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ABSTRACT
We and others propose vimentin as a possible cellular 
target for the treatment of COVID-19. This innovative 
idea is so recent that it requires further attention and 
debate. The significant role played by vimentin in virus-
induced infection however is well established: (1) vimentin 
has been reported as a co-receptor and/or attachment 
site for SARS-CoV; (2) vimentin is involved in viral 
replication in cells; (3) vimentin plays a fundamental role 
in both the viral infection and the consequent explosive 
immune-inflammatory response and (4) a lower vimentin 
expression is associated with the inhibition of epithelial 
to mesenchymal transition and fibrosis. Moreover, the 
absence of vimentin in mice makes them resistant to lung 
injury. Since vimentin has a twofold role in the disease, 
not only being involved in the viral infection but also in the 
associated life-threatening lung inflammation, the use of 
vimentin-targeted drugs may offer a synergistic advantage 
as compared with other treatments not targeting vimentin. 
Consequently, we speculate here that drugs which 
decrease the expression of vimentin can be used for 
the treatment of patients with COVID-19 and advise that 
several Food and Drug Administration-approved drugs be 
immediately tested in clinical trials against SARS-CoV-2, 
thus broadening therapeutic options for this type of viral 
infection.

INTRODUCTION
The COVID-19 has triggered a global public 
health crisis with more than 10 million 
infected people up to date (30 June 2020) 
worldwide and a global incidence rate which 
is still growing.1 SARS-CoV-2 infection causes 
an explosive immune response, characterised 
by a cytokine storm, a subsequent progression 
to lung injury and an acute respiratory distress 
syndrome leading to death.2 3 Despite many 
promising therapeutic options for the treat-
ment of COVID-19, anti-SARS-CoV-2 drugs or 
vaccines are still under investigation.4

Vimentin, known as a cytoskeletal protein 
belonging to the intermediate filament (IF) 
family, plays an important role in stabilising 
intracellular architecture through its mechan-
ical role in cell plasticity and organelle 
anchoring, in the metabolism of lipids and 
in cell remodelling through its interaction 
with signalling molecules and components 
of gene regulatory networks.5–10 At cellular 

level, vimentin has been shown to be impli-
cated in cell proliferation, stiffness, adhesion, 
migration, differentiation, senescence and 
apoptosis.7–10 Vimentin also plays a role in 
inflammation and immune responses, as well 
as in the epithelial to mesenchymal transition 
(EMT); the latter, in turn, being involved in 
the opening of epithelial barriers and cell 
migration.11 12

Strikingly, intracellular vimentin has been 
shown to be implicated in the processes of 
virus fusion, replication and assembly (for a 
review, see Ramos et al8). Vimentin was addi-
tionally found to be located outside of the cell, 
where it serves as an attachment site for viral 
proteins, in the majority of cases favouring 
viral binding/entry.13–16 One possible excep-
tion was reported for the human papilloma-
virus type 16 (HPV-16) infection, in which 
vimentin actually had the opposite effect.17 
In this case, the authors reported that cell 
surface vimentin interfered with viral binding 
to its receptor, thus having a protective effect 
against viral infection. However, the role of 
vimentin for this specific virus is debated and 
contradictory reports have been published. As 
evidence to the contrary, Jacobs et al18 experi-
mentally reduced the level of vimentin on the 
surface of cervical cancer cells by exposing 
the cells to the hookworm Nippostrongylus 
brasiliensis, with the result of decreasing the 
internalisation of the HPV-16 in these cells.18 
One of the proposed mechanisms under-
lying this observation was the production of 
T helper-derived cytokines (eg, interleukin 
(IL)-4) associated with the helminth infec-
tion, which could, in turn, have modified the 
expression of HPV receptors in cancer cells.

During the submission period of the present 
manuscript in which we propose vimentin as 
a potential therapeutic target against viral 
infection, another two papers were written 
advocating the same hypothesis.8 9 Vimentin 
was also been previously proposed as a poten-
tial therapeutic target in cancer treatment 
and other disease conditions such as fibrosis. 
The upregulation of vimentin typically 
observed in oncogenic transformation and 
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its involvement in cancer cell migration highlighted the 
possibility that vimentin is not only a marker but also a 
player in the development of cancer (reviewed in Refs 
10 and 19). Therefore, molecules such as withaferin A, 
FiVe1 and simvastatin were used to perturb the expres-
sion and/or the assembly of vimentin filament and led 
to the downregulation of soluble vimentin, accompanied 
by decreased fibrosis, the disruption of mitotic cells, fila-
ment disorganisation and cell death.20–22

This paper summarises the scientific evidence indi-
cating that reducing the expression of vimentin could 
be a powerful therapeutic option for COVID-19, since 
it could hamper SARS-CoV-2 infection and, at the same 
time, decrease the immunological response that is ulti-
mately responsible for the often lethal acute respiratory 
distress syndrome. This hypothesis can be readily tested 
through clinical trials since Food and Drug Adminis-
tration (FDA)-approved pharmacological treatments 
targeting vimentin for other pathologies are already 
available.

Vimentin is a co-receptor for SARS-CoV and possibly for 
SARS-CoV-2
ACE 2 (ACE2) is a cellular receptor for the SARS-CoV 
spike protein.23 However, it has been shown that ACE2 
is not sufficient to make host cells susceptible to infec-
tion24–26 and vimentin has been proposed as a co-receptor 
for the entry of SARS-CoV into cells.13 Indeed, the authors 
reported that the SARS-CoV virus enhances cell surface 
vimentin expression and, importantly, showed the exist-
ence of a direct interaction between vimentin and the 
SARS-CoV spike protein during viral entry.13 Moreover, 
SARS-CoV and SARS-CoV-2 share similar spike protein 
sequences and the same cell entry route.27 Interestingly, 
it has been recently reported that two proteins that are 
well known to be involved in the entry of SARS-CoV-2 
into the cell—ACE2 and TMPRSS2—are both expressed 
by two cell types, that is, lung type II pneumocytes and 
nasal goblet secretory cells28; it is worth noting these 
two cell types also express high levels of vimentin.28–30 In 
addition, a potential interaction between vimentin and 
the SARS-CoV-2 spike protein is revealed in a SARS-CoV-2 
protein–protein interaction map (see supplemental 
data).31

Vimentin starts being expressed in the early stages of 
embryonic development by highly plastic precursor cells, 
whereas in postnatal life it is found in fibroblasts, endo-
thelial cells, smooth muscle cells and in the lining epithe-
lial cells of the lung, gut and other mucosae.29 30 32 33 Here 
vimentin expression is quickly increased in response 
to viral infection and inflammatory stimuli34–36 since 
vimentin belongs to the ‘immediate early genes’ family, 
a group of genes which are quickly activated in the pres-
ence of infection and inflammation. In this condition, 
due to its translocation to the cell surface, vimentin works 
as a co-receptor or attachment site for several viruses, 
including the Japanese encephalitis virus,37 the porcine 

reproductive and respiratory syndrome virus,38 the 
enterovirus 71,39 cowpea mosaic virus,14 dengue virus16 
as well as the coronavirus.13 Interestingly, an upsurge 
of vimentin expression accompanies, and favours, viral 
entry of the majority of viruses including SARS-CoV13 
with the exception of HPV-16 in which viral entry is actu-
ally hampered by an increase in vimentin expression.17 
Consistently, interfering with vimentin expression or 
treating cells with the neutralising ‘anti-vimentin’ anti-
bodies attenuates some types of viral infection.8 9 18 37 38 
However, it is unknown if vimentin is involved in the infec-
tion of the Middle East respiratory syndrome coronavirus 
(MERS-CoV) which uses dipeptidyl peptidase 4 as the 
host cell receptor.40

Vimentin is involved in different steps of viral repli-
cation or assembly since it colocalises with viral capsid 
proteins in the endoplasmic reticulum of the infected 
cells,41 cooperating to produce virus particles.42 It is 
reported that vimentin is implicated—through the 
control of lysosomal trafficking and reduced transloca-
tion of viral ribonucleoproteins—in the progression of 
the influenza A virus, acting as a restriction factor for 
viral replication.43 44 In addition, vimentin influences 
the hepatitis C virus (HCV) and Theiler’s virus replica-
tion through its interaction with virus core proteins.45 46 
A strong reduction of HIV-1 replication was reported in 
vimentin knockdown cells, showing that vimentin is neces-
sary for viral replication.47 Vimentin contributes to EMT, 
a process by which epithelial cells, including those lining 
the lung mucosa, lose their polarity and adhesion. EMT 
thus confers migratory and invasive properties to the 
cells in a variety of pathological conditions such as viral 
infections, angiogenesis, chronic autoimmune inflam-
matory diseases, inflammatory bowel diseases, chronic 
obstructive pulmonary disease, cystic fibrosis and cancer. 
Overall, EMT promotes the creation of a suitable envi-
ronment for viral infection and inflammation.

Vimentin expression is regulated by a plethora of tran-
scription factors such as NF-κB (nuclearfactor-kappa B), 
Stat3 (signal transducer and activator of transcription 
3), ZBP-89 (Kruppel-type zinc-finger family transcrip-
tion factor), Smads (smallmothers against decapenta-
plegic transcription factors), AP-1 (activator protein 1), 
Sp1 (proximal specificity protein 1) and PEA3 (poly-
omaenhancer activator 3)—see figure  1. In response 
to viral infection or other insults, vimentin expression 
quickly increases. There are other transcription factors, 
such as Snail, Twist, ZEB2 and Slug,12 48–52 that regulate 
vimentin expression during EMT so that the overexpres-
sion of vimentin and N-cadherin in epithelial cells leads 
to the loss of the epithelial phenotype.

In addition, vimentin expression is also regulated 
epigenetically through the chromatin modifications of 
its promoter.53 These modifications have been studied 
in cancer cells since they promote EMT—a crucial event 
in the formation of tumour metastases. In particular, the 
methylation level of the vimentin promoter inversely 
correlates with the expression of vimentin in gastric 
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cancer.54 Finally, vimentin expression is also regulated by 
post-transcriptional mechanisms including that of non-
coding microRNAs.12

Vimentin actively participates in inflammation and immune 
response
Targeting vimentin could have additional effects against 
the progression of COVID-19 by directly modulating 
the inflammatory response of patients with COVID-19. 
Indeed, a subgroup of these patients suffer from a cytokine 
storm syndrome, that is, an excessive cytokine produc-
tion sustained by a positive feedback loop producing 
an inflammatory response, often leading to respiratory 
failure from acute respiratory distress syndrome.2 3

The NLRP3 inflammasome (nucleotide-binding and 
oligomerisation domain-like receptor protein 3 inflam-
masome) is an intracellular multiprotein complex that 
triggers the immune response of the host against patho-
gens including viruses and is implicated in acute lung 
injury.55 It has been demonstrated that vimentin is a key 
regulator of the NLRP3 inflammasome by direct interac-
tion.11 Important events in lung inflammation and the 
onset of injury are the increase in IL-1β levels, the perme-
ability of the endothelial–alveolar epithelium barrier and 

irreversible fibrosis. The relevance of vimentin in these 
responses was demonstrated in animal models in which 
the inflammatory response of vimentin-knockout mice 
to lipopolysaccharide (LPS), bleomycin or asbestos treat-
ment was considerably lower, entailing a less significant 
lung injury.11 Leucocyte adhesion to vascular endothe-
lium and platelets is an early step in acute inflamma-
tory response and attenuation of this adhesion may be 
beneficial in acute lung injury. By increasing circulating 
IL-1β—the major proinflammatory cytokine— vimentin 
is responsible for activating and recruiting inflamma-
tory cells. In this context, it was shown that the vimentin 
IFs of both endothelial cells and lymphocytes form an 
anchoring structure between these two cell types.56 
Further evidence of the importance of vimentin for 
leucocyte extravasation comes from the report that the 
transendothelial migration of blood T and B lymphocytes 
is markedly reduced in vimentin-deficient lymphocytes 
and endothelial cells.56 On the other hand, the presence 
of vimentin on the platelet and endothelial cell surface 
also serves as an adhesive receptor for the von Willebrand 
factor (VWF) and causes the binding of platelets to the 
subendothelial collagen and the subsequent intravascular 
generation of thrombin.57 58 The latter being responsible 

Figure 1  Schematic representation of the hypothetical role of vimentin in the crucial steps of viral infection and in the 
inflammation leading to lung injury. Drugs inhibiting vimentin expression in the nucleus of infected cells offer the advantage 
of a synergic effect as compared with other treatments not targeting vimentin. This is due to the fact that the vimentin 
protein is involved in: (1) viral entry13–16; (2) viral replication8; (3) endothelial to mesenchymal transition (EMT)12 and (4) 
inflammation.11 56–60 Therefore, decreasing the expression of vimentin would contribute to hampering viral infection and, in 
parallel, reducing the inflammatory response ultimately leading to COVID-19 lung injury, acute respiratory distress syndrome 
and fatalities. Worth noting, several transcription factors (including NF-kB, AP1 and Sp1) are implicated in the regulation of 
vimentin expression.34 48–52 The figure includes material from SMART Servier Medical Art (https://smart.servier.com/) under 
a Creative Commons (CC) license 3.0.AP1, activator protein 1; NF-κB, nuclear factor-kappa B; PEA3, polyoma enhancer 
activator 3; Smads, small mothers against decapentaplegic transcription factors; Sp1, proximal specificity protein 1; Stat3, 
signal transducer and activator of transcription 3; ZBP-89, Kruppel-type zinc-finger family transcription factor
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for microthrombus formation and contributing to a non-
haemostatic effect, that is, the inflammatory response.

The inhibition of the vimentin–VWF interaction, 
by anti-vimentin antibodies, is effective in interfering 
with the VWF-mediated platelet adhesion to different 
matrices.57 58 The administration of exogenous recombi-
nant human vimentin, binding specifically to P-selectin, 
stops leucocyte adhesion to platelets and endothelium 
by blocking P-selectin interaction with P-selectin glyco-
protein ligand, ultimately decreasing endotoxin-induced 
acute lung injury.59 The oxidised form of membrane-
bound vimentin is a marker of senescent cells,60 which, 
as such, produce a plethora of potentially harmful proin-
flammatory cytokines, chemokines and growth factors. 
Virus incubation times in senescent cells is longer, as 
observed in the case of HPV-1661 and studying corona-
virus infection in aged cells has been proposed, since this 
important issue for this virus is still unexplored.9

As shown above, vimentin is expressed by many cell 
types, it has multiple cellular localisations, it plays multiple 
roles in cell behaviour by interacting with a plethora of 
molecular partners. The complexity of the functions 
exercised by vimentin, especially as concerns viral infec-
tion, is exemplified by contradictory reports in the liter-
ature showing opposite roles for vimentin, depending 
on the type of virus and the specific partners involved in 
its direct or indirect interactions. In the following para-
graph and in table 1, we report and comment on a list 
of vimentin-targeting drugs, which are globally known to 
downregulate vimentin expression, since we think that 
such a downregulation would be beneficial. However, 
we decided to provide only a few significant case by case 
comments. Each single drug, depending on the type of 
virus and host cell type concerned, should be further 
investigated.

Drugs targeting vimentin could combat coronavirus-related 
effects
Based on the fact that vimentin is important for viral 
infection and the associated inflammatory response, we 
have searched the literature for compounds targeting 
vimentin so as to select drugs that may treat COVID-19. 
Some of these drugs are as common and as easily avail-
able as melatonin, which makes our hypothesis imme-
diately verifiable through clinical trials on COVID-19 
specifically.

Some of the 49 compounds that we have identified 
(table 1) are completely new molecules that have recently 
started to be studied, others have never been employed 
in clinical practice although they are referenced by 
the FDA, while others are already being tested in clin-
ical trials. However, all these molecules in table 1 affect 
vimentin levels, as demonstrated by western blot and/or 
real-time PCR analysis. Several of these compounds have 
been identified and characterised in in vitro experiments 
only, while others have been validated in vivo against cell 
growth and dispersion in cancer, and for their capacity to 

inhibit EMT which, as mentioned, amounts to fighting 
inflammation.

Interestingly, a significant fraction (16 out of 49) of 
the drugs listed in table 1 have been reported to play a 
role in acute lung injury and are briefly discussed below 
for this reason. Melatonin markedly reduces pulmonary 
injury and decreases the infiltration of macrophages 
and neutrophils into the lungs of LPS-treated mice, by 
inhibiting the NLRP3 inflammasome, in a model of acute 
lung injury.62 Worth noting, it has already been specu-
lated that melatonin would be beneficial in patients with 
COVID-19.63 Niclosamide, a cheap antihelminthic drug, 
is effective against several viruses such as SARS-CoV, 
MERS-CoV, Zika virus, HCV and human adenovirus.64 In 
particular, niclosamide has been shown to be an inhibitor 
of SARS-CoV 3CL protease, involved in viral replication.64 
Endogenous hydrogen sulfide participates in the regulation 
of important biological processes in the respiratory tract, 
such as airway tone, pulmonary circulation, cell prolifer-
ation and apoptosis, fibrosis, oxidative stress and inflam-
mation.65 Since hydrogen sulfide exerts a broad-spectrum 
antiviral activity, as well as having an anti-inflammatory 
action, the controlled release of hydrogen sulfide from 
chemical donors has been proposed as a treatment in 
lung diseases.65 Simvastatin has protective vascular effects 
in the lungs since it improves the function of the endo-
thelial barrier. The efficacy of simvastatin against LPS-
induced lung injury involves the stabilisation of the cell 
cytoskeleton and adherent junctions.66 The ability of trip-
tolide to inhibit the proinflammatory NF–κB signalling 
pathway makes it another promising therapeutic agent 
for acute lung injury.67 Sinomenine attenuates septic shock-
dependent acute lung injury, probably thanks to the inhi-
bition of inflammation and oxidative stress.68 Tanshinone 
IIA inhibits the production of proinflammatory factors in 
LPS-induced acute lung injury through the regulation of 
calcium in pulmonary interstitial macrophages.69 Ginse-
noside Rg3 attenuates LPS-induced acute lung injury by 
decreasing the production of proinflammatory factors 
and increasing the synthesis of anti-inflammatory cyto-
kines, through the activation of the PI3K/AKT/mTOR 
pathway downstream of the Mer receptor.70 Icariin 
reduces acute lung injury by enhancing the expression 
of the glucocorticoid receptor alpha in lung tissues and 
by inhibiting the expression of p65, c-Jun, Stat3, IL-6 and 
tumour necrosis factor-alpha.71 The therapeutic window 
of Valproic acid is narrower but interesting, since it is 
effective in a mouse model of Gram-negative bacteria-
induced pneumonia.72 Apigenin C-glycosides inhibit acute 
inflammation and apoptosis by suppressing the activa-
tion of the TLR4/TRPC6 signalling pathway in a murine 
model of acute lung injury.73 Inositol derivatives present 
in surfactant preparations diminish the activation of key 
inflammatory pathways in lung diseases.74 Pterostilbene 
4′-β-glucoside, the glycosylated form of the antioxidant 
pterostilbene, diminishes intracellular and mitochon-
drial reactive oxygen species production, thus reducing 
the inflammatory response to LPS.75 Osthole exerts 
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Table 1  Compounds downregulating vimentin expression

Name of molecule Type Effects Modes of action Models Reference

17-DMCHAG Geldanamycin 
derivative

Antimigratory;
antiproliferative

Inhibits HSP90; induces 
the proteasome-dependent 
degradation of androgen 
receptor

Human prostate cancer 
cells; tumour-bearing mice

79

Alpha-lipoic acid* Acid;
antioxidant

Inhibitor of EMT;
antiproliferative

Inhibits TGF-ß; activates 
AMPK and downregulates 
mTOR-S6 signalling

Human thyroid cancer cells; 
tumour-bearing mice

80

Apigenin*† Flavonoid derivative Antiapoptosis;
pro-proliferative;
antifibrotic

Decreases miR-34a Mouse mesothelial 
peritoneal cells

81

Berberine* Alkaloid derivative Inhibitor of EMT;
antiproliferative

Decreases PI3/AKT, Ras-
Raf-ERK and TGF-ß1 
signalling

Mouse neuroblastoma cells 82

Bergamottin Furanocoumarin 
derivative

Inhibitor of EMT;
antimigratory

Decreases PI3K/AKT/mTOR, 
TGF-ß signalling

Human lung 
adenocarcinoma cells

83

Beta-asarone Phenylpropanoid 
derivative

Inhibitor of EMT;
antimigratory

Decreases hnRNP A2/B1, 
MMP-9, p-STAT3 expression

Human glioma cells 84

Beta-lapachone Quinone derivative Inhibitor of EMT;
antimigratory;
proapoptosis

Induces apoptosis through 
caspase-3, -8 and -9 
activation and poly(ADP-
ribose) cleavage; decreases 
MMP-2 and MMP-9

Mouse colon cancer cells; 
tumour-bearing mice

85

BHX Pyrazoline derivative Inhibitor of EMT;
antimigratory;
proapoptosis

Inhibits Wnt/β-catenin 
signalling

Human breast cancer cells; 
tumour-bearing mice

86

BMS345541 Selective I kappa B 
kinase inhibitor

Inhibitor of EMT;
anti-inflammatory

Inhibits NF–κB/RelA 
pathway

Human epithelial cells; 
polyinosinic–polycytidylic 
acid-treated mice

87

Chrysin* Flavonoid derivative Inhibitor of EMT;
antimigratory

Reduces MMP-2 activity; 
induces zona occludens 
protein-1 and occludin 
expression

Human renal epithelial cells; 
db/db mice

88

Chrysotobibenzyl  �  Inhibitor of EMT;
antimigratory

Decreases integrins (β1, 
β3, αν), p-FAK, p-AKT, 
caveolin-1 expression

Human lung cancer cells 89

Cisplatin Anticancer Inhibitor of EMT;
antimigratory;
antiproliferative

Reduces YAP activity Human colon cancer cells; 
tumour-bearing mice

90

Compound 11 Selective class I HDAC 
inhibitor

Inhibitor of EMT;
antiproliferative

Decreases p-AKT, p-ERK 
activity

Human colorectal cancer 
cells; tumour-bearing mice

91

Curcumin* Polyphenolic 
compound

Inhibitor of EMT;
antimigratory;
antiproliferative

Decreases TGF-ß/Smad2/3 
signalling

Human thyroid cancer cells 92

Cypripedin Phenanthrenequinone 
derivative

Inhibitor of EMT;
antimigratory

Decreases AKT/GSK-3β 
signalling

Human lung cancer cells 93

D-4F Apolipoprotein A-I 
mimetic

Inhibitor of EMT;
antifibrotic

Inhibits TGF-ß1 Human alveolar epithelial 
cells

94

Dehydroepiandrosterone Steroid Inhibitor of EMT;
antimigratory

Decreases N-cadherin and 
Snail expression

Human breast cancer cells; 
tumour-bearing mice

95

Dictamnine Alkaloid Inhibitor of EMT;
antiproliferative; 
proapoptosis

Decreases mTOR/p70S6K/
eIF4E and MAPK signalling

Human lung cancer cells 96

Ginsenoside Rg3*† Steroidal saponin Inhibitor of EMT;
antimigratory;
proapoptosis

Inhibits LncRNA colon 
cancer-associated transcript 
1 expression and PI3K/AKT 
signalling; inhibits MAPK 
and NF–κB signalling

Human colorectal cancer 
cells; lung cancer cells; 
tumour-bearing mice

97 98

Hydrogen sulfide*† – Inhibitor of EndMT; 
decrease ER 
stress; vasodilator; 
cardioprotective

Decreases Smad2 and Src 
signalling

Human umbilical vein 
endothelial cells

99

Continued
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Name of molecule Type Effects Modes of action Models Reference

Hydroxygenkwanin Flavonoid derivative Antimigratory;
antiproliferative

Activates p21 signalling Human oral squamous cell 
carcinoma

44

Icariin*† Flavonoid derivative Antimigratory;
antiproliferative;
proapoptosis

Inhibits PI3K, AKT and MEK/
ERK signalling; decreases 
miR-625-3p and MMP-9 
expression

Human thyroid cancer cells 100

Icariside II Flavonol glycoside Inhibitor of EMT;
antimigratory

Inhibits NF-κB and AKT/
GSK-3ß signalling

Human lung cancer cells; 
tumour-bearing mice

101

Inositol*† Lipid Inhibitor of EMT;
antimigratory

Inhibits PI3K/AKT and NF-
κB signalling

Human breast cancer cells 102

Melatonin*† Hormone Inhibitor of EMT;
antimigratory;
antiproliferative

Inhibits PI3K/AKT signalling;
decreases MMP-2, MMP-9, 
NF-κB p65 expression

Human ovarian cancer cells;
gastric cancer cells; tumour-
bearing mice

103 104

Metapristone* RU486 derivative Antimigratory;
antiproliferative;
proapoptosis

Decreases AKT and ERK 
phosphorylation and Bcl-2; 
upregulates total p53 and 
Bax expression

Mouse skin melanoma cells 105

Metformin*† Biguanide derivative; 
antidiabetic

Inhibitor of EMT;
antimigratory

Downregulates HIF-1alpha, 
CAIX, miR-34a, SNAIL1 
and ZEB1; upregulates 
miR-200a, miR-200c and 
miR-429

Human cervical squamous 
cancer cells; human 
colorectal cancer cell

106 107

Moscatilin Bibenzyl derivative Inhibitor of EMT;
proapoptosis

Decreases ERK and AKT 
activity; downregulates 
caveolin-1 level

Human lung cancer cells 108

N-acetylcysteine* Antioxidant Reduce fibrosis;
anti-inflammatory

Enhances antioxidant 
enzyme activities; 
downregulates oxidising 
enzymes’ expression

Crystalline silica-induced 
pulmonary fibrosis mice 
model

109

Niclosamide*† Antihelminthic Inhibitor of EMT;
antimigratory

Inhibits Wnt/β-catenin 
signalling

Human oral squamous cell 
carcinoma

110

Norcantharidin Cantharidin derivative Inhibitor of EMT;
antimigratory

Inhibits αvβ6-ERK-Ets1 
signalling

Human colon cancer cells 111

Osthole* Coumarin derivative Inhibitor of EMT;
antimigratory;
antiproliferative;
proapoptosis

Decreases MMP-2, MMP-9, 
Smad-3, Snail-1, Twist-1 
expression

Human renal cell carcinoma 112

PAC* Curcumin analogue Inhibitor of EMT;
antimigratory;
antiproliferative

Inhibits JAK2/STAT3, AKT/
mTOR and MEK/ERK 
signalling; inhibits STAT3/
cyclin D1 pathway

Human colorectal cancer 
cells; tumour-bearing mice

113

Palbociclib Selective CDK4/6 
inhibitor

Inhibitor of EMT;
antimigratory

Inhibits c-Jun/COX-2 
signalling

Human breast cancer cells; 
tumour-bearing mice

114

Pargyline Lysine-specific 
demethylase 1 inhibitor

Inhibitor of EMT;
antimigratory

Reduces prostate-specific 
antigen

Human prostate cancer 
cells; tumour-bearing mice

115

Physcion Anthraquinone 
derivative

Inhibitor of EMT;
antimigratory

Activates ROS/AMPK/
GSK3β signalling; inhibits 
SOX2

Human colorectal cancer 
cells

116

Pterostilbene*† Antioxidant Inhibitor of EMT;
antimigratory

Reduces Src/Fak signalling; 
upregulates miR-205 
expression

Human breast cancer cells; 
tumour-bearing mice

117

Salidroside* Glucopyranoside 
derivative

Inhibitor of EMT;
antimigratory;
antiproliferative

Downregulates miR-891b 
expression; inhibits PI3K/
AKT/mTOR and NF-κB 
signalling

Wilms' tumour cells; mouse 
prostate cancer

118

Selenium*† Metal Inhibitor of EMT Downregulates genes 
involved in cellular 
migration, inflammation 
and mesenchymal markers; 
upregulates genes involved 
in epithelial markers

Human prostate 119

Table 1  Continued
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beneficial effects on bleomycin-induced pulmonary 
fibrosis in rats by modulating the ACE2/ANG-(1–7) axis 
and by inhibiting lung inflammation.76 Selenium restores 
the antioxidant capacity of the lungs and reduces inflam-
matory responses, thus improving lung mechanics.77 
All the previous examples concerned infection-induced 
lung injury, while lung injury may also be caused by 
the mechanical stress caused by forced ventilation. To 
specifically address this type of damage, Tsaknis et al78 
set up an elegant experimental model, exercising high-
pressure ventilation on ex vivo lung preparations thereby 
increasing their microvascular permeability, oedema and 
microhaemorrhages; in this model, pretreatment with 
metformin decreased the severity of the damage preserving 
alveolar capillary permeability. Additional FDA-approved 

drugs that have already been used in clinical trials, but 
have not been discussed here, are metapristone, N-ace-
tylcysteine, chrysin, berberine, salidroside, dehydroepi-
androsterone and cisplatin. It is worth noting that many 
of the compounds above have been tested against cancer 
and reported to inhibit cell growth and EMT, but will not 
be discussed in this article. High-throughput screening 
in cell culture systems using a reporter system driven 
by the vimentin promoter will identify additional novel 
drugs for their capacity to specifically decrease vimentin 
transcription. In addition, alternative therapeutic inter-
ventions based on the downregulation of vimentin can be 
designed, such as the administration of antisense oligo-
nucleotides, anti-vimentin RNA, humanised neutral-
ising antibodies or dominant-negative peptides capable 

Name of molecule Type Effects Modes of action Models Reference

Simvastatin*† Statin Inhibitor of EMT;
antifibrotic

Decreases Toll-like receptor 
4 and NF-κB signalling

Human biliary epithelial cells 120

Sinomenine*† Alkaloid Antimigratory;
antiproliferative

Downregulates miR-
23a expression; inhibits 
PI3K/AKT and JAK/STAT 
signalling

Human prostate cancer cells 121

Swainsonine Indolizidine alkaloid Antimigratory;
antiproliferative;
proapoptosis

Downregulates miR-92a, 
inhibits PI3K/AKT/mTOR 
signalling

Human glioblastoma cells 122

Tanshinone IIA*† Lipophilic compound Inhibitor of EMT;
antimigratory;
antiproliferative

Inhibits STAT3-CCL2 
signalling

Human bladder cancer cells 123

Tetramethylpyrazine 
nitrone

Tetramethylpyrazine 
derivative

Reduces brain 
infarction; preserves 
neurological function

Decrease expression of 
neuroinflammatory markers

Cynomolgus macaques 
brain ischaemic stroke 
model

124

Tetrandrine Alkaloid Inhibitor of EMT;
antimigratory

Reduces glioma-associated 
oncogene family zinc finger 
1 (Gli-1) expression

Human bladder cancer cells 125

Toosendanin Alkaloid Inhibitor of EMT;
antimigratory;
antiproliferative

Inhibits AKT/mTOR 
signalling

Human pancreatic cancer 
cells; tumour-bearing mice

126

Triptolide*† Diterpenoid derivative Antifibrotic Inhibits TLR4-induced NF-
κB/IL-1β immune pathway; 
inhibits NF-κB/TNF-α/
VCAM-1 inflammatory 
pathway; downregulates 
TGF-β1/α-SMA/vimentin 
fibrosis pathway

Diabetic rats 127

Valproic acid*† Acid Inhibitor of EMT;
antiproliferative

Downregulates Smad4 
expression; upregulates 
transcriptional intermediary 
factor-1γ (TIF1γ) expression

Human prostate carcinoma 
cells; tumour-bearing mice

128 129

Wogonin* Flavonoid derivative Inhibitor of EMT;
antimigratory

Inhibits IL-6/STAT3 
signalling pathway

Human alveolar 
adenocarcinoma cells

130

A selection of compounds downregulating vimentin expression and their major cellular and molecular effects. Some of these molecules already have FDA approval, 
thus can be immediately used to set up clinical trials against COVID-19.
*Indicates the compounds have been referenced by the FDA; the latter group of drugs is briefly discussed in the text.
†Indicates the compounds that have been reported to play a role in acute lung injury.
AMPK, AMP-activated protein kinase; ANG, Angiotensin; Bax, Bcl-2–associated X; Bcl-2, B-cell lymphoma 2; CCL2, Chemokine ligand 2; 17-DMCHAG, 
17-(6-(3,4-dimethoxycinnamamido)hexylamino)-17-demethoxy-geldanamycin; eIF4E 
, Eukaryotic translation initiation factor 4E; EMT, epithelial to mesenchymal transition; EndMT, endothelial to mesenchymal transition; ER, endoplasmic reticulum; 
ERK, Extracellular signal-regulated kinase; FAK, Focal adhesion kinase; FDA, Food and Drug Administration; GSK-3, Glycogen synthase kinase-3; HDAC, Histone 
deacetylase; HIF, Hypoxia Inducible Factor; hRNP, Heterogeneous Nuclear Ribonucleoprotein; HSP, Heat Shock Protien; IL, Interleukin; JAK2, Janus kinase 2; 
LncRNA, Long noncoding RNAs; MAPK, Mitogen-activated protein kinase; MMP, Matrix metallopeptidase; mTOR, Mechanistic target of rapamycin; NF-κB, nuclear 
factor-kappa B; PEA3, polyoma enhancer activator 3; PI3K, Phosphatidylinositol 3-kinase; ROS, Reactive oxygen species; SMA, Smooth muscle actin; Smad, small 
mothers against decapentaplegic transcription factor; STAT3, Signal transducer and activator of transcription 3; TGF, Transforming growth factor; TLR4, Toll-like 
receptor 4; TNF, Tumor necrosis factor; VCAM, Vascular cell adhesion molecule; YAP, Yes-associated protein.
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of blocking the interaction between vimentin and viral 
proteins.

CONCLUSIONS
Vimentin functions as a co-receptor for SARS-CoV—and 
likely for SARS-CoV-2—thus contributing to viral infec-
tion. Evidence of the significant role played by vimentin 
in virus-induced infection comes from the following 
observations: vimentin expression increases during viral 
infection in several clinical settings, while the absence of 
vimentin in knockout mice makes them more resistant to 
inflammation and acute lung injury than wild-type mice. 
Therefore, vimentin can be a target for the treatment of 
COVID-19-related pneumonia. It is a matter of fact that 
drugs that have proven efficient against viral infection 
downregulate vimentin expression. While the correlative 
nature of this evidence does not yet prove a causative role 
for vimentin downregulation in diminishing viral infec-
tion, it indicates that establishing whether drugs which 
decrease vimentin expression can be used for the treat-
ment of patients with COVID-19 is the point at issue. Since 
vimentin has a twofold role in the disease, not only being 
involved in the viral infection but also in the associated 
life-threatening lung inflammation, the use of vimentin-
targeted drugs may offer a synergistic advantage as 
compared with other treatments not targeting vimentin. 
In particular: (1) the decreased amount of vimentin 
on the cell surface would decrease its interaction with 
SARS-CoV-2 spike protein, thus interfering with viral 
entry; (2) the decreased amount of vimentin within the 
cell would affect virus replication; (3) the lesser amount of 
vimentin within inflammatory cells would exert negative 
effects on the inflammasome. This in turn would avoid 
the cytokine storm and curb the arrival of infiltrating 
inflammatory cells; (4) lower vimentin expression in 
epithelial cells and fibroblasts would decrease EMT and 
fibrosis. Taken together, all these considerations strongly 
suggest that vimentin represents a valuable therapeutic 
target at the early stages of the SARS-CoV infection, may 
help avoid the progression to serious complications and 
indicate that several FDA-approved drugs (such as mela-
tonin, niclosamide, selenium, hydrogen sulfide, inositol) 
should be tested in clinical trials against SARS-CoV-2.
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