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1 Introduction

Within classical General Relativity (GR) a series of theorems [1–5] state that the unique
vacuum, stationary solution is the Kerr metric [6], which is therefore believed to provide a
reliable description of the spacetime around any dark compact object formed after gravi-
tational collapse.

Any stationary Black Hole (BH) in isolation is axisymmetric. As a result the only
non-vanishing mass (current) multipole moments are M` = M`m=0 (S` = S`m=0), that
satisfy the elegant relation [7, 8]

M` + iS` =M`+1 (iχ)` , (1.1)

where M = M0 is the BH mass, J = S1 the angular momentum, and χ ≡ J /M2 the
dimensionless spin.1 Equatorial symmetry of the Kerr metric impliesM` = 0 (S` = 0) when
` is odd (even), and the specific spin dependence of the non-vanishing moments, M` ∝ χ`

and S` ∝ χ`. This peculiarity of the Kerr metric is not enjoyed by other compact-object
solutions in GR [9–12], neither by BHs in other gravitational theories [13–15].

Measuring (at least three) properties of an astrophysical dark object, such as mass,
spin, and the mass quadrupole M2, may provide null-hypothesis tests of the Kerr metric
and as consequence of Einstein’s gravity in the strong-field regime [13–19]. This adds to
other observational tests of fuzzballs that have been recently proposed, see, e.g., refs. [20,
21]. Quite intriguingly, the current gravitational-wave observations (especially the recent
GW190814 [22] and GW190521 [23, 24]) have not yet excluded the possible existence of
exotic compact objects other than BHs and neutron stars.

According to the cosmic censorship conjecture, curvature singularities in GR are be-
lieved to be covered by event horizons [25–27]. A consistent quantum theory of gravity
should be able to resolve or smoothen BH singularities and to provide a microscopical inter-
pretation of the BH thermodynamical properties, such as entropy and temperature, related
to the area of the event horizon and its surface gravity, respectively [28, 29]. Furthermore,
BH evaporation through the emission of Hawking radiation [30] leads to other paradoxes,
that can be addressed in a consistent quantum theory of gravity such as string theory.

In this framework, BHs can be represented as bound-states of strings and D-branes
intersecting point-wise along the spacetime. Extremal (charged BPS) BHs can be success-
fully described and a precise microscopic account of the entropy can be given through the
counting of light excitations of the open strings connecting the various branes [31–33].

The information-loss paradox and the singularity problem [25–27] in GR can be solved
in string theory relying on the “fuzzball” proposal [34–38]. From this vantage point, BH
microstates are associated to smooth horizonless geometries with the same asymptotics
(mass, charges, and angular momenta). Classical properties of BHs emerge as a result
of a coarse-graining averaging procedure or as a ‘collective behavior’ of fuzzballs [39–43].
Unfortunately, so far, finding a statistically significant fraction for five-dimensional (3-
charge) and for four-dimensional (4-charge) BPS BHs have proven to be too challenging

1We use ~ = c = GN = 1 throughout.
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of a task. Only a limited class of microstate geometries have been found, using multi-
center or stratum ansatze [44–49], that can be embedded in a consistent quantum theory
of gravity such as string theory [50–52]. Very little or nothing is known at the moment
about microstates of neutral and non-BPS BHs.

Furthermore, not much has been done to investigate the phenomenological conse-
quences of the fuzzball proposal and to identify observables that can distinguish an en-
semble of microstates from the classical BH picture or from other exotic compact objects
which are still viable hypothesis. In particular, the measured masses of the binary com-
ponents of GW190814 [22] and of GW190521 [23, 24] look incompatible with the standard
astrophysical formation scenario for BHs, being either too light (as in the case of the ligh-
est body in GW190814) or too massive (as it seems the case for at least one of the bodies
in GW190521). Thus, testing the “Kerr hypothesis” is an urgent cornerstone of strong-
field verifications of gravity, based on different observations with both electromagnetic and
gravitational-wave probes [13–19].

The scope of this paper (a companion of a recent letter [53]) is to study one specific
aspect of fuzzballs that can be used to distinguish microstates geometries from their clas-
sical BH counterpart. Namely, we shall study the multipolar structure, which inter alia
affects the motion of test particles around a central object, the inspiral of a binary sys-
tem, and therefore the electromagnetic signal from accreting dark compact objects [13] and
the gravitational-wave signal emitted by coalescing binaries [54]. Studying the multipolar
structure of fuzzballs is particularly interesting for two reasons:

• As argued in [53], the multipolar structure of a fuzzball is significantly richer than
that of a Kerr BH. While the latter is equatorial and axial symmetric, a microstate
geometry can generically break any symmetry. This results in new classes of multipole
moments which are identically zero in the Kerr case [12]. Furthermore, as dictated
by the no-hair theorem [3–5], all properties of a Kerr BH — including of course its
infinite tower of multipole moments — are determined in terms of its mass M and
angular momentum J . Therefore, measuring independently three arbitrary multipole
moments (typically the mass, spin, and the mass quadrupole moment) can place a
strong constraint on alternatives to the classical Kerr picture [12–19].

• At variance with other observables, the multipole moments have the advantage of
being easy to calculate, since they require only an asymptotic expansion of the metric.
This is particularly convenient in the context of fuzzballs, since the latter are typically
described by very complicated metrics. Furthermore, although microstate geometries
are manifestly regular when lifted to higher dimensions, they appear singular in four
dimensions, the singularity being compensated by some divergence of the scalar fields
emerging from the sanctification. Although harmless from a physical point of view,
this singularity (as well as the lack of symmetries) complicates some phenomenological
studies, for example the computation of the quasi-normal modes of these solutions.
On the contrary, the multipole moments are extracted at asymptotic infinity, where
the solution is manifestly regular also in four spacetime dimensions.

– 2 –
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In this work we provide full details of the computation presented in ref. [53] and extend
that analysis to other, more general, solutions. While our approach is general and applies to
any multi-center microstate geometry, we shall focus mostly on three-center solutions. As
we shall show, the four-dimensional parameter space of this family is very rich. We identify
some invariants associated with the multipole moments and employ a statistical analysis
to compare the multipole moments of random microstate geometries with: a) those of a
Kerr BH with the same mass and angular momentum; and b) those of the corresponding
solution in the (non-rotating) BH limit, which is obtained when all centers collide on a
point. In the former case we find that about 90% of the solutions have invariant moments
larger than Kerr, whereas in the latter case the invariants appear to be always larger
than the corresponding quantities in the BH limit. Moreover these invariants grow always
monotonically with the size (average distance between the centers) of the microstate. These
properties are analogous to the fact that the quasi-normal mode exponential decay rate
(the Lyapunov exponent of unstable null geodesics near the photon sphere) is maximum for
the BH solution [43] and provide a portal to test the fuzzball proposal phenomenologically.

2 Multipole moments of generic stationary spacetime

In this section, we introduce two equivalent definitions of the multipole moments which
can be directly applied to generic stationary and asymptotically flat metrics with no extra
symmetry.

2.1 Multipole moments of the metric

We consider stationary asymptotically flat geometries in four dimensions. In an asymptot-
ically Cartesian mass centered (ACMC) system, the metric of a stationary asymptotically
flat object can be written as [53]

ds2 = dt2(−1 + c00) + c0i dt dxi + (1 + c00) dx2
i + . . . (2.1)

with c00 and c0i harmonic functions admitting a harmonic expansion of the form

c00 = 2
∞∑
`=0

∑̀
m=−`

1
r1+`

√
4π

2`+ 1M`mY`m

c0i = 2
∞∑
`=1

∑̀
m=−`

1
r1+`

√
4π(`+ 1)
`(2`+ 1) S`mY

B
i;`m

(2.2)

in terms of the scalar (Ylm) and axial vector (Y B
i;`m) spherical harmonics.2 In (2.1) and

thereafter the dots stand for terms involving spherical harmonics with `′ < ` at order
r−(1+`) in the expansion.

We use the following definition for the scalar spherical harmonics

Y`m =
√

2`+ 1
4π

(`−m)!
(`+m)!e

imφP`m(cos θ) (2.3)

2Note that the reality of the metric components, along with the properties of spherical harmonics, imply
the relationM`,−m = (−1)mM ∗

`,m (and likewise for the current moments).
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where P`m(x) are the associated Legendre polynomials

P`m(x) =


(−)m(1− x2)m/2

2``!
d`+m

dx`+m
(x2 − 1)`, m ≥ 0

(`+m)!
(`−m)!

(1− x2)−m/2

2``!
d`−m

dx`−m
(x2 − 1)`, m < 0 .

(2.4)

For the sake of generality we give here the definition of the (radial, electric, and magnetic)
vector spherical harmonics3

Y R
i;`m = niY`m , Y E

i;`m = r∂iY`m√
`(`+ 1)

, Y B
i;`m = εijk nj r∂kY`m√

`(`+ 1)
. (2.5)

The expansion coefficientsM`m and S`m in eq. (2.2) are the mass and current multipole
moments of the spacetime, respectively. They can be conveniently packed into a single
complex harmonic function defined as

H = H1 + iH2 =
∞∑
`=0

∑̀
m=−`

1
r1+`

√
4π

2`+ 1 (M`m + iS`m)Y`m . (2.6)

In terms of these variables the ACMC metric (2.1) can be written in the form

ds2 = −e−2H1(dt+ ω)2 + e2H1dx2
i + . . .

∗3dω = εijk∂kc0jdx
i + . . . = 2 dH2 + . . .

(2.7)

with dots standing again for lower harmonics.
For axi-symmetric solutions (like the Kerr metric) it is convenient to rotate the co-

ordinate axes so that the angular momentum vector is aligned with the z-axis. In this
case the spherical harmonics with m 6= 0 vanish and one can write (defining from brevity
M`0 ≡M` and likewise for the current moments)

H =
∞∑
`=0

1
r1+` (M` + iS`)P`(cos θ) . (2.8)

2.2 Multipolar expansion of the Killing one-form associated to stationarity

The mass (M`m) and spin (S`m) multipole moments can be alternatively viewed as the
“electric” and “magnetic” spherical harmonic expansion coefficients of the Killing one-
form K = gtµdx

µ associated to the Killing vector ∂t of the stationary spacetime. Indeed,
inverting formulae (2.2) one finds

M`m =
√

2`+ 1
2(`+ 1)

√
4π

lim
r→∞

r`
∫
Y ∗`m ∗ dK

S`m = −
√

2`+ 1
2(`+ 1)

√
4π

lim
r→∞

r`
∫
Y ∗`mdK

(2.9)

3Notice that Y R
i;`m = 1

r
Xi, Y`m, Y E

i;`m = rP iY`m and Y B
i;`m = LiY`m where Xi = xi, P i = ∂i and

Li = εijkx
i∂k are the coordinate, momentum, and angular momentum operators, respectively. Moreover

only Y B
i;`m are eigenfunctions of the Laplacian ∇2

S2 .
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where we used ∇2
S2
Y`m = −`(`+1)Y`m. Mass and angular momentum can be read off from

the lower multipole moments

M =M00 , |J | =
√
|S10|2 + |S11|2 + |S1−1|2 . (2.10)

For later convenience, we introduce the dimensionless ratios

M`m = M`m

M`+1 , S`m = S`m
M`+1 , (2.11)

and the dimensionless spin parameter, χ = J /M2.

2.3 Multipolar structure of the Kerr(-Newman) metric

Although the multipolar structure of the neutral Kerr and charged Kerr-Newman BHs
coincide [55], here we review the most generic case of the Kerr-Newman solution. In
the Boyer-Lindquist (BL) {t, r̂, θ̂, φ} coordinates the metric and gauge field describing the
Kerr-Newman solution can be written as4

ds2 = −(1−∆t)dt2−2a sin2 θ∆tdt dφ+ Σ
∆r

dr2+Σdθ̂2+sin2 θ̂

Σ
[
(r̂2+a2)2−a2∆r sin2 θ̂

]
dφ2

A = −Qr̂Σ (dt−a sin2 θ̂ dφ)−P cos θ̂
Σ [a dt−(a2+r̂2) dφ] , (2.12)

where

Σ = r̂2 + a2 cos2 θ̂ , ∆t = 2Mr̂ − (Q2 + P 2)
Σ , ∆r = r̂2− 2M r̂+ a2 +Q2 +P 2 . (2.13)

This solution is characterised by the massM, electric and magnetic charges Q and P , and
angular momentum J = aM defined as

M = 1
8π

∫
S2
∞

∗dK, J = − 3
16π lim

r→∞

∫
S2

r

r cos θ dK = aM

Q = 1
4π

∫
S2
∞

∗F , P = 1
4π

∫
S2
∞

F .

(2.14)

Inner and outer horizons exist for masses satisfying M2 ≥ Q2 + P 2 + a2 and are located
at r̂± =M±

√
M2 − a2 −Q2 − P 2. A curvature singularity is found at Σ = 0. The area

of the BH horizon is AH = 4π(r̂2
+ + a2).

The Kerr-Newman metric in the BL coordinates is not in the ACMC form. Indeed, in
spherical coordinates a metric in the ACMC form can be written as

ds2 = gµνdx
µdxν = ea eb(ηab + cab) , ea = (dt, dr, rdθ, r sin θdφ) , (2.15)

with cab such that only harmonics of order at most ` at order r−`+1 are present. It is
easy to see that cr̂r̂ and cθ̂θ̂ in the Kerr-Newman metric in BL coordinates fail to meet

4t ∈ (−∞,+∞); r̂ ∈ [0,+∞); θ̂ ∈ [0, π]; φ ∈ [0, 2π].
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this requirement. To bring the metric to the ACMC form one can perform the coordinate
transformation

r2 = (r̂ −M)2 + a2 sin2 θ̂ , r cos θ = (r̂ −M) cos θ̂ , (2.16)

which reduces to the (perturbative) result found by Hartle and Thorne [56] to second order
in the spin.

In the new variables one finds the non-vanishing components

c00 = crr = cθθ = cφφ = 2M
r

∞∑
n=0

(−)na
2n

r2nP2n(cos θ) + . . .

c0φ = 2aM
r2

∞∑
n=0

(−)na
2n

r2n
∂θP2n−1(cos θ)

2n− 1 + . . . (2.17)

leading to [7, 8]
M2n = (−1)na2nM , S2n+1 = (−1)na2n+1M. (2.18)

The mass and current multipole moments combine into the single complex harmonic
function

HKerr =
∞∑
`=0

(M` + iS`)
P`
r1+` = M√

x2
1 + x2

2 + (x3 − ia)2
. (2.19)

We notice that real and imaginary parts of HKerr are given in terms of a sort of analytic
continuation of a two-center harmonic function with centers located at ±ia. In particular
the mass is M and the angular momentum J = aM. The Schwarzschild solution is
obtained by sending a→ 0 and the two centers coincide at the origin.

Finally, note that the multipole moments of the Kerr-Newman metric, eq. (2.18), do
not depend explicitly on the charges, so they are the same in the neutral (Kerr) limit [55].
Obviously the same holds true for Reissner-Nordström (the χ→ 0 limit of Kerr-Newman),
whose multipolar structure is the same as for Schwarzschild. More generally, the presence of
minimally coupled scalar and gauge fields, equipped with energy momentum tensors dying
faster than 1/r3 at infinity, does not destroy the Ricci flatness of the leading harmonic
part of the ACMC metric (and hence it does not affect the way multipole moments can be
extracted), but nevertheless results in a very different (from Kerr) multipolar structure.

3 Fuzzball solutions and their multipolar structure

Fuzzball solutions can be viewed as multi-center generalizations of the single center Schwarz-
schild and two-center Kerr metrics. In this section we review a family of solutions and
discuss their multipolar structure.

3.1 The metric

In the framework of N = 2 four-dimensional supergravity, we consider gravity minimally
coupled to four Maxwell fields and three complex scalars. A general class of extremal

– 6 –
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solutions of the Maxwell-Einstein-scalar system is described by a metric of the form [57–59]

ds2 = −e2U (dt+ ω)2 + e−2U
3∑
i=1

dx2
i , (3.1)

with

e−4U = V L1L2L3−K1K2K3M+1
2

3∑
I>J

KIKJLILJ−
MV

2

3∑
I=1

KILI−
M2V 2

4 −1
4

3∑
I=1

(KILI)2

(3.2)

∗3dω = 1
2 (V dM−MdV+KIdLI−LIdKI) (3.3)

and {V,LI ,KI ,M} eight harmonic functions, I = 1, 2, 3. We consider N -center harmonic
functions

V = v0 +
N∑
a=1

va
ra
, LI = `0I +

N∑
a=1

`I,a
ra

KI = kI0 +
N∑
a=1

kIa
ra
, M = m0 +

N∑
a=1

ma

ra
(3.4)

with ra = |x − xa| and xa the position of the ath center. The quantities (`Ia,ma) and
(va, kIa) describe the electric and magnetic fluxes of the four-dimensional gauge fields, so
Dirac quantisation requires that they be quantised. Here we adopt units such that they
are all integers.

Charges and positions of the centers can be chosen such that the metric near the center
lifts to a smooth five-dimensional geometry of type Rt times a Gibbons-Hawking space.
This requirement boils down to a restriction on the kJa known as bubble equations [57]

N∑
b=1

Π(1)
ab Π(2)

ab Π(3)
ab

vavb
rab

+ v0
k1
ak

2
ak

3
a

v2
a

−
3∑
I=1

`0Ik
I
a − |εIJK |

kI0k
J
a k

K
a

2va
−m0va = 0 (3.5)

where
Π(I)
ab = kIa

va
− kIb
vb

(3.6)

and to the following relations

`I,a = −1
2 |εIJK |k

J
a k

K
a , ma = k1

ak
2
ak

3
a (3.7)

On the other hand, at infinity the five-dimensional geometry looks like a four-charged
BH in four dimensions times a circle. The parameters kIa and the positions of the centers
describe the charges and moduli of the microstate.

Furthermore the regularity conditions

e2U > 0 , LIV + 1
2 |εIJK |K

JKK > 0 , (3.8)

ensuring the absence of horizons and of closed time-like curves, should be imposed.
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Finally, even though our derivation of the multipole moments in the following section
is completely general, we will later focus on fuzzballs of intersecting orthogonal branes
(considered in [48]) for which the following conditions hold

`0I = v0 = va = 1 , m0 = kI0 = 0 . (3.9)

3.2 The multipole moments

The metric (3.1) is already in the ACMC form. Restricting to leading harmonic compo-
nents, the formulae (3.2), (3.3) lead to

e−4U = 1 + 4
N∑
a=1

µa
ra

+ . . .

∗3dω = 1
2d(v0M −m0 V + kI0LI − `0,IKI) + . . . = 2d

(
N∑
a=1

ja
ra

)
+ . . . (3.10)

where µa and ja are some rational numbers following from the expansion of the left-hand
side and we discard terms dying faster than r−1

a in the limit of large ra since they contribute
to lower harmonic components. Comparing with (2.7), one finds that the complex harmonic
function H = H1 + iH2 can then be written as a sum over centers

H =
∞∑
`=0

∑̀
m=−`

√
4π

2`+ 1
Y`m
r1+` (M`m + iS`m) =

N∑
a=1

µa + ija
ra

+ . . . (3.11)

Using the harmonic expansion

1
ra

=
∞∑
`=0

∑̀
m=−`

√
4π

2`+ 1
Ra`mY`m(θ, φ)

r`+1 (3.12)

with

Ra`m = |xa|`
√

4π
2`+ 1 Y

∗
`m(θa, φa) (3.13)

one finds the compact result

M`m + iS`m =
N∑
a=1

(µa + ija)Ra`m . (3.14)

We put the origin of the coordinate system in the center-of-mass and orient the z-axis along
the angular momentum, so that

N∑
a=1

µaxa = 0 , J =
N∑
a=1

jaxa = J ez (3.15)

with ez the unit vector along z. With this choiceM1m = 0, S1±1 = 0, and S10 = J .

3.3 Single-center solutions

Single center solutions correspond to Reissner-Nordström BHs, their multipole structure
coincides with the one of Schwarzschild BHs and reads

M00 =M , M`>0,m = 0 , S`m = 0 . (3.16)

– 8 –
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3.4 Two-center solutions

With only two centers, under the assumptions (3.9), there is no solution to the bubble
equations (3.5).5 Still, it is interesting to observe that the multipole moments of singular
two-center solutions bear some similarity with those recently obtained in [63] for non-
extremal STU BHs, with some important differences. One can always align the center
position along the z-axis, i.e. θ1 = 0, θ2 = π and, by requiring that the center of mass lies
at the origin, we get

x1 = µ2
M

L ez , x2 = − µ1
M

L ez . (3.17)

The multipole moments follow then from (3.14) and read6

M`0 =
(
− L

M

)` [
µ`1µ2− (−µ2)`µ1

]
, S`0 =

(
− L

M

)` [
µ`1 j2 + (−µ2)` j1

]
. (3.18)

Notice that these solutions depend on five parameters, µ1, µ2, j1, j2, and L/M. The
multipole expansion of the two-center solution significantly simplifies for µ1 = µ2 =M/2,
j1 = −j2 = j. The non-trivial moments in this case are

M2n 0 = ML2n

22n , S2n+1 0 = −jL
2n+1

22n , n ≥ 0 (3.19)

and they differ from those of Kerr BHs, eq. (2.18), only on the missing alternating sign.7

3.5 Three-center solutions

Solutions of the bubble equations exist for N ≥ 3. For concreteness, here we focus on a
simple class of three center solutions defined by taking

vi = 1, `I,a = −1
2 |εIJK |k

J
a k

K
a , ma = k1

ak
2
ak

3
a

v0 = 1, m0 = 0, `0I = 1, kI0 = 0
(3.20)

with kJa satisfying the bubble equations

∑
b 6=a

1
ra,b

3∏
I=1

(kIa − kIj ) + k1
ak

2
ak

3
a −

3∑
I=1

kIa = 0 . (3.21)

In addition, one has to impose the regularity conditions (3.8). For this choice one finds

H1 = 1
4

(
V +

3∑
I=1

LI − 4
)

+ . . . =
3∑

a=1

µa
ra

+ . . .

H2 = 1
4

(
M −

3∑
I=1

KI

)
+ . . . =

3∑
a=1

ja
ra

+ . . .

(3.22)

5Two-center regular geometries with asymptotics differing from (3.9) were obtained in [60–62].
6The multipole moments of a non extremal STU BHs are given by (following the notation of ref. [63])

M` = − i
2

(
− a

M

)`

ZZ
(
Z`−1 − Z`−1

)
, S` = i

2

(
− a

M

)`−1 J
M

(
Z` − Z`

)
with Z = D − iM. We notice that the multipole structure of the STU BH depends on four independent
parameters: M, J , a, D.

7Interestingly enough, they formally match if one chooses L = 2ia and j = iM/2.
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where dots again refer to lower harmonic contributions and

µa = 1
4

(
va +

3∑
I=1

`I,a

)
, ja = 1

4

(
ma −

3∑
I=1

kIa

)
. (3.23)

Multipole moments are then given by

M`m + iS`m =
3∑

a=1
(µa + ija)Ra`m . (3.24)

Solutions will be labeled by four integers ~κ = (κ1, κ2, κ3, κ4) and a length scale L. We
will consider various limits where some κ’s and/or L become large or small. We will often
display formulae for the following dimensionless ratios

M`0 = M`0
χ`

, S`0 = S` 0
χ`

, (3.25)

where ` is even and odd, respectively. These ratios are ±1 for Kerr BHs and are ill-defined
for Schwarzschild BHs (see [64] and references therein for early studies of these ratios in the
context of compact objects within GR and beyond). Furthermore, in the case of neutron
stars [56, 64, 65] and boson stars [66] they are always larger than in the BH case, although
these solutions are not continuously connected to the BH solution. For other exotic compact
objects that continuously connect to the BH metric (e.g., gravastars or strongly anisotropic
stars) these ratios approach the Kerr value in the BH limit [9–12, 67]. In the context of
microstates these ratios have been recently studied in [63, 68].

We will provide some evidence that mass and current multipole moments of microstate
solutions are typically (but not always) bigger than those of a Kerr BH with the same mass
and angular momentum. Furthermore, it is convenient to define the quadratic invariants
which are proportional to

M` ≡

√√√√ ∑̀
m=−`

|Mlm|2 , S` ≡

√√√√ ∑̀
m=−`

|Slm|2 . (3.26)

More general invariants can be built analogously (see appendix A for details). Note that
the above relations reduce to the standard definitions of M` and S` in the axisymmetric
case, modulo the sign. We will provide numerical evidence that for three-center microstate
geometries these invariants grow monotonically with the size L of the microstate, with a
global minimum at L = 0, where the microstate reduce to a spherical BH.

3.5.1 The metric

The simplest, regular, horizonless geometries arise for three-center solutions. We restrict
ourselves to fuzzballs of four-charged BHs obtained from orthogonal branes, so we require
that KI and M vanish at order 1/r, i.e.

3∑
a=1

kIa =
3∑

a=1
k1
ak

2
ak

3
a = 0 . (3.27)
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These conditions determine the kIa to be of the form

kIa =

−κ1κ2 −κ1κ3 κ1(κ2 + κ3)
κ3 κ2 −κ2 − κ3
−κ4 κ4 0

 , (3.28)

and therefore

V = 1 +
3∑

a=1

1
ra
, M = κ1 κ2 κ3 κ4

( 1
r1
− 1
r2

)

L1 = 1 + κ4

(
κ3
r1
− κ2
r2

)
, L2 = 1 + κ1κ4

(
−κ2
r1

+ κ3
r2

)

L3 = 1 + κ1

(
κ2κ3
r1

+ κ2κ3
r2

+ (κ2 + κ3)2

r3

)
, K1 = κ1

(
−κ2
r1
− κ3
r2

+ κ2 + κ3
r3

)

K2 = κ3
r1

+ κ2
r2
− κ2 + κ3

r3
, K3 = κ4

(
− 1
r1

+ 1
r2

)
(3.29)

with ra = |x − xa| and κi some arbitrary integers. Finally, the bubble equations (3.21)
constrain the distances rab = |xa − xb| between the centers to be related by

r12 = 2κ1κ4(κ2 − κ3)2r23
κ1κ4(2κ2

2 + 5κ2κ3 + 2κ2
3) + (κ2 + κ4 − κ1κ3 + κ1κ2κ3κ4)r23

r13 = κ1κ4(2κ2 + κ3)(κ2 + 2κ3)r23
κ1κ4(2κ2

2 + 5κ2κ3 + 2κ2
3)− (κ1 − 1)(κ2 + κ3)r23

. (3.30)

The solution describes a microstate of a Reissner-Nordström BH with a magnetic charge
P0 and three electric charges QI given by

P0 = 3 , Q1 = κ4(κ3−κ2) , Q2 = κ1κ4(κ3−κ2) , Q3 = κ1(κ2
2 + 4κ2κ3 +κ2

3) .

Besides the parameters κi describing the BH charges, the solution is described by a con-
tinuous parameter r23 labelling the microstate. To have non-zero and positive charges8 we
require

κ1 > 0 , κ4 > 0 , κ3 > κ2 ≥ 0 . (3.31)

One can check that for κ3 > κ2 the regularity conditions (3.8) are always satisfied, so from
now on κ3 > κ2 > 0 will be always assumed.

Finally, the mass and angular momentum of the solution are given by

M = µ1 + µ2 + µ3 , J =
3∑

a=1
jaxa = J ez (3.32)

8For BPS-ness it is enough that the charges be of the same sign and I4(P0, QI , P
I , Q0) > 0.
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with xa the positions of the centers, and

µ1 = 1
4(1+κ1κ2κ3−κ1κ2κ4+κ3κ4) , µ2 = 1

4(1+κ1κ2κ3+κ1κ3κ4−κ2κ4) ,

µ3 = 1
4(1+κ1(κ2+κ3)2) ,

j1 = 1
4[κ2+κ4+κ1κ3(κ2κ4−1)+(κ1−1)(κ2+κ3)]

j2 = −1
4(κ2+κ4+κ1κ3(κ2κ4−1)) , j3 = −1

4(κ1−1)(κ2+κ3) .
(3.33)

Notice that j1 + j2 + j3 = 0, so much so that J is invariant under rigid translations of the
centers.

3.5.2 The location of the centers

We define our coordinate system such that the three vertices lie on the (x, z)-plane (ya = 0),
with the center of mass at the origin and the angular momentum aligned along the (positive)
z direction. So we take

xa = (xa, 0, za) (3.34)

with

xa = α εabc µb jc , z1 = βµ2 + γµ3 , z2 = −βµ1 , z3 = −γµ1 , (3.35)

and α, β, γ three parameters to be determined. It is easy to see that this choice satisfies
the defining conditions

3∑
a=1

µaxa =
3∑

a=1
µaza = 0 =

3∑
a=1

jaxa . (3.36)

The parameters α, β, γ are determined by the bubble equations that yield

r23 = L , r13 = √ρL , r12 =
√
σL (3.37)

with
√
ρ = 1

1− ã1L
,

√
σ = ã2

1 + ã3L
(3.38)

and

ã1 = (κ1−1)(κ2+κ3)
κ1κ4(2κ2+κ3)(κ2+2κ3) , ã2 = 2(κ3−κ2)2

(2κ2+κ3)(κ2+2κ3) , (3.39)

ã3 = κ2+κ4+κ1κ3(κ2κ4−1)
κ1κ4(2κ2+κ3)(κ2+2κ3) .

Under the assumptions (3.31), we find that the parameters ãi always span a finite domain

0 ≤ ã1 ≤
1
2 , 0 ≤ ã2 ≤ 1 , −1

2 ≤ ã3 ≤
1
2 . (3.40)
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Solving the bubble equations one finds

α = L
√

2(ρ+σ)− 1− (ρ−σ)2

2M
√
j2

2 + ρj2
1 + (1− σ + ρ)j1j2

β = L [j1(µ1(ρ+ σ − 1)− µ3(1 + ρ− σ))− j2(µ1(1− ρ+ σ) + 2µ3)]

2µ1M
√
j2

2 + ρj2
1 + (1− σ + ρ)j1j2

γ = L [j1(µ2(1 + ρ− σ) + 2µ1ρ) + j2(µ1(1 + ρ− σ) + 2µ2)]

2µ1M
√
j2

2 + ρj2
1 + (1− σ + ρ)j1j2

. (3.41)

Solutions exist only if the argument of the square root in the numerator of α is positive.9

Together with the positivity of rab, one finds that solutions exist for 0 < L < Lmax with

Lmax = (1 + ã2)
2ã3

(√
1 + 4ã2ã3

ã1(ã2 + 1)2 − 1
)
, (3.42)

obtained by carefully inspecting the following inequalities

ã3L ≥ −1 , 0 ≤ ã1L ≤ 1 , 2(ρ+σ)− 1− (ρ−σ)2 ≥ 0 . (3.43)

For L = Lmax (i.e. at the boundary of the third inequality) the parameter α vanishes and
the centers are aligned along the z-axis, therefore the solution is axisymmetric. Since ρ
and σ respectively diverge when the second and first inequality above are saturated on the
right, it is easy to see that the last inequality is often the most stringent one.

We can distinguish two main classes of solutions:

• κ1 = 1: for this choice ã1 = 0, ρ = 1 so the triangle formed by the three centers is
isoscele or equilateral. The conditions (3.43) are always satisfied so solutions exist
for any choice of L.

• κ1 6= 1: this is the generic case, solutions exist only inside the finite domain L ∈
[0, Lmax].

3.5.3 The multipole moments

The resulting expressions for the multipole moments read

M`m + iS`m =
N∑
a=1

(µa + ija)Ra`m . (3.44)

with

Ra`m = |xa|`
√

4π
2`+ 1 Y

∗
`m(θa, φa) (3.45)

and

x1 = (α (µ2 j3−µ3j2), 0, βµ2+γµ3) , x2 = (α (µ3 j1−µ1j3), 0,−βµ1)
x3 = (α (µ1 j2−µ2j1), 0,−γµ1) (3.46)

9One can check that the argument of the square root in the denominators is always positive.
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so that

cos θa = α εabc µbjc
|xa|

, cosφa = sign (εabc µb jc) . (3.47)

The parameters α, β, γ are given by (3.41) while µa, ja are listed in (3.33). The mass and
angular momentum of the solution are given by

M = µ1 + µ2 + µ3 , J = j1(βµ2 + γµ3 + γµ1) + j2(γ − β)µ1 . (3.48)

3.6 Examples of three-center solutions

In this section we present the multipole moments for several interesting examples of the
three-center family of solutions. The general cases are presented in appendix B.

3.6.1 Solution A: ~κ = (1, 0, λ, λ), scaling solution

The scaling solution is characterized by the following choice of the parameters:

κi = (1, 0, λ, λ), µa =
(

1 +λ2

4 ,
1 +λ2

4 ,
1 +λ2

4

)
, ja = (0, 0, 0) (3.49)

P0 = 3, QI = (λ2, λ2, λ2), M = 3(1 +λ2)
4 , J = 0 (3.50)

ãi = (0, 1, 0) , ρ = σ = 1 . (3.51)

Therefore r12 = r23 = r13 = L, implying that the three centers are the vertices of an
equilateral triangle. Since ã1 = 0 the parameter L is unbounded.

The non-trivial mass multipole moments are10

M` ,2p−` =
√

(2`− 2p)!√
(2p)!

M
(
− L√

3

)` [
P` ,2p−`(0) + 2(−1)`P` ,2p−`

(√
3

2

)]
(3.52)

with p = 0, 1, . . . , `, while all current multipoles vanish: S`m = 0. More specifically, the
first nonvanishing moments are

M2,0 = L2

4M2 , M2,2 = 1
4

√
3
2
L2

M2 , M3,1 = − 5
16

L3

M3 , M3,3 = 1
16

√
5
3
L3

M3 , (3.53)

and so on. The moments with m < 0 are given byM`,−m = (−1)mM ∗
`,m.

Unlike the Kerr case, the mass quadrupole is non-vanishing even if the solution is
nonspinning. Furthermore the solution contains also moments with m 6= 0, consistently
with the fact that axisymmetry is broken and reduced to the (discrete) dihedral symmetry
D3 = Z3 o Z2 = S3.

10The expression for the mass multipoles is different from the correspondent one in [53] since, at variance
with what we do here, in [53] vertices were taken to be lying on the (x, y)-plane.
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3.6.2 Solution B: ~κ = (1, 0, κ̄3, κ̄4λ)

We consider a non-scaling solution with parameters

κi = (1, 0, 1, λ), P0 = 3, QI = (λ, λ, 1), M = 2 + λ

2

µa =
(1 +λ

4 ,
1 +λ

4 ,
1
2

)
, ja =

(
λ− 1

4 ,
1− λ

4 , 0
)

ãi =
(

0, 1, λ− 1
2λ

)
, ρ = 1, σ = 1(

1 + λ−1
2λ L

)2 . (3.54)

Notice that ρ = 1, which implies r13 = r23, therefore the vertices form an isosceles triangle.
Again since ã1 = 0 the parameter L is unbounded. In the limit of large λ with L = O(λ0)
one finds

J ≈ Lλ

2(L+ 2) , χ ≈ 2L
(L+ 2)λ

M2 ≈ 1 + 7− 4L− L2

2λ , S3 ≈ 1 + 6
λ
.

(3.55)

Notice that, for large λ, χ� 1 for any value of L, which is consistent with these solutions
being microstates of a non-spinning BH. More generally, the non-trivial mass and spin
multipole moments in this limit take the form

M2n ,0 ≈
λ

2

(
L

2

)2n
, S2n+1 ,0 ≈

λ

2

(
L

2

)2n+1
. (3.56)

that coincide with those of Kerr metric apart from the missing alternating signs. This is
not surprising since in the limit of large λ the mass of two centers is much bigger than the
third one, so the system looks effectively as a 2-center solution.

3.6.3 Solution C: ~κ = (κ̄1, 0, κ̄3 λ, κ̄4 λ)

Here we consider the solution for which κ2 = 0 and κ3,4 � κ1, with arbitrary κ1. Their
analytic expressions are cumbersome and we present them in appendix B. Here we display
the formulae for a given choice of the κ̄’s:

κi = (3, 0, λ, 2λ) , P0 = 3 , QI = (2λ2, 6λ2, 3λ2) , M = 3 + 11λ2

4

µa =
(

1 + 2λ2

4 ,
1 + 6λ2

4 ,
1 + 3λ2

4

)
, ja =

(
λ

4 ,
λ

4 ,−
λ

2

)

ãi =
( 1

6λ2 , 1,−
1

12λ2

)
, ρ = 1(

1− L
6λ2

)2 , σ = 1(
1− L

12λ2

)2 . (3.57)

The value of Lmax in this case is

Lmax = 12λ2
(

1− 1√
2

)
. (3.58)
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The explicit formulae for the multipole moments are not very illuminating, therefore we
consider two subcases with large λ: L ∼ O(1) and L ≈ λ2. For these choices one finds

L = 1 : χ ≈ 4
√

3
121

L

λ3 , M2 ≈ 3λ2, S3 ≈
49
8 λ

2

L = λ2 : χ ≈ 0.05
λ
, M2 ≈ 2.76λ2, S3 ≈ 3.55λ2 . (3.59)

The same scalings with λ are found also for the generic solution presented in section B.2.
In particular, notice that in this case M2 and S3 are always much bigger than unity, which
seems a rather general property of this class of solutions [53].

3.6.4 Solution D: ~κ = (κ̄1, κ̄2 λ, κ̄3 λ, κ̄4 λ)

A representative example in this class is given by

κi = (3, λ, 3λ, 4λ) P0 = 3 , QI = (8λ2, 24λ2, 66λ2) , M = 3 + 98λ2

4

µa =
(

1 + 9λ2

4 ,
1 + 41λ2

4 ,
1 + 48λ2

4

)
, ja =

(
λ+ 9λ3, λ− 9λ3, − 2λ

)

ãi =
(

2
105λ2 ,

8
35 ,

9λ2 − 1
105λ2

)
, ρ = 1(

1− 2L
105λ2

)2 , σ = 82

352
1(

1 + L
105

9λ2−1
λ2

)2 . (3.60)

For this choice of κi the maximum value of L is

Lmax = 3λ2

2(9λ2 − 1)
(√

5040λ2 + 1289− 43
)

(3.61)

for large λ we obtain Lmax ≈ 2
√

35λ ∼ 11.8λ. Again we consider two subcases with large λ:

L = 1 : χ ≈ 0.003
λ

, M2 ≈ −
20
λ2 , S3 ≈ −

57
λ2

L = 10λ : χ ≈ 0.04
λ
, M2 ≈ 6.9, S3 ≈ 20 .

(3.62)

The same scalings with λ are found also for the more general solution of this class
presented in section B.3. In particular, notice that when κ2 6= 0 the behavior of M2 and
S3 is drastically different: in the large-λ limit they tend to vanish when L = O(1), whereas
they asymptote to a constant value in the opposite regime L→ Lmax ∼ λ. In all cases, the
dimensionless spin χ is vanishingly small.

3.6.5 Solution E: ~κ = (κ̄1λ, κ̄2 λ, κ̄3 λ, κ̄4 λ)

A representative example in this class is given by

κ = (2λ, λ, 4λ, 3λ) , P0 = 3 , QI = (9λ2, 18λ3, 66λ3) , M = 3(1 + 3λ2 + 28λ3)
4

µa =
(

1 + 12λ2 + 2λ3

4 ,
1− 3λ2 + 32λ3

4 ,
1 + 50λ3

4

)
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ja =
(
λ

4
(
24λ3 + 2λ− 1

)
, λ
(
−6λ3 + 2λ− 1

)
,

5λ
4 (1− 2λ)

)

ãi =
(

5(2λ− 1)
324λ3 ,

1
3 ,

6λ3 − 2λ+ 1
81λ3

)
, ρ = 1(

1− 5(2λ−1)
324λ3 L

)2 , σ = 1
3

1(
1 + 6λ3−2λ+1

81λ3 L
)2 .

(3.63)

The exact value of Lmax is not so illuminating therefore we show the large λ limit

L ≤ Lmax ≈
27√

5
λ ∼ 12λ (3.64)

Again we consider two subcases with large λ: L ∼ O(1) and L ∼ 10λ < Lmax. One finds

L = 1 : χ ≈ 0.004
λ2 , M2 ≈ −

14
λ2 , S3 ≈ −

61
λ2

L = 10λ : χ ≈ 0.06
λ2 , M2 ≈ 2.9, S3 ≈ 13 .

(3.65)

The same scalings with λ are found also for the more general solution of this class presented
in section B.4. Similarly to Solution D above, also in this case M2 and S3 vanish in the
large-λ limit when L = O(1), whereas they asymptote to a constant value in the opposite
regime L→ Lmax ∼ λ� 1 limit.

3.7 A statistical approach

As clear from the previous sections, even in the simplest family of microstate geometries
(with three centers), the parameter space is very complex and it is hard to extract general
properties from particular classes of solutions. Nonetheless, our partial exploration of
certain classes of solutions suggests the following trend:

• In certain subspaces of the parameters (in particular when κ2 = 0), the solutions have
generically multipole moments larger (in absolute value) than their Kerr counterpart,
except for few isolated examples, whose measure is of lower dimension relative to the
subspace.

• In general (i.e., if all κi 6= 0) there exists a critical value Lcrit such that the solutions
with L > Lcrit have multipole moments larger (in absolute value) than their Kerr
counterpart, whereas the opposite is true for L < Lcrit. The value of Lcrit depends on
the specific combination of κi and might also be zero, i.e. some solutions have larger
moments for any L > 0, as in the previous case.

A representative example of these different behaviors is presented in figure 1.
To gain some further insight and check these trends, we apply the method presented

in the previous sections to compute the multipole moments of general solutions found by
randomly selecting the parameters L and κi (with i = 1, 2, 3, 4). In particular, we draw 104

realizations from a uniform distribution

κi ∈ [1, κmax] , (3.66)
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Figure 1. The quantities M2 (top panel), S2 (middle panel), and S3 (bottom panel) defined in
eq. (3.26) and the normalized components of the corresponding moments for a representative choice
of κi = (325, 751, 798, 272) (corresponding to Lmax = 79.3361) as a function of L/Lmax ≤ 1. In
the top and bottom panels the horizontal thin black line refers to the fuzzball and Kerr moments
being identical, whereas S2m are identically zero for Kerr. All quantities are larger than their Kerr
counterpart when L ∼ Lmax while in this example some can be smaller when L � Lmax. In the
L→ 0 limit the normalized quantities tend to some small but nonvanishing values.

constrained by imposing that the conditions in eq. (3.31) be satisfied. As a representative
case we choose κmax = 1000. For a given choice of κi, we draw L from a uniform distribution

L ∈ (0, Lmax] , (3.67)

where Lmax is given in (3.42), or is chosen to be Lmax = 104 for those (few) isolated cases
in which L is unbounded.

We find two main results:

1. The normalized invariant M2 defined in (3.26) is bigger than its Kerr value (MKerr
2 =

1) for about 90% of the solutions. Similar (slightly higher) percentages apply also to
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higher-order moments and, in particular, to S3. These percentages do not depend
on the choice of κmax, suggesting that both Lcrit and Lmax grow linearly with κi � 1.

2. For each random realization of κi, the normalized invariants M` and S` are always
bigger than their value in the (non-rotating) BH limit, i.e. when L→ 0, even when the
corresponding moments are not defined in that limit [63, 68]. Indeed, we numerically
find that these quantities are always monotonous functions of L, attaining a global
minimum at L = 0. Note that this property holds only for the specific invariants
defined by a specific combination of the components of each moment (e.g., eq. (3.26),
see also appendix A) and not for the individual components of the moments (e.g.,
M`0 and S`0 as defined in eq. (3.25)).

4 Conclusions and discussion

We have extended and refined a general method to determine the multipole moments of
spacetimes with a single timelike Killing vector field and no extra symmetry. In particu-
lar, this technique is useful in the study of the moments of fuzzball microstate geometries.
These typically break the axial and equatorial symmetries the Kerr metric and are also
rather complicated. We focused on three-center solutions, but our analysis can be straight-
forwardly applied to generic multi-center solutions and generic BH solutions.

The multipolar structure of fuzzballs is significantly richer than that of a BH in GR,
in particular multipole moments M`m and S`m with m 6= 0 (associated with the absence
of axial and equatorial symmetry) are non-zero, at variance with the Kerr metric [53].

All astrophysical observations so far are perfectly consistent with the hypothesis that all
dark compact objects in the universe can be described by the Kerr metric [19]. Thus, from
a phenomenological point of view an interesting problem is to understand whether current
and future observations can distinguish the classical Kerr metric from other paradigms,
such as the fuzzball proposal. Here we compared the multipole moments of a large family
of smooth horizonless geometries with those of a BH with the same mass and spin.

Another natural question would be to compare the multipolar structure of individual
microstates with the one of the corresponding BH that should emerge from their ensemble.
Unfortunately, to the best of our knowledge no fuzzball solutions in four dimensions are
known beyond the BPS case, and supersymmetric BHs are necessarily non-spinning in four
dimensions [69]. Still, a comparison between the individual microstate and its Schwarzschild
(or Reissner-Nordström) BH limit can be performed for some dimensionless ratios which
are finite in the BH limit. The universal properties of these ratios in the context of BH
microstates has been recently studied in [63, 68]. We find strong numerical evidence that
these ratios grow monotonically with the microstate size L, attaining a minimum at the BH
limit, L → 0. A similar study has been performed in the past for exotic compact objects
(e.g., gravastars and anisotropic stars) [9–12, 67] suggesting the universal character of this
property. We also find that the maximum size Lmax is always smaller than the horizon
length scale rH ∼ (Q1Q2Q3P0)1/4, and that Lmax � rH for large charges. In this limit
the dimensionless spin χ = J /M2 is always small, consistently with the fact the solutions
represent microstates of a non-rotating BH.
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Although the study of the multipole moments of microstate geometries has just
started [53, 63, 68] and can be extended in various directions, some intriguing generic
properties seem to appear, such as the fact that the BH metric seems to be the solution
with a given mass and spin that typically minimizes the multipole moments or certain
combinations thereof. Indeed, we found that the invariant built from the dimensionless
multipole moments of the Kerr metric are smaller than those of a given microstate with
the same mass and spin in approximately 90% of the four-dimensional parameter space of
three-center solutions.

It is also intriguing to note that the Lyapunov exponent of unstable null geodesics near
the photon sphere was found to be maximum for the BH solution relative to the microstate
geometries [43]. This suggests that the BH metric is an extremum in the parameter space
of the solutions of the theory for several (apparently disconnected) quantities.

Clearly, some interesting extensions of our work are to find an analytical proof of the
monotonous behaviour of M` and S`, and to check whether the above properties hold true
also for other multi-center microstate geometries.

We stress the fact that our method can be directly applied to non-BPS microstate
solutions when such solutions would be available. In this case microstate geometries with
χ = O(1) should exist. Such an analysis might help understanding how the multipole
moments of a classical BH could emerge from an averaging of an ensemble of microstates,
each microstate having a different multipolar structure.

There is a long way to go before observationally imprints of fuzzballs in astrophysical
systems can be modelled accurately and, in this respect, several interesting extensions of
this and recent studies [53, 63, 68] are urgent. Nonetheless, we believe that the analysis of
the multipole moments can provide a new portal to constrain fuzzball models with current
and future observations, by means of both electromagnetic and gravitational-wave probes.

Note added. While this work was in preparation, a related work by Iosif Bena and
Daniel R. Mayerson appeared [68]. Ref. [68] and our work are the longer companions to
refs. [63] and [53], respectively.

Acknowledgments

We thank Iosif Bena and Daniel R. Mayerson for interesting discussions and for sharing
their draft [68] with us before submission. D.C. was supported by FWF Austrian Science
Fund via the SAP P30531-N27. P.P. acknowledges financial support provided under the
European Union’s H2020 ERC, Starting Grant agreement no. DarkGRA–757480, and un-
der the MIUR PRIN and FARE programmes (GW-NEXT, CUP: B84I20000100001), and
support from the Amaldi Research Center funded by the MIUR program “Dipartimento di
Eccellenza” (CUP: B81I18001170001).

A Invariants associated to multipole moments

Using the Cartesian description of the multipoles we can construct some quantities which
are invariant under rotations. We start from the general formula which connects the Carte-
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sian and the spherical descriptions,

1
`!Q

i1...i`ni1 . . . ni` =
√

4π
2`+ 1

+∑̀
m=−`

M`mY`m (A.1)

where Qi1...i` is a symmetric traceless tensor. We now specialize our computation to the
cases ` = 1, 2, 3 (` = 0 is trivial).

Dipole moments. For ` = 1, Qi1 is a vector. Using (A.1) we can write the components
of Qi in terms ofM1m:

Qx1 =
√

2(M1−1 −M11) , Qy1 = −i
√

2(M1−1 +M11) , Qz1 = 2M10 . (A.2)

The only invariant associated to Qi1 is

1
4 |
~Q1|2 = 1

4Q
i
1Q1,i =M2

10 + 2|M11|2 . (A.3)

Quadrupole moments. For ` = 2, Qij2 is a symmetric traceless matrix, therefore there
are 5 (real) independent components. In terms of theM2m we have

Qxx2 =
√

3
2(M22+M2−2)−M20, Qyy2 = −

√
3
2(M22+M2−2)−M20

Qxy2 = i

√
3
2(M22−M2−2), Qxz2 =

√
3
2(M2−1−M21) , Qyz2 = −i

√
3
2(M2−1+M21)

Qzz2 = −Qxx2 −Q
yy
2 = 2M20 .

(A.4)
We can associate two invariants to the Q matrix, namely its trace and determinant. In
terms ofM2m they read

1
6TrQ

2 =M2
20 + 2|M22|2 + 2|M21|2

1
2DetQ =M3

20 + 3M20(|M21|2 − 2|M22|2) + 3
√

6Re[M∗22M2
21] .

(A.5)

Octupole moments. In a similar fashion one can compute the trace invariant associated
to Q3, which is defined as

1
3!Q

ijk
3 ninjnk =

√
4π
7

+3∑
m=−3

M3mY3m . (A.6)

The octupole tensor Qijk3 has 7 independent components. The relations with theM3m are
the following

Qxxx3 = 3
2(
√

5M3−3 −
√

3M3−1 +
√

3M31 −
√

5M3,3)

Qxxy3 = − i2(3
√

5M3−3 −
√

3M3−1 −
√

3M31 + 3
√

5M3,3)
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Qxxz3 = 1
2(
√

30M3−2 − 6M30 +
√

30M32)

Qxyy3 = 1
2(−3

√
5M3−3 −

√
3M3−1 +

√
3M31 + 3

√
5M3,3)

Qxyz3 = −i
√

15
2 (M3−2 −M32)

Qyyy3 = 3i
2 (
√

5M3−3 +
√

3M3−1 +
√

3M31 +
√

5M3,3)

Qyyz3 = −1
2(
√

30M3−2 + 6M30 +
√

30M32)

Qxzz3 = −Qxxx3 −Qxyy3 = 2
√

3 (M3−1 −M31)

Qyzz3 = −Qxxy3 −Qyyy3 = −2i
√

3 (M3−1 +M31)

Qzzz3 = −Qxxz3 −Qyyz3 = 6M30 .

(A.7)

We can compute TrQ2
3 = Qijk3 Q3, ijk obtaining
1
90TrQ

2
3 =M2

30 + 2|M33|2 + 2|M32|2 + 2|M31|2 . (A.8)

B Multipole moments of general classes of microstate geometries

In this appendix we provide the multipole moments for some generic class of solutions.
As discussed in the main text the parameter L is generically bounded, L ≤ Lmax, except
for some particular solutions. Since in the large-κ limit typically Lmax = O(κ), we shall
distinguish between two opposite regimes:

1. L is much smaller than the leading parameter(s) κi (this includes the small-L limit);

2. L ∼ Lmax = O(κ).

B.1 General solution with κ1 = O(1), κ2 = 0, κ3 = O(1), κ4 � 1

We consider the case in which κ2 = 0, κ1,3 ∼ O(1) and κ4 � κ1,3. To simplify the notation
we define (κ1, κ3, κ4) = (κ̄1, κ̄3, κ̄4λ), where κ̄i ∼ O(1) and λ� 1.

B.1.1 Small L

If L� λ, to leading order in λ the centers are located at

x1 =

−(κ̄2
1κ̄

2
3 − 2κ̄1κ̄

2
3 − 1

)
L
√

3κ̄2
1κ̄

4
3 + L2 + 4κ̄1κ̄2

3L

(κ̄1 + 1) κ̄3κ̄4λ
(
2κ̄1κ̄2

3 + L
) , 0, 2κ̄2

1κ̄
2
3L

(κ̄1 + 1)
(
2κ̄1κ̄2

3 + L
)
 , (B.1)

x2 =

((2κ̄1 − 1) κ̄2
3 + 1

)
L
√

3κ̄2
1κ̄

4
3 + L2 + 4κ̄1κ̄2

3L

(κ̄1 + 1) κ̄3κ̄4λ
(
2κ̄1κ̄2

3 + L
) , 0,− 2κ̄1κ̄

2
3L

(κ̄1 + 1)
(
2κ̄1κ̄2

3 + L
)
 , (B.2)

x3 =

−L
√

3κ̄2
1κ̄

4
3 + L2 + 4κ̄1κ̄2

3L

2κ̄1κ̄2
3 + L

, 0, (κ̄1 − 1) κ̄1κ̄
2
3L

(κ̄1 + 1)
(
2κ̄1κ̄2

3 + L
)
 , (B.3)
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and the first multipole moments of this solution read

M00 = 1
4λ (κ̄1 + 1) κ̄3κ̄4, S10 = λLκ̄1κ̄

2
3κ̄4

4κ̄1κ̄2
3 + 2L

,

M22 = O
(
λ0
)
, M21 = O

(
λ0
)
, M20 = λL2κ̄3

1κ̄
5
3κ̄4

(κ̄1 + 1)
(
2κ̄1κ̄2

3 + L
) 2 ,

S22 = O
(
λ0
)
, S21 = O

(
λ0
)
, S20 = λL2 (κ̄1 − 1) κ̄2

1κ̄
4
3κ̄4

(κ̄1 + 1)
(
2κ̄1κ̄2

3 + L
) 2 .

(B.4)

B.2 General solution with κ1 = O(1), κ2 = 0, and κ3,4 � 1

Here we consider the solution for which κ2 = 0 and κ3,4 � κ1. We define (κ1, κ3, κ4) =
(κ̄1, κ̄3λ, κ̄4λ), where κ̄i ∼ O(1) and λ� 1.

B.2.1 Small L

If L� λ, to leading order in the expansion for large λ, the coordinates of the centers are

x1 = 1
A

(
−
(√

3κ̄1κ̄3 (κ̄1 (κ̄3 + κ̄4)− 2κ̄4)
)
, 0,−κ̄1 ((κ̄1 − 2) κ̄3 − 2κ̄4) (κ̄3 − κ̄4)

)
, (B.5)

x2 = 1
A

(
−
√

3κ̄3 (κ̄4 + κ̄1 (κ̄3 − 2κ̄4)) , 0,−2κ̄2
1κ̄

2
3 + κ̄1κ̄

2
3 + κ̄4 (2κ̄4 − κ̄3)

)
, (B.6)

x3 = 1
A

(
−
√

3κ̄4 (κ̄4 + κ̄1 (κ̄4 − 2κ̄3)) , 0, (κ̄1 − 1) (2 (κ̄1 + 1) κ̄3 − κ̄4) κ̄4
)
, (B.7)

where the denominator is A=2 (κ̄4 + κ̄1 (κ̄3 + κ̄4))
√(

κ̄2
1 − κ̄1 + 1

)
κ̄2

3 − (κ̄1 + 1) κ̄4κ̄3 + κ̄2
4.

Note that the square root in A is proportional to the angular momentum, which implies
that the zero angular momentum limit is singular. Indeed, this general solution does not
include Solution A in the main text. The latter (as well as all solutions in this class for
which J = 0) must be studied separately.

To leading order in λ, the first multipole moments of this solution read

M00 = 1
4λ

2κ̄3 (κ̄4+κ̄1 (κ̄3+κ̄4)) , S10 = 1
4λL

√
(κ̄2

1−κ̄1+1) κ̄2
3−(κ̄1+1) κ̄4κ̄3+κ̄2

4 ,

M22 = λ2L2

A2
3
8

√
3
2 κ̄1κ̄

2
3κ̄4 (κ̄4+κ̄1 (κ̄3+κ̄4))

(
κ̄3 (κ̄3+κ̄4) κ̄2

1+
(
κ̄2

3−6κ̄4κ̄3+κ̄2
4
)
κ̄1+κ̄4 (κ̄3+κ̄4)

)
,

M21 = λ2L2

A2
9

4
√

2
(κ̄1−1) κ̄1κ̄

2
3 (κ̄3−κ̄4) (κ̄1κ̄3−κ̄4) κ̄4 (κ̄4+κ̄1 (κ̄3+κ̄4)) ,

M20 = λ2L2

A2
1
8 κ̄1κ̄3κ̄4

((
8κ̄3

1−9κ̄2
1−9κ̄1+8

)
κ̄3

3−3
(
3κ̄2

1−10κ̄1+3
)
κ̄4κ̄

2
3−9 (κ̄1+1) κ̄2

4κ̄3

+8κ̄3
4
)

(κ̄4+κ̄1 (κ̄3+κ̄4)) ,

S22 = −λL
2

A2
3
8

√
3
2 (κ̄1−1) κ̄3 (κ̄3−κ̄4) (κ̄1κ̄3−κ̄4) (κ̄4+κ̄1 (κ̄3+κ̄4)) 2 ,
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S21 = λL2

A2
3

4
√

2
κ̄3 (κ̄4+κ̄1 (κ̄3+κ̄4))

(
κ̄3
(
κ̄2

3−4κ̄4κ̄3+κ̄2
4
)
κ̄3

1+
(
κ̄3

3+2κ̄4κ̄
2
3+2κ̄2

4κ̄3+κ̄3
4
)
κ̄2

1

+2κ̄4
(
−2κ̄2

3+κ̄4κ̄3−2κ̄2
4
)
κ̄1+κ̄2

4 (κ̄3+κ̄4)
)
,

S20 = λL2

A2
1
8 (κ̄4+κ̄1 (κ̄3+κ̄4))

(
8κ̄3

3 (κ̄3−κ̄4) κ̄4
1−7

(
κ̄4

3−κ̄2
3κ̄

2
4
)
κ̄3

1+7
(
κ̄4

3−κ̄3κ̄
3
4
)
κ̄2

1

−8
(
κ̄4

3−κ̄4
4
)
κ̄1+κ̄4

(
8κ̄3

3−7κ̄4κ̄
2
3+7κ̄2

4κ̄3−8κ̄3
4
))
,

(B.8)

Notice that in the denominator of each of the multipoles there is a term proportional
to the angular momentum.

B.3 General solution with κ1 = O(1) and κ2,3,4 � 1

An even more general solution with κ2 6= 0 can be constructed analytically when (κ1, κ2,

κ3, κ4) = (κ̄1, κ̄2λ, κ̄3λ, κ̄4λ), where κ̄i ∼ O(1) and λ� 1.

B.3.1 Small L

If L � λ, to leading order in λ � 1 the first multipole moments of this class of solu-
tions are

M00 = 1
4λ

2 (κ̄1κ̄
2
2+4κ̄1κ̄3κ̄2−κ̄1κ̄4κ̄2−κ̄4κ̄2+κ̄1κ̄

2
3+κ̄1κ̄3κ̄4+κ̄3κ̄4

)
,

S10 = λ3Lκ̄1κ̄2 (κ̄2−κ̄3) 2κ̄3κ̄4

4κ̄2
2+4κ̄2

3+2(L+5)κ̄3κ̄2
,

M22 = λ2L2

Z

√
3
2 κ̄1 (κ̄2+κ̄3) 2 ((κ̄3−κ̄2) κ̄4+κ̄1 (κ̄2 (2κ̄3−κ̄4)+κ̄3κ̄4))

(
3κ̄4

2+3κ̄4
3

+
(
L2+10L+27

)
κ̄2

3κ̄
2
2+4(L+6)κ̄3κ̄

3
2+4(L+6)κ̄3

3κ̄2
)
,

M21 = −λ
2L2

Z
√

6 (κ̄1−1) κ̄1 (κ̄2−κ̄3) 2 (κ̄2+κ̄3) 3κ̄4
(
3κ̄4

2+3κ̄4
3+
(
L2+10L+27

)
κ̄2

3κ̄
2
2

+4(L+6)κ̄3κ̄
3
2+4(L+6)κ̄3

3κ̄2
)1/2

,

M20 = −λ
2L2

Z
[
8κ̄2κ̄3κ̄

2
4 (κ̄2−κ̄3) 4−κ̄1κ̄4 (κ̄2−κ̄3)

(
κ̄6

2+κ̄5
3 (κ̄3−8κ̄4)

+κ̄3κ̄
4
2
((
L2+18L+112

)
κ̄3−24κ̄4

)
+2κ̄2

3κ̄
3
2
(
16κ̄4+

(
L2+14L+23

)
κ̄3
)

+κ̄3
3κ̄

2
2
((
L2+18L+112

)
κ̄3−32κ̄4

)
+κ̄5

2 (8κ̄4+(4L+26)κ̄3)+2κ̄4
3κ̄2 (12κ̄4+(2L+13)κ̄3)

)
+κ̄2

1
(
(2κ̄3−κ̄4) κ̄7

2+κ̄7
3κ̄4+κ̄3κ̄

5
2
(
8κ̄2

4+2
(
L2+18L+96

)
κ̄2

3−
(
L2+14L+86

)
κ̄4κ̄3

)
+κ̄2

3κ̄
4
2
(
−32κ̄2

4+4
(
L2+14L+35

)
κ̄2

3−
(
L2+10L−66

)
κ̄4κ̄3

)
+κ̄3

3κ̄
3
2
(
48κ̄2

4

+2
(
L2+18L+96

)
κ̄2

3+
(
L2+10L−66

)
κ̄4κ̄3

)
+κ̄4

3κ̄
2
2
(
−32κ̄2

4+
(
L2+14L+86

)
κ̄4κ̄3

+(8L+60)κ̄2
3
)
+κ̄3κ̄

6
2 ((8L+60)κ̄3−(4L+25)κ̄4)+κ̄5

3κ̄2
(
2κ̄2

3+8κ̄2
4+(4L+25)κ̄4κ̄3

))]
,
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S22 = 0 ,

S21 = λ3L2

Z
2
√

6κ̄2
1κ̄2 (κ̄2−κ̄3) 2κ̄3 (κ̄2+κ̄3) 2κ̄4

(
3κ̄4

2+3κ̄4
3+
(
L2+10L+27

)
κ̄2

3κ̄
2
2

+4(L+6)κ̄3κ̄
3
2+4(L+6)κ̄3

3κ̄2
)1/2

,

S20 = λ3L2

Z
8 (κ̄1−1) κ̄1κ̄2 (κ̄2−κ̄3) 4κ̄3 (κ̄2+κ̄3) κ̄2

4 .

(B.9)

where for readability we have defined

Z = 8
(
(κ̄3−κ̄2) κ̄4+κ̄1

(
κ̄2

2+(4κ̄3−κ̄4) κ̄2+κ̄3 (κ̄3+κ̄4)
)) (

2κ̄2
2+2κ̄2

3+(L+5)κ̄3κ̄2
)

2 .

(B.10)

B.3.2 L ∼ Lmax

Since L ∼ Lmax ∼ λ, we can define L = L̄λ and, to leading order in λ, the multipole
moments read

M00 = 1
4λ

2
(
(κ̄3 − κ̄2) κ̄4 + κ̄1

(
κ̄2

2 + (4κ̄3 − κ̄4) κ̄2 + κ̄3 (κ̄3 + κ̄4)
))
,

S10 = 1
4λ

2L̄ (κ̄1 − 1) (κ̄2 + κ̄3) ,

M22 = 0 ,

M21 = 0 ,

M20 = λ4L̄2κ̄1 (κ̄2 + κ̄3) 2 ((κ̄3 − κ̄2) κ̄4 + κ̄1 (κ̄2 (2κ̄3 − κ̄4) + κ̄3κ̄4))
4
(
(κ̄3 − κ̄2) κ̄4 + κ̄1

(
κ̄2

2 + (4κ̄3 − κ̄4) κ̄2 + κ̄3 (κ̄3 + κ̄4)
)) ,

S22 = 0 ,

S21 = 0 ,

S20 = λ3L̄2 (κ̄1 − 1) (κ̄2 + κ̄3)
(
(κ̄2 − κ̄3) κ̄4 + κ̄1

(
κ̄2

2 + κ̄4κ̄2 + κ̄3 (κ̄3 − κ̄4)
))

4
(
(κ̄3 − κ̄2) κ̄4 + κ̄1

(
κ̄2

2 + (4κ̄3 − κ̄4) κ̄2 + κ̄3 (κ̄3 + κ̄4)
)) .

(B.11)

Note that in this case the moments with m 6= 0 vanish, consistently with the fact that
when L→ Lmax the solution is axisymmetric.

B.4 General solution with κ1,2,3,4 � 1

Finally, let us consider the case in which all κ’s are large, i.e. κi = κ̄iλ (i = 1, 2, 3, 4), with
κ̄i = O(1) and λ� 1.

B.4.1 Small L

If L� λ, to leading order in λ� 1, the multipole moments in this case read

M00 = 1
4λ

3κ̄1
(
κ̄2

2+(4κ̄3−κ̄4) κ̄2+κ̄3 (κ̄3+κ̄4)
)
,

S10 = λ4Lκ̄1κ̄2 (κ̄2−κ̄3) 2κ̄3κ̄4
4κ̄2

2+4κ̄2
3+2(L+5)κ̄3κ̄2

,
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M22 = λ3L2

Υ

√
3
2 κ̄1 (κ̄2+κ̄3) 2 (κ̄2 (2κ̄3−κ̄4)+κ̄3κ̄4)

(
3κ̄4

2+3κ̄4
3+
(
L2+10L+27

)
κ̄2

3κ̄
2
2

+4(L+6)κ̄3κ̄
3
2+4(L+6)κ̄3

3κ̄2
)
,

M21 = −λ
3L2

Z
√

6κ̄1 (κ̄2−κ̄3) 2 (κ̄2+κ̄3) 3κ̄4
(
3κ̄4

2+3κ̄4
3+
(
L2+10L+27

)
κ̄2

3κ̄
2
2

+4(L+6)κ̄3κ̄
3
2+4(L+6)κ̄3

3κ̄2
)1/2

,

M20 = −λ
3L2

Υ κ̄1
(
(2κ̄3−κ̄4) κ̄7

2+κ̄7
3κ̄4+κ̄3κ̄

5
2

(
8κ̄2

4+2
(
L2+18L+96

)
κ̄2

3

−
(
L2+14L+86

)
κ̄4κ̄3

)
+κ̄2

3κ̄
4
2

(
−32κ̄2

4+4
(
L2+14L+35

)
κ̄2

3−
(
L2+10L−66

)
κ̄4κ̄3

)
+κ̄3

3κ̄
3
2

(
48κ̄2

4+2
(
L2+18L+96

)
κ̄2

3+
(
L2+10L−66

)
κ̄4κ̄3

)
+κ̄4

3κ̄
2
2

(
−32κ̄2

4+
(
L2+14L+86

)
κ̄4κ̄3+(8L+60)κ̄2

3

)
+κ̄3κ̄

6
2 ((8L+60)κ̄3−(4L+25)κ̄4)

+κ̄5
3κ̄2

(
2κ̄2

3+8κ̄2
4+(4L+25)κ̄4κ̄3

))
,

S22 = 0 ,

S21 = λ4L2

Υ 2
√

6κ̄1κ̄2κ̄3
(
κ̄2

2−κ̄2
3

)
2κ̄4

(
3κ̄4

2+3κ̄4
3+
(
L2+10L+27

)
κ̄2

3κ̄
2
2

+4(L+6)κ̄3κ̄
3
2+4(L+6)κ̄3

3κ̄2
)1/2

,

S20 = λ4L2

Υ 8κ̄1κ̄2 (κ̄2−κ̄3) 4κ̄3 (κ̄2+κ̄3) κ̄2
4 .

(B.12)

where we have defined

Υ = 8
(
κ̄2

2 + (4κ̄3 − κ̄4) κ̄2 + κ̄3 (κ̄3 + κ̄4)
) (

2κ̄2
2 + 2κ̄2

3 + (L+ 5)κ̄3κ̄2
)

2 . (B.13)

Notice that this solution can be also obtained from the one in section B.3 in the κ̄1 � 1
limit.

B.4.2 L ∼ Lmax

Since L = L̄λ ∼ Lmax, to leading order in λ and with L̄ = O(1), the multipole moments read

M00 = 1
4λ

3κ̄1
(
κ̄2

2 + (4κ̄3 − κ̄4) κ̄2 + κ̄3 (κ̄3 + κ̄4)
)
,

S10 = 1
4λ

3L̄κ̄1 (κ̄2 + κ̄3) ,

M22 = 0 ,

M21 = 0 ,

M20 = λ5L̄2κ̄1 (κ̄2 + κ̄3) 2 (κ̄2 (2κ̄3 − κ̄4) + κ̄3κ̄4)
4
(
κ̄2

2 + (4κ̄3 − κ̄4) κ̄2 + κ̄3 (κ̄3 + κ̄4)
) ,
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S22 = 0 ,

S21 = 0 ,

S20 = λ4L̄2κ̄1 (κ̄2 + κ̄3)
(
κ̄2

2 + κ̄4κ̄2 + κ̄3 (κ̄3 − κ̄4)
)

4
(
κ̄2

2 + (4κ̄3 − κ̄4) κ̄2 + κ̄3 (κ̄3 + κ̄4)
) ,

(B.14)

and also in this case the solution is axisymmetric, as expected.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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