directed
link between the two network nodes generating the driver
and target dynamics. In this work, the significance of GC
computed with the five methods described above was tested
generating surrogate driver and target series which share the
same power spectrum of the original time series but are
otherwise uncorrelated [10]. Specifically, 100 sets of surrogate
time series were generated, the GC estimated for each pair
of processes was compared with a threshold set at the 95th

percentile of its distribution on the surrogates, and was deemed
at statistically significant if it exceeded the threshold.

IV. SIMULATION STUDY

Simulated multivariate time series (M = 16) were generated
as realizations of a VAR(3) process fed by Gaussian noises
with variance equal to 0.1. The simulated network had the
tree structure of Fig. 1, previously used in another study [7].
100 realizations of the process were generated under different
values of the parameter K, defined as the ratio between the
number of data samples and the number of AR coefficients
to be estimated [11]. For each realization, the connections
between nodes were randomly assigned from delay 1 to delay
3, with values of the coefficient equal to 0.5.

Fig. 1. Structure of the directed tree with 16 nodes used for the simulation.

For each realization of the process, the performances of the
five methodologies were tested by computing the following



parameters [11]: (i) the mean absolute error (MAE), obtained
as the average relative difference between the estimated GC
value F̂ and the true GC value F assessed over the non-null
links (it represents the average normalized bias in the estima-
tion of the coupling strength over the active network links); (ii)
false positive rate (FPR), false negative rate (FNR) and Area
Under Curve (AUC) in the detection of the network struc-
ture (it represents the performance in detecting the network
structure, where positive and negative outcomes are associated
respectively with non-null and null links); (iii) computational
time required for the entire estimation process for each method
tested (average over K values and realizations).

V. RESULTS

MAE, FNR, FPR and AUC were subjected to a two-way
repeated measures ANOVA considering as within factors K
and the method used (TYPE). The results reported in Table 1
show that both the within-factors and their interactions have
an effect on MAE, FNR, FPR and AUC parameters.

TABLE I
ANOVA RESULTS

Parameters
Factors MAE FNR FPR AUC

K 584∗∗ 610∗∗ 2.31 612∗∗
TYPE 146∗∗ 277∗∗ 33.3∗∗ 284∗∗

K x TYPE 66.1∗∗ 93.3∗∗ 5.72∗∗ 104∗∗

ANOVA resutls (F values).∗∗ means p < 0.001.

Fig. 2 shows the distributions of the MAE assessed for
the five measures computed in different conditions of data
samples available (parameter K). For all methods, the MAE
decreases and its distribution is less dispersed at increasing K,
documenting that the availability of more data reduces the
bias and the variance of GC estimates. The Tukey’s post-
hoc test highlights no significant differences between GC-
DR and PCGC for K=5. In the most challenging condition
(K=1.5) PCGC-SS and GC-DR exhibit the highest and lowest
performance in terms of MAE.

Fig. 2. Violin plot for the MAE. Dots represent the ouliers and the probability
density function is estimated with the kernel density estimator.

Fig. 3 reports the mean and confidence intervals across real-
izations of FNR, FPR and AUC (percentage values) assessed
for the five measures and for different values of K. While
FPR assumes, for each method, the expected steady value of
∼ 5%, FNR shows a sharp decrease with the increase of K,
reaching values close to zero for all methods when K = 5. In
the challenging conditions K = [1.5, 2] PCGC and PCGC-SS
outperform the other methods with no significant differences
between them, as highlighted by the Tukey’s post-hoc test for
each condition analyzed. All methods show an increase of the
AUC value with K, showing that the performance in recovering
the network structure strongly depends on the amount of data.
While with K = 5 all methods exhibit AUC ∼ 100%, in
the conditions K = [1.5, 2], PCGC and PCGC-SS show AUC
values ∼ 20% higher than the other methods. Also in this
case, the two methods behave in a very similar way.

Fig. 3. Plot of means of FNR, FPR and AUC index for the interaction
KxTYPE (respectively panel a, b and c). The diagram shows the mean values
of the indeces for different values of K and different methods. The bars
represent the 95% confidence interval.

The average computational times of the five GC estimation
methods were calculated after their implementation in the



Matlabr environment with parallel computing on a PC with
a 6 cores Intel Xeon (clock speed 3.7GHz), 128GB RAM
DDR4. Results show that the fastest method is GC-DR (com-
putational time of 0.73 sec), followed by PCGC (4 sec), GC-
ACF (76.9 sec), GC-SS (151.9 sec) and PCGC-SS (274.9
sec). Notably, the implementation of PCGC-SS almost doubled
the computational time compared to the exclusive use of SS
models, and increased it of more than 60 times compared to
simple partial conditioning.

VI. DISCUSSION AND CONCLUSIONS

The results of our simulation show that the bias and variance
of the estimates of the multivariate GC strongly depend on
the amount of data samples available relative to the number
of model coefficients regulated by the parameter K (Fig.
2). This aspect has already been explored in the context of
EEG signals [11], [12] and the present results confirm that a
solution to a linear regression problem with OLS is not feasible
when the amount of observations is close to the amount of
VAR parameters to be estimated (K=1.5). The deterioration
of the performances with lower values of K is observed also
as regards the detection of the network structure (Fig. 3),
confirming previous studies reporting an increased rate of false
negative detection of causality in unfavorable conditions of
data samples available [12].

As anticipated in the Introduction, the high bias and variance
exhibited by the GC-DR method for each value of K can
be ascribed to the fact that, even if the full model is of
finite order, the restricted model is theoretically of infinite
order and thus it cannot be identified properly [3]. This
problem is tackled successfully by the GC-ACF and GC-
SS methods, which offer more appropriate identification of
the restricted model (respectively, through exploitation of the
ACF computed up to lags much larger than the model order
[4] and through a closed form parametric representation of
the restricted model [9]) and obtain lower values of MAE
than the classical DR approach (Fig. 2). On the other hand,
PCGC performs worse than GC-ACF and GC-SS in favorable
conditions of data samples. While this is expected because
PCGC is based on a double regression, its accuracy improves
when K decreases, up to the point that it outperforms GC-ACF
and GC-SS when K=1.5 (Fig.2). This behavior, related to the
prior selection of a subset of processes [7], is even improved
by the use of PCGC-SS, which inherits the advantages of
proper VAR formulation and partial conditioning and yield
the best accuracy in the estimation of GC values, especially
in conditions of data paucity (Fig.2, K=1.5). The advantages of
the partial conditioning scheme appear more evidently when
the focus is on the network structure rather than on the GC
values (Fig. 3). In this analysis, PCGC and PCGC-SS exhibit
overlapping trends with better performance compared to the
other methods in terms of FNR and AUC. This highlights how
conditioning on a small number of processes allows a more
correct detection of network links.

The reported results document how partial conditioning
can be efficiently integrated in the context of SS modelling,

providing a new tool for GC analysis. However, the advantage
provided in the accuracy of GC estimates comes at the cost
of higher computational times. This drawback, related to the
need of implementing several SS models and submodels,
may become critical when analyses need to be performed on
large networks (such as brain networks) without the proper
computational power.

In conclusion, we showed that an accurate estimation of the
multivariate GC should account both for appropriate modeling
schemes (like the SS framework) and for strategies to limit the
number of variables involved into practical estimation (like the
partial conditioning). The use of the PCGC-SS estimator can
provide, when computational time is not a critical issue, an
accurate way to assess the structure and the link strength in
dynamical networks explored in unfavorable analysis condi-
tions. A possible application, desirable both in neuroscience
and in the field of network physiology, is the evaluation of
multiscale GC where computation is challenging at coarse time
scales due to substantial reduction of the time series length
[8]. Future works will be directed to test these estimators
on real physiological signals in the context of information
dynamics [13], and to compare them with other variable
reduction methods such as those based on sparse identification
[11], [14].
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