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As in the preceding paper (hereafter referred to as paper I1) we aim at identifying the effective
theory that describes the fluctuations of the local overlap with an equilibrium reference configuration
close to a putative thermodynamic glass transition. We focus here on the case of finite-dimensional
glass-forming systems, in particular supercooled liquids. The main difficulty for going beyond the
mean-field treatment comes from the presence of diverging point-to-set spatial correlations. We
introduce a variational low-temperature approximation scheme that allows us to account, at least
in part, for the effect of these correlations. The outcome is an effective theory for the overlap
fluctuations in terms of a random-field + random-bond Ising model with additional, power-law
decaying, pair and multi-body interactions generated by the point-to-set correlations. This theory
is much more tractable than the original problem. We check the robustness of the approximation
scheme by applying it to a fully connected model already studied in paper I. We discuss the physical
implications of this mapping for glass-forming liquids and the possibility it offers to determine the
presence or not of a finite-temperature thermodynamic glass transition.
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I. INTRODUCTION

Establishing the theory of the glass transition is admittedly a difficult endeavor. A variety of approaches have
been put forward, often with quite different views on the origin of the phenomenon and the best way to describe
it, but none of them has so far been accepted as providing the definite answer.2–11 What has been unambiguously
established, though, is the mean-field theory of the glass transition and of the glass phase, which has been shown
to be exactly realized for liquids in the limit of infinite spatial dimensions.12,13 This conceptual advance has allowed
one to connect the phenomena of jamming and of glass formation in a unified framework. However it leaves open
the problem of glass-forming liquids in 3 dimensions because of the anticipated strong effect of spatial fluctuations
on the mean-field scenario in finite dimensions, as discussed in the conclusion of paper I1. The mean-field description
relies on the existence of a complex free-energy landscape with a multitude of metastable states and a two-transition
scenario with a key role played at intermediate temperatures between these transitions by the configurational entropy
associated with the metastable states.4,5,14,15 Yet the very notion of metastability looses its rigorous meaning in
the presence of spatial fluctuations because of the ubiquitous occurrence of “nonperturbative” nucleation-like events
that destroy metastable states via thermal activation and enforce convexity of the free-energy. These events are of
course candidates to explain the strong slowdown of relaxation observed in glass-forming liquids approaching the glass
transition5 but in spite of interesting attempts5,14,16–18 they have not been incorporated so far in a proper theoretical
treatment.

Our goal, described in this paper and the companion one referred to as paper I,1 is not to provide a full-blown
solution of the glass transition problem, as we do not address the, nonetheless central, question of the dynamics of glass-
forming liquids. We want instead to identify the effective theory which describes the statistics of the fluctuations of
what is thought to be the relevant order parameter for glassy systems—the overlap field with an equilibrium reference
configuration—close to the putative thermodynamic glass transition, the random first-order transition (RFOT)4

predicted by the mean-field treatment. The idea is of course to derive a theory that is simpler than the original problem
and that can be studied by powerful tools of statistical mechanics (large-scale numerical simulations, nonperturbative
functional renormalization group, etc.).

In paper I1 we have shown that in the case of mean-field models of structural glasses—the random energy model
(REM)19 and a Kac-like generalization, the fully connected 2M -KREM20—an effective theory in terms of an Ising
model in an external field in the presence of quenched disorder, including a random field, naturally emerges. In
the richer case of the 2M -KREM, the interactions between Ising variables, where a state represents a low or a high
overlap with a reference equilibrium configuration, contain multi-body terms in addition to a standard short-range
ferromagnetic term.

The aim of the present paper is to extend this effective description to finite-dimensional glass-formers and, above
all, to glass-forming liquids (for a pioneering work, see Ref. [21]). In this case, contrary to mean-field models, the
effective theory cannot be worked out exactly, as already discussed in the last part of paper I.1 The main difficulty
is related to the emergence of (possibly long-ranged) point-to-set correlations. We then need to introduce several
approximations, guided by the mean-field results and physical intuition. The outcome is a description of the glass
transition in terms of an Ising model in an external field with random-field and random-bond disorder and long-range,
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competing, multi-body interactions:

βHeff =−
∑
〈i,j〉

(J2 + δJij)σ
iσj −

∑
i

(H + δhi)σ
i +

1

2

∑
i6=j

J̃2(|ri − rj |)σiσj +
∑

〈i,j〉6=〈k,l〉

J4(|ri − rk|)σiσjσkσl + . . . .

(1)
where the Ising variables σi = ±1 refer to a low and a high overlap with a reference equilibrium configuration. The
uniform source H plays the role of a “renormalized” configurational entropy, δJij and δhi are quenched variables

with zero mean, and J2, J̃2, J4 > 0 (the first is associated to a ferromagnetic coupling and the two others to
antiferromagnetic ones). The ellipses denote multi-body interactions beyond the 4-body ones and higher-order random
terms. The effective parameters of Heff are related to the original description of the glass-forming system; they may
depend somewhat on temperature, but the whole procedure is applied only close to the putative thermodynamic glass
transition (RFOT). In this mapping the thermodynamic glass transition of the liquid becomes the conventional first-
order transition of the random-field Ising model. Such a transition may exist above some lower critical dimension,
which is equal to d = 2 in the presence of a random field,22 provided that the effective ferromagnetic coupling is
sufficiently large compared to the strength of the disorder.

We stress again that the above mapping is valid for the thermal fluctuations of the overlap with a reference
equilibrium configuration but does not imply a mapping of the dynamics of glass-forming liquids onto that of the
effective random-field Ising theory. It is nonetheless useful to assess the presence or not of a thermodynamic glass
transition in finite-dimensional glass-formers.

The rest of the paper is organized as follows. In Sec. II we introduce the description in terms of overlap (or similarity)
between configurations in the case of glass-forming liquids. At this point the overlaps include those between a reference
configuration and n so-called constrained replicas of the liquid as well as all the overlaps among these constrained
replicas. From the functional of the 1- and 2-particle densities introduced by Morita and Hiroike in the context of the
liquid-state theory23 we derive an effective Hamiltonian that acts only on all the overlaps. Then in Sec. III we describe
in detail a variational low-temperature approximation scheme that allows us to integrate over the overlaps between
constrained replicas in the presence of diverging spatial point-to-set correlations and to obtain an effective theory for
the overlaps with the reference equilibrium configuration. In Sec. IV, we explicitly construct this effective theory and
show that it has the form of a random-field + random-bond Ising model with multi-body interactions. This generalizes
the results of paper I1 obtained for mean-field glass models. The physical interpretation of this theory and of the
various terms entering in the disordered Hamiltonian as well as a crude estimate of the existence of a thermodynamic
glass transition in a specific liquid model via the mapping to the effective theory are presented in Sec. V. Next, we
come back in Sec. VI to a glass model already studied in paper I, a generalization of the Random Energy Model
with a finite number of states: the 2M -KREM. We apply the variational low-temperature approximation scheme to
this model, first to its fully connected version to check the quality of the approximations with respect to the exact
results derived in paper I and second to its finite-dimensional version to see if the resulting effective theory has the
same structure as for glass-forming liquids (which it does). Finally we provide some concluding remarks and some
perspectives in Sec. VII. Many of the technical details of the calculations are presented in several appendices.

II. DESCRIPTION OF GLASS-FORMING LIQUIDS IN TERMS OF OVERLAP FIELDS

We aim at finding an effective theory for glass-forming liquids in finite dimensions which describes the statistics
of the spatial fluctuations of the overlap with a reference equilibrium configuration. Before explaining in detail the
(approximate) way to achieve this, it is worth presenting how overlap fields can be introduced in the context of
liquids. Consider a liquid described by a pair potential v(r) between the N constituent atoms (for the simplicity of
the presentation all atoms are taken to be equal and the interactions are pairwise and isotropic but the generalization
is straightforward). Its Hamiltonian reads

H[rN ] =
1

2

∑
i,j 6=

v(|ri − rj |) =
1

2

∫
r

∫
r′
v(|r− r′|)ρ̂(r)ρ̂(r′), (2)

where i, j = 1, · · · , N and ρ̂(r) ≡ ρ̂(r|rN ) =
∑
i δ

(d)(r − ri), with d the spatial dimension (for practical studies of
course, d = 2 or 3) .

A microscopic overlap between two liquid configurations rNα and rNβ at point r can be defined as

q̂(r|rNα , rNβ ) =

∫
y

f(y)ρ̂(r + y|rNα )ρ̂(r− y|rNβ ) (3)
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where f(y) is a smooth function of range a significantly less than the atomic diameter and accounting for the fact
that the similarity between configurations is defined once the fast vibrational motions have been averaged out; a
is therefore a tolerance of the order of the typical vibrational amplitude.24 As in paper I1 we consider a reference
equilibrium configuration, and handling the averages over this configuration leads to the introduction of n+1 copies or
replicas of the system, labelled by a Greek letter α = 0, 1, · · · , n with n→ 0; “0” refers to the reference configuration
and Roman letters a = 1, · · · , n are used for the other configurations, often referred to as “constrained”. There are
thus two types of overlaps: between the reference and the constrained replicas, and among the constrained replicas.
The first step is to derive an effective Hamiltonian (a coarse-grained Ginzburg-Landau action) describing the system
in terms of collective variables represented by all the overlaps, which by itself is not an easy task.

One can formally define a Hamiltonian for local overlap variables qαβ(r), with α, β = 0, 1, · · · , n and α 6= β, together
with one-particle density fields ρα(r), as follows:

H[{qαβ}, {ρα}] = − 1

β
ln

∫ n∏
α=0

drNα
∏
αβ 6=

δ[qαβ − q̂[rNα , rNβ ]]
∏
α

δ[ρα − ρ̂[rNα ]]e−β
∑
αH[rNα ] , (4)

where β = 1/T (we have set the Boltzmann constant kB to 1) and δ[· · · ] is a functional that indicates a delta function
in each point r of space.

After using the integral representation of the delta functions, which leads one to introduce the auxiliary fields λαβ(r)
and µα(r), the above expression can be rewritten (up to an irrelevant constant) as

H[{qαβ}, {ρα}] =− 1

β
ln

∫ ∏
αβ 6=

Dλαβ
∏
α

Dµα e
β
2

∑
αβ 6=

∫
r
λαβ(r)qαβ(r)−β

∑
α

∫
r
µα(r)ρα(r)

×
∫ n∏

α=0

drNα e
− β2

∑
αβ

∫
r

∫
r′ wαβ(r,r′|λ)ρ̂(r|rNα )ρ̂(r′|rNβ )+β

∑
α

∫
r
µα(r)ρ̂(r|rNα )

(5)

where

wαβ(r, r′|λ) = δαβv(|r− r′|) + (1− δαβ)f(|r− r′|)λαβ
(r + r′

2

)
. (6)

One recognizes in the functional integral in the second line of Eq. (5) the partition function Z[{wαβ [λ]}, {µα}] of
a liquid mixture of (n + 1) components with pair interaction potentials wαβ and chemical potentials µα. Due to
the dependence of the wαβ ’s on the auxiliary field λαβ(r) and the r dependence of the µα’s, the mixture is however
inhomogeneous.

Proceeding further now requires approximations. Keeping in mind that we want to derive a coarse-grained Ginzburg-
Landau action for the overlaps, which in the spirit of the Renormalization Group amounts to integrating over short-
ranged fluctuations, one evaluates the functional integral over the auxiliary fields in Eq. (5) through a saddle-point
procedure. As a result,

H[{qαβ}, {ρα}] ≈ −
1

β
lnZ[{wαβ [λ∗]}, {µ∗α}]−

1

2

∑
αβ 6=

∫
r

λ∗αβ(r)qαβ(r) +
∑
α

∫
r

µ∗α(r)ρα(r) , (7)

where λ∗αβ(r|{qγδ}) is a functional of the overlap fields which is obtained from the solution of the saddle-point equation

qαβ(r) =

∫
y

f(y)ρ
(2)
αβ

(
r +

y

2
, r− y

2

∣∣∣{wγδ(λ∗[q])}
)

(8)

with ρ
(2)
αβ(r, r′|λ) the 2-point density-density correlation functions of the mixture with one-point density fields ρα(r),

and µ∗α(r) is the chemical potential of the liquid mixture leading to these one-point densities. In this saddle-point
approximation the Hamiltonian H[{qαβ}, {ρα}] is thus related to the Morita-Hiroike functional ΓMH of the 1- and
2-particle densities23 for the replicated (n+ 1)-component liquid mixture. More precisely it is given by

H[{qαβ}, {ρα}] = ΓMH [{ρ(2)
αβ(r, r′|λ∗[q])}, {ρα}]−

1

2

∑
α

∫
r

∫
r′
v(|r− r′|)ρ(2)

αα(r, r′|λ∗[q]) , (9)

After introducing the total pair correlation functions hαβ that are defined through ρ
(2)
αβ(r, r′|λ) = ρα(r)ρβ(r′)[1 +
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hαβ(r, r′|λ)], the Morita-Hiroike functional ΓMH can be cast in the form

ΓMH [{ρ(2)
αβ(r, r′|λ∗)}, {ρα}] =

∑
α

∫
r

ρα(r)[ln(ρα(r))− 1] +
1

2

∑
αβ

∫
r

∫
r′
ρα(r)ρβ(r′)(1 + hαβ(r, r′|λ∗))wαβ(r, r′|λ∗)

+
1

2

∑
αβ

∫
r

∫
r′
ρα(r)ρβ(r′)

[
(1 + hαβ(r, r′|λ∗)) ln(1 + hαβ(r, r′|λ∗))− hαβ(r, r′|λ∗)

]
+

1

2

∑
p≥3

(−1)p

p

∑
α1···αp

∫
r1

ρα1(r1) · · ·
∫
rp

ραp(rp)hα1α2(r1, r2|λ∗) · · ·hαpα1(rp, r1|λ∗)

+ 2−PI
(10)

where 2−PI denotes the sum of all 2-particle irreducible diagrams.23 Neglecting the latter leads to the HNC approxi-
mation, well known in liquid-state theory.25 Within the HNC approximation, the saddle-point equations read

hαβ(r, r′|λ∗) = cαβ(r, r′|λ∗) +
∑
γ

∫
r′′
ργ(r′′)cαγ(r, r′′|λ∗)hγβ(r′′, r′|λ∗)

cαβ(r, r′|λ∗) = − ln[1 + hαβ(r, r′|λ∗)] + hαβ(r, r′|λ∗)− 1

T
wαβ(r, r′|λ∗) ,

(11)

and are also valid for α = β. (The chemical potentials µ∗a are obtained from the minimization of ΓMH with respect
to ρa.) The combination of Eq. (8) and Eq. (11) allows one to obtain λ∗[q] and finally H[{qαβ}, {ρα}].

It should be stressed that H[{qαβ}, {ρα}] is not the full free-energy (or effective action in the language of quantum
field theory) of the system. The fluctuations of the variables qαβ(r) still have to be integrated over in order to describe
the thermodynamical properties of the system. The saddle-point approximation used above corresponds to a coarse-
graining of the overlap fields, and the qαβ(r)’s are then taken as locally averaged over a small region of space around
point r.

One can further simplify the Hamiltonian for the qαβ ’s in the spirit of a Ginzburg-Landau theory by performing a
gradient expansion around a purely local contribution,

βH[{qαβ}] =

∫
r

{
U({qγδ(r)}) + (1/2)

∑
αβ 6=

Zαβ({qγδ(r)})[∂qαβ(r)]2 + O(∂4)

}
, (12)

where the ρα’s are taken as uniform and not explicitly displayed. The potential U({qγδ}) and the functions Zαβ({qγδ})
are obtained from the HNC approximation and therefore retain much of the physics of the liquid. An additional and
more drastic approximation is to expand these functions in powers of the overlaps, keeping only the first terms.17,24

This leads to the form proposed in Ref. [17]:

βH[{qαβ}] =

∫
r

{
c

2

∑
αβ 6=

[∂qαβ(r)]2 +
∑
αβ 6=

V (qαβ(r))− u

3

∑
αβγ 6=

qαβ(r)qβγ(r)qγα(r)

}
, (13)

where V (q) = (t/2)q2− [(u+w)/3]q3 + (y/4)q4 with u,w, y > 0 and the primary dependence on temperature is given
by t ≈ (T − T0)/T0, with kBT0 a typical energy scale of the liquid. The mean-field analysis of the above Hamiltonian
leads to the well-established mean-field scenario of glass formation with two distinct glass-transition temperatures, a
dynamical one at td = w2/(4y) [hence, Td = T0(1 + td)] and a thermodynamic one (the RFOT) at tK = 2w2/(9y)
[hence, TK = T0(1 + tK)].17 The above simplified expression of the effective Hamiltonian for all the overlap fields will
therefore be sufficient to derive the form of the sought-after effective theory and we will consider it as our starting
point. However, one should keep in mind that Eq. (13) is somehow too crude to provide reliable estimates for the
parameters entering the final effective theory, especially at low temperature near the putative RFOT. An alternative
way to extract these parameters would be from the full HNC computation or from computer simulations of finite-size
glass-forming liquid models (see below).

Even in the form described by Eq. (13), the problem remains challenging and, despite some progress already
mentioned in paper I (e.g., instanton calculations17,18, Kac model analysis26, and real-space RG approaches27–29), no
satisfactory way of handling the associated large-scale physics has been provided so far. This comes in part from the
complicated replica matrix structure of the overlap fields qαβ when n → 0. Our present strategy is to focus on the
overlaps pa ≡ q0a between the reference and the constrained replicas and integrate out the other overlap fields, qab,
to obtain an effective theory for the former. Formally, this gives

S[{pa}] = − ln

∫ ∏
ab6=

Dqab eβH[{pa},{qab}] , (14)
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with H given by Eq. (9) or (13). This elimination of the qab’s is what we have previously achieved when studying
the situation where an external source ε is linearly coupled to the pa’s. In the extended temperature/source phase
diagram there may be a line of first-order transition terminating in a critical point. Near the latter, only the overlaps
pa are critical and the qab’s, which stay “massive”, can be integrated out in a cavalier way without altering the critical
physics.30 Here, instead, we are interested in the problem of describing the ideal (RFOT) glass transition (ε = 0,
T → TK). A more careful treatment must be applied. One indeed expects, beyond the mean-field treatment, the
divergence of point-to-set correlation length(s) near the putative TK .16,18 This implies that fixing the overlap with
the reference configuration in localized regions of space may generate very strong correlations among the constrained
replicas, making the integration over the qab’s much more delicate.

III. LOW-TEMPERATURE APPROXIMATIONS

As recalled above, the construction of an effective theory for the statistics of the fluctuations of the overlap field with
an equilibrium configuration in the vicinity of the mean-field thermodynamic glass transition (RFOT) is a difficult
process in finite-dimensional systems, contrary to the case of the mean-field glasses studied in paper I1 where an
essentially exact derivation could be performed. The key point is to account for the possibly infinite point-to-set
correlation length(s). As discussed in Sec. IV of paper I this is already contained in a saddle-point integration of the
qab’s, provided one could solve the problem for all fixed configurations of the pa’s. Here we choose a slightly different
route to approximately determine S[{pa}] from H[{pa}, {qab}]. This is what we detail below.

A. From continuous to two-state variables

As fluctuations are expected to lower the RFOT temperature below its mean-field value TMF
K (or even destroy it),

we focus on a low-temperature version of the problem for T . TMF
K . We therefore consider an action of the form of

Eq. (13) with a strong first-order character, i.e., such that the low-overlap minimum (at q = 0) and the high-overlap
minimum (at q = q?) of the potential U(q) = V (q) + (u/3)q3 = (t/2)q2 − (w/3)q3 + (y/4)q4 are well-defined with
q? and the peak difference sc = U(q?) − U(0) being of O(1). (Here, the notation sc, although the same as that
used for the configurational entropy, actually just denotes a source/field favoring the low-overlap state and, as such,
it can become negative.) In the following we shall call it “bare configurational entropy” to distinguish it from the
physical configurational entropy that includes fluctuations of the overlap field. Furthermore, to simplify the problem
and get rid of some of the short-range fluctuations, we consider the limit where the overlaps become “hard” 2-state
variables, in the sense that the qαβ ’s can only take two values, 0 or q?, the Boltzmann weight for any other value
being negligible.31

After redefining the variables as pa = q?τa and qab = q?τab where the τa’s and the τab’s take the values 0 and 1,
incorporating the factors of q? in a redefinition of the various parameters (c → q2

?c, u → q3
?u), and replacing the

continuum space description by a lattice one which is appropriate for hard variables, we obtain a new replicated
action,

Srep[{τa}, {τab}] =

n∑
a=1

S0[τa] + Sint[{τa}, {τab}] , (15)

with

S0[τa] = 2
[ c

2

∑
〈i,j〉

(τ ia − τ ja)2 +
∑
i

(
sc −

u

3

)
τ ia

]
,

Sint[{τa}, {τab}] =
∑
ab6=

[ c
2

∑
〈i,j〉

(τ iab − τ
j
ab)

2 +
∑
i

(
sc −

u

3
− u τ iaτ ib

)
τ iab

]
− u

3

∑
abc 6=

∑
i

τ iabτ
i
bcτ

i
ca ,

(16)

where i, j = 1, · · · , N denote the lattice sites and the energy scale T0 has been set to 1. Note that the restriction to
only hard variables is exact for some specific models for structural glasses, and in particular for the REM19 and the
2M -KREM20 studied in paper I1.

To derive an effective theory for the overlaps with a reference configuration, now the τ ia’s, one needs to perform the
integration over the τ iab’s while keeping the former fixed and compute the “partition function”

Z[{τa}] =
∑

{τ iab=0,1}

exp(−Srep[{τab}|{τa}]) . (17)
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The action Srep[{τa}] = lnZ[{τa}] [see also Eq. (14)], when expanded in an increasing number of unrestricted sums
over replicas32–34 (see paper I),

Srep[{τa}] =

n∑
a=1

S1[τa]− 1

2

n∑
a,b=1

S2[τa, τb] + · · · , (18)

generates, under some general conditions, the cumulants of an effective Hamiltonian for the overlap with the reference
configuration, where this configuration plays the role of a quenched disorder:30 S1, S2, etc., are then the first, second,
etc., cumulants of the effective Hamiltonian averaged over this quenched disorder.

B. Physical constraints on the τab’s

Computing the above constrained partition function is still a very hard task in general. On physical ground, one
expects that if on a given site i two replicas a and b have a high overlap with the reference one, they should also have
a high overlap between them (τ ia = τ ib = 1 ⇒ τ iab = 1) whereas if one replica has a high overlap with the reference
configuration and the other one has a low one, then the overlap between them should be low (τ ia = 1 , τ ib = 0⇒ τ iab = 0,
and similarly for τ ia = 0, τ ib = 1). One may also naively expect that if a and b have a low overlap with the reference
one, since at a coarse-grained level described by a saddle point of Eq. (13) there are exponentially many (in the
coarse-graining volume) possible distinct states, the chances that a and b are in the same state is negligible and their
mutual overlap should also be low: τ ia = τ ib = 0 ⇒ τ iab = 0. However, enforcing such a strict constraint misses the
effect of spatial correlations, more specifically point-to-set-like correlations associated with “amorphous order”, which
become important close to TK .

All of this suggests that we should use a parametrization of the τab’s that takes into account all previous constraints
but the last one. We, thus, introduce the following parametrization:

τ iab = τ iaτ
i
b + ηiab(1− τ ia)(1− τ ib) for a 6= b , (19)

with the new variables ηiab taking also the values 0 and 1. [In the following we will refer to the approximation consisting
in setting τ iab = τ iaτ

i
b (i.e., ηiab = 0) as the “zeroth order” approximation.] The replicated action can now be obtained

from

e−Srep[{τa}] '
∏
i

∏
ab6=

[1

2
(δτ ia,1 + δτ ib ,1 − δτ ia,1δτ ib ,1) + δτ ia,0δτ ib ,0

] ∑
{ηiab=0,1}

e−Srep[{ηab}|{τa}] . (20)

where δs,t is a Kronecker symbol. The term inside the square brackets arises when one introduces the reparametrization
of the τab’s variables in terms of the ηab’s (it equals one if τa = τb = 0 and 1/2 otherwise, which then compensates
the factor of 2 coming from the sum over the ηab’s), and S[{ηab}|{τa}] is obtained from Eq. (15) by the change of
variables in Eq. (19). Note again that this approximation is exact for some specific models for structural glasses, and
in particular for the REM and the 2M -KREM studied in paper I.

The problem of computing Srep[{τa}] still remains hardly tractable. There are two reasons for that: The first is that
one should be able to scan over all the possible configurations of the constrained overlaps τ ia’s, which is of course an
impossible task. The second is that, even for a given specific configuration of the τ ia’s, performing the trace over the
ηiab’s would require to be able to solve a generic interacting (and strongly inhomogeneous) finite-dimensional model.
This leads us to the last two approximations.

C. Variational (1-RSB) approximation

We replace the trace over the ηiab’s by a variational approximation where we keep only those configurations [ηiab]?
that minimize Srep[{ηab}|{τa}]. Since the system is considered below the mean-field RFOT TMF

K we search for a
variational approximation in the form of a one-step replica-symmetry breaking (1-RSB) solution.35 (Note that we are
not interested in this work by the possible appearance at a still lower temperature of a so-called “Gardner transition”
from a stable glass to a marginally stable glass with full replica-symmetry breaking.12) In other words, for any given
inhomogeneous configurations {τ ia} of the overlap between the reference and the constrained replicas, we evaluate the
trace over the overlap among the constrained replicas {ηiab}, Eq. (20), at the level of a saddle-point approximation (of
a 1-RSB form), as discussed in Sec. IV of paper I for the Kac limit.

For clarity, let us first focus on the 1-replica action S1[τ ] [see Eq. (18)]. It is then sufficient to set all replica fields
equal, τ ia = τ i ∀ a = 1, · · · , n, keep only the term of order n in the logarithm of the partition function, and take the
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limit n → 0 in the end, as in the standard replica trick. After inserting Eq. (19) into Eqs. (15) and (16), we obtain
at leading order in n

Srep[{ηab}|τ ] = n
[ c

2

∑
〈i,j〉

(τ i − τ j)2 + sc
∑
i

τ i
]

+
∑
ab6=

[ c
2

∑
〈i,j〉

[(1− τ i)ηiab − (1− τ j)ηjab]
2

+
∑
i

(1− τ i)
(
− c

∑
j/i

τ j + sc −
u

3

)
ηiab

]
− u

3

∑
abc6=

∑
i

(1− τ i)ηiabηibcηica .
(21)

where
∑
j/i denotes the sum over the nearest neighbors of site i on the lattice and (1− τ i) plays the role of a dilution

variable. Note that on all the sites where τ i = 1, ηiab is not constrained [see Eq. (19)] and can be 0 or 1 with equal
probability. The sum over all configurations of the ηiab on those sites can be straightforwardly performed. This yields
a term of the form n(n − 1) ln 2

∑
i τ
i in the exponential which exactly cancels the entropic factor of Eq. (20). We

have yet to account for the sum over the ηiab’s for all the sites where τ i = 0.
We will then approximate the 1-replica action by

S1[τ ] ' Srep[{[ηab]?}|τ ] . (22)

where [ηiab]? minimizes Eq. (21) for all the sites i where τ i = 0. (The sum over the configurations ηiab on sites where
τ i = 1 has already been accounted for in Eq. (22) as explained above.)

The higher-order terms of the expansion in number of free replica sums can be treated along the same lines. For
instance, for the 2-replica term, one needs to introduce two groups of n1 and n2 replicas (with n1 + n2 = n), such
that τ ia = τ i1 for a = 1, · · · , n1 and τ ia = τ i2 for a = n1 + 1, . . . , n, keep only the terms of order n1n2 in the expression
of the effective action, and take the limit n1, n2 → 0 in the end. By restricting the sum over the τ iab’s according to
Eq. (19) we find that the matrix ηiab now has 4 different blocks which are defined as

ηiab =

[
ηia1b1 ηia1b2
ηia2b1 ηia2b2

]
with


τ ia1b1 = τ i1 + ηia1b1(1− τ i1)
τ ia2b2 = τ i2 + ηia2b2(1− τ i2)
τ ia1b2 = τ i1τ

i
2 + ηia1b2(1− τ i1)(1− τ i2)

(23)

where the indices a1, b1, . . . vary from 1 to n1 and the indices a2, b2, . . . vary from 1 to n2. This form is inserted
in Srep[{ηab}|τ1, τ2] and we again search for a variational 1-RSB variational approximation for the matrix ηiab that
minimizes the appropriate component of Srep[{ηab}|τ1, τ2].

The problem however still remains too difficult to handle as the solution [ηiab]? of the minimization of Eq. (21) and
its generalizations for higher-order cumulants are strongly nonuniform in the presence of arbitrary profiles of the τ ia’s.
This leads us to the last approximation.

D. 1-replica action: Periodic cluster ansatz

Let us start again with the 1-replica action S1. Since finding the variational approximation for an arbitrary overlap
profile {τ i} with the reference configuration is an impossible task, we restrict the analysis to specific patterns of the
τ i’s with enough symmetry for allowing a determination of the corresponding [ηiab]?’s, and we reproduce the result
so obtained by means of an effective external field and effective 2- and multi-body interactions in a translationally
invariant theory. Doing this we nonetheless account for the effect of the correlations induced by the underlying
“amorphous order” characterized by diverging point-to-set correlation lengths.

The choice of the specific overlap patterns is of course arbitrary. Our idea is to focus on those patterns which mimic
the typical configurations of the overlap field with a reference equilibrium configuration of a glass-forming liquid close
to its putative thermodynamic glass transition. On general grounds one intuitively expects that these configuration
are highly inhomogeneous and are characterized by well defined regions of high- and low-overlap separated by rather
sharp interfaces (see for instance Ref. [36]). We then consider a periodic arrangement of the τ i’s in which cubes of
side λ are regularly placed on the lattice with a distance ` between the centers of two neighboring cubes, with `� λ.
On the sites of the cubes, τ i = 1, whereas on all sites outside the cubes, τ i = 0 (see the left panel of fig. 1 for a
sketch). On a d-dimensional hyper-cube of linear size L, the total number of sites is N = Ld, the total number of
cubes is Nc = (L/`)d, the total number of sites with τ i = 1 is λdNc = (Lλ/`)d, and the total number of links between
sites where τ i = 1 and sites where τ i = 0 is NL = 2dλd−1Nc. To check the robustness of our procedure we have also
considered a slab geometry, as shown in the right panel of Fig. 1, where τ i = 1 except in a slab of width `: details
are given in Appendix A.
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L
l

l
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λ

x

FIG. 1: 2-d sketches of the specific pattern of the τ i’s chosen for the implementation of the variational approximation: Periodic
cluster arrangement described in Sec. III (left panel) and slab geometry treated in Appendix A (right panel). τ i = 1 in the red
regions and 0 in the light blue regions.

To proceed further we compute Srep[{ηab}|τ ] for the above “periodic cluster” geometry and find the configurations
[ηiab(λ, `)]? that minimize the expression. On the sites where τ i = 0 we set ηiab to be of a 1-RSB form, i.e., we divide
the n replicas in n/m blocks of size m×m such that if two replicas a and b are in the same block, ηiab = 1, whereas if a
and b do not belong to the same block, ηiab = 0. Note that m is a variational parameter which must fixed by minimizing
the action for a given choice of the pattern of the overlap with the reference configuration (m = 1 corresponds to
the “zeroth-order” approximation, τ iab = τ iaτ

i
b). One could in principle let m be site dependent. However, we have

checked that this yields a negligible correction, and from now on we will only consider the case of a uniform m.
The gradient term in Eq. (21) is different from zero only on the NL links connecting a site where τ i = 1 and a site

where τ i = 0 (i.e., only on the sites placed at the surface of the cubes):∑
ab6=

c

2

∑
〈i,j〉

[(1− τ i)ηiab − (1− τ j)ηjab]
2 =

c

2
n(m− 1)NL .

For the other terms of Eq. (21) one finds∑
ab6=

∑
i

(1− τ i)
(
− c

∑
j/i

τ j + sc −
u

3

)
ηiab = n(m− 1)

[
− cNL +

(
sc −

u

3

)(
N − λdNc

)]
,

−u
3

∑
abc6=

∑
i

(1− τ i)ηiabηibcηica = −n(m− 1)(m− 2)
u

3

(
N − λdNc

)
.

After putting all these terms together, minimizing with respect to the variational parameter m yields

m? =

{
1 for ` ≥ `pin ,

1− 3
2u

(
cdλd−1

`d−λd − sc
)

for ` < `pin ,
with `pin =

{
λ
(

1 + cd
λsc

) 1
d

for sc ≥ 0 ,

∞ for sc < 0 .

Here `pin plays the role of the “pinning” correlation length which is a point-to-set correlation length. It diverges at
the mean-field RFOT, TMF

K , and stays infinite in the (mean-field) ideal glass phase below. [Since m cannot become
negative, one obtains an upper bound on c ensuring that m?(` = λ + 1) > 0, above which our approximations are
ill-defined. The most stringent constraint is realized for λ = 1, which gives c ≤ (2u/3 + sc)(2

d − 1)/d.]
By inserting the above results into Eq. (21) we find that the 1-replica component of the effective Hamiltonian reads

S1(λ, `) =
c

2

∑
〈i,j〉

(τ i − τ j)2 + sc
∑
i

τ i + ∆S1 , with ∆S1 =

{
0 for ` ≥ `pin ,
3Nc
4u

[sc(`
d−λd)−cdλd−1]2

(`d−λd)
for 0 < ` < `pin .

(24)
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The first part of the expression coincides with the “zeroth-order” result, i.e., what one would obtain by assuming that
τ iab = τ iaτ

i
b on all sites, whereas ∆S1 can be interpreted as the excess contribution due to the fluctuations of the τab’s

beyond the mean-field level. Since we are interested by the liquid significantly below TMF
K , we will mainly focus on

the case where sc < 0 and `pin =∞.
Guided by the mean-field results of paper I, we now search for an ansatz for the 1-replica action that allows us to

reproduce the above result by means of a translationally invariant theory with an effective external field and effective
2- and multi-body interactions. Below, we show that the appropriate form of the 1-replica component of the effective
Hamiltonian is

S1[τ ] =
c

2

∑
〈i,j〉

(τ i − τ j)2 + sc
∑
i

τ i + ∆S1,eff [τ ] (25)

with

∆S1,eff [τ ] ≈ µ
∑
i

(1− τ i) + w2

∑
〈i,j〉

τ i(1− τ j) +
1

2

∑
i 6=j

W (|ri − rj |)τ iτ j +
w4

Ld

∑
〈i,i′〉6=〈jj′〉

[τ i(1− τ i
′
)τ j(1− τ j

′
)]sym , (26)

where we have used the following notation:

[τ i(1−τ i
′
)τ j(1−τ j

′
)]sym ≡

1

4

[
τ i(1−τ i

′
)τ j(1−τ j

′
)+τ i

′
(1−τ i)τ j(1−τ j

′
)+τ i(1−τ i

′
)τ j
′
(1−τ j)+τ i

′
(1−τ i)τ j

′
(1−τ j)

]
.

We determine the expressions of µ, w2, w4, and the functional form of W (x) by requiring that, for the periodic-cluster
pattern chosen above, ∆S1,eff [τ ] reproduces the dependence of ∆S1 on ` and λ.

The 4-body interaction term in Eq. (26) corresponds to an infinite-range coupling between two links 〈i, i′〉 and 〈j, j′〉
between sites with τ i = τ j = 1 and sites τ i

′
= τ j

′
= 0. Note also that if the pairwise interaction potential W (x) were

finite at short distance, the interaction between sites belonging to the same cube would yield a term proportional to
λ2d/`d. Since there is no such term in the expression of ∆S1, we posit that W (x) = 0 for x < a, with a of the order
of few lattice spacings and such that λ < a� `. Hence, for a > λ only sites belonging to different cubes are coupled
through the potential W (x).

Taking the continuum limit (for `/λ � 1) and comparing the asymptotic behavior of ∆S1, Eq. (24), with the one
of the effective 1-replica action in Eq (26), one obtains

∆S1,eff

Ld
≈ µ− λdµ− dλd−1w2

`d
+
λ2dΩd

2`d

∫ L/`

1

xd−1W (`x) dx+
d2λ2d−2w4

`2d
≡

∆S1

Ld
=

3

4u

[
s2
c −

s2
cλ
d + 2cdscλ

d−1

`d
+
c2d2λ2d−2

`2d

(
1 +

(λ
`

)d
−
(λ
`

)2d

+ . . .

)]
,

where Ωd = 2πd/2/Γ(d/2) is the surface area of the sphere of unit radius in d dimensions. This equation yields
µ = 3s2

c/(4u), w2 = −3csc/(2u), and w4 = 3c2/(4u). The terms of the right-hand side decaying as 1/`rd with r ≥ 3
can be approximately reproduced (although the λ-dependence cannot be captured exactly) by setting

W (x) = θ(x− a)

∞∑
r=2

w̃r/x
r (27)

with w̃r ≈ (−1)r3c2d3(r − 1)/(2uΩd). In the following we will drop all the terms with r > 2 and will keep only the
dominant term which behaves as w̃2/r

2d with w̃2 ≈ 3c2d3/(2uΩd).
Note that the calculation above can be carried out numerically on the d-dimensional hyper-cubic lattice, without

taking the continuum limit (`/λ � 1).37 We have done it in three dimensions and it yields, both qualitatively and
quantitatively, very similar results to the asymptotic analysis. As an illustration, ∆S1/L

d is plotted in Fig. 2 as a
function of ` for different values of sc and λ, showing a reasonably good agreement with the result obtained for the
translationally invariant effective Hamiltonian. [The behavior of ∆S1 above TMF

K (i.e., sc > 0) can also be reproduced
by the effective first cumulant in Eq. (26) with the same coefficients w2, w4, and w̃r as given above, but one has to
introduce a finite interaction range `pin for the 2- and 4-body interaction terms.]

In order to check the robustness of the procedure, we have repeated the same calculations for a different choice of the
overlap pattern, i.e., a slab geometry where τ i = 1 except in a stripe of width ` where τ i = 0. In Appendix A we show
that the resulting effective Hamiltonian found for the slab pattern has exactly the same structure as Eq. (26), albeit
with some small differences due to the strongly anisotropic character of the slab geometry. The analysis nonetheless
confirms that our procedure is quite robust with respect to the specific choice of the overlap pattern.
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FIG. 2: Periodic cluster ansatz: Correction to the 1-replica action beyond the “zeroth-order” approximation, ∆S1, as a function
of ` for several values of λ and sc (close to, but below, the mean-field thermodynamic glass transition). The full lines correspond
to Eq. (24), and the dashed ones are obtained from the translationally invariant Hamiltonian with effective long-range 2- and
multi-body interactions and an effective external field, Eq. (26), in three dimensions. The values of the other parameters are
u = 0.385, c = 0.081, a = 4.

E. 2-replica action and higher orders

We illustrate our computation of higher orders of the expansion in number of free replica sums by considering the
2-replica action (see above and paper I). Within the present variational 1-RSB approximation, the diagonal n1 × n1

square blocks [ηia1b1 ]? of the matrices (23) (respectively, the diagonal n2×n2 square blocks [ηia2b2 ]?) can be determined

at the level of the 1-replica action given the pattern of the τ i1’s alone, independently of the configuration of the τ i2’s
(resp., of the τ i2’s alone, independently of the τ i1’s). In consequence, the only remaining variables to be found are those
contained in the rectangular n1 × n2 blocks ηia1b2 of the matrices (23) on the sites i where both groups of replicas
have a vanishing overlap with the reference configuration [see Eq. (19)]. Although one could envisage to generalize
the variational procedure based on the periodic-cluster ansatz for these off-diagonal blocks, this is now quite involved
due to the presence of several groups of replicas, and we choose for simplicity to calculate the 2-replica action S2 only
within the “zeroth-order” approximation: We assume that on the sites where τ i1 = 0 and τ i2 = 0 the elements of the
rectangular n1 × n2 matrices ηia1b2 are also equal to zero. This choice is motivated by the mean-field results obtained

in paper I, and we will explicitly check in Sec. VI A that for the fully connected 2M -KREM in the Kac limit, going
beyond this zeroth-order assumption only yields sub-leading corrections.

After some simple algebra one therefore finds

S2[τ1, τ2] ≈ 2c
∑
〈i,j〉

τ i1τ
j
1 τ

i
2τ
j
2 + 2

∑
i

(u
3
− sc − cd

)
τ i1τ

i
2 . (28)

Within the present approximation the higher-order terms of the expansion in number of free replica sums are also
given by their “zeroth-order” expression and can be easily obtained from Eqs. (15) and (16). In particular, for the
simplified effective Hamiltonian in Eq. (13) which is truncated at the cubic order, one simply obtains that

S3[τ1, τ2, τ3] ≈ −2u
∑
i

τ i1τ
i
2τ
i
3 (29)

and that all higher-order cumulants are equal to zero.
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IV. CONSTRUCTION OF THE EFFECTIVE THEORY

We are now in a position to derive the sought-after effective theory. Below, we proceed to the explicit construction
of the effective Hamiltonian describing the statistics of the local fluctuations of the overlap with an equilibrium
configuration by starting from the 1- and 2-replica components of the action that have been derived in the preceding
Section.

A. 1- and 2-replica parts of the action and effective disordered theory

Collecting the results obtained above, we can express the 1-replica action as

S1[τ ] ≈ c
2

∑
〈i,j〉

(τ i − τ j)2 −
∑
i

µ̃τ i − w2

∑
〈i,j〉

τ iτ j +
w̃2

2

∑
|ri−rj |>a

τ iτ j

|ri − rj |2d
+
w4

Ld

∑
〈i,i′〉6=〈j,j′〉

[τ i(1− τ i
′
)τ j(1− τ j

′
)]sym ,

(30)
with

µ̃ = −sc +
3(2cd+ sc)

4u
sc ,

w2 = − 3c

2u
sc ,

w̃2 =
3c2d3

2uΩd
,

w4 =
3c2

4u
.

(31)

whereas the 2-replica action is given by Eq. (28).
As we have already discussed, an expansion in increasing number of free replica sums, Srep[{τa}] =

∑n
a=1 S1[τa]−

1
2

∑n
a,b=1 S2[τa, τb] + · · · as in Eq. (18), is, modulo some constant, equivalent to the expansion in cumulants of a

disordered Hamiltonian (see also paper I). More specifically, for a disordered Hamiltonian Heff [τ ], the associated
replicated theory,

e−Srep[{τa}] = e−β
∑n
a=1Heff [τa] ,

where the overline denotes an average over the quenched disorder, leads to an expansion in number of free replica sums
with the identification S1[τa] = βHeff [τa], S2[τa, τ2] = βHeff [τa]βHeff [τb] − βHeff [τa]βHeff [τb], etc. One immediately
sees that an identification of this kind is only possible if, e.g., S2 is nonnegative.

From Eqs. (30) and (28), one therefore infers the following effective disordered Hamiltonian:

βHeff [τ ] =
c

2

∑
〈i,j〉

(τ i − τ j)2 −
∑
i

(µ̃+ δµ̃i)τ
i −

∑
〈i,j〉

(w2 + δw2,ij)τ
iτ j

+
w̃2

2

∑
|ri−rj |>a

τ iτ j

|ri − rj |2d
+
w4

Ld

∑
〈i,i′〉6=〈j,j′〉

[τ i(1− τ i
′
)τ j(1− τ j

′
)]sym + . . . ,

(32)

where the random variables, δµ̃i and δw2,ij , have a zero mean (δµ̃i = δw2,ij = 0) and variances given by

δµ̃iδµ̃j = 2
(u

3
− sc − cd

)
δij ,

δw2,ijδw2,kl = 2c(δikδjl + δilδjk)

δµ̃iδw2,jk = 0 .

(33)

Note that the requirement of positive variances imposes the condition u/3 > sc + cd.
Taking into account the higher-order terms of the expansion in number of free replica sums, S3[τ1, τ2, τ3], etc., would

lead to nonzero higher-order cumulants of the random variables (which otherwise are simply Gaussian distributed).
For the specific case of the simplified model considered here, one has from Eq. (29)

δµ̃iδµ̃jδµ̃k
c

= −2uδijδik , (34)

with the other third-order cumulants and all the higher-order ones equal to zero.
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B. Effective disordered Ising Hamiltonian

After changing variables to Ising ones, τ i = (1 + σi)/2 with σi = ±1, Eq. (32) provides the following effective
disordered Hamiltonian for Ising spins (up to an additive random energy term independent of the τ i’s):

βHeff [σ] = S0 −
∑
i

(H + δhi)σ
i −

∑
〈i,j〉

(J2 + δJij)σ
iσj +

J̃2

2

∑
|ri−rj |>a

σiσj

|ri − rj |2d

+
J4

Ld

∑
〈i,i′〉6=〈j,j′〉

[(1 + σi)(1− σi
′
)(1 + σj)(1− σj

′
)]sym + . . . ,

(35)

where a is of the order of a few lattice spacings and

H = −1

2

(
sc + 3

c2d2 − s2
ca
d

4uad

)
,

J2 =
c

4

(
1− 3sc

2u

)
,

J̃2 =
3c2d3

8uΩd
,

J4 =
3c2

64u
.

(36)

The random-field and random-bond variables, δhi and δJij , have a zero mean (δhi = δJij = 0), and their variances
are given by

δhiδhj = ∆hδij +
c

8
Cij , with ∆h =

1

2

(u
3
− sc −

cd

2

)
,

δJijδJkl =
c

8
(δikδjl + δilδjk)

δhiδJjk =
c

8
(δijCik + δikCij) ,

(37)

where Cij is the connectivity matrix of the lattice, equal to 1 for nearest neighbors and 0 otherwise. The third

cumulant of the random field is δhiδhjδhk = −(u/4)δijδik, and S0 is a random term that does not depend on the
Ising variables.38

The above Hamiltonian is that of a random-field + random-bond Ising model defined on a d-dimensional lattice, in
which the ferromagnetic nearest-neighbor interactions compete with longer-range and multi-body terms, as announced
in the Introduction [see Eq. (1)]. We note that its structure is more complex than that of the rough magnetic analogy
derived in Ref. [21]. We now discuss in more detail the physical interpretation and the expected influence of the
various terms present in the effective disordered Hamiltonian.

V. PHYSICAL INTERPRETATION OF THE EFFECTIVE THEORY

A. Meaning and effect of the different contributions to the effective Hamiltonian

The above treatment maps the description of the fluctuations of the overlaps in a glass-forming liquids near the
putative thermodynamic glass transition (RFOT) onto an effective random-field + random-bond Ising model where
the Ising variables describe a low or high local overlap with a reference equilibrium configuration. For a theory
described by an effective Hamiltonian (action) of the generic form given in Eq. (35), one can for instance take as
control parameters the ferromagnetic tendency of the interactions, described by J2, the applied uniform source, H,
and the on-site strength of the random field, described by ∆h, keeping all the other parameters fixed. For a large
enough J2 (compared to the disorder strength and to the amplitude of the competing antiferromagnetic terms) the
model has a paramagnetic-to-ferromagnetic critical transition point, provided one is above the lower critical dimension
which is d = 2 in the presence of random fields.22 This critical point occurs at a specific value J2,c(∆h) [or ∆h,c(J2)]
and a critical magnetic field Hc. The latter is equal to zero when the model has a statistical Z2 inversion symmetry,
e.g., if one neglects the third-order cumulant of the random field and the covariance between the random bond and the
random field; otherwise, Hc may be (slightly) different from zero. In the following we will often neglect for simplicity
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FIG. 3: Effective external field −2H as a function of the bare configurational entropy sc. The position of the mean-field critical
point is at sc = 0 whereas the “renormalized” value for which H = 0 is at sc ≈ −0.00786 (given by Eq. (41) in three dimensions
for u = 0.385, c = 0.081, and a = 4. The dashed red vertical lines represents the limits of validity of our approach (sc < u/3−cd
to have positive variances and sc > cd/(2d − 1) − 2u/3 to ensure that the variational parameter m? stays positive). For this

choice of the parameters, the ratio ∆h/J̃ ≈ 11.7, which is incompatible with the existence of Tc.

the effect of the third cumulant and of the cross-correlations between random bond and random field. Then, for H
going through 0 and either J2 > J2,c at constant ∆h or ∆h < ∆h,c at constant J2, there is a first-order transition
associated with the presence of a ferromagnetic phase and the coexistence between two oppositely magnetized states
(if Hc 6= 0, coexistence occurs for a value of the magnetic field that depends on J2 or on ∆h).

However, from the above mapping, J2, ∆h, and H cannot be taken as independent parameters, nor can all the other
parameters be taken as fixed. In the original description of glass-forming liquids in terms of overlaps (see Sec. II),
the only (indirectly) controlable parameter is the bare configurational entropy sc which strongly decreases as the
temperature decreases, all the other (liquid-specific) parameters being only weakly dependent on temperature in the
domain under study. One can then see from Eqs. (36) and (37) that J2, H, and ∆h vary with sc. However, H varies
more strongly than the other two: The variation of H with sc is illustrated in Fig. 3. Decreasing the temperature
in the original glass-forming liquid therefore corresponds to a trajectory in the (J2, H, ∆h) diagram. If it exists, the
thermodynamic glass transition (RFOT) of the liquid becomes a first-order transition of the Ising model, which takes
place in the simplest case where the statistical Z2 symmetry holds when H goes through zero. Then, when H < 0, the
system is negatively magnetized, i.e., it is in a low-overlap state (a liquid), and when H > 0 the system is positively
magnetized, which corresponds to a high-overlap state (a glass). The transition, which corresponds to the coexistence
between low- and high-overlap states, exists provided the trajectory of the liquid in the (J2, H, ∆h) diagram crosses
H = 0 for J2 > J2,c or ∆h < ∆h,c. This will be further discussed below. Note also that the description of the ideal
glass may require some refinement but we are mostly interested in the existence of the transition itself.

The zeroth-order (mean-field-like) approximation that does not take into account the point-to-set correlations

amounts to having a simpler random-field + random-bond Ising Hamiltonian with H = −sc/2, J2 = c/4, J̃2 = 0, J4 = 0
and random variables having the same variances as in Eqs. (37). As anticipated, H is then simply proportional to
the mean-field configurational entropy, sc, and when accounting for the presence of point-to-set correlations, H,
or rather −2H, plays the role of a renormalized configurational entropy. The bare sc is generically corrected by a
positive contribution [3(c2d2a−d−s2

c)/(4u) is positive at least when |sc| is small enough] which then tends to lower the
mean-field transition temperature TMF

K . In the zeroth-order description, provided c is not too small, the random-bond
disorder does not destroy the ferromagnetic trend. (It is interesting to notice that the fluctuations of the ferromagnetic
coupling can become much bigger than the average value in the c → 0 limit. In this limit, in contrast with what we
have just described, it seems that a spin-glass-like physics may emerge, as advocated in Ref. [39].)

The effect of the point-to-set correlations, which are associated with some form of incipient “amorphous order”
induced by the specific patterns of local overlaps with a reference configuration, is to generate additional interactions
between the Ising variables, in particular, an antiferromagnetic one with coupling J̃2 > 0. This interaction has
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the effect of decreasing the ferromagnetic tendency and, as a consequence, of lowering the transition temperature.
(Note however that, when sc < 0, there is also an additional ferromagnetic coupling proportional to sc.) Before
discussing the 4-body link-link infinite-range interaction with amplitude J4 > 0 that is also generated by the point-to-
set correlations, we first stress that the scale-free character of these additional interactions stems from the fact that
we have considered the liquid below the putative mean-field RFOT TMF

K and therefore characterized by diverging
(mean-field-like) point-to-set correlation lengths. Above TMF

K the range of the interactions is cut off by the finite
(mean-field-like) point-to-set lengths, e.g., the length `pin introduced in Sec. III D. If, when working below TMF

K ,
we find that the transition is destroyed in the effective disordered theory, this in turn implies that the mean-field
description we took as our starting point is not a valid proxy for describing the low-energy configurations of the
original glass-forming system in finite dimensions and that the approximate mapping to the effective Hamiltonian
itself cannot be used beyond showing that the RFOT scenario is not self-consistent. Conversely, if the transition
is not destroyed, but just modified and shifted to lower temperature, then our variational approximation scheme is
better justified.

B. The 4-body link-link infinite-range interaction

The infinite-range 4-body link-link interaction corresponds to a repulsive coupling (J4 > 0) between pairs of
links connecting sites with low and high overlap with the reference configuration, thereby disfavoring the formation
of interfaces between the high- and the low-overlap phases (or equivalently, between the negatively and positively
magnetized phases). A priori, such a term could have a dramatic impact on the existence of the transition and on its
properties. For instance, one may naively think that it could turn the effective theory into a mean-field model due to
the infinite-range nature of the interactions. It appears however that the effect is not as severe, as indicated by the
following observations:

1. The 4-body interaction is strictly non-negative and is identically zero (i.e., minimal) only in both the perfectly
ferromagnetically ordered states (either +1/high-overlap with σi = +1 ∀i or −1/low-overlap configurations with

σi = −1 ∀i), since (1 +σi)(1−σi′) is then zero on each link 〈i, i′〉. Conversely, its associated energy cost is maximum

for antiferromagnetically ordered configurations where sites with σi = +1 are surrounded by sites with σi
′

= −1
(however these configurations have a very high-energy and their thermodynamic weight is very small). In the
paramagnetic (liquid) phase, the energy cost generated by the 4-body term is inversely proportional to the correlation
length (that of the effective theory, not a mean-field-like point-to-set correlation length). In fact, if the correlation
length is large, the probability that two neighboring spins have the same sign is large as well, which reduces the
interfaces and the associated energy cost. The 4-body term clearly disfavors the formation of interfaces and does not
destroy the establishment of long-range ferromagnetic order.

2. Consider a set of parameters for which the system happens to be close to the putative thermodynamic transition

(H ≈ 0). If the effective ferromagnetic coupling J2 is strong enough and the effective disorder δh2
i is not too big,

typical configurations will be formed by clusters of spins with (mostly) σi = +1 in the background of spins with
(mostly) σi = −1, as sketched in Fig. 4. The 4-body coupling is proportional to the square of the number of links
between sites with σi = +1 and sites with σi = −1. Thus, the (intensive) energy cost of such configurations is
roughly J2ρS + J4ρ

2S2 (ρ being the density of the cluster and S their typical surface area), resulting in an effective
increase of the surface tension and in an increase of the energy barriers associated with nucleation. Since such an
increase goes as S2, the energetic cost associated to the creation of interfaces is lower for smooth ones (Fig. 4a) than
for rough ones (Fig. 4b). For instance, in the case of the flat interface of Fig. 4c the 4-body interaction only gives a
sub-leading contribution which can be neglected in the thermodynamic limit (see also Appendix A). In conclusion,
it seems that the 4-body interaction could have a strong impact on the properties of the interfaces, thereby possibly
modifying the critical behavior of the effective model but not on the very existence of a transition. (Of course, this
term also disfavors and slows down the nucleation processes of the effective model. However, since there is no obvious
mapping between the dynamics of the glass-forming liquid and that of the effective model, this does not provide any
direct information on the dynamical processes of the original glassy model.)

3. The 4-body link-link interaction can be rewritten as a sum of two competing contributions,

J4

Ld

∑
〈i,i′〉6=〈j,j′〉

[(1 + σi)(1− σi
′
)(1 + σj)(1− σj

′
)]sym = −2dJ4

∑
〈i,j〉

σiσj +
J4

Ld

∑
〈i,i′〉6=〈j,j′〉

σiσi
′
σjσj

′
. (38)

The first term is a standard ferromagnetic nearest-neighbor interaction which strengthens the ferromagnetic coupling
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a) b) c)

FIG. 4: Sketch of potentially relevant spin configurations of the effective model in Eq. (35) close to the putative thermodynamic

transition (i.e., H ≈ 0, J2 strong enough and δh2
i not too big), showing clusters of +1 spins in red (high overlap with the

reference configuration) in the background of −1 spins in light blue (low overlap with the reference configuration): a) smooth
interfaces, b) rough interfaces, and c) one flat interface.

(thus favoring the establishment of ferromagnetic long-range order and, as a result, the existence of a thermodynamic
glass transition), while the second term is an infinite-range antiferromagnetic coupling between pairs of nearest-
neighbor spins (which, on the contrary, frustrates the formation of magnetically ordered phases and suppresses the
glass transition).

From Eq. (38), after performing a Hubbard-Stratonovich and a saddle-point calculation, the effective disordered
Ising Hamiltonian can be expressed as

βHeff({σi}, ψ) = S0 −
∑
〈i,j〉

[J2 + 2dJ4(1 + ψ) + δJij ]σ
iσj −

∑
i

(H + δhi)σ
i +

J̃2

2

∑
|ri−rj |>a

σiσj

|i− j|2d
+ . . . , (39)

where ψ is the average value of σiσj for nearest-neighbor sites, which is computed by using the Boltzmann-Gibbs
measure provided by the effective Hamiltonian (39). It must therefore be determined self-consistently,

ψ = 〈σiσj〉eff ≡
1

Nd

Tr{σ}

(∑
〈i,j〉 σ

iσj
)
e−βHeff (ψ)

Tr{σ}e−βHeff (ψ)
.

The effective ferromagnetic coupling is thus “renormalized” by a factor which depends on the spin configuration
itself [J2 → J2 + 2dJ4(1 + 〈σiσj〉eff)] and takes its strongest possible value in the ferromagnetically ordered
phases (〈σiσj〉eff ≈ +1) and its lowest possible value in the antiferromagnetic phase (however, as noticed above,
antiferromagnetic states are very rare configurations). In the paramagnetic phase 〈σiσj〉eff & 0 and, as already
discussed, it is larger, the larger the correlation length. This observation leads us to the same conclusions as before,
namely that the 4-body coupling cannot a priori destroy the transition, but could modify some of its properties
(especially the nucleation process and the properties of the interfaces). Note that the infinite-range character of the
interaction does not lead to a mean-field model because of the fact that it couples different pairs of nearest neighbors.

All in all, although the above arguments are only qualitative, they strongly suggest that the 4-body link-link
interaction may have an impact on the properties of the interfaces but not on the existence of a thermodynamic glass
transition. This point could of course be fully settled by studying directly the effective theory in Eq. (35), e.g., by
large-scale numerical simulations, but this goes beyond the scope of the present paper.

C. When does a thermodynamic glass transition exists? A rough estimate

Although the effective random-field + random-bond Ising theory can now be investigated by powerful methods such
as large-scale computer simulations and nonperturbative renormalization group techniques, it is instructive to provide
a rough estimate of when a thermodynamic glass transition (RFOT) persists in the presence of spatial fluctuations in
3-dimensional systems. To do this we somehow project the effective theory onto the simpler short-range random-field
Ising model (RFIM) on a cubic lattice that has been thoroughly investigated.22,40,41

In order to take into account the 4-body link-link interaction, we use Eq. (39), and set ψ = 0, i.e., J2 → J2 +
2dJ4, which provides a lower bound for the value of the effective ferromagnetic coupling (see Sec. V B for a more
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detailed discussion). The 2-body power-law decaying antiferromagnetic interaction has the tendency to suppress the
ferromagnetic order. Since its spatial decay is nonetheless relatively fast (1/r6 in d = 3), we take its effect into account

by renormalizing the strength of the short-range ferromagnetic coupling, as Jeff
2 d = (J2+2dJ4)d−J̃2Ωd/2

∫∞
a
r−d−1dr,

which gives

Jeff
2 =

c

4

(
1− 3sc

2u
+

3cd

8u
− 3cd

4uad

)
. (40)

We will also neglect the randomness of the bonds (which seems reasonable provided that c is not too small) and
neglect also higher-order disorder terms, to only retain the local part of the variance of the random source, ∆h =
u/6− sc/2− cd/4.

For the standard short-range RFIM with independent and identically distributed (i.i.d.) random fields sampled
from a centered Gaussian distribution, a (first-order) transition can only take place in zero external field, H = 0,
which, by using the above expressions, imposes that

3s2
c

4u
− sc +

3c2d2

4uad
= 0 , (41)

leading to sc,crit = −(2u/3)
(√

1 + [9c2d2/(4u2ad)]− 1
)

(only the negative solution is physically meaningful): See also

Fig. 3 for d = 3. (Note that for d→∞ the critical value of sc approaches continuously the mean-field one, scrit
c = 0,

since the second term in the square root is exponentially small for any a > 1.)
A phase transition in the short-range RFIM is present (for d > 2) if the variance of the random field ∆ is not

too large compared to the ferromagnetic coupling J . From numerical simulations on the RFIM with a Gaussian
distribution of the random fields,22,40,41 one knows that in d = 3 this requires that

√
∆/J . 1.2. It then allows us to

provide a bound for the existence of a thermodynamic glass transition by requiring that
√

∆h

Jeff
2

. 1.2 for sc = sc,crit , (42)

where the factors of β that are present in the effective theory and not in the parameters ∆ and J of the RFIM cancel
out in the ratio appearing in Eq. (42). Combined with the expression of Jeff

2 in Eq. (40) and that of ∆h in Eq. (37),
this leads to

128u2
(

2u− 6sc,crit − 9c
)

3c2
(

8− 12sc,crit + 9c− 18ca−3
)2 . 1.44 , (43)

with sc,crit given above.
For instance, if one considers for illustration the set of parameters given in Ref. [17] to empirically reproduce some

key features of the phenomenology of the fragile glass-forming liquid OTP from the field-theory in Eq. (13), i.e.,
w = 2.73q3

?, y = 1.82q4
?, and u = 0.385q3

?, with q? ' 1, and if one sets a = 4, one finds from the bound in Eq. (43)
that there is no thermodynamic glass transition for any (allowed) value of c when large-scale fluctuations are taken
into account via the effective theory. On the other hand, in a previous study of the critical point that terminates the
transition line in the extended (T ,ε) phase diagram where one introduces a source ε for the overlaps with the reference
configuration, critical point which we showed to be in the RFIM universality class,30 we found with the same OTP
parameters of Ref. [17] (but not quite the same effective theory) that

√
∆h/J

eff
2 ≈ 0.47. Contrary to what we have

obtained here for the thermodynamic glass transition in ε = 0, this is compatible with the existence of a terminal
critical point. Although the two results are not in principle mutually incompatible,42 we want to stress that the
estimate based on the empirical parameters for OTP is a very crude one,45 and one should not give too much weight
to the output. This rather serves as an illustration of what could be done with the effective theory if one had a better
estimate of the parameters: In principle, the effect of the large-scale and/or nonperturbative spatial fluctuations can
now be accounted for in a much easier way.

To go beyond the crude estimate of the parameters of the effective theory used above, two routes seem promising.
The first one builds on the derivation of the overlap field description based on liquid-state theory that was explained
in Sec. II. Starting from the HNC approximation to the Morita-Hiroike functional in Eq. (10) one could use the
saddle-point procedure discussed in Sec. IV of paper I in conjunction with the periodic cluster ansatz introduced
above. This would provide a way to relate, at least approximately, the microscopic Hamiltonian of the liquid to
the parameters needed for the effective theory. A second procedure would be to use the effective theory in direct
conjunction with simulation data obtained on glass-forming liquid models in systems of finite (in practice, small) size.
Indeed, the limitation then imposed on the spatial extent of the fluctuations in principle allows a determination of the
key parameters entering the effective theory from the numerical study of the overlap fluctuations in relatively small
systems of interacting particles (typically 100 or less).46
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VI. BACK TO THE KAC-LIKE RANDOM ENERGY MODEL (2M -KREM)

A. A check of the low-temperature approximations on the fully connected model

In order to check the validity of the low-temperature approximations put forward in Sec. III and used to derive the
effective Hamiltonian describing the fluctuations of the overlap with an equilibrium reference configuration near the
putative thermodynamic glass transition of finite-dimensional supercooled liquids, we apply the very same procedure
to the fully connected 2M -KREM,20 for which we have already determined the (quasi) exact effective theory in paper I.
(Recall that the model is exactly solvable without having recourse to the effective theory and therefore represents a
useful benchmark.)

For completeness, we repeat the definition of the 2M -KREM. On each of the N sites i of the lattice (with N →∞),
there are 2M configurations, Ci = {1, · · · , 2M}, and on each link (i, j) we define i.i.d. Gaussian random energies

Eij = E(Ci, Cj) with Eij(Ci, Cj) = 0 and Eij(Ci, Cj)Eij(C′i, C′j) = MδCi,C′iδCj ,C′j . The Hamiltonian of the model is

simply given by

H =
1

2
√
N

∑
i 6=j

Eij(Ci, Cj) . (44)

The standard mean-field limit corresponds to M → ∞, but the model is solvable for finite M when it is considered
on a fully connected lattice.

As already noticed in paper I, the overlap with an equilibrium reference configuration, C0
i , is a 2-state binary

variable, pia = 1 if Cai = C0
i and zero otherwise. In consequence, the first low-temperature approximation of Sec. III A

is exactly satisfied by the model:

pia = τ ia , qiab = τ iab . (45)

We also remark again that if Cai = C0
i and Cbi = C0

i (i.e., pia = pib = 1), then Cbi = Cai (i.e., qiab = 1). Similarly, if
Cai = C0

i and Cbi 6= C0
i (i.e., pia = 1 and pib = 0), then Cbi 6= Cai (i.e., qiab = 0). The same is true, of course, if Cai 6= C0

i

and Cbi = C0
i . The only undetermined case corresponds to Cai 6= C0

i and Cbi 6= C0
i . As a result, the parametrization in

Eq. (19),

qiab = piap
i
a + ηiab(1− pia)(1− pib) , (46)

with ηiab = 0, 1 is also exactly satisfied by the model. For simplifying the calculations, we have used the so-called
annealed approximation to handle the averages over the random energies. This approximation is exact above the
thermodynamic glass transition temperature TK and at TK but deviates from the exact result below TK . As our
interest is mainly in the location of the transition and not on the properties of the ideal glass phase, this has negligible
consequences on our conclusions. We stress on the other hand that we do not use the annealed approximation when
computing the averages over the disorder represented by the reference configuration. It is crucial in this case to
properly perform the quenched calculation (see also paper I).

The approximations that we want to test more specifically are therefore the variational determination of the ηiab’s
and the choice of specific periodic patterns of the pia’s to handle the effect of long-ranged point-to-set correlations
(see Secs. III C, III D, and III E). For the clarity of the presentation we relegate most details of the derivation of the
effective theory to Appendix B.

The “zeroth-order” part of the replicated action Srep[pa] can be easily obtained by using the naive guess qiab = piap
i
b

(i.e., ηiab = 0) on all sites and performing the trace over the configurations Cαi , as shown in Appendix B 1:

S(0)
rep[{pa}] =

n∑
a=1

(
−Mβ2

8N

∑
i6=j

piap
j
a +

[
ψ(0)(2M ) + γ

]∑
i

pia

)
− 1

2

n∑
a,b=1

(
Mβ2

4N

∑
i 6=j

piap
j
ap
i
bp
j
b

−
[
ψ(1)(2M ) +

π2

6

]∑
i

piap
i
b

)
+ · · · ,

(47)

where the ellipses denote higher-order terms in the expansion in increasing number of free replica sums and the limit
n→ 0 has been taken; the functions ψ(0) and ψ(1) are the polygamma functions, defined as the logarithmic derivatives
of the Γ-function, ψ(m)(z) = dm+1 ln Γ(z)/dzm+1, and γ = −Γ′(1) is the Euler constant. By using Stirling’s formula,
the polygamma functions can be expanded at large M as ψ(0)(2M ) ≈ ln(2M − 1) and ψ(1)(2M ) ≈ 1/(2M − 1). (In the
standard mean-field limit, M → ∞, the “zeroth-order” approximation gives the exact result to the leading order.1
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The number of local states accessible to the system, 2M , becomes so large that the probability that two replicas both
having zero overlap with the reference configuration fall in the same state is extremely low, so that the naive guess
qab = papb is essentially correct.)

We go beyond the zeroth order by evaluating the ηiab’s through a 1-RSB variational ansatz and a restriction to
specific patterns of the pia’s. Due to the absence of geometry in a fully connected lattice, we use for specific patterns
random configurations of the pia’s. Specifically, we set the overlap with the reference equilibrium configuration for all
constrained replicas to be 1 on the first cN sites (i.e., ∀a, pia = 1 for i = 1, . . . , cN) and 0 on all the other (1 − c)N
sites (i.e., ∀a, pia = 0 for i = cN+1, . . . , N). The difference with the computation made in paper I is that now, instead
of computing the partition function of the constrained system as a function of c (essentially) exactly, we perform a
variational calculation by considering a 1-RSB ansatz for the matrices qiab on the sites where pi = 0: More precisely,
we divide the replicas a = 1, . . . , n in n/m blocks of m replicas and set qiab = 1 if a and b belong to the same block
and zero otherwise (note that m = 1 gives back the “zeroth-order” approximation).

As in Sec. III D, the minimization of the 1-replica action with respect to the variational parameter m yields
∆S1(c)/N , the correction to the “zeroth-order” part of the 1-replica action due to the fluctuations of the qiab (see
Appendix B 2 for details):

∆S1(c)

N
=
M(1− c)

8

(
β
√

1 + c− β(0)
K

)2

for β > β
(0)
K , (48)

where β
(0)
K =

√
8[ψ(0)(2M ) + γ]/M = 1/T

(0)
K and T

(0)
K is the thermodynamic glass transition (RFOT) temperature

obtained at the “zeroth-order” [see Appendix B 1]. (Note that β
(0)
K →

√
8 ln 2 for M → ∞, which is the exact value

in the standard mean-field limit.) In the following we will focus on the case β ≥ β
(0)
K , i.e., T ≤ T

(0)
K . A discussion of

the situation β < β
(0)
K is presented in Appendix B 2.

The strategy already followed in Sec. III D consist in finding a translationally invariant theory for the 1-replica
action with an effective Hamiltonian that allows one to reproduce the result in Eq. (48) by means of an effective
external source (chemical potential) and effective 2- and multi-body interactions:

∆S1,eff [p] = cst− µ
∑
i

pi −
∞∑
q=2

wq
q!Nq−1

∑
i1,...,iq 6=

pi1 · · · piq , (49)

which for the specific (random) pattern of the pi’s chosen above simply gives ∆S1,eff(c)/N = cst−µc−
∑∞
q=2(wq/q!)c

q.

After expanding Eq. (48) in powers of c around c = 0, one immediately finds the values of the effective coefficients,
µ and wq, by a term by term identification with Eq. (49) in the limit N → ∞. The calculation is detailed in
Appendix B 2.

In the present case where we start from a “low-temperature” approximation scheme and study a mean-field (fully
connected) model, we are interested in a region near but below the thermodynamic glass transition (RFOT). As a
result, the arguments used in paper I to justify a truncation of the expansion in c, i.e., that the configurations of the
pia’s dominating the thermodynamics have a small concentration c of sites where pia = 1, and that one can reproduce
the shape of S1(c)/N with a few monomials are no longer valid. One therefore needs in principle all the coupling
constants wq to reconstruct the exact behavior of ∆S1(c)/N . We nonetheless find that taking into account a finite
number of terms, say, 5 to 10, provides a reasonably good approximation: see Fig. 8. In practice, we will only keep
interactions up to the 10-body term in the pi’s variables, i.e., with the explicit expressions of the effective coefficients
(given here only up to the 4-body term),

S1[p] ≈
Mββ

(0)
K

8

∑
i

pi − Mβ

4N

(
β −

5β
(0)
K

8

)∑
i6=j

pipj −
3Mββ

(0)
K

64N2

∑
i,j,k 6=

pipjpk +
13Mββ

(0)
K

512N3

∑
i,j,k,l 6=

pipjpkpl + . . . . (50)

The 4-body interaction obtained above for the fully connected model is the counterpart of the link-link infinite-range
interaction found for the effective theory of glass-forming liquids in finite dimensions [see Eq. (30)], but it is now a
bulk term, due to the fully-connected nature of the microscopic model under study.

We now turn to the computation of the second cumulant of the effective action and divide the n replicas into two
groups of n1 and n2 replicas respectively. We take the same overlap pattern as the one described in paper I, with
c1N sites where pi1 = 1 and pi2 = 0, c2N sites where pi1 = 0 and pi2 = 1, c12N sites where pi1 = pi2 = 1, and c0N sites
where pi1 = pi2 = 0 (with c0 = 1 − c1 − c2 − c12). The second cumulant can be computed by keeping only the terms
of order n1n2 in the expression of the effective action and by taking the limit n1, n2 → 0 in the end. The calculation,
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which is shown in full detail in Appendix B 3, gives

S2[p1, p2] ≈ Mβ2

4N

∑
i6=j

pi1p
j
1p
i
2p
j
2 −

(
β

β
(0)
K

)2[
ψ(1)(2M ) +

π2

6

][∑
i

pi1p
i
2 +

1

2N

∑
i 6=j

pi1p
i
2(pj1 + pj2)

+
1

4N2

∑
i,j,k 6=

pi1p
j
1p
i
2p
k
2 −

1

8N2

∑
i,j,k 6=

pi1p
i
2(pj1p

k
1 + pj2p

k
2) + . . .

]
,

(51)

where the ellipses stand for higher-order terms. Note that the terms in the last square bracket that appear in addition
to the first one,

∑
i p
i
1p
i
2, are absent in the “zeroth-order” replicated action in Eq. (47) and therefore contribute to

the corrections to the latter. In the large-M limit their contribution is negligible, and they also turn out to also be
unimportant for M = 3 (see Fig. 5), giving credit to the approximation used in Sec. III for obtaining the second
cumulant. Finally, higher-order cumulants can be calculated along the same lines.

As in Sec. IV, we can infer from the above 1-replica and 2-replica (and higher-order if needed) actions the approx-
imate effective disordered theory for the fully connected 2M -KREM. We straightforwardly obtain

βHeff [p] = −
∑
i

(µ̃+ δµ̃i)p
i − 1

2

∑
i,j 6=

(w2

N
+
δw2,ij√
N

)
pipj − w3

3!N2

∑
i,j,k 6=

pipjpk − w4

4!N3

∑
i,j,k,l 6=

pipjpkpl + . . . , (52)

where the nonrandom coefficients are given by

µ̃ = −
Mββ

(0)
K

8
,

w2 =
Mβ

2

(
β −

5β
(0)
K

8

)
,

w3 =
9Mββ

(0)
K

32
,

w4 = −
39Mββ

(0)
K

64
,

(53)

and where the random variables, δµ̃i and δw2,ij , have a zero mean (δµ̃i = δw2,ij = 0) and variances given by

δµ̃iδµ̃j = −
(

β

β
(0)
K

)2[
ψ(1)(2M ) +

π2

6

]
δij ,

δw2,ijδw2,kl =
Mβ2

2
(δikδjl + δilδjk)

δµ̃iδw2,jk = −
(

β

β
(0)
K

)2[
ψ(1)(2M ) +

π2

6

] (δij + δik)√
N

.

(54)

There are also random 3, 4, and higher-order interaction terms that we do not take into account in the simplified
approximation. There is an unpleasant feature in the above expressions: The variance of the random “chemical
potential” δµ̃i is negative, which is unphysical. This variance however does not scales with M as the variance of the
two-body interactions and is already small even for M = 3. (The same is already true for the zeroth-order result: see
Appendix B 1.) This hitch is not an intrinsic problem of the mapping itself but is an artifact of the low-temperature
approximations used here to derive the effective theory. It disappears when the the partition function of the (2-replica)
constrained systems is computed exactly, as done in paper I: In fact, in this case we find that the variance of the
random chemical potential is also exponentially small in M and subleading with respect to the random bond term,
but it is positive, δµ̃iδµ̃j = Mβ2/2M+1.

We now go from the overlap variables, pi = 0, 1, to the Ising ones, σi = ±1, via the relation pi = (σi + 1)/2. We
obtain from Eqs. (52-54) the following effective disordered Hamiltonian (truncated up to the 4-body interaction term
in the σi’s variables):

βHeff [σ] = S0 −
∑
i

(H + δhi)σ
i − 1

2

∑
i,j 6=

(J2

N
+
δJ2,ij√
N

)
σiσj − J3

3!N2

∑
i,j,k 6=

σiσjσk

− J4

4!N3

∑
i,j,k,l 6=

σiσjσkσl + . . . ,

(55)
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where the coupling constants are given by H = µ̃/2 +
∑
m≥2 wm/[(m − 1)! 2m] and Jn =

∑
m≥n wm/[(m − n)! 2m],

which after truncating the sums to mmax = 10 gives

H ≈ Mβ

8

(
β − 0.986β

(0)
K

)
,

J2 ≈
Mβ

8

(
β − 0.4423β

(0)
K

)
,

J3 ≈ 0.0144Mββ
(0)
K ,

J4 ≈ −0.0145Mββ
(0)
K .

(56)

The random field δhi and the random coupling δJ2,ij have zero mean and variances given by

δhiδhj =

[
Mβ2

32
− 1

4

(
β

β
(0)
K

)2[
ψ(1)(2M ) +

π2

6

]]
δij +

Mβ2

32N
− 1

4N

(
β

β
(0)
K

)2[
ψ(1)(2M ) +

π2

6

]
,

δJ2,ijδJ2,kl =
Mβ2

8
(δikδjl + δilδjk)

δhiδJ2,jk =
1

8

[
Mβ2

4
−
(

β

β
(0)
K

)2[
ψ(1)(2M ) +

π2

6

]]δij + δik√
N

.

(57)

As before, S0 is a random term that does not depend on the Ising variables. The requirement of a positive definite

variance matrix imposes that δh2
i > 0, which in turn implies that M & 2.

When applied to the fully connected 2M -KREM, the low-temperature variational approximation scheme of Sec. III
again yields an effective random-field + random-bond Ising Hamiltonian with multi-body interactions that has the
same structure as the exact effective theory derived in paper I, with similar expressions of the effective parameters.
Because it is defined on a fully connected lattice the approximate disordered effective theory (as well as the exact
one) can be solved analytically. This is done in Appendix B of paper I for the simpler case where we neglect the
cross-correlation term between the random-field and the random-bond variables and keep only the diagonal terms of
the variances.

As already discussed, the effective disordered theory has a transition for a uniform source Hc when the ferromagnetic
tendency is strong enough relative to the strength of the disorder. There is then a line of first-order transition
terminating in a critical point that is in the RFIM universality class. Changing the temperature in the 2M -KREM
amounts to following a given trajectory in the disordered Ising model, and the thermodynamic glass transition of the
former corresponds to crossing the first-order transition line in the latter (the jump in the mean overlap 〈p〉 with a
reference configuration is equivalent to a jump in the magnetization m). The thermodynamic glass transition therefore
exists if the trajectory in the disordered Ising model crosses a coexistence line below the critical point. Because the
3-body coupling J3 is very small, as are the effects of the third cumulant of the random field and of the covariance
between random field and random bond, the critical point and the coexistence line take place for H ≈ 0.

In Fig. 5 we compare for the fully connected 2M -KREM with M = 3 the prediction for the mean overlap 〈p〉 =
(1+m)/2 from the approximate effective disordered theory derived by means of our variational approximation scheme
(where we neglect the third cumulant of the random field and the covariance between random field and random bond)
to the exact temperature dependence obtained in paper I. As can be seen, the agreement is good. The approximate
treatment predicts a thermodynamic glass transition with a jump of 〈p〉 that reproduces quite well the exact behavior.
The transition temperature for the approximate effective model is at β ≈ 2.595 (Hc ≈ 0.0022), i.e., TK ≈ 0.385, slightly
below but quite close to the exact value, TK ≈ 0.40. The discrepancy found on the low-β/high-T side of the transition
stems from the low-T nature of the variational approximation scheme and essentially corresponds to a constant term
in the mean overlap that can be calculated in the limit where T →∞. The residual discrepancy between the exact and
the approximate descriptions is mostly due to the fact that the effective theory has been truncated at the level of the
4-body interaction term. In addition, we have plotted the prediction obtained by including higher-order correlations in
the effective disorder, but one can see that the effect is extremely small. We also find that the zeroth-order description
gives a rather poor account and that introducing the effect of the glassy correlations induced by pinning the overlaps
(the mean-field analog of the point-to-set correlations) is crucial to improve the prediction of the effective theory.

All in all this comparison shows that the variational treatment used to derive the effective theory for the fluctuations
of the overlap with an equilibrium reference configuration at low temperature (below the mean-field RFOT, T < TMF

K )
provides a good description of glassy systems in the fully connected limit. This gives credit to its use as a general
approximation scheme in the context of finite-dimensional systems including glass-forming liquids.
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FIG. 5: Comparison between the approximate effective theory and the exact result for the fully connected 2M -KREM with
M = 3: Mean overlap 〈p〉 with a reference configuration versus β = 1/T . The black curve (circles) represents the values of p0
and p1 given by the exact solution of the model (called q0 and q1 in App. A1 of paper I). The violet curve (crosses) corresponds
to the results given by the (quasi) exact effective theory of the model obtained in paper I: The effective Hamiltonian is exact
at and above TK but is somewhat approximate below TK because of our use of the annealed approximation for handling the
random energies (see paper I). The red curve (squares) corresponds to the prediction of the approximate effective Hamiltonian,
where we neglect the third cumulant of the random field and of the covariance between random field and random bond: The
solution is derived in App. B of paper I. The discrepancy between the two curves on the low-β side of the transition is due
to high-temperature terms that are not included in the low-T approximation scheme. The roughly constant shift actually
corresponds to a term that can be calculated in the limit T →∞: The exact value of the overlap approaches 〈p〉 → 1/2M for
T →∞ (i.e., the probability that two randomly chosen configuration on a given site are in the same state), while the overlap
goes to zero when computed by means of the effective random-field + random-bond Ising model. This explains the discrepancy
of about 1/2M ≈ 0.11 on the low-β side of the transition. On the high-β side, the green curve (diamonds) is the prediction of
the approximate effective disordered theory when one accounts for higher-order correlations in the disorder (see Appendix B
of paper I). Finally, the blue curve (triangles) corresponds to the “zeroth-order” approximation with no account of the glassy
correlations, Eq. (B6).

B. Approximate effective theory for the finite-dimensional lattice version of the 2M -KREM

In this Section we consider the finite-dimensional lattice version of the 2M -KREM. We apply our low-temperature
variational approximations to construct the approximate effective theory which describes the fluctuations of the
overlap with an equilibrium reference configuration in this model. By doing this we want to check whether the
resulting effective theory for this finite-dimensional glass model has the same structure as the one found above for
supercooled liquids. In addition, the model has been recently investigated through a real-space renormalization group
method,28 and it is thus interesting to compare the predictions of the two approaches.

Below we will present the main results only. The calculations are carried out in full detail in Appendix C. The
model is defined on a d-dimensional hyper-cubic lattice, very similarly to its fully connected counterpart. On each
site i we define a state variable Ci, which can take 2M possible value, Ci = 1, . . . , 2M . Two neighboring sites i and
j interact via a coupling E〈i,j〉(Ci, Cj) that is an i.i.d. Gaussian random variable, such that E〈i,j〉(Ci, Cj) = 0 and

E〈i,j〉(Ci, Cj)E〈i,j〉(C′i, C′j) = MδCi,C′iδCj ,C′j . The Hamiltonian of the system simply reads

H =
1√
d

∑
〈i,j〉

E〈i,j〉(Ci, Cj) , (58)

where the factor 1/
√
d is introduced to have a well-defined limit when d→∞.

As for the fully connected case, the first two approximations of Secs. III A and III B are exactly satisfied by the model.
Applying then our variational approximation scheme described in Secs. III C, III D, and III E we obtain an effective
theory having exactly the same form as that derived for glass-forming liquids near the putative TK [see Eq. (35)]. The



23

10 20 30
d

0

10

20

30

40

M

estimation using the effective theory
real-space RG
fit of the real-space RG results

FIG. 6: Estimate for the minimum value of M for the thermodynamic glass transition (RFOT) in the finite-dimensional lattice
version of the 2M -KREM. The blue curve shows the result of the effective random-field Ising theory: A RFOT exists only for
M above this curve. The red circles correspond to the values of d and M for which an ideal-glass fixed point is found within
the real-space RG analysis of Ref. [28], and the red dashed line is an exponential fit of these results which yields a lower critical
dimension dL ≈ 4.18.

resulting Hamiltonian corresponds to a random-field + random-bond Ising model with antiferromagnetic power-law
decreasing pairwise interactions and an infinite-range 4-body link-link coupling. The expressions of the parameters
of the effective theory, uniform field H, couplings J2, J̃2, and J4, as well as the variances of the random variables
are given in Eq. (C4) of Appendix C. As for the effective theory of glass-forming liquids, we find that the mean-field
configurational entropy, which is essentially proportional to H, is renormalized by a positive factor, implying that the
thermodynamic glass transition temperature is lowered with respect to its mean-field value. (However, it is easy to
check that the for d→∞ the expressions in Eq. (C4) give back the known mean-field result.)

The effective disordered Hamiltonian can be used to study the existence of a thermodynamic glass transition in
the 2M -KREM and can be conveniently studied by computer simulation. Here we rather provide a rough estimate of
the minimum value of M for which the transition persists by simplifying further the effective disordered Hamiltonian
to that of the short-range RFIM by following the same procedure as in Sec. V C. The results are listed in the table
of Appendix C 3 and are plotted in Fig. 6. For comparison, we also plot the results previously obtained through a
real-space renormalization group (RG) analysis.28 In both cases one finds a monotonous decrease of the minimum
value of M with d, but there are significant differences between the two sets of results. One is in the value of the lower
critical dimension for the existence of the thermodynamic glass transition (dL = 2 from the RFIM-like effective theory
vs dL ≈ 4.18 from the real-space RG analysis) and the other in the behavior at large dimensions: The real-space RG
approach predicts that a much smaller value of M is needed to have a thermodynamic glass transition compared to
the estimate obtained from our effective theory. Although both methods are approximate and one cannot a priori
tell whether one or the other is better, we note that the real-space RG procedure is not expected to provide accurate
results in large d.

VII. DISCUSSION AND CONCLUSION

In this work we have presented the derivation of a 2-state (i.e., Ising-like) disordered effective theory which describes
the fluctuations of what is thought to be the relevant order parameter for glassy systems, i.e., the overlap field
with a random equilibrium configuration, close to the putative thermodynamic glass transition temperature. In the
companion paper1 we have focused on archetypal mean-field models for the glass transition, in particular the Random
energy Model19 and its extension to a finite number of states,20 the 2M -KREM, on a fully connected lattice. The
effective Hamiltonian for these mean-field models can be worked out (essentially) without any approximation. We
have shown that in both cases the effective theory for the fluctuations of the overlap with a reference configuration is a
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random-field + random-bond Ising model. We have argued that this result is very general and should apply (possibly
with some minor model-dependent adjustments) to any mean-field model in the “universality class” of structural
glasses, i.e., with a complex free-energy landscape characterized by a multitude of metastable states and two distinct
glass transitions, a dynamical and a thermodynamical one.

In the present paper, we have shown that such an effective description in terms of a random-field + random-bond
Ising model also applies to supercooled liquids and simpler models in finite dimensions close to, and below, the mean-
field thermodynamic glass transition. Of course, the effective theory cannot be worked exactly in this case, and our
derivation is based on a low-temperature variational approach. The new physics appearing in finite dimensions is the
presence of point-to-set spatial correlations. This is what makes the derivation of the effective theory more involved
than in the mean-field limit. A physical consequence of these correlations is the appearance of effective pair and multi-
body interactions that decay as power laws with distance below the mean-field glass transition (RFOT). The generic
effect of these additional interactions is to depress the thermodynamic glass transition temperature and, possibly, to
change its behavior. Finite-dimensional fluctuations tend to increase the strength of the effective disorder, to reduce
the ferromagnetic tendency of the interactions, and to move the external field playing the role of a renormalized
configurational entropy further away from zero.

The great merit of such a mapping to an effective disordered theory for Ising variables is that it is much easier to
investigate than the original glass problem. By having coarse-grained over some of the fluctuations we derive a theory
in which understanding the role of the long-range and/or nonperturbative fluctuations is now feasible. The presence
of a random-field type of disorder immediately tells us for instance that such fluctuations wash out the existence of a
thermodynamic glass transition in dimensions d ≤ 2.54 It also emphasizes the role of the disorder strength, which is
associated with fluctuations of the local configurational entropy, and that of the diverging point-to-set correlations,
which generate new effective interactions.

As we have already pointed out, the mapping is only approximate for finite-dimensional glass-formers and one may
then wonder what could go wrong in our derivation of the effective disordered theory? The two main assumptions
that we have made are that the variational “low-T” approximations provide a good zeroth-order description and that
one can truncate to a small number of terms both the effective description in terms of many-body interactions and
the expansion in cumulants of the effective disorder. We have checked these assumptions in the case of the exactly
solvable fully connected 2M -KREM and found that they provide results in good agreement with the exact ones. Yet,
this model is a mean-field one and, as a consequence, the comparison does not address the validity of all aspects of the
variational procedure. We have also noted that when the amplitude c of the spatial gradient terms in the Ginzburg-
Landau-like description of supercooled liquids in terms of overlaps [Eq. (13)] is small, the standard deviation of the
random couplings may dominate the nonrandom ferromagnetic value, and the physics of the disordered model leaves
the realm of the random-field Ising model for that of an Ising spin glass in an external field, with a quite different
phenomenology. This nonetheless appears to be only present in the limit of a very small amplitude (c � 1) and to
be furthermore always absent in the other model studied, the 2M -KREM. It seems therefore fair to conclude that the
present mapping does not provide any mechanism that would generically destroy the thermodynamic glass transition
predicted at the mean-field level (at least for d > 2). The existence or not of such a transition rather appears to be
system-dependent, and its investigation thus requires a quantitative analysis.

Even taking now for established the generic form of the effective disordered theory for the thermodynamic glass
transition, a quantitative derivation of the parameters entering in the theory is not an easy task for supercooled liquids.
We have indicated some ways to estimate them by combining liquid-state theory and a low-temperature variational
approximation scheme. A potentially powerful approach would be to use data obtained from numerical simulations of
finite-size systems made of realistic 3-dimensional glass-forming liquids as input. Finite sizes have indeed the effect of
suppressing spatial fluctuations and one expects that the effective disordered theory at the “bare level”, i.e., without
having turned on the long-range and nonperturbative fluctuations, precisely describes such situations.46 This then
provides a means to determine the effective parameters of the theory from simulation data on the fluctuations of the
overlap field in finite-size glass-forming systems. Rather small systems, as already studied,21,47–49 would be sufficient.

One should finally reiterate that our approach in terms of an effective disordered Ising model is not meant to provide
a full solution to the glass transition problem, as there is no obvious mapping from the dynamics of the glass-forming
liquid to that of the effective theory. Yet it allows one to study the existence and properties of a thermodynamic glass
transition, and it sheds light on the conditions under which such a transition can be destroyed. One could envisage
a further, and rather ambitious, step to map also the dynamics by upgrading the formalism to a supersymmetric
formulation of the dynamics, as for instance done by Rizzo in the vicinity of the (mean-field) dynamical transition,50

and trying to derive an effective dynamical disordered theory in this framework. However, we leave this for future
work.
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Appendix A: Variational approximation for the effective Hamiltonian using a slab geometry

In order to assess the consistency of our procedure, it is important to check that the effective Hamiltonian found
in Sec. IV by using the low-temperature approximations is robust enough when different geometries of the pattern
of the τ ia’s are considered. To this aim, we repeat in this appendix the steps of the approximation scheme proposed
in Sec. III for a slab geometry (instead of a periodic cluster pattern), taking the Ginzburg-Landau functional for the
overlap fields in glass-forming liquids [Eq. 13] as a starting-point description.

Here, we will only compute the 1-replica component of the effective action. In the following we thus set τ ia = τ i ∀a
and keep only the terms of order n. We consider a d-dimensional hypercubic lattice of linear size Lx along the x-
direction and of linear size L along the other directions. We set τ i = 0 in a slab of width ` in the x-direction (e.g.,
between x = 1 and x = `) and τ i = 1 outside the slab (see the right panel of Fig. 1). On the sites where τ i = 0 we set
ηiab to be of a 1-RSB form, i.e., we divide the replicas in n/m blocks of size m ×m such that if a, b are in the same
block, then ηiab = 1, whereas if a, b do not belong to the same block then ηiab = 0. The variational parameter m must
be fixed by minimizing the action. (Recall that m = 1 gives back the “zeroth-order” approximation, τ iab = τ iaτ

i
b).

The gradient term involving the ηiab’s in Eq. (21) is different from zero only on the links connecting a site with
τ i = 1 and a site with τ i = 0. As a result,

c

2

∑
ab6=

∑
〈i,j〉

[(1− τ i)ηiab − (1− τ j)ηjab]
2 = n(m− 1)Ld−1c .

Similarly, we have that∑
ab6=

∑
i

(1− τ i)
(
sc −

u

3
− c

∑
j/i

τ j
)
ηiab = n(m− 1)Ld−1

[(
sc −

u

3

)
`− 2c

]
,

−u
3

∑
abc6=

∑
i

(1− τ i)ηiabηibcηica = −n(m− 1)(m− 2)
uLd−1`

3
.

Putting all these terms together and taking the derivative with respect to m leads to

m? =

{
1 for ` ≥ `PS ,
1− 3(c−`sc)

2u` for ` < `PS ,
with `PS =

{
c/sc for sc ≥ 0 ,
∞ for sc < 0 ,

where `PS plays the role of the mean-field point-to-set correlation length. [Similarly to the case of the periodic pattern
described in Sec. III D, we also find in the present case an upper bound on c by ensuring that m? is always positive:
c < (2u)/3 + sc.]

After inserting the above results into Eq. (21) we immediately find that the 1-replica part of the effective action
reads

S1 =
c

2

∑
〈i,j〉

(τ i − τ j)2 +
∑
i

scτ
i + ∆S1 , with ∆S1 =

{
0 for ` ≥ `PS ,
3Ld−1

4u

(
`s2
c − 2csc + c2

`

)
for 0 < ` < `PS ,

(A1)

Since we consider the system only below the mean-field RFOT TMF
K , we will focus in the following on the case where

sc . 0, which corresponds to `PS =∞.
Our strategy now consists in checking that the approximate ansatz of a translationally invariant theory with an

effective external field and effective 2- and multi-body interactions as introduced in the main text allows us to reproduce
the above result. More specifically, we consider a contribution to the 1-replica effective action in the same form as in
Eq. (26), i.e.,

∆S1,eff = −µ+

∑
i

τi+µ−
∑
i

(1− τ i)+w2

∑
〈i,j〉

τ i(1− τ j)+
1

2

∑
i6=j

W (|i− j|)τ iτ j +
w4

Ld

∑
〈i,i′〉6=〈jj′〉

[τ i(1− τ i
′
)τ j(1− τ j

′
)]sym .
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For the slab geometry, the contributions from the external uniform field yield respectively −Ld−1(Lx − `)µ+ and
Ld−1`µ−, while the nearest-neighbor coupling gives Ld−1w2. The 4-body link-link infinite-range interaction only gives
a sub-leading contribution, w4L

d−2, for the geometry considered here and can be neglected in the thermodynamic
limit (see also Sec. V B). The shape of the pairwise interaction needed to reproduce Eq. (A1) turns out to be very
similar but slightly different than that found for the periodic pattern considered in Sec. III D: W (x) vanishes at short
distances (e.g., for x < a) and W (x) ≈ w̃2/x

2d−1 for large x.
In the continuum limit, the interaction between two vertical planes with τ = 1 at distance z is given by (in the

following we specify to the 3-d case)

Ld−1w̃2

∫ ∞
1

2πr dr

(r2 + z2)5/2
=

2πw̃2L
d−1

3(1 + z2)3/2
.

In consequence, the interaction between all the vertical planes with τ = 1 located to the left of the slab and all the
vertical planes with τ = 1 located to the right of the slab is

2πw̃2L
d−1

3

∫ ∞
0

dz′
∫ ∞
`+1+z′

dz

(1 + z2)3/2
≈ πw̃2L

d−1

3`
+ . . . .

Finally, the self-interaction between all the sites with τ = 1 on the left of the slab (and, equivalently, on the right)
gives a bulk term proportional to Ld−1(Lx − `), which can be roughly estimated as

Ld−1(Lx − 1)w̃2

2

∫ ∞
a

4πr2dr

r5
=
πw̃2L

d−1(Lx − 1)

a2
.

Putting all these terms together, we obtain that

∆S1,eff = Ld−1
[
(Lx − `)

(
− µ+ +

πw̃2

a2

)
+ µ−`+ w2 +

πw̃2

3`
+ . . .

]
.

Hence, in order to reproduce the functional dependence of ∆S1 given in Eq. (A1), we need to set µ+ = 9c2/(4ua2),
µ− = 3s2

c/(4u), w2 = −3csc/(2u), and w̃2 = 9c2/(4πu). The 1-replica action thus reads

S1[τ i] ≈ c

2

∑
〈i,j〉

(τ i − τ j)2 +
∑
i

(sc − µ̃)τ i − w2

∑
〈i,j〉

τ iτ j +
w̃2

2

∑
|i−j|>a

τ iτ j

|ri − rj |2d−1
+ . . . , (A2)

with

µ̃ = −sc +
3(2cdsc + s2

c + 3c2/a2)

4u
,

w2 = −3cd

2u
sc ,

w̃2 =
9c2

4πu
.

(A3)

(Note that the expressions of µ̃ and w̃2 are valid for d = 3 only.) The form of the effective action is very similar to
the one given in Sec. IV A for the periodic pattern. (The long-range link-link contribution cannot be determined from
the slab geometry as it leads to subdominant contributions.) The functional dependence of the effective parameters
in terms of the bare coupling constants is also remarkably similar: w2 is exactly the same as in Sec. IV A and the
effective external field µ̃ only differs by a factor −9c2/(4ua2). There is a difference in the spatial decay of the pairwise
antiferromagnetic effective interaction, which is found here to go as 1/r2d−1 while it goes as 1/r2d for the periodic
pattern. The interaction is however in both cases relatively short-ranged and the difference therefore does not seem
to be significant.

In conclusion, our approximate procedure of determining the effective theory by matching a translationally invariant
1-replica action with various choices of specific patterns of the overlap with the reference configuration appears to be
quite robust with respect to this choice. Moreover, having performed this computation is important also for another
reason, which goes as follows. Instead of Eq. (26), another possibility to reproduce the functional dependence on `
and λ of ∆S1 in the case of the periodic cluster patterns, Eq. (24) of Sec. III D, would be to use the following 1-replica
component of the effective Hamiltonian:

∆S1,eff [τ ] ≈ µ
∑
i

(1− τ i) + w2

∑
〈i,j〉

τ i(1− τ j) +

∞∑
p=0

w4+p

Ld+p

∑
i1 6=...6=ip 6=〈i,i′〉6=〈jj′〉

τ i1 · · · τ ip [τ i(1− τ i
′
)τ j(1− τ j

′
)]sym ,
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with the same coupling constants as in Eq. (31), but with w̃2 = 0 and w4+p = (−1)p3c2/(4u). This particular structure
of the 1-replica component of the effective Hamiltonian, without the scale-free pairwise interaction but with extra
fully-connected (p + 4)-body interactions between p sites and two links, would indeed allow us to reproduce exactly
Eq. (24) at all orders. Nevertheless, it fails completely in the case of the slab geometry, for which the presence of the
pairwise interaction appears to be crucial to reproduce the functional form of ∆S1 correctly.

Appendix B: The fully connected 2M -KREM: Low-temperature variational approximations

This appendix is devoted to the analysis of the version of the REM with 2M states (the 2M -KREM) on a fully
connected lattice. We apply the low-temperature approximations developed for finite-dimensional liquids in the main
text to this exactly solvable case already studied in paper I by different methods.1 The goal is to assess the validity
of these approximations.

In order to construct the effective theory, we follow the procedure described in the main text (Sec. VI A). We
consider n + 1 replicas of the system and fix the overlap {pia} of the replicas a = 1, . . . , n with a given reference
configuration. The starting point is the expression for the replicated action for the overlap {pia} of the replica a,
a = 1, . . . , n, with the reference replica 0:

e−Srep[{pa}] =
1

Z

∑
{Cαi }

e
− β

2
√
N

∑
i6=j

∑n
α=0 E〈i,j〉(Cαi ,Cαj )

∏
a,i

δpia,δC0
i
,Ca
i

=
1

Z

∑
{Cαi }

e
Mβ2

8N

∑
i6=j

∑n
α,β=0 δCα

i
,Cβ
i

δ
Cα
j
,Cβ
j

∏
a,i

δpia,δC0
i
,Ca
i

.

(B1)

This expression corresponds to the so-called annealed approximation for handling the random energies (note however
that the averages over the quenched disorder represented by the reference configuration are exactly handled). In
principle the annealed approximation is only valid above the thermodynamic glass-transition (RFOT) temperature
TK and at TK . Yet, as discussed in paper I (see in particular Fig. 3 of paper I), it gives reasonably good results also
below but near TK for the fully-connected 2M -KREM, at least as far as the value of 〈p〉 is concerned. In any case,
the situation in the glass phase below TK is not of key interest here.

1. “Zeroth-order” approximation

The “zeroth-order” approximation is obtained by setting qiab ≡ δCai ,Cbi = piap
i
b on all sites (i.e., ηiab = 0). This leads

to ∑
α,β

δCαi ,C
β
i
δCαj ,C

β
j

= 1 + n+ 2
∑
a

piap
j
a +

∑
a 6=b

qiabq
j
ab = 1 + n+

∑
a

piap
j
a +

∑
a,b

piap
j
ap
i
bp
j
b , (B2)

The trace over the configurations {Cαi } of Eq. (B1) can now be easily performed, as explained below. On each site i the
number of constrained replicas a for which pia = 0 is given by n−

∑
a p

i
a. All these replicas must be in a configuration

that is different than the reference one and each pair of replicas must be in different configurations. Therefore on site
i the number of configurations that are compatible with the “zeroth-order” approximation is given by(

2M − 1

n−
∑
a p

i
a

)
=

Γ(2M )

Γ(2M − n+
∑
a p

i
a) Γ(1 + n−

∑
a p

i
a)
.

Expanding the Γ-functions up to the second order in n−
∑
a p

i
a (we are interested in the 1 and 2-replica components

of the replicated action only) yields when n→ 0(
2M − 1

n−
∑
a p

i
a

)
≈ exp

{
−
(

Γ′(2M )

Γ(2M )
+ γ

)∑
a

pia −
1

2

[
Γ′′(2M )

Γ(2M )
−
(

Γ′(2M )

Γ(2M )

)2

+ Γ′′(1)− γ2

]∑
a,b

piap
i
b

}
, (B3)

where γ = −Γ′(1) is the Euler constant. The expressions above can be rewritten in terms of the polygamma func-
tions, defined as the logarithmic derivatives of the Γ-function: ψ(m)(z) = dm+1 ln Γ(z)/dzm+1. Inserting Eqs. (B2)
and (B3) into Eq. (B1) and using that ψ(1)(1) = π2/6 we obtain the effective action at the level of the “zeroth-order”
approximation that is given in Eq. (47) of the main text.
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Eq. (47) for the replicated action corresponds to the expansion in number of free replica sums associated with the
cumulant expansion built from the following disordered Hamiltonian:

βH(0)
eff [p] = −

∑
i

(µ̃(0) + δµ̃i)p
i − 1

2

∑
i6=j

(w(0)
2

N
+
δw2,ij√
N

)
pipj , (B4)

where

µ̃(0) = −
[
ψ(0)(2M ) + γ

]
,

w
(0)
2 =

Mβ2

4
,

δµ̃iδµ̃j
(0)

= −
[
ψ(1)(2M ) +

π2

6

]
δij ,

δw2,ijδw2,kl
(0)

=
Mβ2

2
(δikδjl + δilδjk) ,

δµ̃iδw2,jk
(0)

= 0 ,

(B5)

with δµ̃i
(0)

= w2,ij
(0) = 0. Note the unphysical feature that the variance of the random chemical potential δµ̃i is

negative. This is a shortcoming of the approximation, which is cured when the 2-replica component of the replicated
action is computed (quasi) exactly, as done in paper I. The value of the variance is however very small as it is
exponentially suppressed in M (it goes as 2−M and is small already for M = 3).

After introducing Ising spins variables in Eq. (B4) via the relation pia = (σia+1)/2, we obtain the following disordered
Hamilonian:

βH(0)
eff [σ] = S0 −

∑
i

(H + δhi)σ
i − 1

2

∑
i 6=j

(J2

N
+
δJij√
N

)
σiσj , (B6)

where S0 is a random term that does not depend on the Ising variables, the random bonds and random fields have a

zero mean, δhi
(0)

= δJ2,ij
(0)

= 0, and

H(0) =
Mβ2

16
− ψ(0)(2M ) + γ

2
,

J
(0)
2 =

Mβ2

16
,

δhiδhj
(0)

=

(
Mβ2

32
− 1

4

[
ψ(1)(2M ) + π2/6

])
δij +

Mβ2

32N
,

δJ2,ijδJ2,kl
(0)

=
Mβ2

8
(δikδjl + δilδjk) ,

δhiδJ2,jk
(0)

=
Mβ2

32

(δij + δik)√
N

.

(B7)

This disordered Ising model has a transition for an external field Hc ≈ 0, which is the counterpart of the RFOT in
the KREM. If what neglects the (small) effect of the cross-correlation between random fields and random couplings,

the transition is exactly at H
(0)
c = 0, which corresponds to a RFOT at β

(0)
K =

√
8(ψ(0)(2M ) + γ)/M . In the limit

M →∞ one recovers β
(0)
K →

√
8 ln 2, which is the exact value in the standard mean-field limit.

Since the variance of the random-field must be positive, i.e, δh2
i > 0, there is a threshold temperature,

T
(0)
th = 1/β

(0)
th , above which the approximate mapping to the effective disordered model is no longer justified:

β
(0)
th =

√
8(ψ(1)(2M ) + π2/6)/M . This is a consequence of the above noticed fact of a negative variance of the

random chemical potential in the present approximation. The curves β
(0)
K (M) and β

(0)
th (M) are plotted in Fig. 7. For

M . 2 one finds that β
(0)
th > β

(0)
K , i.e., the approximate mapping is no longer valid. (In this region anyhow, the nature

of the transition in the exact solution changes character and is no longer a RFOT.)

2. Variational approach beyond the “zeroth-order” approximation: The 1-replica action

We consider a random “pinning” configuration of the pi’s as described in the main text. Due to the absence of
geometry, this corresponds to setting the overlap with the reference configuration (for all constrained replicas) to be
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FIG. 7: Effective theory for the fully connected 2M -KREM: Transition line in the β = 1/T -M diagram for the “zeroth-order”
approximation (when the covariance of the random field and random coupling is moreover neglected). The blue line marks

the RFOT, β
(0)
K =

√
8(ψ(0)(2M ) + γ)/M . The green line indicates the limit above which the approximate expression of the

variance of the random field becomes negative, β
(0)
th =

√
8(ψ(1)(2M ) + π2/6)/M . Below M ≈ 2.1 where the two lines cross, the

approximate description becomes meaningless. The asymptotic behavior for M →∞ is exact (β
(0)
K →

√
8 ln 2 and β

(0)
th → 0).

1 on the first cN sites and 0 on the other (1 − c)N sites. We introduce the matrices qiab ≡ δCαi ,C
β
i

, and on all the

sites i where pi = 0 [see Eq. (19)] we consider a 1-RSB ansatz: We divide the replicas a = 1, . . . , n in n/m blocks of
m replicas and set qiab = 1 if a and b belong to the same block and zero otherwise (note that m = 1 gives back the
“zeroth-order” approximation).

After inserting this ansatz into Eq. (B1), and keeping only the terms of order n, the 1-replica action can be expressed
as

S1(c,m)

N
= −Mβ2

8

[
m(1− c2) + 2c2

]
−
[
ψ(0)(2M ) + γ

]1− c
m

. (B8)

Minimizing with respect to m then yields

if β < β
(0)
K m? =

{
1 if c < cpin(β) ,
β
(0)
K

β
√

1+c
if c ≥ cpin(β) ,

with cpin(β) =

(
β

(0)
K

β

)2

− 1 ,

if β ≥ β(0)
K m? =

β
(0)
K

β
√

1 + c
,

(B9)

where β
(0)
K is the inverse of the “zeroth-order” critical temperature and the “pinning” concentration cpin(β) (or rather

its inverse) plays the role of the (point-to-set) pinning length `pin found for finite-dimensional systems. After inserting
the value of m? into Eq. (B8), one can easily compute the corrections to the zeroth-order description of the 1-replica
action due to the fluctuations of the overlaps qiab as ∆S1(c) = S1(c,m?)− S1(c, 1), with

if β < β
(0)
K

∆S1(c)

N
=

{
0 if c < cpin(β) ,
M(1−c)

8

(
β
√

1 + c− β(0)
K

)2

if c ≥ cpin(β) ,

if β ≥ β(0)
K

∆S1(c)

N
=
M(1− c)

8

(
β
√

1 + c− β(0)
K

)2

.

The second line of the above expression coincides with Eq. (48), which gives ∆S1(c) for β ≥ β(0)
K .

As explained in the main text, we now seek for an approximate effective Hamiltonian of the form of a linear
combination of generic q-body interactions terms, Eq. (49), which is able to reproduce the functional dependence of
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FIG. 8: Correction ∆S1 to the first cumulant due to the fluctuations of the qiab’s within the variational “low-T” approximate

scheme as a function of the concentration (global overlap) c, for β = 1.1β
(0)
K and M = 3. The full black line corresponds to

Eq. (48), while the dashed ones correspond to the results obtained after truncating the effective Hamiltonian in Eq. (49) to 2-
(blue), 3- (green), 4- (red), and 5-body (magenta) interaction terms.

∆S1(c). This amounts to expanding in powers of c around c = 0 and truncating the expansion. Focusing first on the

regime β ≥ β(0)
K and expanding Eqs. (48) and (49) up to the 5-th order in c, we derive that

∆S1(c)

N
=
M

8

[
(β − β(0)

K )2 + β
(0)
K (β − β(0)

K )c+
β(5β

(0)
K − 4β)

4
c2 −

3ββ
(0)
K

8
c3 +

13ββ
(0)
K

64
c4 −

17ββ
(0)
K

128
c5 + . . .

]
= cst− µc− (w2/2)c2 − (w3/3!)c3 − (w4/4!)c4 − (w5/5!)c5 + . . . ,

from which one immediately extract the effective parameters µ, w2, w3, w4, etc, which are reproduces in Eq. (50) of
the main text. The outcome of this procedure, with a truncation of ∆S1(c) at several orders in c up c5 is shown in
Fig. 8. One can see that the description at the 5th order is good over the whole range of c but nonetheless deteriorates
for c & 0.6, and we have also considered an expansion up to the 10th order (not shown here).

The above strategy does not work for temperatures higher than the “zeroth-order” RFOT temperature (β < β
(0)
K ),

since ∆S1(c) has a nonanalyticity in cpin(β) that cannot be reproduced by expanding Eq. (48) around zero. In this
case, since ∆S1(c) is identically zero for c < cpin(β), all the first Ncpin(β)-body couplings wp must vanish. The
1-replica action can thus, at least formally, be written as

∆S1(c) = −
N∑

q=Ncpin(β)

wq
q!

∑
{π}

pπ(1) · · · pπ(q)(1− pπ(q+1)) · · · (1− pπ(N)) ,

where {π} is the set of all possible permutations of {1, . . . , N}. In consequence, in order to reproduce the shape of
∆S1(c) one needs all possible q-body interactions involving an extensive number of variables, from q = Ncpin(β) to
q =∞. This situation is analytically intractable. However, the variational approximation scheme proposed in Sec. III

is “low-T” in spirit and is therefore expected to be better justified for T < T
(0)
K . We can thus consider the regime

β < β
(0)
K as a pre-asymptotic regime. In the following, for simplicity, we will compute the coupling constants of the

effective Hamiltonian only in the region β > β
(0)
K , and analytically continue them also in the high-temperature phase

(but not very deep in this phase).
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3. Variational approximation for the 2-replica action

As explained in the main text, in order to compute the second cumulant of the effective action within our variational
approach we have divided the n constrained replicas in two groups of n1 and n2 replicas respectively, and considered
random configurations of the pia’s (a = 1, 2) with c1N sites where pi is one for the first group of replicas and zero for
the others, c2N sites where pi is zero for the first group of replicas and one for the others, c12N sites where pi is one
for both group of replicas, and c0N sites where pi is zero for both groups of replicas (with c0 = 1− c1 − c2 − c12). To
compute the 2-replica action we keep only the terms of order n1n2 in the expression of the effective action, and take
the limit n1, n2 → 0 in the end (see also paper I).

The sum appearing in the exponential of Eq. (B1) can be expressed as∑
i6=j

∑
α,β

δCαi ,C
β
i
δCαj ,C

β
j

=N2
{(

1 + n1m
?
1 + n2m

?
2

)
(c20 + 2c0c1 + 2c0c2 + 2c0c12 + 2c1c2)

+
(
1 + n2

1 + n2m
?
2

)
(c21 + 2c1c12) +

(
1 + n2

2 + n1m
?
1

)
(c22 + 2c2c12) +

[
1 + (n1 + n2)2

]
c212

}
.

The only term of order n1n2 in the above expression is 2n1n2c
2
12 = 2n1n2[(1/N)

∑
i p
i
1p
i
2]2.

The trace over all possible configurations {Cαi } that are compatible with our variational ansatz gives the following
combinatorial factor:∑

{Cαi }

∏
a,i

δpia,δC0
i
,Ca
i

=

[(
2M − 1

n1/m?
1

)]c2N [(2M − 1

n2/m?
2

)]c1N [( 2M − 1

n1/m?
1 + n2/m?

2

)]c0N
,

yielding a term in exp(−N [ψ(1)(2M ) + π2/6](n1n2)/(m?
1m

?
2)c0] in Eq. (B1).

After collecting all the terms of order n1n2 and using the fact that c0 = (1/N)
∑
i(1− pi1)(1− pi2), we then obtain

S2[pi1, p
i
2] =

Mβ2

4N

∑
i,j

pi1p
j
1p
i
2p
j
2 −

1

m?
1m

?
2

[
ψ(1)(2M ) +

π2

6

]∑
i

pi1p
i
2 ,

where m?
1 and m?

2 are the values of m that minimize the 1-replica part of the replicated action (i.e., the terms of

order n1 and n2 separately), which are given by Eq. (B9). For β ≥ β(0)
K , one finds

m?
1 =

β
(0)
K

β
√

1 + c1 + c12
, and m?

2 =
β

(0)
K

β
√

1 + c2 + c12
.

Bu using again the fact that c1 + c12 = (1/N)
∑
i p
i
1 and c2 + c12 = (1/N)

∑
i p
i
2 and expanding the expressions above

for small c1, c2 and c12, we obtain

1

m?
1m

?
2

∑
i

pi1p
i
2 ≈

(
β

β
(0)
K

)2 [∑
i

pi1p
i
2 +

1

2N

∑
i,j

pi1p
i
2(pj1 + pj2) +

1

4N2

∑
i,j,k

pi1p
j
1p
i
2p
k
2 −

1

8N2

∑
i,j,k

pi1p
i
2(pj1p

k
1 + pj2p

k
2) . . .

]
.

This term generates higher-order correlations between random couplings and random chemical potentials which,
however, are not proportional to M and stay of order 1 for large M .

Collecting all the terms we finally obtain the expression of the second cumulant of the effective action given in
Eq. (51) of the main text.

Appendix C: Construction of the approximate effective theory for the finite-dimensional lattice version of the
2M -KREM

The starting point is similar to that of the fully connected version in Eq. (B1),

e−Srep[{pia}] =
1

Z

∑
{Cαi }

e
− β√

d

∑
〈i,j〉

∑
α=0nE〈i,j〉(Cαi ,Cαj )

∏
a,i

δpia,δC0
i
,Ca
i

=
1

Z

∑
{Cαi }

e
Mβ2

2d

∑
〈i,j〉

∑n
α,β=0 δCα

i
,Cβ
i

δ
Cα
j
,Cβ
j

∏
a,i

δpia,δC0
i
,Ca
i

,

(C1)

and, as for the fully connected case, the first steps of the approximation scheme (Secs. III A and III B) are exactly
satisfied by the model.
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1. The “zeroth-order” approximation

The “zeroth-order” approximation can be obtained following the same procedure as described in Appendix B 1: We
set qiab ≡ δCai ,Cbi = piap

i
b on all sites (i.e., ηiab = 0), insert this ansatz into Eq. (C1), and perform the trace over the

configurations Cαi . This leads to the following replicated action,

S(0)
rep[{pia}] =

∑
a

(
− Mβ2

2d

∑
〈i,j〉

piap
j
a +

[
ψ(0)(2M ) + γ

]∑
i

pia

)
− 1

2

∑
ab

(Mβ2

d

∑
〈i,j〉

piap
j
ap
i
bp
j
b −

[
ψ(1)(2M ) +

π2

6

]∑
i

piap
i
b

)
,

which we have truncated at the 2-replica level. This has exactly the same form as the replicated action for the fully
connected case in Eq. (47).

2. Variational approach

To implement the low-T variational approach beyond the zeroth-order result, we choose the same “periodic-cluster
pattern” for the overlap with the reference configuration as the one described in Sec. III D (see also the left panel
Fig. 1), i.e., a periodic arrangement of the pia’s in which cubes of side λ with pa = 1 on all their sites are regularly
placed on the lattice with a distance ` between the centers of two neighboring cubes, with `� λ; everywhere outside
the cubes, pa = 0.

On a d-dimensional hyper-cube of linear size L, the total number of sites is N = Ld and the total number of cubes is
Nc = (L/`)d. We start with the 1-replica action and evaluate the different terms of Eq. (C1) for the pattern described
above and for pia = pi ∀a. On the sites where pi = 0 we consider a variational 1-RSB ansatz, i.e., we divide the replicas
in n/m blocks of size m ×m such that if a and b are in the same block both replicas are in the same configuration
as the reference one (i.e., Cai = Cbi = C0

i ), whereas if a and b do not belong to the same block the two replicas are in
different configurations, which are also different from the reference one (i.e., Cai 6= C0

i , Cbi 6= C0
i , Cai 6= Cbi ). Thus, on a

link between two sites i and j where pi = pj = 1, we have that
∑
α,β δCαi ,C

β
i
δCαj ,C

β
j

= (1 + n)2. Conversely, on all the

other links
∑
α,β δCαi ,C

β
i
δCαj ,C

β
j

= 1 + nm.

The number of links between two sites with p = 1 is N (1,1)
L = Nc(dλd − dλd−1). The number of all the other links

is then dLd −N (1,1)
L = dLd[1− λd−1(λ− 1)/`d]. In consequence,

Mβ2

2d

∑
〈i,j〉

∑
α,β

δCαi ,C
β
i
δCαj ,C

β
j

=
Mβ2Ld

2

[
(1 + n)2λ

d−1(λ− 1)

`d
+ nm

(
1− λd−1(λ− 1)

`d

)]
.

In order to trace over all possible configurations {Cαi } compatible with our variational ansatz, we simply need to
compute how many ways there are to choose n/m configurations among the 2M − 1 configurations that are different
from the reference one on all the sites i where pi = 0. The number of such sites is N0 = Ld − λdNc = Ld[1− (λ/`)d].
We thus obtain the following combinatorial factor, which we expand up to second order in n:[(

2M − 1

n/m

)]N0

=

[
Γ(2M )

Γ
(
1 + n

m

)
Γ
(
2M − n

m

)]N0

' exp

{
N0

[(
ψ(0)(2M ) + γ

) n

m
− 1

2

(
ψ(1)(2M ) +

π2

6

)( n
m

)2
]}

.

After putting all the terms together and keeping only the terms of order n, the 1-replica action can be expressed as

S1(λ, `,m) ' −Ld
{
Mdβ2

2d

[
2λd−1(λ− 1)

`d
+m

(
1− λd−1(λ− 1)

`d

)]
+

[
1−

(
λ

`

)d]
ψ(0)(2M ) + γ

m

}
. (C2)

(We recall that for m = 1 we get back the result of the “zeroth-order” approximation.) Taking the derivative of
Eq. (C2) with respect to m, one gets (as expected, the result depends on whether the temperature is above or below
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the “zeroth-order” RFOT temperature T
(0)
K = 1/β

(0)
K = [2(ψ(0)(2M ) + γ)/M ]−1/2)

if β < β
(0)
K m? =

{
1 if ` > `pin(β) ,
β
(0)
K

β

√
`d−λd

`d−λd−1(λ−1)
if ` ≤ `pin(β) ,

with `pin(β) =

(
(β

(0)
K )2λd − β2λd−1(λ− 1)

(β
(0)
K )2 − β2

)1
d

,

if β ≥ β(0)
K m? =

β
(0)
K

β

√
`d − λd

`d − λd−1(λ− 1)
,

where `pin is akin the “pinning” correlation length, which is a specific instance of a point-to-set correlation length.
Inserting these expressions into Eq. (C2), we obtain after some simple algebra ∆S1 (per site) as a function of `, λ,
and of the temperature, as

if β < β
(0)
K

∆S1

Ld
=

{
0 if ` > `pin(β) ,

M
2`d

(
β

(0)
K

√
`d − λd − β

√
`d − λd−1(λ− 1)

)2

if ` ≤ `pin(β) ,

if β ≥ β(0)
K

∆S1

Ld
=

M

2`d

(
β

(0)
K

√
`d − λd − β

√
`d − λd−1(λ− 1)

)2

.

Since we are interested in studying the system significantly below the mean-field RFOT at T
(0)
K , we will mostly focus

in the following on the case β > β
(0)
K which corresponds to `pin =∞. After expanding the non mean-field part of the

1-replica action in powers of λ/`, we find

∆S1(λ, `)

Ld
≈ M

2

[
(β − β(0)

K )2 + β(β − β(0)
K )

λd−1

`d
− (β − β(0)

K )2λ
d

`d
+
ββ

(0)
K

4

λ2d−2

`2d
+
ββ

(0)
K

4

λ3d−2 − λ3d−3/2

`3d

]
.

As explained in Sec. III, our strategy will now consist in finding an approximate ansatz for the effective action that
allows us to reproduce this result by means of an effective external source and effective 2- and multi-body interactions
in a translationally invariant theory. More specifically, we choose the effective 1-replica action of the form of Eq. (26):

∆S1,eff [p] = µ
∑
i

(1− pi) + w2

∑
〈i,j〉

pi(1− pj) +
w̃2

2

∑
|i−j|>a

pipj

|i− j|2d
+
w4

Ld

∑
〈i,i′〉6=〈jj′〉

[pi(1− pi
′
)pj(1− pj

′
)]symm ,

which for the specific pattern of the pi’s chosen here gives (in the continuum limit)

∆S1,eff

Ld
= µ

[
1− λd

`d

]
+ dw2

λd−1

`d
+
w̃2Ωd

2d

λ2d

`3d
+ w4d

2λ
2d−2

`2d
,

Thus, the choice of the effective parameters such that ∆S1,eff best reproduces the functional dependence of ∆S1 on `
and λ is

µ =
M

2
(β − β(0)

K )2 ,

w2 =
Mβ(β − β(0)

K )

2d
,

w̃2 ≈
Mdββ

(0)
K

8Ωd
,

w4 =
Mββ

(0)
K

8d2
.

Note that the functional dependence of the term of order `−3d in ∆S1 is not exactly reproduced by the effective
description, since the former is proportional to λ3d−2 − λ3d−3/2 and the latter to λ2d. Here we have chosen the value
of w̃2 such that the two terms are equal for λ = 1.

The behavior of ∆S1 above T
(0)
K can also be reproduced by the effective 1-replica action with the same coefficients

w2, w̃2, and w4 as given above, by introducing a finite interaction range `pin for the 2- and 4-body interaction terms.
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Following the strategy described in Appendix B 3 for the fully connected model, we can also compute the 2-replica
effective action within the variational approximation. Neglecting all higher-order disorder correlations, we finally
obtain

S1[pi] =
Mββ

(0)
K

2

∑
i

pi −
Mβ(2β − β(0)

K )

2d

∑
〈i,j〉

pipj +
w̃2

2

∑
|ri−rj |>a

pipj

|i− j|2d
+
w4

Ld

∑
〈i,i′〉6=〈jj′〉

[pi(1− pi
′
)pj(1− pj

′
)]symm ,

S2[pi1, p
i
2] =

Mβ2

d

∑
〈i,j〉

pi1p
j
1p
i
2p
j
2 −

(
β

β
(0)
K

)2 [
ψ(1)(2M ) +

π2

6

]∑
i

pi1p
i
2 + . . . .

As found before for the overlap field theory of glass-forming liquids and for the fully connected KREM, the above
expressions correspond to the cumulants of an effective disordered Hamiltonian, βHeff [p]. By going from the overlap
variables pi = 0, 1 to the Ising spins, σi = ±1 via the relation pi = (1 + σi)/2, one finally obtains the following
disordered Ising Hamiltonian:

βHeff [σ] = S0 −
∑
i

(H + δhi)σ
i −

∑
〈i,j〉

(J2 + δJij)σ
iσj +

J̃2

2

∑
|ri−rj |>a

σiσj

|ri − rj |2d

+
J4

Ld

∑
〈i,i′〉6=〈jj′〉

[(1 + σi)(1− σi
′
)(1 + σj)(1− σj

′
)]symm ,

(C3)

where the applied uniform source H, the effective couplings J2, J̃2, J4, and the second cumulants of the random
variables are given by

H =
Mβ

2

(
β

(0)
K − β +

β
(0)
K

16ad

)
,

J2 =
Mβ(2β − β(0)

K )

8d
,

J̃2 ≈
Mdββ

(0)
K

32Ωd
,

J4 =
Mββ

(0)
K

128d2

δhiδhj =

[
Mβ2

8
− 1

4

(
β

β
(0)
K

)2(
ψ(1)(2M ) +

π2

6

)]
δij +

Mβ2

16
Cij ,

δJijδJkl =
Mβ2

32d
(δikδjl + δilδjk) ,

(C4)

where Cij is the connectivity matrix of the lattice. (S0 is a random term that does not depend on the Ising variables.)
The requirement of a positive variance for the random field imposes that M & 2.1.

In conclusion, the effective Hamiltonian has exactly the same random-field + random-bond Ising form as that found
for describing glass-forming liquids. As in the latter case, the configurational entropy is renormalized by a positive
factor, implying that the thermodynamic glass transition temperature is lowered with respect to its mean-field value.
For this specific model the fluctuations of the ferromagnetic coupling always stay smaller than the average value,
which excludes the possibility of having an effective theory in the class of an Ising spin-glass in a field as advocated
in Ref. [39].

3. Estimate of the transition

Following the steps described in Sec. V C, one can use the approximate effective theory to estimate whether the
thermodynamic glass transition exists as a function of the number of states M and of the dimensions d. In order to
do this, we “project” the effective Hamiltonian (C3) onto a standard short-range RFIM. As explained in Sec. V B,
performing a Hubbard-Stratanovich transformation and a saddle-point calculation allows one to decouple the 4-body
link-link interaction, yielding a “renormalized” value of J2 [see Eq. (39)]. Taking ψ = 0 (which provides a lower bound
for the effective ferromagnetic coupling) leads to J2 → J2 + 2dJ4. On the other hand, as discussed in Sec. V C, the
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pairwise antiferromagnetic interaction disfavors magnetically ordered phases, and its effect can be taken into account
as an effective decrease of the the short-range ferromagnetic coupling,

Jeff
2 ≈ J2 + 2dJ4 −

J̃2Ωd
2d

∫ ∞
a

r−d−1 dr =
Mβ

8d

[
2β −

β
(0)
K

8

(
7 +

1

8ad

)]
.

As a first approximation, we neglect the random-bond disorder and all higher-order disorder correlations.
A transition can then only take place in zero external field, H = 0, i.e., when

βc = β
(0)
K

(
1 +

1

16ad

)
.

As discussed in Sec. V C, a transition exists in the 3-dimensional (standard) short-range RFIM with a Gaussian
distributed random field provided that

√
∆h/J

eff
2 . 1.2.22,40,41 We postulate a rough generalization of this criterion

in higher dimensions by assuming that in d-dimension a transition exists for
√

∆h/(dJ
eff
2 ) . 0.4. (The upper bound

for the ratio is rather 0.5 in d = 451,52 and in d = 5,53 but this makes no qualitative difference.) By inserting the
expression of ∆h given in Eq. (C4) into this condition we obtain the minimum value of M for which a thermodynamic
glass transition can occur as a function of the dimensionality of the lattice.

The results are listed in the table below and plotted in Fig. 6. They can also be compared to the recent predictions
of a Migdal-Kadanoff real-space renormalization group study of the same model28, as discussed in the main text (see
also Fig. 6).
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16 8.18658
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20 6.38935

25 4.96131

30 4.02112

40 2.87458

(C5)
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