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The decay of an unstable system is usually described by an exponential law. Quantum mechanics
predicts strong deviations of the survival probability from the exponential: indeed, the decay is
initially quadratic, while at very large times it follows a power law, with superimposed oscillations.
The latter regime is particularly elusive and difficult to observe. Here we employ arrays of single-
mode optical waveguides, fabricated by femtosecond laser direct inscription, to implement quantum
systems where a discrete state is coupled and can decay into a continuum. The optical modes
correspond to distinct quantum states of the photon and the temporal evolution of the quantum
system is mapped into the spatial propagation coordinate. By injecting coherent light states in the
fabricated photonic structures and by measuring light with an unprecedented dynamic range, we
are able to experimentally observe not only the exponential decay regime, but also the quadratic
Zeno region and the power-law decay at long evolution times.

The exponential decay law is commonly associated to
the probability that a system, initially prepared in an
unstable state (such as an excited atomic level or an un-
stable elementary particle), is observed in the same state
after some time [1, 2]. Actually, for quantum mechani-
cal unstable states, decay can only be approximately ex-
ponential [3–5]: at short times the survival probability
is quadratic, while at long times it is dominated by a
power law (see Fig. 1a). The aforementioned features of
the quantum evolution are consequences of first princi-
ples and represent strong signatures of non-classical be-
havior. The initial quadratic behavior, also known as
the Zeno regime, stems directly from a short-time ex-
pansion of the Schrödinger evolution, with the only hy-
potheses of normalizability of the wave function and fi-
nite energy fluctuations of the initial state. The familiar
exponential decay sets in at intermediate times and its
derivation is always the consequence of assumptions of
some sort, such as weak coupling or Markovianity. The
long-time evolution is a consequence of the boundedness
from below of the Hamiltonian, an indispensable condi-
tion from a physical perspective. Under this hypothesis,
a straightforward application of the Paley-Wiener the-
orem on Fourier transforms yields long-time power-law
tails [6–8] (see, however, [9]).

The initial “Zeno” region [10] has been experimen-
tally confirmed in a variety of physical systems, includ-
ing trapped atoms [11, 13, 14], Bose-Einstein condensates
[15, 16], cavity quantum electrodynamics [17, 18], Ryd-
berg atoms [12] and optical waveguide arrays [19]. On
the other hand, to the best of our knowledge, only a
single experimental observation of the power-law decay

was reported, with the observation of the temporal decay
of the fluorescence signal of dissolved organic molecules
[20], although without an underlying theoretical model
that enables one to compute the power-law decay from
first principles. In general, power-law decay tails are very
elusive, since the preceding region of exponential decay
usually depletes the initial state at a point that makes
any subsequent observation extremely challenging.

Arrays of single-mode optical waveguides are a power-
ful platform to experimentally investigate diverse quan-
tum dynamics. The optical modes represent distinct
quantum states of the photon, that can be coupled with
high control by tuning the evanescent-field-mediated cou-
pling between waveguides. The time evolution of the
Schrödinger equation is mapped onto the longitudinal
propagation in the waveguides, thus making it easy to
investigate even fast dynamics [21]. In addition, pho-
tons are almost immune to decoherence. Exploiting such
favourable features, several quantum phenomena that are
difficult to observe in solid state systems have been suc-
cessfully studied with photonic structures. These include
Bloch oscillations [22, 23], Anderson localization [24, 25]
and the Zeno decay regime mentioned above [19]. Engi-
neered waveguide arrays, excited with identical photon
pairs, have also allowed the experimental study of multi-
particle quantum decay processes [26].

In this work, we use optical waveguide arrays, fabri-
cated by the femtosecond laser micromachining technol-
ogy [22, 26, 27], to implement quantum systems where a
discrete state is made unstable by its coupling to a contin-
uum [28]. Different structures are fabricated, optimizing
the parameters in such a way that different dynamical
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FIG. 1. a) Typical decay of a quantum state coupled to a con-
tinuum, showing the peculiar features of the survival proba-
bility p(t). The initial region is quadratic, with the curvature
at t = 0 characterized by the Zeno time τZ . At intermedi-
ate times a familiar exponential decay sets in, with a lifetime
τ = O(λ−2), where λ is the coupling constant, and a “wave-
function renormalization” Z = 1 + O(λ2), which represents
the value of its extrapolation back to t = 0. At very large
times, when the survival probability is reduced to O(λ10), a
power-law regime is observed, with superimposed oscillations.
In particular, we refer to the system represented in (b): an
optical mode with detuning ε is coupled, by a coupling con-
stant κ0, to a chain of optical modes with relative coupling κ.
c) Level scheme of such a system: the states of the chain make
up a continuum with bandwidth 4κ (as in a tight-binding one-
dimensional lattice). d) Experimentally, we study this system
with an array of single-mode optical waveguides.

decay regimes can be detected and scrutinized, when co-
herent laser light is injected at the input. To probe the
system evolution we acquire with high dynamic range the
light scattered from the array. In this way we are able
to observe, within a single experimental platform, the
quadratic Zeno region, the transition to the exponen-
tial regime, the wave-function renormalization and the
power-law decay at long evolution times.

The physical system investigated consists of a semi-
infinite linear array of single mode optical waveguides,
which can be excited by light with fixed polarization. The

transverse optical modes correspond to localized quan-
tum states |n〉, with n ≥ 0 indexing the different waveg-
uides. Neighboring modes are coupled by evanescent-field
interaction: the first one is coupled to the second one by a
coefficient κ0, while all others are coupled by a coefficient
κ (Fig. 1b). The first waveguide is also characterized by a
propagation-constant detuning ε, which, from the quan-
tum evolution point of view, corresponds to the energy
detuning of the site; all other waveguides are identical.
As shown in Fig. 1c, such a system actually consists in
a discrete state (the first site), coupled to a continuum
band of width 4κ. [29]

The dynamics of this quantum system is generated by
the Hamiltonian:

H = H0 +H1 +Hint, (1)

with

H0 = ε|0〉〈0|, (2)

H1 = κ
∑
n≥1

(|n〉〈n+ 1|+ |n+ 1〉〈n|)

+ q
∑
n≥1

(|n〉〈n+ 2|+ |n+ 2〉〈n|) , (3)

Hint = κ0(|0〉〈1|+ |1〉〈0|) + q0(|0〉〈2|+ |2〉〈0|). (4)

Note that we have also included a next-nearest-neighbor
hopping term, characterized by a coupling coefficient q
(q0 for the first waveguide). This additional interaction
is unavoidable in our experimental setting and its effects
are typically small [30], but can become quantitatively
relevant in the high-depletion (long-time) regimes; we
will assume for simplicity q0 = q in the numerical simu-
lations.

We consider the system initialized at t = 0 in the first
site of the array, |ψ0〉 = |0〉. The quantity typically cho-
sen to investigate the temporal behaviour of the system
is the survival probability, defined (with ~ = 1) as

p(t) = |a(t)|2, a(t) = 〈ψ0|ψ(t)〉 = 〈ψ0|e−itH |ψ0〉,
(5)

The initial state is unstable, i.e. p(t) → 0 as t → ∞,
if λ2 < 1 − |ε|/2κ [31], being λ = κ0/κ. The survival
probability amplitude is the sum of two terms [31]

a(t) = Ze−iEP t + acut(t), (6)

where EP is the pole of the propagator G(z) = (z −
H)−1 in the second Riemann sheet [28], whose imaginary
component yields the decay rate. The exponential law
is normally dominant at intermediate decay times. Z
is called the wave-function renormalization, and can be
determined by extrapolating the exponential probability
back to t = 0:

Z = |Z|2 = 1 +
λ2

1− λ2

1− 3
4λ

2 −
(
ε

2κ

)2
1− λ2 −

(
ε

2κ

)2 . (7)
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It is possible to check that, whenever the imaginary part
of EP is nonvanishing, the value of Z provided by the
above equation is strictly larger than one. The term
acut(t) accounts for all deviations from the exponential
and dominates at short and long times. In general, in-
terference between the pole and cut terms also generates
oscillations in the survival probability.

The survival probability at short times can be ex-
tracted by a power-series expansion of the evolution op-
erator e−itH , resulting in

p(t) = 1−
(
t

τZ

)2

+ O(t4). (8)

The survival probability is thus quadratic at very short
times, with curvature determined by the Zeno time

τZ =
(
〈ψ0|H2|ψ0〉 − 〈ψ0|H|ψ0〉2

)−1/2
=

1

κ0
. (9)

At long times the contribution of acut(t) becomes domi-
nant over the exponential term, accounting for the power-
law behaviour. In our case, the survival probability at
long times reads

p(t) ' |acut(t)|2 =

(
C(t)

t

)3

(1 + α(t) cos(4κt+ ϕ(t))),

(10)
where C(t), α(t) and ϕ(t) become constant at sufficiently
long times. This result is to be expected from first
principles [6–8]. An exponential behavior at all times
would imply a Lorentzian energy density distribution,
with support on all (positive and negative) energies, i.e.
an unbounded Hamiltonian. Instead, if the spectrum
is bounded from below, with a finite ground-state en-
ergy, the Paley-Wiener theorem states that the function
[ln p(t)] /(1 + t2) is integrable, and thus p(t) must be
slower than exponential at long enough times. In general,
the power law appearing in (10) is related to the structure
of the coupling and the behavior of the density of states
at energies close to the edge(s) of the continuum. The
oscillatory behavior, with angular frequency 4κ, is due to
the interference between the contributions from the two
band edges. Finally notice that the exact expression of
the Zeno time (9) is left unchanged by the introduction
of next-to-nearest-neighbor couplings, as well as the form
of the long-time survival probability (10), provided q is
real and |q/κ| < 1/4.

In our experiments, waveguides were fabricated in
fused silica substrate by femtosecond laser direct inscrip-
tion. This technique exploits the nonlinear absorption
of focused ultrashort laser pulses to induce permanent
and localized refractive index modifications in the bulk
of transparent dielectric materials. We used the second
harmonic (520 nm wavelength) of an ytterbium femtosec-
ond laser (HighQ Spirit One), producing '400 fs dura-
tion pulses at 20 kHz repetition rate. In our experiments,

laser pulses with 350 nJ energy were focused, by means of
a 0.45 NA microscope objective, 170 µm below the glass
surface, and the substrate was translated with respect
to the laser beam at constant speed comprised between
20 and 34 mm/s. Waveguides fabricated with these ir-
radiation parameters yield single-mode behaviour for the
633 nm wavelength and propagation losses of 0.6 dB/cm.

To investigate the light propagation in waveguide ar-
rays, we injected horizontally polarized light from a
He:Ne laser source in the first waveguide (which corre-
sponds to initializing the system in state |0〉) and imaged
the structure from above, acquiring the scattered light at
each point. The scattered signal is indeed locally propor-
tional to the intensity of the propagating light.

As mentioned in the preceding analysis, we are mainly
interested in retrieving the population of the first waveg-
uide. This is not easy because such quantity spans a few
orders of magnitude: at its entrance (i.e. at t = 0), the
first waveguide (namely state |0〉) is fully populated, but
at later times, when the interesting power-law dynamics
sets in, it may be heavily depleted.

To perform the measurement, we developed a micro-
scope assembly operating as a high-dynamic-range image
scanner [32]. The assembly is moved along the prop-
agation coordinate by a computer-controlled motorized
stage, with synchronized image acquisition by a CCD.
To enhance the dynamic range of the measurement, pic-
tures taken at different exposure times are combined and
analyzed together. The experimental survival probability
p(t) is retrieved as the ratio between the optical power
scattered from the first waveguide and the global scat-
tered power at each t. In this way, propagation losses of
the waveguides, which are uniform in the array, are also
normalized out and do not affect our results.

The coupling coefficients κ, κ0 and q depend on the rel-
ative distance between the waveguides, while the detun-
ing ε can be controlled by varying the writing speed [33].
These quantities have been calibrated in independent ex-
periments where we fabricated several couples of identi-
cal parallel waveguides at different relative distances, and
other couples of parallel waveguides that differ in writ-
ing speed. By observing the periodicity of the bouncing
of coherent light between the coupled waveguides [34], it
is possible to measure the coupling coefficients and the
propagation-constant detuning, thus retrieving their de-
pendence on the inscription parameters.

We realized arrays characterized by different geometri-
cal parameters, each containing 40 waveguides. To avoid
boundary effects, we always chose coupling conditions in
which light does not reach the last waveguide of the ar-
ray within the propagation length (< 9 cm, size of our
glass samples)[35]. In such conditions the system dynam-
ics is well explained by the semi-infinite model discussed
above. Table I displays the relevant physical parameters
of three structures, which have been tailored in order to
observe different dynamical regimes.
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d0 d v0 v κ0 κ ε q

A 12.0 µm 17.0 µm 31.30 mm/s 30.00 mm/s 0.045 ±0.001 mm−1 0.119 ±0.004 mm−1 -0.08 ± 0.09 mm−1 0.005 mm−1

B 15.5 µm 15.0 µm 30.00 mm/s 31.30 mm/s 0.118 ±0.004 mm−1 0.132 ±0.004 mm−1 0.10 ± 0.09 mm−1 0.01 mm−1

C 14.0 µm 15.0 µm 30.00 mm/s 30.00 mm/s 0.183 ±0.006 mm−1 0.158 ±0.005 mm−1 0.0 mm−1 0.01 mm−1

TABLE I. Relevant physical parameters of the three waveguide arrays (A, B, C). d0 is the distance between the first and the
second waveguide, d the distance between all other neighbouring waveguides. v0 is the writing speed of the first waveguide,
v the writing speed of all the other ones. κ0, κ, ε and q have the same meaning as in Eq. (5); the reported values for each
array are the nominal ones, estimated on the basis of the preliminary calibration experiments. Errors correspond to standard
deviations and are due to tolerances in the waveguide inscription process; they are also estimated by means of the calibration
experiments. Where not written explicitly, uncertainty is indicated by the number of significant digits used.
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FIG. 2. Experimental survival probability in a weakly coupled
system (array A in Table I). Experimental points (black dots)
are reported in linear (a) and semilogarithmic plots (b-c).
Experimental errors are shown in the linear plot as a gray
area around the points. The green continuous line in panel
(a) is the theoretical prediction, obtained by solving Eq. (5)
with the nominal data (κ0, κ, ε, q) of array A. The orange
dotted line in panel (a) is the parabolic trend 1− (t/τz)2 with
τz = 1/κ0. The red continuous line in panels (b) and (c) is a
linear fit performed on the semilogarithmic plot, considering
the data between the two dashed red lines in panel (b).

The transition between the initial Zeno region and the
exponential decay is evident for systems in which state
|0〉 is weakly coupled to the continuum. In Fig. 2, we
report the experimental decay of a system designed with
λ ' 0.37, whose parameters are listed in line A of Ta-
ble I. Figure 2a shows, in linear scale, the full evolution
analyzed in the experiment. An initial quadratic region
is manifest at early times. The subsequent exponential
behavior is plainly revealed in Fig. 2b, where the same
data are plotted in a semi-logarithmic graph: a linear
fit, corresponding to an exponential decay in linear scale,
is also plotted. By zooming in the propagation region
below 20 mm (Fig. 2c) one can see that the intercept
of this straight line, corresponding to the wavefunction

renormalization parameter Z in Eq. (7), falls above 1.
Although the fitted value Z ' 1.23 is slightly larger than
expected, the experimental outcomes confirm the theo-
retical prediction Z > 1 for the analyzed dynamics, in-
dependent of the specific values of the parameters.

The large-time behavior predicted in Eq. (10), consist-
ing in a t−3 power-law tail with superimposed oscilla-
tions, can be better appreciated in systems with stronger
couplings. Figure 3 shows the measured decay for two
systems, corresponding to cases B and C in Table I and
featuring λ ' 0.89 and λ ' 1.16 respectively. In case
C, the energy detuning of the system is zero (waveguides
are written with the same propagation constant) and os-
cillations are more pronounced, while in case B, where
the detuning is relevant (ε ' κ), oscillations are almost
suppressed.

In case B, the experimentally observed decay follows
with good approximation the theoretical (solid green)
line, which, at t ' 40 mm, relaxes towards the asymp-
totic power law p(t) ' (C∞/t)3 (see Eq. (10)), with
C∞ = 9.48 mm. Thus, the dynamics of case B features
a pure power-law behavior at times which are long, but
still within reach of the experiment. It must be noted
that the choice of the parameters has allowed the obser-
vation of the onset of such regime when the state was
not heavily depleted yet (p(t = 40 mm) ∼ 10−2). Even
for case C, theoretical simulations show that the power
law takes place at sufficiently long times, but here such
times are far beyond the experimental reach by an or-
der of magnitude. Therefore, the behavior observed in
Fig. 3b, although sub-exponential, cannot be described
by a single power law. The most interesting feature of
the time evolution in case C is the presence of oscilla-
tions with period π/(2κ) (see Eq. (10)), which are due
to the coupling with a bounded continuum, with band-
width 4κ. Such oscillations are entirely due to the cut
contributions to the survival amplitude, and cannot be
described by any Markovian approximation.

We have reported the experimental observation of dif-
ferent decay regimes, typical of genuinely quantum dy-
namics, using photons propagating in waveguide arrays.
The femtosecond laser writing technology allowed us to
define with high control the relevant physical properties
of the system. The imaging technique here developed
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FIG. 3. Experimental survival probability in systems with
stronger coupling, i.e. array B (panel (a)) and array C
(panel (b)) in Table I. Experimental points (black dots) are
reported in logarithmic plots; experimental errors are com-
parable to the marker size. The (green) solid lines repre-
sent data fitting, obtained by solving Eq. (5) using: (a)
κ0 = 0.119 mm−1, κ = 0.132 mm−1, ε = 0.12 mm−1,
q = 0.01 mm−1. (b) κ0 = 0.205 mm−1, κ = 0.160 mm−1,
ε = 0 mm−1, q = 0.01 mm−1; the fitting parameters are close
to the nominal ones reported in Table I. The (red) dashed line
in panel (a) represents the polynomial trend p(t) ' (C∞/t)

3.

enabled the measurement of the light distribution during
propagation in the array with an unprecedented dynamic
range.

Note that our characterization technique, which relies
on the scattered light, differs from that used in other
experiments in the literature, where fluorescence emis-
sion from the waveguides was exploited [21, 27, 33]. In
addition, here we adopted a multi-exposure acquisition
technique to extend the available dynamic range beyond
the 8-bit limit of the camera, allowing us to compare in-
tensity levels which differ by a factor larger than 104. In
this way we have been able to characterize power-law de-
cay tails, which are generally very elusive to experimen-
tal observation. We believe that these results open novel
perspectives in the study of quantum decay dynamics,
as well as in the investigation of the interaction between
a system and its environment, including noise-enhanced
transport phenomena or non-Markovian processes.
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- Supplemental Material -

I. Theoretical model

We will consider a physical system that can be efficiently simulated and controlled in an experimental setup, on
the basis of the quantum-optical analogy. The system consists of a linear semi-infinite array of sites, corresponding
to states |n〉, with n ≥ 0. The system is initialized at t = 0 in the first site of the array, |ψ0〉 = |0〉, and its dynamics
is generated by the Hamiltonian

H = H0 +H1 +Hint, (11)

with

H0 = ε|0〉〈0|, (12)

H1 = κ
∑
n≥1

(|n〉〈n+ 1|+ |n+ 1〉〈n|) + q
∑
n≥1

(|n〉〈n+ 2|+ |n+ 2〉〈n|) ,

Hint = κ0(|0〉〈1|+ |1〉〈0|) + q0(|0〉〈2|+ |2〉〈0|). (13)

The next-to-nearest-neighbor hopping has been included since it is unavoidable in the experimental setting, in which
q/κ ' 0.17. However, we shall initally consider the case q0 = q = 0 to highlight the relevant physics of the model and
the transition between different regimes in the time evolution.

If q = 0, the Hamiltonian H1 is exactly diagonalizable as

H1 = 2κ

∫ π

0

dk cos k |ϕ(k)〉〈ϕ(k)|, (14)

|ϕ(k)〉 =

√
2

π

∑
n≥1

sin(kn) |n〉. (15)

In general, the survival amplitude can be determined by a Fourier-Laplace transform

a(t) =
i

2π

∫ +∞+i0+

−∞+i0+

dE e−iEtG(E), (16)

where the propagator of the initial state in the energy domain reads

G(E) = 〈ψ0|
1

E −H |ψ0〉. (17)

The propagator can be analitically determined and reads (λ = κ0/κ)

G(E) =
1

E − ε− λ2

2 E − λ2

2

√
E + 2κ

√
E − 2κ

, (18)

where the principal square root
√
z =

√
|z|eiArg(z)/2 is assumed, with Arg(z) ∈ (−π, π]. The propagator, which must

be analytic in the whole complex plane out of the real axis, is characterized for all values of the physical parameters by
a cut singularity, due to a jump in the imaginary part of the product of square roots, on the segment E ∈ (−2κ, 2κ),
corresponding to the continuum spectrum of H1. A rigorous way to separate the exponential contribution to the
survival amplitude from the deviations requires to perform an analytic continuation of the propagator below the cut,
and to deform the integration path in (16) into the one in Fig. 4, which partly lies on the second Riemann sheet,
where the analytic continuation GII(E) is characterized by a “+” sign in front of the square roots in (18).

The expression of the only pole Ep of the analytic continuation that lies in the lower half-plane, satisfying
(GII(Ep))

−1 = 0 with Im(Ep) < 0, reads

Ep =
1

1− λ2

[(
1− λ2

2

)
ε− iλ2κ

√
1− λ2 −

( ε

2κ

)2
]

(19)
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FIG. 4. Representation of the integration paths used to obtain the survival amplitude from its Fourier-Laplace transform G(E).
The (red) dashed line above the real axis represents the integration path in Eq. (16), that can be deformed into the (blue) solid
path, composed of three separate curves. Part of the new path lies on the second Riemann sheet of the propagator (shaded
area), where G(E) has been analytically continued from above across the cut singularity in [−2κ, 2κ]. The imaginary part of
the pole Ep determines the decay rate γ.

and lies between the vertical half-lines (−2κ − i∞,−2κ) and (2κ − i∞, 2κ) for λ2/2 < (2κ − |ε|)/(4κ − |ε|). In this
case, the survival amplitude a can be written

a(t) = 〈ψ0|e−itH |ψ0〉 = Ze−i∆t− γ2 t + acut(t), (20)

where ∆ = Re(Ep), γ = −2 Im (Ep), and Z, called the wave function renormalization, is the residue of GII at Ep,
from which one can obtain the extrapolated value of the exponential probability back at t = 0

Z = |Z|2 = 1 +
λ2

1− λ2

1− 3
4λ

2 −
(
ε

2κ

)2
1− λ2 −

(
ε

2κ

)2 , (21)

which turns out to be strictly larger than unity and increasing with both λ and |ε| whenever Ep has nonvanishing
imaginary part. The decay rate γ can be evaluated through the Fermi golden rule:

γ = 2π

∫ π

0

dk |〈0|Hint|ϕ(k)〉|2δ(2κ cos k − ε) = 2λ2κ

√
1−

( ε

2κ

)2

. (22)

The cut contribution

acut(t) = −λ
2

2π

∑
σ=±

e−iσ(2κt+π
4 )
∫ ∞

0

dx e−xt
√
x Cσ(x), (23)

with

Cσ(x) =

√
4κ− iσx[(

1− λ2

2

)
(2σκ− ix)− ε

]2
+ λ4

4 (4iσκ+ x)x
, (24)

accounts for all deviations from the exponential behavior, in particular those at short times (quadratic Zeno region)
and long times (power-law tail). The Zeno time can be calculated from the short-time expansion of the evolution,
yielding

τZ =
1

κ0
=

1

λκ
. (25)

The expression (23) is instead the most useful tool to determine the behavior at long times, in which the small values
of the integration variable (namely, the energies close to the branching points ±2κ) are relevant. The dominant
contribution at long times, obtained by approximating Cσ(x) with Cσ(0) under the integral, yields the power-law
survival probability [compare with Eq. (10) of the main text]

p(t) ' λ4

16πt3
[
C2

+(0) + C2
−(0) + 2C+(0)C−(0) sin(4κt)

]
. (26)
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Oscillations in (26) are due to the existence of an upper bound to the cut in the propagator (i.e. to the support of
the spectral density) of the initial state, while the t−3 behavior is evidently related, for dimensional reasons, to the
square-root behavior of the spectral density close to the branching points.

We can now define the transition times between the three regimes in the evolution of our system. The transition
time τ0 between the quadratic approximation and the exponential can be chosen at the intersection of the two curves,
exp(−τ2

0 /τ
2
Z) = Z exp(−γτ0). However, since Z is strictly larger than one in our case, it is possible that such

intersection does not exist, as it occurs for very small λ. Thus, τ0 can be more conveniently defined as the time of
closest approach between the two curves, i.e.

τ0 =
γτ2
Z

2
, (27)

which, for small values of λ, reads

τ0 =
1

κ

√
1−

( ε

2κ

)2

. (28)

As for the second transition time τ∞ between the exponential and power-law regimes, it can be defined as the
intersection time between the damped exponential and the non-oscillating part of the power law, namely

Z exp(−γτ∞) =
C∞
τ3∞

, (29)

with

C∞ =
λ4κ

2π

(
1

[κ(2− λ2) + ε]4
+

1

[κ(2− λ2)− ε]4
)
. (30)

For small values of λ it diverges as

τ∞ ∼
1

γ
log

Z

γ3C∞
= O

(
1

λ2
log

1

λ

)
. (31)

The prediction of experimental results is improved by including the next-to-nearest-neighbor terms in the Hamil-
tonian, with

Q =
q

κ
=
q0

κ0
' 0.17. (32)

Inclusion of such terms makes the theory more complicated, though it can still be tackled with analytical methods.
One finds that, for 0 < Q < 1/4, the qualitative features of time evolution do not change with respect to the case
Q = 0.

II. Experimental details

Details of the characterization apparatus

Figure 5 shows the experimental apparatus that we employed for the characterization of the waveguide arrays.
The glass chip containing the photonic structures is fixed onto a 4-axis manual micrometric manipulator (Thorlabs
MBT402D/M). A coherent-light beam from a He:Ne laser is focused on the entrance facet of the chip by a 10X
objective. This laser is capable of emitting up to 15 mW power, but in our experiments it was attenuated to a few
mW level. The chip is micrometrically aligned to the laser focus so that light is coupled only to the input of the first
waveguide of the desired array. To facilitate this condition, only the first waveguide of each array reaches the input
facet of the chip, while the other ones are fabricated starting about 10 mm inside.

To acquire a picture from above of the light scattered from the waveguides, we employ a microscope-assembly
composed of another 10X objective (NA = 0.25) and an 8-bit CCD camera (Edmund Optics EO-1312M), mounted
vertically on translation stages. The relative distance between the objective and the camera gives a magnification
factor ∼10. Transversally, the position of the assembly is adjusted by manual micrometers; longitudinally, it is
controlled by a motorized linear stage (P.I. M155-11) with precision better than 20 µm and travel range of 100 mm.
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FIG. 5. Picture of the experimental apparatus employed to characterize the light distribution along propagation, in the
fabricated waveguide arrays.

FIG. 6. Example of acquired intensity distribution from a waveguide array (array B in Table 1 of the Main Text). Laser
light is coupled in the array from the left in the topmost waveguide. The original acquisition is monochrome and measures 89
(horizontal) × 1280 (vertical) pixels (corresponding to a physical region of about 88 mm × 640 µm sampled longitudinally with
steps of 0.5 mm). Here the image is reshaped for better readability and is shown using a logarithmic false-color scale. Note that
the last illuminated waveguide is the 30th (counting from top) of the 40-waveguide array. In this condition the semi-infinite
model is valid.

The motion of the linear stage and the image acquisition from the CCD are synchronized via a MATLAB R© script, to
operate similarly to an image scanner.

The assembly is translated with fixed steps along the light-propagation coordinate and, at each step, several pictures
are acquired, with different exposure times (ranging from about 1 ms to about 63 ms). Each picture is integrated in
a window of width w along the propagation coordinate to average the speckle noise, and give a reliable measurement
of the intensity distribution along the transverse coordinate. Such integration window corresponded to 400 µm for
the experiment in Figure 2 of the Main Text, and 200 µm in the other cases. In addition, the intensity values are
normalized, for each picture, to the exposure time: this allows one to obtain measurements that are consistent and
comparable one to the other.

First, we reconstruct an image of the whole array (Fig. 6) where the exposure times of the different sections are
chosen in such a way that the highest overall signal is provided, but avoiding saturation in any point. Then, we focus
on the first waveguide and we assemble another image of the whole array, in which, on the contrary, we choose for
each section the longest exposure time that avoids saturation only in the first waveguide.

The first image is then integrated transversally over all the waveguides, to obtain the overall power propagating
in the array at each propagation coordinate Ptot(t). The second image is also integrated transversally, but including
only the pixels of the first waveguide: this enables one to measure the power propagating in the first waveguide P1(t).
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Finally, the experimental survival probability is retrieved as p(t) = P1(t)/Ptot(t). It should be noted that both P1(t)
and Ptot(t) are affected by the propagation losses in the waveguide array. However, being this effect the same for the
two quantities, it cancels out in the ratio that defines p(t).

Note that, combining the 28 = 256 available dynamic levels of the camera with exposures varying by a factor of
about 26=64, we can compare intensity levels which differ by a factor of about 214 > 104, avoiding saturation in
any point of the image. On the other hand, the intensity measurements on each pixel are still (properly rescaled)
data acquisitions made with the 256-level camera. Therefore the available dynamic range is about 14 bits, while the
precision in evaluating the intensity of each pixel is 8 bits.

Estimate of uncertainties

We describe in the following how we estimated the uncertainties for the physical quantities involved in the experi-
mental measurements.

• The uncertainty in the propagation coordinate t derives from the finite (and not infinitesimal) width of the
spatial integration window in the acquisition procedure. We estimate the uncertainty value as the standard
deviation associated to a uniform probability distribution with the same width w as the integration window.

• The uncertainty in the measured values of the survival probability is estimated by assuming that the main
contribution to measurement noise is due to speckle and non-uniformity of the scattering centers. To estimate
quantitatively the noise we start by considering the measured value of total optical power propagating in the
array at each point t (as inferred from the acquired images of the array). In the ideal case the total optical
power should follow an exponential decay trend; we thus fit an exponential curve on its values as a function of t.
The deviation of these experimental point from the fit is attributed to the speckle and non-uniformities of the
scattering centers (we also note that such noise is proportional to the signal amplitude). We use the standard
deviation of the residuals of the fit, normalized to the fitted point values, as an estimation of σp/p. We can thus
associate to each point p(t) an error bar with amplitude σ(t) = p(t) · σp/p.

• The uncertainty in the values of the coupling coefficients (κ0, κ, q) and of the propagation constant detuning (q) is
assumed to be entirely due to non-reproducibility of the coupling coefficients within the same fabrication session.
This uncertainty was evaluated from the preliminary experiments, performed to calibrate their dependency on
the inscription parameters.
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