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Gradient-descent-based algorithms and their stochastic versions have widespread applications in
machine learning and statistical inference. In this work, we carry out an analytic study of the performance
of the algorithm most commonly considered in physics, the Langevin algorithm, in the context of noisy
high-dimensional inference. We employ the Langevin algorithm to sample the posterior probability
measure for the spiked mixed matrix-tensor model. The typical behavior of this algorithm is described
by a system of integrodifferential equations that we call the Langevin state evolution, whose solution is
compared with the one of the state evolution of approximate message passing (AMP). Our results show
that, remarkably, the algorithmic threshold of the Langevin algorithm is suboptimal with respect to the one
given by AMP. This phenomenon is due to the residual glassiness present in that region of parameters.
We also present a simple heuristic expression of the transition line, which appears to be in agreement with
the numerical results.
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I. MOTIVATION

Algorithms based on noisy variants of gradients descent
[1,2] stand at the root of many modern applications of data
science and are being used in a wide range of high-
dimensional nonconvex optimization problems. The wide-
spread use of stochastic gradient descent in deep learning
[3] is certainly one of the most prominent examples. For
such algorithms, the existing theoretical analysis mostly
concentrates on convex functions and convex relaxations or
on regimes where spurious local minima become irrelevant.
For problems with complicated landscapes where, instead,
useful convex relaxations are not known and spurious local
minima cannot be ruled out, the theoretical understanding
of the behavior of the gradient-descent-based algorithm
remains poor and represents a major avenue of research.
The goal of this paper is to contribute to such an

understanding in the context of statistical learning and to
transfer ideas and techniques developed for glassy dynam-
ics [4] to the analysis of nonconvex high-dimensional

inference. In statistical learning, the minimization of a cost
function is not the goal per se but rather a way to uncover
an unknown structure in the data. One common way to
model and analyze this situation is to generate data with a
hidden structure and to see if the structure can be recovered.
This method is easily set up as a teacher-student scenario
[5,6]: First, a teacher generates latent variables and uses
them as input of a prescribed model to generate a synthetic
data set. Then, the student observes the data set and tries to
infer the values of the latent variables. The analysis of this
setting has been carried out rigorously in a wide range of
teacher-student models for high-dimensional inference and
learning tasks as diverse as a planted clique [7], generalized
linear models such as compressed sensing or phase retrieval
[8], factorization of matrices and tensors [9,10], or simple
models of neural networks [11]. In these works, the
information-theoretic optimal performances—the ones
obtained by an ideal Bayes-optimal estimator, not limited
in time and memory—have been computed.
The main question is, of course, how practical

algorithms—operating in polynomial time with respect
to the problem size—compare to these ideal performances.
The last decade brought remarkable progress in our under-
standing of the performances achievable computationally.
In particular, many algorithms based on message passing
[6,12], spectral methods [13], and semidefinite programs
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(SDP) [14] were analyzed. Depending on the signal-to-noise
ratio, these algorithms were shown to be very efficient in
many of those tasks. Interestingly, all these algorithms fail to
reach good performance in the same region of the parameter
space, and this striking observation has led to the identi-
fication of a well-defined hard phase. This case is a regime of
parameters in which the underlying statistical problem can
be information theoretically solved, but no efficient algo-
rithms are known, rendering the problem essentially unsolv-
able for large instances. This stream of ideas is currently
gaining momentum and impacting research in statistics,
probability, and computer science.
The performance of the noisy-gradient-descent algo-

rithms remains an entirely open question. Do they allow
one to reach the same performances as message passing and
SDPs? Can they enter the hard phase? Do they stop being
efficient at the same moment as the other approaches, or
are they worse? The ambition of the present paper is to
address these questions by analyzing the performance of
the Langevin algorithm in the high-dimensional limit of a
particular spiked mixed matrix-tensor model, defined in
detail in the next section.
Similar models have played a fundamental role in

statistics and random matrix theory [15,16]. Tensor fac-
torization is also an important topic in machine learning
and is widely used in data analysis [17–22]. At variance
with the pure spiked tensor case [18], this mixed matrix-
tensor model has the advantage that the algorithmic thresh-
old appears at the same scale as the information-theoretic
one, similarly to what is observed in simple models of
neural networks [8,11]. We view the spiked mixed matrix-
tensor model as a prototype for the nonconvex high-
dimensional landscape. The key virtue of the model is
its tractability.
We focus on the Langevin algorithm for two main

reasons: First, it is the gradient-based algorithm that is
most widely studied in physics. Second, at long times
(possibly growing exponentially with the system size), it is
known to sample the associated Boltzmann measure, thus
evaluating the Bayes-optimal estimator for the inference
problem. We evaluate performance of the algorithm at
times that are long but not growing with the system size.
We explicitly compare the obtained performance to the
one of the Bayes-optimal estimator and to the best-known
efficient algorithm so far—the approximate message-
passing (AMP) algorithm [6,12]. In particular, contrary to
what has been anticipated in Refs. [23,24], but as surmised in
Ref. [25], we observe that the performance of the Langevin
algorithm is hampered by the many spurious metastable
states still present in the AMP easy phase. Thus, we shed
light on a number of properties of the Langevin algorithm
that may seem counterintuitive at first sight (e.g., the
performance gets worse as the noise decreases).
The possibility to analytically describe the behavior of

the Langevin algorithm in this model is enabled by the

existence of the Crisanti-Horner-Sommers-Cugliandolo-
Kurchan (CHSCK) equations in spin-glass theory, describ-
ing the behavior of the Langevin dynamics in the so-called
spherical p-spin model [26,27], where the method can be
rigorously justified [28]. These equations were a key
development in the field of statistical physics of disordered
systems that lead to detailed understanding and predictions
about the slow dynamics of glasses [4]. In this paper, we
bring these powerful methods and ideas into the realm of
statistical learning.

II. SPIKED MATRIX-TENSOR MODEL

We now detail the spiked mixed matrix-tensor problem:
A teacher generates an N-dimensional vector x� by
choosing each of its components independently from a
normal Gaussian distribution of zero mean and unit
variance. In the large-N limit, this method is equivalent
to having a flat distribution over the N-dimensional hyper-
sphere SN−1 defined by jx�j2 ¼ N. In this paper, we use
either of these two, as convenient. The teacher then
generates a symmetric matrix Yij and a symmetric
order-p tensor Ti1;…;ip as

Yij ¼
1ffiffiffiffi
N

p x�i x
�
j þ ξij ∀ i < j;

Ti1…ip ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp − 1Þ!p
Nðp−1Þ=2 x�i1…x�ip þ ξi1…ip ∀ i1 < … < ip;

ð1Þ

where ξij and ξi1;…;ip are iid Gaussian components of a
symmetric random matrix and tensor of zero mean and
variance Δ2 and Δp, respectively; ξij and ξi1;…;ip corre-
spond to noises corrupting the signal of the teacher. In the
limit Δ2 → 0 and Δp → 0, the above model reduces to the
canonical spiked Wigner model [29] and spiked tensor
model [18], respectively. The goal of the student is to infer
the vector x� from the knowledge of the matrix Y, of the
tensor T, of the values Δ2 and Δp, and the knowledge of
the spherical prior. The scaling with N as specified in
Eq. (1) is chosen in such a way that the information-
theoretic best-achievable error varies between a perfectly
reconstructed spike x� and a random guess from the flat
measure on SN−1. Here and in the rest of the paper,
we denote x ∈ SN−1 the N-dimensional vector and xi,
with i ¼ 1;…; N its components.
This model belongs to the generic direction of study of

Gaussian functions on the N-dimensional sphere, known as
p-spin spherical spin-glass models in the physics literature
and as isotropic models in the Gaussian process literature
[30–34]. In statistics and machine learning, these models
have appeared following the studies of spiked matrix and
tensor models [16,18,29]. Analogous mixed matrix-tensor
models—where, next to an order-p tensor, one observes a
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matrix created from the same spike—are studied, e.g., in
Ref. [17] in the context of topic modeling (also in
Ref. [18]). From the optimization-theory point of view,
this model is highly nontrivial, as it is high dimensional
and nonconvex. For the purpose of the present paper, this
model is chosen with the hypothesis that its energy land-
scape presents properties that will generalize to other
nonconvex high-dimensional problems. The following
three ingredients are key to the analysis: (a) It is in the
class of models for which the Langevin algorithm can be
analyzed exactly in the large-N limit. (b) The different
phase transitions, both algorithmic and information theo-
retic, discussed hereafter, all happen at Δ2 ¼ Oð1Þ,
Δp ¼ Oð1Þ, which means that when the problem becomes
algorithmically tractable, it is still in the noisy regime,
where the optimal mean squared error (MSE) is bounded
away from zero. (c) In this model, the AMP algorithm is
conjectured to be optimal among polynomial algorithms.
The second and third ingredients are not present in the pure
spiked tensor model [18], making it unsuitable for our
present study. We note that the Langevin algorithm was
recently analyzed for the pure spiked tensor model in
Ref. [21] in a regime where the noise variance is very small,
Δ ∼ N−p=2, but we also note that, in that model, algorithms
such as tensor unfolding, semidefinite programming,
homotopy methods, or improved message-passing schemes
work better, roughly up to Δ ∼ N−p=4 [17–19,35,36].

III. BAYES-OPTIMAL ESTIMATION AND
MESSAGE-PASSING ALGORITHM

In this section, we present the performance of the Bayes-
optimal estimator and of the approximate message-passing
algorithm. This theory is based on a straightforward
adaptation of analogous results known for the pure spiked
matrix model [9,29,37] and for the pure spiked tensor
model [10,18].
The Bayes-optimal estimator x̂ is defined as the one that,

among all estimators, minimizes the MSE with the spike x�.
Starting from the posterior probability distribution

PðxjY; TÞ ¼ 1

ZðY; TÞ
�YN
i¼1

e−x
2
i =2

�Y
i<j

e−
1

2Δ2
ðYij−

xixjffiffi
N

p Þ2

×
Y

i1<…<ip

e
− 1
2Δp

�
Ti1…ip−

ffiffiffiffiffiffiffi
ðp−1Þ!

p
Nðp−1Þ=2xi1…xip

�
2

; ð2Þ

the Bayes-optimal estimator reads

x̂i ¼ EPðxjY;TÞðxiÞ: ð3Þ

To simplify notation, and to make contact with the
energy landscape and the statistical physics notations, it
is convenient to introduce the energy cost function, or
Hamiltonian, as

HðxÞ ¼ H2 þHp ¼ −
1

Δ2

ffiffiffiffi
N

p
X
i<j

Yijxixj

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp − 1Þ!p

ΔpNðp−1Þ=2
X

i1<…<ip

Ti1;…;ipxi1…xip : ð4Þ

Thus, keeping in mind that for N → ∞ the spherical
constraint is satisfied, jxj2 ¼ N, the posterior is written
as PðxjY; TÞ ¼ exp½−HðxÞ�=Z̃ðY; TÞ, where Z̃ is the nor-
malizing partition function.
With the use of the replica theory and its recent proofs

from Refs. [9,10,38], one can rigorously establish that the
mean squared error achieved by the Bayes-optimal esti-
mator (2) is given as MMSE ¼ 1 −m�, where m� ∈ R is
the global maximizer of the so-called free entropy of the
problem:

ΦRSðmÞ ¼ 1

2
logð1 −mÞ þm

2
þ m2

4Δ2

þ mp

2pΔp
: ð5Þ

This expression is derived, and proven, in the Appendix B 2.
We note that the proof applies to the posterior distribution (2)
with the Gaussian prior.
We now turn to the AMP algorithm [10,18], which is the

best algorithm known so far for this problem. AMP is an
iterative algorithm inspired by the work of Thouless-
Anderson and Palmer in statistical physics [39]. We give
its form explicitly in Appendix B 1. Most remarkably,
performance of the AMP can be evaluated by tracking its
evolution with the iteration time, and it is given in terms of
the (possibly local) maximum of the above free entropy,
which is reached as a fixed point of the following iterative
process:

mtþ1 ¼ 1 −
1

1þmt=Δ2 þ ðmtÞp−1=Δp
; ð6Þ

with the initial condition mt¼0 ¼ ϵ, with 0 < ϵ ≪ 1.
Equation (6) is called the state evolution (SE) of
the AMP, and its validity is proven for closely related
models in Ref. [40]. We denote the corresponding fixed
point mAMP and the corresponding estimation error
MSEAMP ¼ 1 −mAMP.
The phase diagram presented in Fig. 1 summarizes this

theory for the spiked 2þ 3-spin model. It is deduced by
investigating the local maxima of the scalar function (5).
Notably, we observe that the phase diagram in terms of Δ2

and Δp splits into three phases:
(i) Easy, in green for Δ2 < 1 and any Δp: The fixed

point of the state evolution (6) is the global maxi-
mizer of the free entropy (5), and m� ¼ mAMP > 0.

(ii) Hard, in orange, for Δ2 > 1 and low Δp < ΔIT
p ðΔ2Þ:

The fixed point of the state evolution (6) is not
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the global maximizer of the free entropy (5), and
m� > mAMP ¼ 0.

(iii) Impossible, in red, for Δ2 > 1 and high
Δp > ΔIT

p ðΔ2Þ: The fixed point of the state evolution
(6) is the global maximizer of the free entropy (5),
and m� ¼ mAMP ¼ 0.

For the 2þ p-spin model with p > 3, the phase diagram
is slightly richer and is presented in Appendix D 4.

IV. LANGEVIN ALGORITHM AND ITS ANALYSIS

We now turn to the core of the paper and the analysis of
the Langevin algorithm. In statistics, the most common way
to compute the Bayes-optimal estimator (3) is to attempt to
sample the posterior distribution (2) and to use several
independent samples to compute the expectation in Eq. (3).
In order to do perform this process, one needs to set up a
stochastic dynamics on x that has a stationary measure
at long times given by the posterior measure (2). The
Langevin algorithm is one possibility (others include,
notably, the Markov chain Monte Carlo method). The
common bottleneck is that the time needed to achieve
stationarity can, in general, be exponential in the system
size, in which case the algorithm is practically useless.
However, this result is not always the case, and there are
regions in parameter space where one can expect that the
relaxation to the posterior measure happens on tractable

timescales. Therefore, it is crucial to understand where this
happens and what the associated relaxation timescales are.
The Langevin algorithm on the hypersphere with the

Hamiltonian given by Eq. (4) reads

_xiðtÞ ¼ −μðtÞxiðtÞ −
∂H
∂xi þ ηiðtÞ; ð7Þ

where ηiðtÞ is a zero mean noise term, with
hηiðtÞηjðt0Þi ¼ 2δijδðt − t0Þ, where the average h·i is with
respect to the realizations of the noise. The Lagrange
multiplier μðtÞ is chosen in such a way that the dynamics
remains on the hypersphere. In the large-N limit, one finds
μðtÞ ¼ 1–2H2ðtÞ − pHpðtÞ, where the H2ðtÞ is the first
term from Eq. (4) evaluated at xðtÞ, and HpðtÞ is the value
of the second term from Eq. (4).
The presented spiked matrix-tensor model falls into the

particular class of spherical 2þ p-spin glasses [41,42] for
which the performance of the Langevin algorithm can be
tracked exactly in the large-N limit via a set of integro-
partial differential equations [26,27], previously dubbed
CHSCK. We call this generalized version of the CHSCK
equations the Langevin state evolution (LSE) equations, in
analogy to the state evolution of AMP.
In order to write the LSE equations, we define three

dynamical correlation functions,

CNðt; t0Þ≡ 1

N

XN
i¼1

xiðtÞxiðt0Þ; ð8Þ

C̄NðtÞ≡ 1

N

XN
i¼1

xiðtÞx�i ; ð9Þ

RNðt; t0Þ≡ 1

N

XN
i¼1

∂xiðtÞ=∂hiðt0Þjhi¼0; ð10Þ

where hi is a pointwise external field applied at time t0 to
the Hamiltonian as HþPi hixi. We note that the corre-
lation functions defined above depend on the realization
of the thermal history [i.e., of the noise ηðtÞ] and on the
disorder (here, the matrix Y and tensor T). However, in the
large-N limit, they all concentrate around their averages.
Thus, we define Cðt; t0Þ ¼ limN→∞EY;ThCNðt; t0Þiη and
analogously for C̄ðtÞ and Rðt; t0Þ. Standard field theoretical
methods [43] or dynamical cavity method arguments [44]
can then be used to obtain a closed set of integrodifferential
equations for the averaged dynamical correlation functions,
describing the average global evolution of the system under
the Langevin algorithm. The resulting LSE equations are
(see Appendix C for a complete derivation)

FIG. 1. Phase diagram of the spiked 2þ 3-spin model (the
matrix and order-3 tensor are observed). In the easy (green)
region, the AMP achieves an optimal error smaller than the
random pick from the prior. In the impossible region (red), the
optimal error is as bad as the random pick from the prior, and
the AMP achieves it as well. In the hard region (orange), the
optimal error is low, but the AMP does not find an estimator
better than the random pick from the prior. In the case of the
Langevin algorithm, the performance is strictly worse than that
for the AMP in the sense that the hard region increases up to the
line 1=Δ�

2 ¼ maxð1; ffiffiffiffiffiffiffiffiffiffiffi
Δ3=2

p Þ, depicted by green dots. The green
circles are obtained by numerical extrapolation of the Langevin
state evolution equations.
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∂
∂t Cðt; t

0Þ ¼ 2Rðt0; tÞ − μðtÞCðt; t0Þ þQ0ðC̄ðtÞÞC̄ðt0Þ þ
Z

t

0

dt00Rðt; t00ÞQ00ðCðt; t00ÞÞCðt0; t00Þ þ
Z

t0

0

dt00Rðt0; t00ÞQ0ðCðt; t00ÞÞ;
∂
∂t Rðt; t

0Þ ¼ δðt − t0Þ − μðtÞRðt; t0Þ þ
Z

t

t0
dt00Rðt; t00ÞQ00ðCðt; t00ÞÞRðt00; t0Þ;

∂
∂t C̄ðtÞ ¼ −μðtÞC̄ðtÞ þQ0ðC̄ðtÞÞ þ

Z
t

0

dt00Rðt; t00ÞC̄ðt00ÞQ00ðCðt; t00ÞÞ; ð11Þ

where we have defined QðxÞ ¼ x2=ð2Δ2Þ þ xp=ðpΔpÞ.
The Lagrange multiplier μðtÞ is fixed by the spherical
constraint, through the condition Cðt; tÞ ¼ 1 ∀ t.
Furthermore, causality implies that Rðt; t0Þ ¼ 0 if t < t0.
Finally, the Ito convention on the stochastic equation (7)
gives ∀ t limt0→t− Rðt; t0Þ ¼ 1.

V. BEHAVIOR OF THE LANGEVIN ALGORITHM

In order to assess the performance of the Langevin
algorithm and compare it with AMP, we notice that the
correlation function C̄ðtÞ is directly related to the accuracy
of the algorithm. We solve the differential equations (11)
numerically along the lines of Refs. [45,46] (for a detailed
procedure, see Appendix C 1; codes are available online
[47]). In Fig. 2, we plot the correlation with the spike C̄ðtÞ
as a function of the running time t for p ¼ 3, fixed
Δ2 ¼ 0.7, and several values of Δp, and we use as an
initial condition C̄ðt ¼ 0Þ ¼ 10−4. In the inset of the plot,
we compare it to the same quantity obtained from the state
evolution of the AMP algorithm, with the same initial
condition. For the Langevin algorithm in Fig. 2, we see a
pattern that is striking. One would expect that as the noise
Δp decreases, the inference problem is easier; the corre-
lation with the signal is larger, and it is reached sooner in
the iteration. This case is exactly what we observe for the

AMP algorithm in the inset of Fig. 2. Also for the Langevin
algorithm, the plateau reached for long times t becomes
higher (better accuracy) as the noise Δp is reduced.
Furthermore, the height of the plateau coincides with that
reached by AMP, thus testifying that the algorithm reached
equilibrium. However, contrary to AMP, the relaxation time
for the Langevin algorithm increases dramatically with
diminishing Δp (notice the log scale on the x axis of Fig. 2,
as compared to the linear scale of the inset).
We define τ as the time it takes for the correlation to

reach a value C̄plateau=2. We then plot the value of this
equilibration time in the insets of Fig. 3 as a function of the
noise Δ2 having fixed Δp. The data are consistent with a
divergence of τ at a certain finite value ofΔ�

2. We found that
the divergence points are affected by the initial condition
of the dynamics C̄ðt ¼ 0Þ; this aspect is discussed in
Appendix D 5. In the analysis of the phase diagram, we
initialize the dynamics to C̄ðt ¼ 0Þ ¼ 10−40 (smaller values
have not led to noticeable changes in Δ�

2). We calculate the
divergence time and fit the data with a power law
τðΔÞ ¼ jð1=ΔÞ − ð1=Δ�Þj−γ; we obtain, in the particular
case of fixed Δp ¼ 1.0, that γ ¼ 2.24 and Δ�

2 ¼ 0.72. We
are not able to strictly prove that the divergence of the
relaxation time truly occurs, but at least our results imply

FIG. 2. Evolution of the correlation with the signal C̄ðtÞ starting
from C̄ðt ¼ 0Þ ¼ 10−4 in the Langevin algorithm at fixed noise
on the matrix (Δ2 ¼ 0.7) and different noises on the tensor (Δp).
As we decrease Δp, the time required to jump to the solution
appears to diverge. Inset: The behavior of C̄ðtÞ as a function of
the iteration time for the AMP algorithm for the same values of
Δp and the same initialization.

FIG. 3. Extrapolation of the Langevin relaxation time. The inset
presents the relaxation time for fixed Δp ¼ 1. The main panel
presents a fit using a power law consistent with a divergence at
Δ�

2 ≈ 0.72. The circles are obtained with a numerical solution of
LSE that uses the dynamical grid, while crosses are obtained
using a fixed grid; the initial condition is C̄ðt ¼ 0Þ ¼ 10−40

(details are given in Appendix D5).
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that for Δ2 > Δ�
2 the Langevin algorithm (7) is not a

practical solver for the spiked mixed matrix-tensor problem.
We call the region Δ�

2 < Δ2 < 1, where the AMP algorithm
works optimally without problems yet the Langevin algo-
rithm does not, the Langevin hard region. Then,Δ�

2 is plotted
in Fig. 1 with green points, and it delimits the Langevin hard
region that extends considerably into the region where the
AMP algorithm works optimally in a small number of
iterations. Thus, our main conclusion is that the Langevin
algorithm designed to sample the posterior measure works
efficiently in a considerably smaller region of parameters
than the AMP, as quantified in Fig. 1.
Figure 4 presents another way to depict the observed

data; the correlation C̄ðtÞ reached after time t is plotted as a
function of the tensor noise variance Δp. The results of
AMP are depicted with dotted lines and, as one would
expect, they decrease monotonically as the noise Δp

increases. The equilibrium value (black dashed line) is
reached within a few dozen iterations. On the contrary,
the correlation reached by the Langevin algorithm after
time t is nonmonotonic and close to zero for small values
of noise Δp, signaling again a rapidly growing relaxation
time when Δp is decreased.

VI. GLASSY NATURE OF THE LANGEVIN
HARD PHASE

The behavior of the Langevin dynamics as presented in
the last section might seem counterintuitive at first sight
because one would expect any problem to get simpler
when noise Δp is decreased. In the present model, instead,
as Δp is decreased, the tensor part of the cost function (4)
becomes more important. As a consequence, the landscape
becomes rougher and causes the failure of the Langevin
algorithm.
In the presence of the hard (for AMP) phase, it was

recently argued in Ref. [25] that sampling-based algorithms
are indeed expected to be worse than the approximate
message-passing ones. This result is due to residual

glassiness that extends beyond the hard phase. We repeat
the analysis of Ref. [25] in the present model (details can
be found in Appendix E) and conclude that, while this
explanation provides the correct physical picture, the tran-
sition line obtained in this way does not agree quantitatively
with the numerical extrapolation of the relaxation times we
have obtained numerically in the previous section, at least on
the timescales on which we were able to solve the LSE
equations. The reasons behind this conclusion remain open.
In order to obtain a theoretical estimate that quantita-

tively agrees with the observed behavior of the LSE, we
find the following argument. We first notice that the
Langevin dynamics initialized at very small overlap
C̄ðt ¼ 0Þ remains, for a long time, at small values of the
correlation with the signal. We assume that, during this
time, the dynamics behaves as it would in the mixed
2þ p-spin model without the spike. The model without the
spike has been studied extensively in the physics literature,
precisely with the aim to understand the dynamical proper-
ties of glasses [4,27,48]. One of the important results of
those studies is that the randomly initialized dynamics
converges asymptotically to the so-called threshold states.
Indeed, in Fig. 5, this aspect can be observed in the
evolution of the energy. It soon approaches a value that
can be evaluated [4,27,48], and it corresponds to the
threshold state energy Eth (horizontal lines),

Eth ¼ −Qð1Þ −
�

1

ð1 − qthÞQ0ðqthÞ −
1

qth

�
QðqthÞ: ð12Þ

In the above equation, qth represents the correlation, a.k.a.
overlap, of two configurations randomly picked from the
same threshold state, which can also be evaluated as the
solution of

1

1 − qth
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − 1Þ ðq

thÞp−2
Δp

þ 1

Δ2

s
: ð13Þ

FIG. 4. Correlation with the signal of the AMP and Langevin at
the kth iteration (at time t) for fixed Δ2 ¼ 0.7, where both the
evolutions start with initial overlap 10−4.

FIG. 5. Dynamical evolution of the energy starting from a
configuration with overlap 10−40 at Δp ¼ 1.0 and for various Δ2.
The system first tends to the threshold energy [Eq. (12),
horizontal lines] and then, for sufficiently small Δ2, finds the
direction toward the signal.
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The derivation of these expressions can be found in
Appendixes E 1 and F. Supported by the numerical results
of Fig. 5, we make an approximation that, already on the
observed timescales, the algorithm converges to the thresh-
old states [49]. The presence of the signal determines
whether the algorithm develops a correlation with the
signal. To understand how it occurs, one has to study
the statistical properties of the Thouless-Anderson-
Palmer (TAP) free-energy landscape, which is the finite-
temperature counterpart of the energy landscape, as it has
been shown in early results of spin-glass theory [44,50] and
in the recent results of the mathematical community [51].
The generic picture, which resulted from several years of
studies on spin-glass models, is that threshold states
correspond to marginal local minima of the TAP free
energy. Critical points of the TAP free-energy functional
that are below the threshold states are typically local
minima, while those above are saddles with extensively
many negative directions. The threshold states lie in
between and have just a few very flat directions. In order
to obtain an analytical prediction for the Langevin dynam-
ics threshold, one has to find out how the presence of
the spike destabilizes the threshold states, which can be
achieved by studying the free-energy Hessian at a thresh-
old state.
As shown in Appendix F, such a Hessian reads

∂2F
∂mi∂mj

¼ Gij þ δij2σFðqthÞ −
1

Δ2

x�i x
�
j

N
þ f00ðqthÞ

mimj

N
;

ð14Þ

where f00ðqthÞ is positive (and its expression can be found
in Appendix F), mi is the average magnetization of site i
in the given threshold state, and Gij can be shown to be
statistically equivalent to a random matrix having elements
that are i.i.d. Gaussian random variables with mean zero
and variance are given as

σ2FðqthÞ
N

¼ ðp − 1Þqp−2th

Δp
þ 1

Δ2

:

The free-energy Hessian evaluated at a typical threshold
state is therefore a random matrix belonging to the
Gaussian orthogonal ensemble plus two rank-one pertur-
bations: One is negative and in the direction of the signal,
whereas the other is positive and in the direction of the
threshold state. Results from randommatrix theory allow us
to completely characterize the spectral properties of the
Hessian. Its bulk density of eigenvalues is a shifted semi-
circle whose left edge touches zero, hence leading to the
marginality of the threshold states. For a small signal-to-
noise ratio, the minimal eigenvalue is zero, whereas when
the signal-to-noise ratio exceeds a certain critical value, the
rank-one perturbation in the direction of the signal induces

a BBP (Baik, Ben Arous, Peché) transition [15,52], where a
negative eigenvalue pops out from the Wigner semicircle,
and correspondingly, a downward descent direction toward
the spike emerges and makes the threshold states unstable.
Note that the last term of the Hessian has no effect on the
development of an unstable direction as it is positive and
uncorrelated with the signal. By adapting the known
formulas for the BBP transition to our case (see
Appendix F), we find a landscape-based conjecture for
the algorithmic threshold, that is, the larger value of Δ�

2

between Δ�
2 ¼ 1 and the roots of

Δp ¼ ðp − 1ÞðΔ�
2Þ2ð1 − Δ�

2Þp−3: ð15Þ

This result is the threshold depicted in Fig. 1 for p ¼ 3 as
the green dotted line. We note a very good agreement with
the data points obtained with extrapolation of the relaxation
time from the numerical solution of the LSE equations.
In the following, we present a complementary argument

that, interestingly, also makes a direct link with AMP state
evolution. We again assume that Langevin dynamics
approaches the threshold states. This time, we use AMP
to determine whether it will remain there or not. If the initial
correlation is 0 < mt¼0 ≪ 1, its evolution follows

mtþ1 ¼ ð1 − qthÞ
�ðmtÞp−1

Δp
þ mt

Δ2

�
: ð16Þ

This equation is obtained from the state evolution of the
AMP algorithm, where the overlap is fixed to qth, as
detailed in Appendix B 3.
The stability condition that decides whether an infini-

tesimal correlation will grow or decrease under Eq. (16)
reads qth ¼ 1 − Δ2. Using Eq. (13), this condition then
leads to Eq. (15).

VII. DISCUSSION AND PERSPECTIVES

Motivated by the general aim to shed light on the
behavior and performance of noisy-gradient-descent algo-
rithms that are widely used in machine learning, we
analytically investigate the performance of the Langevin
algorithm in the noisy high-dimensional limit of a spiked
matrix-tensor model. We compare it to the performance of
the approximate message-passing algorithm. While both of
these algorithms are designed with the aim to sample the
posterior measure of the model, we show that the Langevin
algorithm fails to find correlation with the signal in a
considerable part of the AMP easy region. Neither of the
two algorithms enters the so-called hard phase. Our
analysis is based on the Langevin state evolution equations,
a generalization of the dynamical theory for mean field spin
glasses, that describe the evolution of the algorithm in the
large size limit.
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The Langevin algorithm performs worse than the AMP
due to the underlying glass transition in the corresponding
region of parameters. Relying on the result from spin-glass
theory, we present a simple heuristic expression of the
Langevin-threshold (15) line, which appears to be in
agreement with the value obtained from the numerical
solution of the LSE equations.
We note that, so far, in our study of the spiked matrix-

tensor model with Langevin dynamics, we only accessed
the cost function (4) and its derivatives. We did not allow
ourselves to split the cost function in the tensor-related Hp

and the matrix-relatedH2 parts. If we did, then there would
be a simple way to overcome the Langevin hard regime by
first considering only the matrix measurements and then
slowly turning on the tensor, similarly to how temperature
is tuned in simulated annealing. We study this procedure in
Appendix D 6. It is interesting to underline that, from the
point of view of Bayesian inference, this finding remains
somewhat paradoxical. In the setting of this paper, we know
perfectly the model that generated the data and all its
parameters, yet we see that for the Langevin algorithm, it is
computationally advantageous to mismatch the parameters
and perform the annealing in the tensor part in order to
reach faster convergence to equilibrium. This idea is
particularly striking given that, for AMP, it has been proven
in Ref. [7] that mismatching the parameters can never
improve the performance. In fact, from a physics point of
view, the principle (thanks to which the AMP does not
share the hurdles of the Langevin algorithm) remains an
interesting open question.
We stress that the above annealing procedure is a

particularity of the present model and will not generalize
to a broad range of inference problems because it is not
clear, in general, how to split the cost function into a
simple-to-optimize yet informative part and the rest. A
formidably interesting direction for future work consists
instead in investigating whether the performance of the
Langevin algorithm can be improved in a manner that only
accesses the cost function or its derivatives.
While here we studied the spiked matrix-tensor model,

we expect that our findings, based on the existence of an
underlying glass transition, will hold more universally. We
expect them to apply to other local sampling dynamics,
e.g., to the Markov chain Monte Carlo method, and to a
broader range of models, e.g., simple models of neural
networks. An interesting extension of this work would be to
investigate algorithms closer to stochastic gradient descent
and models closer to current neural network architectures.
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APPENDIX A: DEFINITION OF THE SPIKED
MATRIX-TENSOR MODEL

We consider a teacher-student setting in which the
teacher constructs a matrix and a tensor from a randomly
sampled signal, and the student is asked to recover the
signal from the observation of the matrix and tensor
provided by the teacher [6].
The signal x� is an N-dimensional vector whose entries

are real i.i.d. random variables sampled from the normal
distribution [i.e., the prior is PX ∼N ð0; 1Þ]. From the
signal, the teacher generates a symmetric matrix and a
symmetric tensor of order p. Those two objects are
then transmitted through two noisy channels with variances
Δ2 and Δp, so at the end, one has two noisy observations
given by

Yij ¼
x�i x

�
jffiffiffiffi
N

p þ ξij; ðA1Þ

Ti1;…;ip ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp − 1Þ!p
Nðp−1Þ=2 x�i1…x�ip þ ξi1;…;ip ; ðA2Þ

where, for i < j and i1 < … < ip, ξij and ξi1;…;ip are i.i.d.
random variables distributed according to ξij ∼N ð0;Δ2Þ
and ξi1;…;ip ∼N ð0;ΔpÞ. The ξij and ξi1;…;ip are symmetric
random matrix and tensor, respectively. Given Yij and
Ti1;…;ip , the inference task is to reconstruct the signal x�.
In order to solve this problem, we consider the Bayesian

approach. This approach starts from the assumption that
both the matrix and the tensor have been produced from
the same kind of process as the one described by Eqs. (A1)
and (A2). Furthermore, we assume to know the statistical
properties of the channel, namely, the two variances Δ2 and
Δp, and the prior on x. Given these properties, the posterior
probability distribution over the signal is obtained through
the Bayes formula

PðXjY; TÞ ¼ PðY; TjXÞPðXÞ
PðY; TÞ ; ðA3Þ

where
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PðY; TjXÞ ¼
Y
i<j

PY

�
Yij

���� xixjffiffiffiffiNp
	 Y

i1<…<ip

PT

�
Ti1…ip

����
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp − 1Þ!p
Nðp−1Þ=2 xi1…xip

	
¼

∝
Y
i<j

e−
1

2Δ2
ðYij−

xixjffiffi
N

p Þ2 Y
i1<…<ip

e−
1

2Δp
ðTi1…ip−

ffiffiffiffiffiffiffi
ðp−1Þ!

p
Nðp−1Þ=2xi1…xip Þ

2

: ðA4Þ

Therefore, we have

PðXjY; TÞ ¼ 1

ZðY; TÞ
Y
i

e−
1
2
x2i
Y
i<j

e−
1

2Δ2
ðYij−

xixjffiffi
N

p Þ2 Y
i1<…<ip

e
− 1
2Δp

�
Ti1…ip−

ffiffiffiffiffiffiffi
ðp−1Þ!

p
Nðp−1Þ=2xi1…xip

�
2

; ðA5Þ

where ZðY; TÞ is a normalization constant.
Plugging Eqs. (A1) and (A2) into Eq. (A5) allows us to rewrite the posterior measure in the form of a Boltzmann

distribution of the mixed 2þ p-spin Hamiltonian [41,42,53],

H ¼ −
1

Δ2

ffiffiffiffi
N

p
X
i<j

ξijxixj −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp − 1Þ!p
ΔpN

p−1
2

X
i1<…<ip

ξi1…ipxi1…xip −
N
2Δ2

�
1

N

X
i
xix�i

	
2

þ −
N

pΔp

�
1

N

X
i
xix�i

	
p
−
1

2

XN
i¼1

x2i þ const; ðA6Þ

so

PðXjY; TÞ ¼ 1

Z̃ðY; TÞ e
−H: ðA7Þ

In the following, we refer to Z̃ðY; TÞ as the partition
function. We note here that in the large-N limit, using a
Gaussian prior on the variables xi is equivalent to consid-
ering a flat measure over the N-dimensional hypersphereP

N
i¼1 x

2
i ¼ N. This choice will be used when we describe

the Langevin algorithm, and in this case, the last term in the
Hamiltonian will become an irrelevant constant.

APPENDIX B: APPROXIMATE MESSAGE
PASSING, STATE EVOLUTION,

AND PHASE DIAGRAMS

Approximate message passing is a powerful iterative
algorithm to compute the local magnetizations hxii given
the observed matrix and tensor. It is rooted in the cavity
method of statistical physics of disordered systems [39,44],
and it has recently been developed in the context of
statistical inference [12], where, in the Bayes-optimal case,
it has been conjectured to be optimal among all local
iterative algorithms. Among the properties that make AMP
extremely useful is the fact that its performances can be
analyzed in the thermodynamic limit. Indeed, in such a
limit, its dynamical evolution is described by the so-called
SE equations [12]. In this section, we derive the AMP
equations and their SE description for the spiked matrix-
tensor model and solve them to obtain the phase diagram of

the model as a function of the variances Δ2 and Δp of the
two noisy channels.

1. Approximate message passing
and Bethe free entropy

AMP can be obtained as a relaxed Gaussian closure of the
belief propagation (BP) algorithm. The derivation that we
present follows the same lines of Refs. [10,37]. The posterior
probability can be represented as a factor graph where all the
variables are represented by circles and are linked to squares
representing the interactions [54] (see Fig. 6).
This representation is very convenient to write down the

BP equations. In the BP algorithm, we iteratively update
until a set of variables converge; these variables are the
beliefs of the (cavity) magnetization of the nodes. The
intuitive underlying reasoning behind how BP works is as
follows. Given the current state of the variable nodes, take a
factor node and exclude one node among its neighbors. The
remaining neighbors through the factor node express a
belief on the state of the excluded node. This belief is
mathematically described by a probability distribution
called a message, m̃t

ij→iðxiÞ and t̃tii2…ip→iðxiÞ, depending
on which factor node is selected. At the same time, another
belief on the state of the excluded node is given by the rest
of the network, but we use the factor node previously taken
into account, mi→ijðxiÞ and ti→ii2…ipðxiÞ, respectively. All
of these messages travel in the factor graph carrying partial
information on the real magnetization of the single nodes,
and they are iterated until convergence. The iterative
scheme is described by the following equations:
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m̃t
ij→iðxiÞ ∝

Z
dxjmt

j→ijðxjÞPY

�
Yij

���� xixjffiffiffiffiNp
	
; ðB1Þ

mtþ1
i→ijðxiÞ ∝ PXðxiÞ

Y
l≠j

m̃t
il→iðxiÞ

Y
i2<…<ip

t̃tii2…ip→iðxiÞ; ðB2Þ

t̃tii2…ip→iðxiÞ ∝
Z Y

l¼2…p

ðdxlttil→ii2…ip
ðxlÞÞ

× PT

�
Tii2…ip

����
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp − 1Þ!p
Nðp−1Þ=2 xixi2…xip

	
;

ðB3Þ
ttþ1
i→ii2…ip

ðxiÞ ∝ PXðxiÞ
Y
l

m̃t
il→iðxiÞ

×
Y

k2<…<kp≠i2…ip

t̃tik2…kp→iðxiÞ; ðB4Þ

and we have omitted the normalization constants that
guarantee that the messages are probability distributions.
When the messages have converged to a fixed point, the
estimation of the local magnetizations can be obtained
through the computation of the real marginal probability
distribution of the variables, given by

μiðxiÞ ¼
Z �Y

jð≠iÞ
dxj

�
PðXjY; TÞ

¼ PXðxiÞ
Y
l

m̃t
il→iðxiÞ

Y
i2<…<ip

t̃tii2…ip→iðxiÞ: ðB5Þ

We note that the computational cost to produce an
iteration of BP scales as OðNpÞ. Furthermore,

Eqs. (B1)–(B4) are iterative equations for continuous
functions and therefore are extremely hard to solve when
dealing with continuous variables. The advantage of AMP
is to drastically reduce the computational complexity of
the algorithm by closing the equations on a Gaussian
ansatz for the messages. This process is justified in the
present context since the factor graph is fully connected;
therefore, each iteration step of the algorithm involves
sums of a large number of independent random
variables that give rise to Gaussian distributions.
Gaussian random variables are characterized by their
mean and covariance, which are readily obtained for
N ≫ 1, expanding the factor nodes for small ωij ¼
xixj=

ffiffiffiffi
N

p
and ωi1…ip ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp − 1Þ!p
x1…xp=Nðp−1=2Þ.

Once the BP equations are relaxed on Gaussian mes-
sages, the final step to obtain the AMP algorithm is the
so-called TAPyfication procedure [37,39], which exploits
the fact that the procedure of removing one node or one
factor produces only a weak perturbation to the real margin-
als and therefore can be described in terms of the real
marginals of the variable nodes themselves. By applying this
scheme, we obtain the AMP equations, which are described

by a set of auxiliary variables AðkÞ and BðkÞ
i and by the mean

hxii and variance σi ¼ hx2i i of the marginals of variable
nodes. The AMP iterative equations are

Bð2Þ;t
i ¼ 1

Δ2

ffiffiffiffi
N

p
X
k

Ykix̂tk −
1

Δ2

�
1

N

X
k

σtk

	
x̂t−1i ; ðB6Þ

Að2Þ;t ¼ 1

Δ2N

X
k

ðx̂tkÞ2; ðB7Þ

FIG. 6. The factor graph representation of the posterior measure of the matrix-tensor factorization model. The variable nodes
represented with white circles are the components of the signal, while black squares are factor nodes that denote interactions between the
variable nodes that appear in the interaction terms of the Boltzmann distribution in Eqs. (A6) and (A7). There are three types of factor
nodes: PX is the prior that depends on a single variable, PY is the probability of observing a matrix element Yij given the values of the
variables xi and xj, and, finally, PT is the probability of observing a tensor element Ti1;…;ip . The posterior, apart from the normalization
factor, is simply given by the product of all the factor nodes.
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BðpÞ;t
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp − 1Þ!p
ΔpNðp−1Þ=2

X
k2…kp

Tik2…kpðx̂tk2…x̂tkpÞ

−
p − 1

Δp

��
1

N

X
k

σtk

	�
1

N

X
k

x̂tkx̂
t−1
k

�
p−2
�
x̂t−1i ;

ðB8Þ

AðpÞ;t ¼ 1

Δp

�
1

N

X
k

ðx̂tkÞ2
�
p−1

; ðB9Þ

x̂tþ1
i ¼ fðAð2Þ þ AðpÞ; Bð2Þ

i þ BðpÞ
i Þ; ðB10Þ

σtþ1
i ¼ ∂

∂BfðA; BÞ
����
A¼Að2ÞþAðpÞ; B¼Bð2Þ

i þBðpÞ
i

; ðB11Þ

fðA;BÞ≡
Z

dx
1

ZðA;BÞ xPXðxÞeBx−1
2
Ax2 ¼ B

1þ A
:

ðB12Þ

It can be shown that these equations can be obtained as
saddle-point equations from the so-called Bethe free entropy
defined as ΦBethe ¼ logZBetheðY; TÞ=N, where ZBethe is the
Bethe approximation to the partition function, which is
defined as the normalization of the posterior measure. The
expression of the Bethe free entropy per variable can be
computed in a standard way (see Ref. [54]), and it is given by

ΦBethe ¼
1

N

�X
i

logZi þ
X
i≤j

logZij þ
X

i1≤…≤ip

logZi1…ip

−
X
iðijÞ

logZi;ij −
X

iðii2…ipÞ
logZiðii2…ipÞ

	
; ðB13Þ

where

Zi ¼
Z

dxiPXðxiÞ
Y
j

m̃ij→iðxiÞ
Y

ði2…ipÞ
t̃ii2…ip→iðxiÞ;

Zij ¼
Z Y

jð≠iÞ
½dxjmj→ijðxjÞ�

Y
i<j

e−
1

2Δ2
ðYij−

xixjffiffi
N

p Þ2 ;

Zi1…ip ¼
Z Yp

l¼1

½dxil til→i1…ipðxilÞ�

×
Y

i1<…<ip

e−
1

2Δp
ðTi1…ip−

ffiffiffiffiffiffiffi
ðp−1Þ!

p
Nðp−1Þ=2xi1…xip Þ

2

;

ZiðijÞ ¼
Z

dximi→ijðxÞm̃ij→iðxiÞ;

Ziðii2…ipÞ ¼
Z

dxiti→ii2…ipðxÞt̃ii2…ip→iðxiÞ

are a set of normalization factors. Using the Gaussian
approximation for the messages and employing the same
TAPyification procedure used to get the AMP equations, we
obtain the Bethe free entropy density as

ΦBethe ¼
1

N

X
i

logZðAðpÞ þ Að2Þ; BðpÞ
i þ Bð2Þ

i Þ

þ p − 1

p
1

N

X
i

�
−BðpÞ

i x̂i þ AðpÞ
i

x̂2i þ σi
2

�

þ p − 1

2pΔp

�P
ix̂

2
i

N

	
p−1�P

iσi
N

	

þ 1

2N

X
i

�
−Bð2Þ

i x̂i þ Að2Þ
i

x̂2i þ σi
2

�

þ 1

4Δ2

�P
ix̂

2
i

N

	�P
iσi
N

	
; ðB14Þ

where we use the variables defined in Eqs. (B6)–(B9) for the
sake of compactness and ZðA; BÞ is defined as

ZðA; BÞ ¼
Z

dxPXðxÞeBx−Ax2
2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

Aþ 1
p e

B2
2ðAþ1Þ: ðB15Þ

2. Averaged free entropy and its proof

Equation (B14) represents the Bethe free entropy for a
single realization of the factor nodes in the large size limit.
Here, we wish to discuss the actual exact value of this free
entropy, that is,

fNðY; TÞ ¼
logZðY; TÞ

N
;

where the partition function ZðY; TÞ is defined as the
normalization of the posterior probability distribution,
Eq. (2). The free entropy is a random variable since it
depends a priori on the planted signal and the noise in
the tensor and matrices. However, one expects that, since
free entropy is an intensive quantity, we expect from
the statistical physics intuition that it should be self-
averaging and concentrate around its mean value in the
large-N limit [44]. In fact, this case is easily proven. First,
since the spherical model has a rotational symmetry, one
may assume the planted assignment could be any vector
on the hypersphere, and we might as well suppose it is
the uniform one x�i ¼ 1 ∀ i: The true source of fluc-
tuation comes from the noises Y and T. These values can
be controlled by noticing that the free entropy is a
Lipschitz function of the Gaussian random variables Y
and T. Indeed,

∂Yij
fNðY; TÞ ¼

1

Δ2N
ffiffiffiffi
N

p hxixji;
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so the free energy fN is a Lipschitz function with respect
to Y, with the constant

L ¼ 1

Δ2N
ffiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i<j

hxixji2
s

≤
1

Δ2N
ffiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

X
i;j

hxixji2
s

¼ 1

Δ2N
ffiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

X
i;j

hxix̃ixjx̃ji
s

;

where x̃ represents a copy (or replica) of the system. In
this case,

L ≤
1

Δ2N
ffiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2


�P
ixix̃i
N

	
2
�s

¼
ffiffiffiffiffiffiffiffiffi
hq2i

p
Δ2

ffiffiffiffi
N

p ;

where q is the overlap between the two replicas x and x̃,
which is bounded by 1 on the sphere; thus, L ≤
ð1=Δ2

ffiffiffiffi
N

p Þ. Therefore, by Gaussian concentration of
Lipschitz functions (the Tsirelson-Ibragimov-Sudakov
inequality [55]), we have, for some constant K,

Pr ½jfn − EYfnj ≥ t� ≤ 2e−Nt2=K; ðB16Þ

and, in particular, any fluctuation larger than Oð1= ffiffiffiffi
N

p Þ is
(exponentially) rare. A similar computation shows that
fN is also concentrated with respect to the tensor T. This
result shows that, in the large size limit, we can consider
the averaged free entropy:

FN ≡ 1

N
E½logZN �:

With our (nonrigorous) statistical physics tools, this
result can be obtained by averaging Eq. (B14) over the
disorder (see, for instance, Ref. [37]), and this process
yields an expression for the free energy called the replica
symmetric (RS) formula:

ΦRS ¼ lim
N→∞

EY;T
logZðY; TÞ

N
: ðB17Þ

We now state precisely the form of ΦRS and prove the
validity of Eq. (B17). The RS free entropy for any prior
distribution PX reads as

ΦRS ≡maxmΦ̃RSðmÞ;

Φ̃RSðmÞ ¼ EW;x�

"
log

"
Z

 
m
Δ2

þmp−1

Δp
;

�
m
Δ2

þmp−1

Δp

	
x�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
Δ2

þmp−1

Δp

s
W

!##
−

1

4Δ2

m2 −
p − 1

2pΔp
mp;

ðB18Þ

where W is a Gaussian random variable of zero mean and
unit variance and x� is a random variable taken from the
prior PX. We remind the reader that the function ZðA;BÞ is
defined via Eq. (B15).
For the Gaussian prior PX, which is the one of interest

here, we obtain

Φ̃RSðmÞ ¼ −
1

2
log

�
m
Δ2

þmp−1

Δp
þ 1

	
þ 1

2

�
m
Δ2

þmp−1

Δp

	

−
1

4Δ2

m2 −
p − 1

2pΔp
mp: ðB19Þ

The expression given in the main text is slightly different
but can be obtained as follows. First, notice that the
extremization condition for Φ̃RSðmÞ reads

m ¼ 1 −
1

1þ m
Δ2

þ mp−1

Δp

; ðB20Þ

and by plugging this expression into Eq. (B19), we recover
the more compact expression ΦRSðmÞ shown in the
main text:

ΦRSðmÞ ¼ 1

2
log ð1 −mÞ þm

2
þ m2

4Δ2

þ mp

2pΔp
: ðB21Þ

The two expressions ΦRSðmÞ and Φ̃RSðmÞ are thus equal
for each value of m that satisfies Eq. (B20). The parameter
m can be interpreted as the average correlation between the
true and the estimated signal,

m ¼ 1

N

XN
i¼1

x�i x̂i: ðB22Þ

The average minimal mean squared error (MMSE) can be
obtained from the maximizer m of the average Bethe free
entropy as

MMSE≡ 1

N

XN
i¼1

ðx�i − x̂iÞ2 ¼ 1 −m�; where

m� ¼ argmax Φ̃RSðmÞ; ðB23Þ

where the overbar stands for the average over the signal x�
and the noise of the two Gaussian channels.
The validity of Eq. (B18) can be proven rigorously for

every prior having a bounded second moment. The proof
we present is a straightforward generalization of the one
presented in Ref. [10] for the pure tensor case and in
Ref. [38] for the matrix case, and it is based on two main
ingredients. The first one is the Guerra interpolation
method applied on the Nishimori line [38,56,57], in which
we construct an interpolating Hamiltonian that depends on
a parameter t ∈ ½0; 1� that is used to move from the original
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Hamiltonian of Eq. (A6) to the one corresponding to a
scalar denoising problem whose free entropy is given by
the first term in Eq. (B18). The second ingredient is the
Aizenman-Sims-Starr method [58], which is the math-
ematical version of the cavity method (note that other
techniques could also be employed to obtain the same
results; see Refs. [9,59–61]). The theorem wewant to prove
is as follows:
Theorem 1 (Replica-symmetric formula for the free

energy). Let PX be a probability distribution over R, with a
finite second moment ΣX. Then, for allΔ2 > 0 andΔp > 0,

FN ≡ 1

N
E½logZN � ⟶½N→∞�

sup
m≥0

Φ̃RSðmÞ≡ΦRSðΔ2;ΔpÞ:

ðB24Þ

For almost every Δ2 > 0 and Δp > 0, Φ̃RS admits a unique
maximizer m over Rþ ×Rþ and

T-MMSEN ⟶
½N→∞�

Σp
X − ðm�Þp;

M-MMSEN ⟶
½N→∞�

Σ2
X − ðm�Þ2:

Here, we have defined the tensor-MMSE T-MMSEN by
the error in reconstructing the tensor:

T-MMSENðΔ2;ΔpÞ

¼ inf
θ̂

�
p!
Np

X
i1<…<ip

ðx0i1…x0ip − θ̂ðYÞi1…ip
Þ2


;

and the matrix-MMSE M-MMSEN by the error in recon-
structing the matrix:

M-MMSENðΔ2;ΔpÞ ¼ inf
θ̂

�
2

N2

X
i<j

ðx0i x0j − θ̂ðYÞi;jÞ2


;

where in both cases the infimum is taken over all meas-
urable functions θ̂ of the observations Y.
The result concerning the MMSE is a simple application

of the I-MMSE theorem [62], which relates the derivative
of the free energy with respect to the noise variances and
the MMSE. The details of the arguments are the same as in
the matrix (p ¼ 2) case (Ref. [38], Corollary 17) and the
tensor one (Ref. [10], Theorem 2). Indeed, as discussed
in Refs. [10,38], these M-MMSE and T-MMSE results
imply the vector MMSE result of Eq. (B23) when p is odd
and thus, in particular, for the p ¼ 3 case discussed in the
main text.

a. Sketch of proof

In this section, we give a detailed sketch of the proof
of Theorem 1. Following the techniques used in many

recent works [8–10,38,56,57,59,60], we make a few
technical remarks:

(i) We consider only priors with bounded support,
suppðPXÞ ¼ S ⊂ ½−K;K�. This method allows us
to switch integrals and derivatives without problems.
This condition can then be relaxed to unbounded
distributions with a bounded second moment using
the same techniques as the ones that we are going
to present, and the proof is therefore valid in this
case. This case is detailed, for instance, in Ref. [38],
Sec. VI.2.2.

(ii) Another key ingredient is the introduction of a small
perturbation in the model that takes the form of a
small amount of side information. These kinds of
techniques are frequently used in statistical physics,
where a small “magnetic field” forces the Gibbs
measure to be in a single pure state [63]. It has
also been used in the context of coding theory [64]
for the same reason. In the context of Bayesian
inference, we follow the generic scheme proposed
by Montanari in Ref. [65] (see also Ref. [66]) and
add a small additional source of information that
allows the system to be in a single pure state so
that the overlap is concentrated on a single value.
This source depends on Bernoulli random variables

Li ∼i:i:d: BernðϵÞ, i ∈ ½N�; if Li ¼ 1, the channel, call it
A, transmits the correct information. We can
then consider the posterior of this new problem,
PðXjA; Y; TÞ and focus on the associated free-
energy density FN;ϵ defined as the expected value
of the average of the logarithm of the normalization
constant divided by the number of spins. Then, we
can immediately prove that for all N ≥ 1 and ϵ; ϵ0 ∈
½0; 1�, it follows that jFN;ϵ − FN;ϵ0 j ≤ ½ðK2p=ΔpÞþ
ðK4=Δ2Þ�jϵ − ϵ0j. This result allows us (see, for
instance, Ref. [10]) to obtain the concentration
of the posterior distribution around the replica
parameter (q ¼ ð1=NÞhxð1Þ · xð2Þi),

E


�
xð1Þ · xð2Þ

N
− q

	
2
�

⟶
N→∞

0; ðB25Þ

E


�
x� · x
N

− q

	
2
�
⟶
N→∞

0; ðB26Þ

where x; xð1Þ; xð2Þ are sampled from the posterior
distribution and the averages h·i and E½·� are,
respectively, the average over the posterior measure
and the remaining random variables.

(iii) Finally, a fundamental property of inference
problems—which is a direct consequence of the
Bayes theorem and of the fact that we are in the
Bayes-optimal setting where we know the statistical
properties of the signal, namely, the prior, and the
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statistical properties of the channels, namely, Δ2

and Δp—is the so-called Nishimori symmetry
[6,67]: Let (X; Y) be a couple of random variables
on a polished space. Let k ≥ 1 and let Xð1Þ;…; XðkÞ
be k i.i.d. samples (given Y) from the distribution
PðX ¼ ·jYÞ, independently of every other random
variable. Let us denote h·i as the expectation with
respect to PðX ¼ ·jYÞ and E the expectation with
respect to (X; Y). Then, for all continuous bounded
functions f,

EhfðY;Xð1Þ;…;XðkÞÞi¼EhfðY;Xð1Þ;…;Xðk−1Þ;XÞi:

While the consequences of this identity are impor-
tant, the proof is rather simple: It is equivalent
to sampling the couple (X; Y) according to its joint
distribution or to sample Y first according to its

marginal distribution and then to sample X condi-
tionally to Y from its conditional distribution
PðX¼ ·jYÞ. Thus, the (kþ1)-tuple ðY;Xð1Þ;…;XðkÞÞ
is equal to ðY; Xð1Þ;…; Xðk−1Þ; XÞ.

The proof of Theorem 1 is obtained by using the Guerra
interpolation technique to prove a lower bound for the free
entropy and then applying the Aizenman-Sims-Star scheme
to get a matching upper bound.

b. Lower bound

Guerra interpolation. We now move to the core of the
proof. The first part combines the Guerra interpolation
method [68] developed for matrices in Ref. [57] and tensors
in Ref. [10].
Consider the interpolating Hamiltonian depending

on t ∈ ½0; 1�,

HN;t ¼ −
X
i<j

� ffiffi
t

p

Δ2

ffiffiffiffi
N

p Yijxixj þ
t

2Δ2N
ðxixjÞ2

�
þ −

X
i1<…<ip

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðp − 1Þ!p
ΔpN

p−1
2

Ti1…ipxi1…xip þ
tðp − 1Þ!
2ΔpNp−1 ðxi1…xipÞ2

�
þ

−
X
j

� ffiffiffiffiffiffiffiffiffiffi
1 − t

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mp−1

Δp
þ m
Δ2

s
Wjxj þ ð1 − tÞ

�
mp−1

Δp
þ m
Δ2

	
x�jxj þ

1 − t
2

�
mp−1

Δp
þ m
Δ2

	
x2j

�
; ðB27Þ

where we have, for t ¼ 1, the regular Hamiltonian and, for
t ¼ 0, the first termofEq. (B18),whereWj are i.i.d. canonical
Gaussian variables. More importantly, for all t ∈ ½0; 1�, we
can show that the Hamiltonian above can be seen as the one
emerging for an appropriate inference problem, so the
Nishimori property is kept valid for generic t ∈ ½0; 1� [57].
Given the interpolating Hamiltonian, we can write the

corresponding Gibbs measure

PðxjW;Y; TÞ ¼ 1

ZN;t
PXðxÞeHN;tðxÞ ðB28Þ

and the interpolating free entropy

ψNðtÞ ≐
1

N
E½logZN;t�; ðB29Þ

whose boundaries are ψNð1Þ ¼ ð1=NÞFN (our target) and
ψNð0Þ¼ð1=NÞΦ̃RSþð1=4Δ2Þm2þðp−1=2pΔpÞmp. We
then use the fundamental theorem of calculus to write

FN ¼ ψNð1Þ ¼ ψNð0Þ þ
1

N
E
Z

1

0

�
−
∂ logZN;t

∂t
	
dt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≐R

:

ðB30Þ

We work with the second term and use Stein’s lemma,
which, given a well-behaving function g, provides the
useful relation for a canonical Gaussian variable Z:
EZ½ZgðZÞ� ¼ EZ½g0ðZÞ�. This case yields

R ¼ −E
Z

1

0

�
1

ZN;t

Z
dxN

∂HN;tðxÞ
∂t PXðxÞeHN;tðxÞ

�
dt ¼ −E

Z
1

0


∂HN;tðxÞ
∂t

�
dt

¼ −E
Z

1

0


X
i<j

1

Δ2N
ðx�i xix�jxjÞ þ

X
i1<…<ip

ðp − 1Þ!
Δ2Np−1 ðx�i1xi1…x�ipxipÞ −

X
i

�
m
2Δ2

þmp−1

2Δp

	
x�i xi

�
dt

¼ E
Z

1

0

�
1

4Δ2


�
x · x�

N

	
2

− 2m

�
x · x�

N

	�
þ 1

2pΔp


�
x · x�

N

	
p
− pmp−1

�
x · x�

N

	��
dt;

where we have used the Nishimori property to replace terms such as hxi2 by hxx�i. At this point, we can write
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R ¼ E
Z

1

0

�
1

4Δ2


�
x · x�

N

	
2

− 2m

�
x · x�

N

	��
dtþ E

Z
1

0

�
1

2pΔp


�
x · x�

N

	
p
− pmp−1

�
x · x�

N

	��
dt

¼ −
m2

4Δ2

þ 1

4Δ2

E
Z

1

0

1

4Δ2


�
x · x�

N
−m

	
2
�
dtþ 1

2pΔp
E
Z

1

0


�
x · x�

N

	
p
− pmp−1

�
x · x�

N

	�
dt: ðB31Þ

The first integral is clearly positive. However, the second
one is more difficult to estimate. We may, however,
use a simple convexity argument on the function
fðxÞ ¼ xk. Indeed, observe that ∀ a; b ≥ 0 and p ≥ 1:
ap − pbp−1a ≥ ð1 − pÞbp. We would like to use this
property, but there is the subtlety that we need x · x� to
be non-negative. To bypass this problem, we can add again
a small perturbation that forces x · x� to concentrate around
a non-negative value, without affecting the “interpolating
free entropy” ψNðtÞ in theN → ∞ limit. This case is, again,
the argument used in Ref. [10] and originally in Ref. [56].
In this way, we can write

R ≥ −
m2

4Δ2

þ E
Z

1

0

�
1

4Δ2


�
x · x�

N

	
2

− 2m

�
x · x�

N

	��
dt

þ ð1 − pÞmp

4Δ2

≥ −
m2

4Δ2

−
ðp − 1Þmp

4Δ2

: ðB32Þ

This concludes the proof and yields the lower bound

FN ≥ ψNð0Þ −
1

4Δ2

m2 −
p − 1

2pΔp
mp ¼ 1

N
Φ̃RSðmÞ;

ðB33Þ

so for all m ≥ 0,

lim inf
N→∞

FN ¼ lim inf
N→∞

ψNð1Þ

¼ lim inf
N→∞

�
ψNð0Þ þ

Z
1

0

ψ 0
NðtÞdt

�
≥ Φ̃RSðmÞ:

c. Upper bound: Aizenman-Sims-Starr scheme

The matching upper bound is obtained using the
Aizenman-Sims-Starr scheme [58]. This scheme is a particu-
larly effective tool that has already been used for these
problems; see, e.g., Refs. [10,38,66]. The method goes as
follows. Consider the original system with N variables,HN ,
and add a new variable x0 so that we get aHamiltonianHNþ1.
Define theGibbsmeasures of the two systems, the firstwithN
variables and the second with N þ 1 variables, and consider
the two relative free entropies. Call AN ¼ E½logZNþ1� −
E½logZN � their difference. First, we notice that we have
lim supNFN ≤ lim supNAN because

FN ¼ E
1

N
logZN ¼ 1

N
E log

�
ZN

ZN−1

ZN−1

ZN−2
…

Z1

Z0

	

¼ 1

N

X
i

Ai ≤ sup
i
Ai:

Moreover, we can separate the contribution of the additional
variable in the Hamiltonian HNþ1 so that HNþ1 ¼
H̃N þ x0zðxÞ þ x20sðxÞ, with x ¼ ðx1;…; xNÞ, and

zðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2ðN þ 1Þp XN

i¼1

Z0ixi þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp − 1Þ!pffiffiffiffiffiffi

Δp
p ðN þ 1Þðp−1Þ=2

X
1≤i1<…<ip−1≤N

Z0i1…ip−1xi1…xip−1

þ 1

Δ2ðN þ 1Þ
XN
i¼1

x�0x
�
i xi þ

ðp − 1Þ!
ΔpðN þ 1Þp−1

X
1≤i1<…<ip−1≤N

x�0x
�
i1
xi1…x�ip−1xip−1 ;

sðxÞ ¼ −
1

2Δ2ðN þ 1Þ
XN
i¼1

x2i −
ðp − 1Þ!

2ΔpðN þ 1Þp−1
X

1≤i1<…<ip−1≤N
ðxi1…xip−1Þ2;

and HNþ1 is the same expression as Eq. (A6), where the N in the denominators are replaced by N þ 1. We also rewrite
HNðxÞ as a perturbation of H̃N : HNðxÞ ¼ H̃NðxÞ þ yðxÞ þOð1Þ, with

yðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
Δ2N

p
X
i<j

Vijxixj þ
ffiffiffiffiffiffiffiffiffiffiffi
p − 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp − 1Þ!pffiffiffiffiffiffi
Δp

p
Np=2

X
i1<…<ip

Vi1…ipxi1…xip þ
1

N2

X
i<j

�
x�i xix

�
jxj −

1

2
ðxixjÞ2

�

þ ðp − 1Þ!p − 1

Np

X
i1<…<ip

�
x�i1xi1…x�ipxip −

1

2
ðxi1…xipÞ2

�
;
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where the Zs and the Vs are standard Gaussian random
variables.
Finally, we observe that the partition functions ZN can be

interpreted as ensemble averages with respect to H̃N . Thus,
AN ¼ E log hR PXðx0Þex0zðxÞþx2

0
sðxÞdx0iH̃N

− E log heyðxÞiH̃N
.

Now, using the Nishimori property and the concentration of
the overlap around a non-negative value—which we denote
mðY; TÞ since it depends explicitly on the disorder—it
yields (see Ref. [38], Sec. IV.3 for details) Eq. (B18) in the
thermodynamic limit, withmðY; TÞ instead ofm. From this
result, we can now obtain the upper bound that concludes
the proof:

lim sup
N

FN ≤ lim sup
N

AN ≤ lim sup
N

EY;TΦ̃RS½mðY; TÞ�

≤ lim sup
N

sup
m

ΦRSðmÞ ≤ Φ̃RS: ðB34Þ

3. State evolution of AMP and its analysis

The dynamical evolution of the AMP algorithm in the
large-N limit is described by the so-called SE equations.
The derivation of these equations can be straightforwardly
done using the same techniques as developed in Ref. [37].
They can be written in terms of two dynamical order
parameters, namely, mt ¼Pi x̂

t
ix

�
i =N, encoding for the

alignment of the current estimation x̂ti of the components
of the signal with the signal itself at time t and qt ¼P

i x̂
t
ix̂

t
i=N. Keeping the spherical constraint in mind, we

obtain the following SE equations:

mtþ1

1 − qtþ1
¼ mt

Δ2

þ ðmtÞp−1
Δp

; ðB35Þ

qtþ1

ð1−qtþ1Þ2¼
�
mt

Δ2

þðmtÞp−1
Δp

�
2

þ
�
qt

Δ2

þðqtÞp−1
Δp

�
: ðB36Þ

Note that Eq. (B35) at fixed values of q describes the
evolution of the parameter m, which is why we use it in the
main text to derive the Langevin threshold equation (15).
Finally, using the Nishimori symmetry, it can be shown that
mt ¼ qt at all times (see, e.g., Ref. [6]), and therefore, the
evolution of the algorithm is characterized by a single order
parameter mt whose dynamical evolution is given by

mtþ1 ¼ 1 −
1

1þ mt

Δ2
þ ðmtÞp−1

Δp

: ðB37Þ

Note that AMP satisfies the Nishimori property at all times,
while this condition is violated by Langevin dynamics. In
that case, the Nishimori symmetry is recovered only when
equilibrium is reached, and therefore it is violated when the
Langevin algorithm gets trapped in the glass phase (see
Appendix E). If we initialize the configuration of the
estimator x̂ at random, the initial value of m will be equal

to zero on average. However, finite-size fluctuations
produce, by chance, a small bias towards the signal, and
therefore we consider the initialization to bemt¼0 ¼ ϵ, with
ϵ an arbitrarily small positive number. We call mAMP the
fixed point of Eq. (B37), which is reached from this
infinitesimal initialization. The MSE reached by AMP
after convergence is then given by MSEAMP ¼ 1 −mAMP.
We underline that Eq. (B37) can be proven rigorously

following Refs. [18,40]. Finally, we note that the fixed
point of the SE satisfies the very same Eq. (B20) that gives
the replica free entropy. In the rest of this section, we
study the fixed points of Eq. (B37). This method will allow
us to determine the phase diagram of the spiked matrix-
tensor model.
We start by observing that m ¼ 0 is a fixed point of

Eq. (B37). However, in order to understand whether it
is a possible attractor of the AMP dynamics, we need to
understand its local stability, which can be obtained
perturbatively by expanding Eq. (B37) around m ¼ 0,

mtþ1 ¼ mt

Δ2

þ
�
mt

Δ2

	
2

−
ðmtÞp−1
Δp

þOððmtÞ3Þ: ðB38Þ

It is clear that the noninformative fixed point m ¼ 0 is
stable as long as Δ2 > 1. We call Δ2 ¼ 1 the stability
threshold.
When p ¼ 3, the SE equations are particularly simple,

and the fixed points are written explicitly as

m0 ¼ 0; m� ¼ 1

2

"
1 −

Δ3

Δ2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ Δ3

Δ2

	
2

− 4Δ3

s #
:

ðB39Þ

In the regime where Δ2 > 1, m0 and mþ are stable, while
m− is unstable. When Δ2 becomes smaller than 1, mþ
becomes the only non-negative stable solution, and there-
foreΔ2 ¼ 1 is also known as the algorithmic spinodal since
it corresponds to the point where the AMP algorithm
converges to the informative fixed point. The informative
solution mþ exists as long as Δ2 ≤ Δdyn

2 , where we have
defined the dynamical spinodal by

Δdyn
2 ¼ Δ3

2
ffiffiffiffiffiffi
Δ3

p
− 1

: ðB40Þ

For a generic p, we cannot determine the values of the
informative fixed points explicitly, but we can easily study
Eq. (B37) numerically to get the full phase diagram.
Furthermore, we can obtain the spinodal transition lines as

follows. The key observation is that the two spinodals
are critical points of the equation Δpðm;Δ2Þ, where Δ2 is
fixed, or analogously Δ2ðm;ΔpÞ, where Δp is fixed (to have
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a pictorial representation of the idea, see Fig. 10). We find
x ¼ m=Δ2 þmp−1=Δp, and fSEðxÞ≡ 1 − ð1=1þ xÞ; then,

Δp ≡ Δpðx;Δ2Þ ¼
ðfSEðxÞÞp−1
x − fSEðxÞ

Δ2

: ðB41Þ

The stationary points are implicitly defined by

0¼ d logΔp

dm
¼ ∂ logΔp

∂x ð1þ xÞ2

∝ ðp− 1Þf
0
SEðxÞ

fSEðxÞ
−
1− f0SEðxÞ

Δ2

x− f0SEðxÞ
Δ2

¼
2−p
Δ2

þ ð1þ xÞðp− x− 2Þ
xð1þ xÞ½xþ 1− 1

Δp
� ;

giving

x�ðΔ2Þ ¼
1

2

"
p − 3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − 1Þ2 − 4

Δ2

ðp − 2Þ
s #

: ðB42Þ

Finally, Δpðx�ðΔ2Þ;Δ2Þ describes the two spinodals.
We can also derive the tricritical point, when the two
spinodals meet, which is given by the zero discriminant
condition on (B42),

ðΔtri
p ; 1=Δtri

2 Þ ¼
�
4ðp − 2Þðp−3p−1Þp−1

ðp − 3Þ2 ;
ðp − 1Þ2
4ðp − 2Þ

	
: ðB43Þ

4. Phase diagrams of spiked matrix-tensor model

In this section, we present the phase diagrams for the
spiked matrix-tensor model as a function of the two noise

FIG. 7. Left panel: Phase diagram of the spiked matrix-tensor model for p ¼ 3. The phase diagram identifies four regions: easy
(green), impossible (red), and hard (orange). The lines correspond to different phase transitions, namely, the stability threshold (dashed
black), the information-theoretic threshold (solid red), the algorithmic threshold (solid cyan), and the dynamical threshold (dotted
orange). The vertical cuts represent the section along which the magnetization is plotted in Fig. 9. Right panel: Phase diagram of the
spiked matrix-tensor model for p ¼ 4. The main difference with respect to the case p ¼ 3 is that the algorithmic spinodal (solid cyan) is
strictly above the stability threshold (dashed black). The hybrid-hard phase appears between these two lines (combined green and orange
color). The vertical cuts represent the section along which the magnetization is plotted in Fig. 10.

FIG. 8. Left panel: Phase diagram of the spiked matrix-tensor model for p ¼ 5. Right panel: Phase diagram of the spiked matrix-tensor
model for p ¼ 10. In both cases, we observe qualitatively the same scenario found in the right panel of Fig. 7.
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(a) (b)

(c) (d)

FIG. 9. Fixed points of Eq. (B37) as a function of Δ2 for p ¼ 3 and several fixed values of Δp. The values of Δp correspond
to the vertical cuts in the left panel of Fig. 7. Solid lines are stable fixed points; dashed lines are unstable fixed points. The
blue line represents informative fixed points with positive overlap with the signal, while the orange line represents uninformative fixed
points with no overlap with the signal. Starting from high Δ2, an informative fixed point appears at the dynamical threshold
(vertical dashed line) but is energetically disfavored until it reaches the information-theoretic threshold (vertical dotted line);
finally, it becomes the only stable solution crossing the algorithmic threshold (vertical dotted-dashed line). When the transi-
tion is continuous, the three vertical threshold lines merge, and we have a single second-order phase transition, which occurs here
at Δp ≥ 1.

(a) (b) (c)

(d) (e) (f)

FIG. 10. Fixed points, Eq. (B37), as a function of Δ2 for p ¼ 4 and several fixed values of Δp. The values of Δp
correspond to the vertical cuts of the right panel of Fig. 7. The situation is qualitatively similar to Fig. 9, the difference
being only the presence of the hybrid-hard phase. We can observe that when the transition is discontinuous, from (a) to (e), for
1=Δ2 > 1.0, the uninformative solution becomes unstable and continuously goes to a stable-informative solution, which is not the
optimal one.
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levels Δ2 and Δp and for several values of p. These phase
diagrams are plotted in Figs. 7 and 8.
Generically, we can have four regions:
(i) Easy phase (green), where the MSE obtained

through AMP coincides with the MMSE, which is
better than random sampling of the prior.

(ii) Impossible phase (red), where the MMSE and MSE
of AMP coincide and are equal to 1 (meaning that
m� ¼ mAMP ¼ 0).

(iii) Hard phase (orange), where theMMSE is smaller than
the MSE obtained from AMP and m� > mAMP ≥ 0.

(iv) Hybrid-hard phase [69] (mix of green and orange),
which is part of the hard phase where the AMP
performance is strictly better than random sampling
from the prior but the MSE obtained this way still
does not match the MMSE, i.e., m� > mAMP > 0.
The hybrid-hard phase can be found for p ≥ 4.

All of these phases are separated by the following
transition lines:

(i) The stability threshold (dashed black line) at Δ2 ¼ 1
for all p. This threshold corresponds to the point
where the uninformative fixed point m ¼ 0 loses its
local stability.

(ii) The information-theoretic threshold (solid red line).
Here, m� > 0, and the MMSE jumps to a value
strictly smaller than 1.

(iii) The algorithmic threshold (solid cyan line). This
threshold is where the fixed point of AMP jumps to
theMMSE < 1. For p ¼ 3, this line coincides with a
segment of the stability threshold, while for p ≥ 4, it
is strictly above the threshold.

(iv) The dynamic threshold (dotted orange line). Here,
the most informative fixed point (the one with the
largest mAMP) disappears.

In Figs. 9 and 10, we plot the evolution of the
magnetization m, as found through the fixed points of
the SE equation, for several fixed values of Δp and p ¼ 3

and p ¼ 4, respectively. The values of Δp are identified by
the vertical cuts in the phase diagrams of Fig. 7.

APPENDIX C: LANGEVIN ALGORITHM AND
ITS STATE EVOLUTION

The main goal of our analysis is to compare AMP with
the performance of the Langevin dynamics. The advantage
of the spiked matrix-tensor model is that, in this case, the
Langevin dynamics can be studied in the large-N limit
through integrodifferential equations for the correlation
function Cðt;t0Þ¼ limN→∞

P
ihxiðtÞxiðt0Þi=N, the response

function Rðt; t0Þ ¼ limN→∞ð1=NÞPi
dhxiðtÞi
dηiðt0Þ , and the mag-

netization C̄ðtÞ ¼ limN→∞
P

ihxiðtÞx�i i=N.
To obtain these equations, we use the techniques

developed in the context of mean-field spin-glass systems
[44,70]. We call ηiðtÞ a time-dependent noise, and we
indicate by h·i the average with respect to it. The noise is
Gaussian and characterized by hηiðtÞi ¼ 0 for all t and
i ¼ 1;…; N, and hηiðtÞηjðt0Þi ¼ 2δijδðt − t0Þ. As before,
we denote by E½…� the average with respect to the
realization of disorder, which, in this case, goes back to
the specific realization of the signal.
Before proceeding, it is useful to introduce a set of

auxiliary variables that will help in the following. For
k∈f2;pg, we define rk≡rkðtÞ¼2=ðkTkðtÞΔkÞ, fkðxÞ¼
xk=2, and mðtÞ ≐ ð1=NÞPi xiðtÞx�i , and the random var-
iable ξ̃i1…ik ≡ ð1=ΔkÞξi1…ik ∼N ð0; 1=ΔkÞ. We employ the
time dependence in Tk in the tensor-annealing protocol,
which will be used to avoid part of the Langevin hard
phase. We introduce a time-dependent Hamiltonian

HðtÞ ¼ −
1

T2ðtÞ
ffiffiffiffi
N

p
X
i<j

ξ̃ijxiðtÞxjðtÞ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp − 1Þp

!

TpðtÞN
p−1
2

X
i1<…<ip

ξ̃i1…ipxi1ðtÞ…xipðtÞ

− Nr2ðtÞf2ðmðtÞÞ − NrpðtÞfpðmðtÞÞ;

and the associated Langevin dynamics

_xiðtÞ ¼ −μðtÞxiðtÞ −
∂H
∂xi ðtÞ − ηiðtÞ ¼ −μðtÞxiðtÞ −

1

T2ðtÞ
ffiffiffiffi
N

p
X
jð≠iÞ

ξ̃ijxjðtÞ

þ r2ðtÞf02ðmðtÞÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp − 1Þ!p

TpðtÞN
p−1
2

X
ði;i1;…;ip−1Þni

ξ̃ii1…ip−1xi1ðtÞ � � � xip−1ðtÞ þ rpðtÞf0pðmðtÞÞ − ηiðtÞ; ðC1Þ

with μ a Langrange multiplier that enforces the spherical constraint
P

N
i¼1 x

2
i ðtÞ ¼ N. If TkðtÞ ¼ 1 for all k ¼ 2; p,

the stationary equilibrium distribution for the Langevin dynamics is given by the posterior measure. Using Ito’s lemma,
one finds

1

N
d
dt

X
i

x2i ðtÞ ¼
2

N

X
i

xiðtÞ_xiðtÞ þ 2:
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Since the spherical constraint imposes the left-hand side to
be zero, one obtains a condition on the right-hand side.
By plugging in the expression (C1), one gets that, in the
large-N limit,

μðtÞ ¼ 1 − 2H2ðtÞ − pHpðtÞ; ðC2Þ

where

Hk ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiðk − 1Þp

!

TkðtÞNk−1
2

X
i1<…<ik

ξ̃i1…ikxi1ðtÞ…xikðtÞ

− NrkðtÞfkðmðtÞÞ; k ¼ 2; p; ðC3Þ

are the parts of the Hamiltonian defined in Eq. (C) relative
to the matrix (k ¼ 2) and to the tensor (k ¼ p).
Note that we have not specified any initial condition for

the variables xiðt ¼ 0Þ. Therefore, since we always employ
the spherical constraint, the initial condition for the
dynamics is a point on the N-dimensional hypersphere
jxj2 ¼ N extracted with the flat measure.
In order to analyze the Langevin dynamics in the large-N

limit, we use the dynamical cavity method [44,71,72]. We
consider a system of N variables, with N ≫ 1, and add a
new one. This new variable will be considered as a small

perturbation to the original system, but at the same time, it
will be treated self-consistently.

1. Dynamical mean-field equations

In the following, we drop the time dependence for
simplicity, restoring it only when it is needed. Given the
system with N variables, i ¼ 1;…; N, we add a new one,
say, i ¼ 0, and define m̃ ¼ ð1=N þ 1ÞPN

i¼0 xix
�
i ≃

ð1=NÞPN
i¼0 xix

�
i (henceforth, we use the symbol ≃ to

denote two quantities that are equal up to terms that vanish
in the large-N limit). The Langevin equation associated
with the new variable is

_x0 ¼ −μx0 −
1

T2ðtÞ
ffiffiffiffi
N

p
X
jð≠0Þ

ξ̃0jxj þ r2f02ðm̃Þ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp − 1Þ!p

TpðtÞN
p−1
2

X
ð0;i1;…;ip−1Þn0

ξ̃0i1…ip−1xi1 � � � xip−1

þ rpf0pðm̃Þ − η0; ðC4Þ

where we use that N ≃ N þ 1 for N ≫ 1. We consider the
contribution of the new variable on the others in perturba-
tion theory. In the dynamical equations for the variables
i ¼ 1;…; N, we can isolate the variable i ¼ 0 and write

_xi ¼ −μxi −
1

T2ðtÞ
ffiffiffiffi
N

p
X
jð≠i;0Þ

ξ̃ijxj þ r2f02ðmÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp − 1Þ!p

TpðtÞN
p−1
2

X
ði;i1;…;ip−1Þni;0

ξ̃ii1…ip−1xi1 � � � xip−1 þ rpf0pðmÞ − ηi þHi; ðC5Þ

with

HiðtÞ ¼ ðr2f002ðmÞ þ rpf00pðmÞÞ 1
N
x0 −

1

T2ðtÞ
ffiffiffiffi
N

p ξ̃0ix0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp − 1Þ!p

TpðtÞN
p−1
2

X
ði;0;i1;…;ip−2Þni;0

ξ̃i0i1…ip−2x0xi1 � � � xip−2 : ðC6Þ

Consider the unperturbed variables x0i ¼ xijHi¼0. At leading order in N, we can write

xi ≃ x0i þ
Z

t

to

dt0
δxiðtÞ
δHiðt0Þ

����
Hi¼0

Hiðt0Þ: ðC7Þ

In the dynamical equation for the variable 0, we can identify a piece associated with the unperturbed variables x0i .
This term can be thought of collectively as a stochastic term ΞðtÞ,

_x0 ¼ −μx0−
1

T2ðtÞ
ffiffiffiffi
N

p
X
jð≠0Þ

ξ̃0jx0j −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp − 1Þ!p

TpðtÞN
p−1
2

X
ð0;i1;…;ip−1Þn0

ξ̃0i1…ip−1x
0
i1
� � � x0ip−1 − η0

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{≐ΞðtÞ

þ r2f02ðmÞ þ rpf0pðmÞ þ ðr2f002ðmÞ þ rpf00pðmÞÞ 1
N
x0 −

1

T2ðtÞ
ffiffiffiffi
N

p
X
jð≠0Þ

ξ̃0j

Z
t

to

dt0
δxjðtÞ
δHjðt0Þ

����
Hj¼0

Hjðt0Þþ

−
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp − 1Þ!p
TpðtÞN

p−1
2

X
ð0;i1;…;ip−1Þn0

ξ̃0i1…ip−1

Z
t

to

dt0
δxi1ðtÞ
δHi1ðt0Þ

����
Hi1

¼0

Hi1ðt0Þx0i2 � � � x0ip−1 þ permutations

�
: ðC8Þ
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Indeed, ΞðtÞ encodes the effect of a kind of bath made of the unperturbed variables i ¼ 1;…; N on the new one. We can
show that at leading order in N, ΞðtÞ is a Gaussian noise with zero mean and variance given by

EhΞðtÞΞðt0Þi ¼ 2δðt − t0Þ − E

�
1

T2ðtÞT2ðt0ÞN
X
jð≠0Þ

X
lð≠0Þ

ξ̃0jξ̃0lx0jðtÞx0l ðt0Þ
�
þ

− E

� ðp − 1Þ!
TpðtÞTpðt0ÞNp−1

X
ð0;i1;…;ip−1Þn0

X
ð0;j1;…;jp−1Þn0

ξ̃0i1…ip−1 ξ̃0j1…jp−1x
0
i1
� � � x0ip−1x0j1 � � � x0jp−1

�
;

and the second term can be simplified as

E

� ðp − 1Þ!
TpðtÞTpðt0ÞNp−1

X
ð0;i1;…;ip−1Þn0

X
ð0;j1;…;jp−1Þn0

ξ̃0i1…ip−1 ξ̃0j1…jp−1x
0
i1
� � � x0ip−1x0j1 � � � x0jp−1

�
¼

≃
ðp − 1Þ!
Np−1

1

TpðtÞTpðt0ÞΔp

X
ð0;i1;…;ip−1Þn0

hx0i1ðtÞx0i1ðt0Þ � � � x0ip−1ðtÞx0ip−1ðt0Þi ¼
1

TpðtÞTpðt0ÞΔp
Cp−1ðt; t0Þ;

where we used
P

ði1;…;ikÞ ¼ ð1=k!ÞP1≤i1;…;ik≤N , neglected terms subleading in N, and used the definition of the dynamical
correlation function

Cðt; t0Þ ¼ 1

N

XN
i¼1

hxiðtÞxiðt0Þi:

Therefore, we have

EhΞðtÞi ¼ 0; ðC9Þ

EhΞðtÞΞðt0Þi ¼ 2δðt − t0Þ þ 1

T2ðtÞT2ðt0Þ
Cðt; t0Þ þ 1

TpðtÞTpðt0ÞΔp
Cp−1ðt; t0Þ: ðC10Þ

Now, we can focus of the deterministic term coming from the first-order perturbation in Eq. (C8). Consider just the integral
for the p-body term; the other will be given by setting p ¼ 2,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp − 1Þ!p

TpðtÞN
p−1
2

X
ð0;i1;…;ip−1Þn0

ξ̃0i1…ip−1

Z
t

to

dt0
δxi1ðtÞ
δHi1ðt0Þ

����
Hi1

¼0

Hi1ðt0Þx0i2 � � � x0ip−1 þ permutations ¼

≃
ðp − 1Þ!
TpðtÞNp−1

X
ð0;i1;…;ip−1Þn0

ξ̃20i1…ip−1

Z
t

to

dt0
1

Tpðt0Þ
δxi1ðtÞ
δHi1ðt0Þ

����
Hi1

¼0

x0i1ðtÞx0i1ðt0Þ � � � x0ip−2ðtÞx0ip−2ðt0Þx0ðt0Þ

þ permutations ≃ −
p − 1

TpðtÞΔp

Z
t

to

dt0
1

Tpðt0Þ
Rðt; t0ÞCp−2ðt; t0Þx0ðt0Þ; ðC11Þ

where we have used the definition of the response function

Rðt; t0Þ ¼ 1

N

XN
i¼1



δxiðtÞ
δHiðt0Þ

�
:

Plugging Eq. (C11) into Eq. (C8), we obtain an effective dynamical equation for the new variable in terms of the correlation
and response function of the system with N variables,

_x0ðtÞ ¼ −μðtÞx0ðtÞ þ ΞðtÞ þ rpf0pðC̄ðtÞÞ þ r2f20ðC̄ðtÞÞ þ
p − 1

TpðtÞΔp

Z
t

to

dt00
1

Tpðt00Þ
Rðt; t00ÞCp−2ðt; t00Þx0ðt00Þ

þ 1

T2ðtÞΔ2

Z
t

to

dt00
1

Tpðt00Þ
Rðt; t00Þx0ðt00Þ: ðC12Þ

In order to solve Eq. (C12), we need to give the recipe to compute the correlation and response function.
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2. Integrodifferential equations

In order to obtain the final equations for dynamical order parameters, we assume that the new variable x0 is a typical one;
namely, it has the same statistical nature as all of the others. Therefore, we can assume that

Cðt; t0Þ ≐ Ehx0ðtÞx0ðt0Þi;

Rðt; t0Þ ≐ E



δx0ðtÞ
δΞðt0Þ

�
;

C̄ðtÞ ≐ Ehx0ðtÞx�0i: ðC13Þ

Equations (C13) give us a way to obtain the equation for all the correlation functions. Indeed, we can consider Eq. (C12),
multiply it by x0ðt0Þ, differentiate it with respect to an external field h0ðt0Þ, or multiply it by x�0, and we can average the
results over the disorder and thermal noise. Using the following identity,

EhΞðtÞx0ðt0Þi ¼
Z

DΞðtÞΞðtÞx0ðt0Þe−
R

dt̄dt̃Ξðt̄ÞK−1ðt̄;t̃ÞΞðt̃Þ

¼ −
Z

dt00
Z

DΞðtÞx0ðt0Þ
δ

δΞðt00Þ e
−
R

dt̄dt̃Ξðt̄ÞK−1ðt̄;t̃ÞΞðt̃ÞKðt; t00Þ

¼
Z

dt00E


δx0ðt0Þ
δΞðt00ÞKðt; t

00Þ
�

¼
Z

dt00Rðt0; t00ÞKðt; t00Þ

¼ 2Rðt0; tÞ þ 1

TpðtÞΔp

Z
t0

to

dt00
1

Tpðt00Þ
Rðt0; t00ÞCp−1ðt; t00Þ þ 1

T2ðtÞΔ2

Z
t0

to

dt00
1

T2ðt00Þ
Rðt0; t00ÞCðt; t00Þ; ðC14Þ

we get the following LSE equations:

∂
∂t Cðt; t

0Þ ¼ Eh_x0ðtÞx0ðt0Þi ¼ 2Rðt0; tÞ − μðtÞCðt; t0Þ þ rpðtÞf0pðC̄ðtÞÞC̄ðt0Þ þ r2ðtÞf02ðC̄ðtÞÞC̄ðt0Þ

þ ðp − 1Þ 1

TpðtÞΔp

Z
t

to

dt00
1

Tpðt00Þ
Rðt; t00ÞCp−2ðt; t00ÞCðt0; t00Þ þ 1

TpðtÞΔp

Z
t0

to

dt00
1

Tpðt00Þ
Rðt0; t00ÞCp−1ðt; t00Þ

þ 1

T2ðtÞΔ2

Z
t

to

dt00
1

T2ðt00Þ
Rðt; t00ÞCðt0; t00Þ þ 1

T2ðtÞΔ2

Z
t0

to

dt00
1

T2ðt00Þ
Rðt0; t00ÞCðt; t00Þ; ðC15Þ

∂
∂t Rðt; t

0Þ ¼ E



δ_x0ðtÞ
δΞðt0Þ

�

¼ δðt − t0Þ − μðtÞRðt; t0Þ þ ðp − 1Þ 1

TpðtÞΔp

Z
t

t0
dt00

1

Tpðt00Þ
Rðt; t00ÞRðt00; t0ÞCp−2ðt; t00Þ

þ 1

T2ðtÞΔ2

Z
t

t0
dt00

1

T2ðt00Þ
Rðt; t00ÞRðt00; t0Þ; ðC16Þ

∂
∂t C̄ðtÞ ¼ Eh_x0ðtÞx�0i

¼ −μðtÞC̄ðtÞ þ rpðtÞf0pðC̄ðtÞÞ þ r2ðtÞf02ðC̄ðtÞÞ

þ ðp − 1Þ 1

TpðtÞΔp

Z
t

to

dt00
1

Tpðt00Þ
Rðt; t00ÞCp−2ðt; t00ÞC̄ðt00Þ þ 1

T2ðtÞΔ2

Z
t

to

dt00
1

T2ðt00Þ
Rðt; t00ÞC̄ðt00Þ; ðC17Þ

μðtÞ ¼ 1þ rpðtÞf0pðC̄ðtÞÞC̄ðtÞ þ r2ðtÞf20ðC̄ðtÞÞC̄ðtÞ

þ p
1

TpðtÞΔp

Z
t

to

dt00
1

Tpðt00Þ
Rðt; t00ÞCp−1ðt; t00Þ þ 2

1

T2ðtÞΔ2

Z
t

to

dt00
1

T2ðt00Þ
Rðt; t00ÞCðt; t00Þ: ðC18Þ
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Note that the last equation for μðtÞ is obtained by imposing
the spherical constraint Cðt; tÞ ¼ 1 ∀ t using the fact that
0 ¼ ½dCðt; tÞ=dt� ¼ ½∂Cðt; t0Þ=∂t�jt0¼t þ ½∂Cðt0; tÞ=∂t�jt0¼t.
The boundary conditions of this equations are as follows:
Cðt; tÞ ¼ 1, which is the spherical constraint; Rðt; tÞ ¼ 0,
which comes from causality in the Itô approach; and
Rðt; t0 → t−Þ ¼ 1. The initial condition for C̄ð0Þ ¼ C̄0 is
the overlap with the initial configuration with the true
signal. If the initial configuration is random, C̄0 ¼ 0, but it
will have finite-size fluctuations, as in the case of AMP.
Therefore, we find C̄0 ¼ ϵ, with ϵ an arbitrary small
positive number.

APPENDIX D: NUMERICAL SOLUTION
OF LSE EQUATIONS

The dynamical equations (C15)–(C18) were integrated
numerically using two schemes:

(i) Fixed time grid: The derivatives were discretized
and integrated according to their causal structure.
This method is suitable only for short times (up to
500 time units).

(ii) Dynamic time grid: The step size is doubled after a
given number of steps, and the equations are solved
self-consistently for each waiting time. This ap-
proach is proposed in Ref. [45] and described in
Appendix C of Ref. [73]. It allows integration up to
very long times (up to 106 time units).

The results of these algorithms are concisely reported in
the phase diagram shown in the main part of the paper. In
what follows, we present the algorithms and a series of
investigations that we carried out to check their stability;
we explain the procedure to delimit the Langevin hard
region, and we discuss how we can enter into part of that
region by choosing a proper annealing protocol. The codes
are available online [47].

1. Fixed time-grid (2 + p) spin

In this approach, time derivatives and integrals are
discretized using ð∂=∂tÞfðt; t0Þ ≃ ð1=ΔtÞ½fðtþ Δt; t0Þ−
fðt; t0Þ� and the trapezoidal rule for integration,R
t
0 fðtÞdt ≃ ðΔt=2ÞPt=Δt−1

l¼0 ½fðlΔtÞ þ fððlþ 1ÞΔtÞ�. For
instance, we define a function for computing the update
in the response function, Eq. (C16), as follows:

Rðtþ Δt; t0Þ ¼ Rðt; t0Þ − ΔtμðtÞRðt; t0Þ þ 1

2

Δt2

Δ2

Xt=Δt−1
l¼t0=Δt

½Rðt; lΔtÞRðlΔt; t0Þ þ Rðt; ðlþ 1ÞΔtÞRððlþ 1ÞΔt; t0Þ�

þ ðp − 1ÞΔt
2

Δp

Xt=Δt−1
l¼t0=Δt

½Cp−2ðt; lΔtÞRðt; lΔtÞRðlΔt; t0Þ þ Cp−2ðt; ðlþ 1ÞΔtÞRðt; ðlþ 1ÞΔtÞRððlþ 1ÞΔt; t0Þ�:

Analogously, we define the other integrators. A simple
causal integration scheme, being careful with the Itô
prescription, gives the pseudocode below:

Cð0; 0Þ ← 1; Rð0; 0Þ ← 0; C̄ð0Þ ← C̄0;
for t ≤ tmax do
Cðtþ Δt; tþ ΔtÞ ← 1; Rðtþ Δt; tþ ΔtÞ ← 0;
μðtÞ ← compute muðC; R; C̄; tÞ;
C̄ðtþ ΔtÞ ← compute magðμ; C; R; C̄; tÞ;
for t0 ≤ t do

Cðtþ Δt; t0Þ ← compute Cðμ; C; R; C̄; tÞ;
Rðtþ Δt; t0Þ ← compute Rðμ; C; R; C̄; tÞ;

end for
Rðtþ Δt; tÞ ← 1;

end for

2. Dynamical time-grid (2 + p) spin

The numerical scheme we discuss is presented in the
Bayes-optimal case, where T2ðtÞ≡ TpðtÞ≡ 1. However,
the derivation that we propose can be easily generalized to
the case where the Ts assume different values but are
constants. Therefore, we do not employ this algorithm to

solve the LSE equations in the annealing protocol, for
which instead we use the fixed time-grid algorithm. It is
convenient to manipulate the equations to obtain an
equivalent set of equations for the functions Cðt; t0Þ,
Qðt;t0Þ≐1−Cðt;t0Þ−R tt0Rðt;t00Þdt00, C̄ðtÞ, where Qðt;t0Þ
represents the deviation from the fluctuation dissipation
theorem (FDT) at time t starting from time t0. Indeed, when
the FDT theorem holds, it states that Rðt; t0Þ ¼ −∂tCðt; t0Þ.
We briefly anticipate the strategy that the algorithm

uses to solve the equations. The algorithm discretizes the
times into Nt intervals—starting from the boundary con-
ditions Cðt; tÞ ¼ 1,Qðt; tÞ ¼ 0, and C̄ ¼ C̄0 ∈ ½0; 1�; it fills
the grid for small times (or small time differences
τ ¼ t − t0 ≪ 1) using linear propagation. Given a time t
and the initial guess for the Lagrange multiplier obtained by
the linear propagator, the integrals are discretized and
evaluated; then, the results are used to update the value
of the Lagrange multiplier. This procedure is repeated
iteratively until convergence. Once the first grid is filled, it
follows a coarse-graining procedure, where the sizes of the
time intervals are doubled and only half of the information
is retained. This procedure is repeated a fixed number of
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doubling of the original grid. The doubling scheme allows us to explore exponentially long times at the cost of losing part of
the information; the direct consequence of this is the loss of stability for very long times [especially when the functions
Cðt; t0Þ, Rðt; t0Þ, C̄ðtÞ undergo fast changes at long times].

a. Dynamical equations in the algorithm

We recall the function fkðxÞ ¼ ðxk=2Þ and its derivatives, f0kðxÞ ¼ ðkxk−1=2Þ and f00kðxÞ ¼ ½kðk − 1Þxk−2=2�. For
simplicity in the notation, we also introduce fkðt; t0Þ ≐ fkðCðt; t0ÞÞ,

ð∂t þ μðtÞÞCðt; t0Þ ¼ 2Rðt0; tÞ þ r2C̄ðt0Þf02ðC̄ðtÞÞ þ rpC̄ðt0Þf0pðC̄ðtÞÞ þ
1

Δ2

Z
t0

0

dt00f02ðt; t00ÞRðt0; t00Þ

þ 1

Δ2

Z
t

0

dt00f002ðt; t00ÞRðt; t00ÞCðt0; t00Þ þ
2

pΔp

Z
t0

0

dt00f0pðt; t00ÞRðt0; t00Þ

þ 2

pΔp

Z
t

0

dt00f00pðt; t00ÞRðt; t00ÞCðt0; t00Þ;

ð∂t þ μðtÞÞRðt; t0Þ ¼ δðt − t0Þ þ 1

Δ2

Z
t

t0
dt00f002ðt; t00ÞRðt; t00ÞRðt00; t0Þ þ

2

pΔp

Z
t

t0
dt00f00pðt; t00ÞRðt; t00ÞRðt00; t0Þ;

ð∂t þ μðtÞÞC̄ðtÞ ¼ r2f02ðC̄ðtÞÞ þ rpf0pðC̄ðtÞÞ þ
1

Δ2

Z
t

0

dt00f002ðt; t00ÞRðt; t00ÞC̄ðt00Þ þ
2

pΔp

Z
t

0

dt00f00pðt; t00ÞRðt; t00ÞC̄ðt00Þ;

μðtÞ ¼ 1þ r2C̄ðtÞf02ðC̄ðtÞÞ þ rpC̄ðtÞf0pðC̄ðtÞÞ þ
2

Δ2

Z
t

0

dt00f02ðt; t00ÞRðt; t00Þ þ
2

Δp

Z
t

0

dt00f0pðt; t00ÞRðt; t00Þ:

Following the lines of Ref. [73], we introduce the FDT violation function Qðt; t0Þ, and after some manipulation, the system
becomes

ð∂t þ μðtÞÞCðt; t0Þ ¼ C̄ðt0Þ½r2f02ðC̄ðtÞÞ þ rpf0pðC̄ðtÞÞ� þ
1

Δ2

�Z
t0

0

dt00
�
f02ðt; t00Þ

∂Qðt0; t00Þ
∂t00 þ f002ðt; t00Þ

∂Qðt; t00Þ
∂t00 Cðt0; t00Þ

�
þ

−
Z

t

t0
dt00
�
f02ðt; t00Þ

∂Cðt00; t0Þ
∂t00 − f002ðt; t00Þ

∂Qðt; t00Þ
∂t00 Cðt00; t0Þ

�
þ f02ð1ÞCðt; t0Þ − f02ðt; 0ÞCðt0; 0Þ




þ 2

pΔp

�Z
t0

0

dt00
�
f0pðt; t00Þ

∂Qðt0; t00Þ
∂t00 þ f00pðt; t00Þ

∂Qðt; t00Þ
∂t00 Cðt0; t00Þ

�
þ

−
Z

t

t0
dt00
�
f0pðt; t00Þ

∂Cðt00; t0Þ
∂t00 − f00pðt; t00Þ

∂Qðt; t00Þ
∂t00 Cðt00; t0Þ

�
þ f0pð1ÞCðt; t0Þ − f0pðt; 0ÞCðt0; 0Þ



;

ðD1Þ

ð∂t þ μðtÞÞQðt; t0Þ ¼ μðtÞ− 1þ 1

Δ2

�
−
Z

t

t0
dt00f02ðt; t00Þ

∂Qðt00; t0Þ
∂t00 þ

Z
t

t0
dt00f002ðt; t00Þ

∂Qðt; t00Þ
∂t00 ½Qðt00; t0Þ− 1�

þ f02ð1Þ½Qðt; t0Þ− 1� þ f02ðt;0ÞCðt0;0Þ−
Z

t0

0

dt00
�
f02ðt; t00Þ

∂Qðt0; t00Þ
∂t00 þ f002ðt; t00Þ

∂Qðt; t00Þ
∂t00 Cðt0; t00Þ

�


þ 2

pΔp

�
−
Z

t

t0
dt00f0pðt; t00Þ

∂Qðt00; t0Þ
∂t00 þ

Z
t

t0
dt00f00pðt; t00Þ

∂Qðt; t00Þ
∂t00 ½Qðt00; t0Þ− 1�

þ f0pð1Þ½Qðt; t0Þ− 1� þ f0pðt;0ÞCðt0;0Þ−
Z

t0

0

dt00
�
f0pðt; t00Þ

∂Qðt0; t00Þ
∂t00 þ f00pðt; t00Þ

∂Qðt; t00Þ
∂t00 Cðt0; t00Þ

�

− C̄ðt0Þ½r2f02ðC̄ðtÞÞ þ rpf0pðC̄ðtÞÞ�; ðD2Þ
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ð∂t þ μðtÞÞC̄ðtÞ ¼ r2f02ðC̄ðtÞÞ þ rpf0pðC̄ðtÞÞ þ
1

Δ2

�
f02ð1ÞC̄ðtÞ − f02ðt; 0ÞC̄ð0Þ −

Z
t

0

dt00f02ðt; t00Þ
d
dt00

C̄ðt00Þ

þ
Z

t

0

dt00f002ðt; t00Þ
∂Qðt; t00Þ

∂t00 C̄ðt00Þ


þ 2

pΔp

�
f0pð1ÞC̄ðtÞ − f0pðt; 0ÞC̄ð0Þ −

Z
t

0

dt00f0pðt; t00Þ
d
dt00

C̄ðt00Þ

þ
Z

t

0

dt00f00pðt; t00Þ
∂Qðt; t00Þ

∂t00 C̄ðt00Þ


; ðD3Þ

μðtÞ ¼ 1þ r2C̄ðtÞf20ðC̄ðtÞÞ þ rpC̄ðtÞf0pðC̄ðtÞÞ þ
2

Δ2

½f2ð1Þ − f2ðt; 0Þ� þ
2

Δp
½fpð1Þ − fpðt; 0Þ�

þ
Z

t

0

dt00
�
2

Δ2

f20ðt; t00Þ þ
2

Δp
f0pðt; t00Þ

� ∂Qðt; t00Þ
∂t00 : ðD4Þ

Further simplifications can be obtained by introducing μ0ðtÞ ¼ μðtÞ − ð2=Δ2Þf2ð1Þ − ð2=ΔpÞfpð1Þ,

μ0ðtÞ ¼ 1þ r2C̄ðtÞf02ðC̄ðtÞÞ þ rpC̄ðtÞf0pðC̄ðtÞÞ −
2

Δ2

f2ðt; 0Þ −
2

Δp
fpðt; 0Þ

þ
Z

t

0

dt00
�
2

Δ2

f02ðt; t00Þ þ
2

Δp
f0pðt; t00Þ

� ∂Qðt; t00Þ
∂t00 ; ðD5Þ

ð∂t þ μ0ðtÞÞCðt; t0Þ ¼ C̄ðt0Þ½r2f02ðC̄ðtÞÞ þ rpf0pðC̄ðtÞÞ� þ
1

Δ2

�Z
t0

0

dt00
�
f02ðt; t00Þ

∂Qðt0; t00Þ
∂t00 þ f002ðt; t00Þ

∂Qðt; t00Þ
∂t00 Cðt0; t00Þ

�
þ

−
Z

t

t0
dt00
�
f02ðt; t00Þ

∂Cðt00; t0Þ
∂t00 − f002ðt; t00Þ

∂Qðt; t00Þ
∂t00 Cðt00; t0Þ

�
− f02ðt; 0ÞCðt0; 0Þ




þ 2

pΔp

�Z
t0

0

dt00
�
f0pðt; t00Þ

∂Qðt0; t00Þ
∂t00 þ f00pðt; t00Þ

∂Qðt; t00Þ
∂t00 Cðt0; t00Þ

�
þ

−
Z

t

t0
dt00
�
f0pðt; t00Þ

∂Cðt00; t0Þ
∂t00 − f00pðt; t00Þ

∂Qðt; t00Þ
∂t00 Cðt00; t0Þ

�
− f0pðt; 0ÞCðt0; 0Þ



; ðD6Þ

ð∂t þ μ0ðtÞÞQðt; t0Þ ¼ μ0ðtÞ − 1 − C̄ðt0Þ½r2f02ðC̄ðtÞÞ þ rpf0pðC̄ðtÞÞ�

þ 1

Δ2

�
−
Z

t

t0
dt00f02ðt; t00Þ

∂Qðt00; t0Þ
∂t00 þ

Z
t

t0
dt00f002ðt; t00Þ

∂Qðt; t00Þ
∂t00 ½Qðt00; t0Þ − 1�

þ f02ðt; 0ÞCðt0; 0Þ −
Z

t0

0

dt00
�
f02ðt; t00Þ

∂Qðt0; t00Þ
∂t00 þ f002ðt; t00Þ

∂Qðt; t00Þ
∂t00 Cðt0; t00Þ

�


þ 2

pΔp

�
−
Z

t

t0
dt00f0pðt; t00Þ

∂Qðt00; t0Þ
∂t00 þ

Z
t

t0
dt00f00pðt; t00Þ

∂Qðt; t00Þ
∂t00 ½Qðt00; t0Þ − 1�

þ f0pðt; 0ÞCðt0; 0Þ −
Z

t0

0

dt00
�
f0pðt; t00Þ

∂Qðt0; t00Þ
∂t00 þ f00pðt; t00Þ

∂Qðt; t00Þ
∂t00 Cðt0; t00Þ

�

; ðD7Þ

ð∂t þ μ0ðtÞÞC̄ðtÞ ¼ r2f02ðC̄ðtÞÞ þ rpf0pðC̄ðtÞÞ þ
1

Δ2

�
−f02ðt; 0ÞC̄ð0Þþ

−
Z

t

0

dt00f02ðt; t00Þ
d
dt00

C̄ðt00Þ þ
Z

t

0

dt00f002ðt; t00Þ
∂Qðt; t00Þ

∂t00 C̄ðt00Þ


þ 2

pΔp

�
−f0pðt; 0ÞC̄ð0Þþ

−
Z

t

0

dt00f0pðt; t00Þ
d
dt00

C̄ðt00Þ þ
Z

t

0

dt00f00pðt; t00Þ
∂Qðt; t00Þ

∂t00 C̄ðt00Þ


: ðD8Þ

MARVELS AND PITFALLS OF THE LANGEVIN ALGORITHM IN … PHYS. REV. X 10, 011057 (2020)

011057-25



b. First-order expansion coefficients

In the numerics, we initialize the grid by a linear
propagation of the initial conditions. To determine which
coefficients to use, we can expand the functions up to
the second term for small values of τ (and in the last
equation of t),

Cðt0 þτ;t0Þ¼Cðt0;t0ÞþCð1;0Þðt0;t0Þτ

þ1

2
Cð2;0Þðt0;t0ÞþOðτ3Þ;

Qðt0 þτ;t0Þ¼Qðt0;t0ÞþQð1;0Þðt0;t0Þτ

þ1

2
Qð2;0Þðt0;t0ÞþOðτ3Þ;

C̄ðtÞ¼ C̄ð0Þþ C̄ð1Þð0Þτþ1

2
C̄ð2Þð0ÞþOðt3Þ: ðD9Þ

This expansion gives the following coefficients: Cðt; tÞ ¼ 1,
Cð1;0Þðt; tÞ ¼ −1, Qðt; tÞ ¼ 0, Qð1;0Þðt; tÞ ¼ 0, C̄ð0Þ ¼ C̄0,
and C̄ð1Þð0Þ ¼ ½r2f02ðC̄0Þ þ rpf0pðC̄0Þ�ð1 − ðC̄0Þ2Þ − C̄0,
where C̄0 is the initial value of the overlap with the signal.

c. Numerical integration and derivation

The set of equations derived above presents six types of
integrals,

Ið1ABÞij ¼
Z

ti

tj

dt00Aðti; t00Þ
∂Bðt00; tjÞ

∂t00 ;

Ið2ABCÞij ¼
Z

ti

tj

dt00Aðti; t00Þ
∂Bðti; t00Þ

∂t00 Cðt00; tjÞ;

Ið3ABÞij ¼
Z

tj

0

dt00Aðti; t00Þ
∂Bðti; t00Þ

∂t00 ;

Ið4ABCÞij ¼
Z

tj

0

dt00Aðti; t00Þ
∂Bðti; t00Þ

∂t00 Cðtj; t00Þ;

Ið5ABÞi ¼
Z

ti

0

dt00Aðti; t00Þ
∂Bðt00Þ
∂t00 ;

Ið6ABCÞi ¼
Z

ti

0

dt00Aðti; t00Þ
∂Bðti; t00Þ

∂t00 Cðt00Þ:

The integrals can be easily discretized,

Ið2ABCÞij ¼
Xti

tl¼tjþδt

Z
tl

tl−δt
dt00Aðti; t00Þ

∂Bðti; t00Þ
∂t00 Cðt00; tjÞ

≃
Xti

tl¼tjþδt

Z
tl

tl−δt
dt1Aðti; t1Þ

Z
tl

tl−δt
dt2

∂Bðti; t2Þ
∂t2

Z
tl

tl−δt
dt3Cðt3; tjÞ

≃
Xti

tl¼tjþδt

1

2
½Aðti; tlÞ þ Aðti; tl − δtÞ�½Bðti; tlÞ − Bðti; tl − δtÞ� 1

2
½Cðtl; tjÞ þ Cðtl − δt; tjÞ�:

In particular, the six integrals become

Ið1ABÞij ¼ AimBmj − AijBjj þ
Xi

l¼mþ1

1

2
ðAil þ Aiðl−1ÞÞðBlj − Bðl−1ÞjÞ þ −

Xm
l¼jþ1

1

2
ðBlj þ Bðl−1ÞjÞðAil − Aiðl−1ÞÞ

¼ AimBmj − AijBjj þ
Xi

l¼mþ1

dAðvÞ
il ðBlj − Bðl−1ÞjÞ −

Xm
l¼jþ1

ðAil − Aiðl−1ÞÞdBðhÞ
lj ; ðD10Þ

Ið2ABCÞij ¼
Xi
l¼jþ1

1

2
ðAil þ Aiðl−1ÞÞðBlj − Bðl−1ÞjÞ

1

2
ðClj þ Cðl−1ÞjÞ

¼
Xi

l¼mþ1

dAðhÞ
il ðBil − Biðl−1ÞÞ

1

2
ðClj þ Cðl−1ÞjÞ þ

Xm
l¼jþ1

1

2
ðAil þ Aiðl−1ÞÞðBil − Biðl−1ÞÞdCðvÞ

lj ; ðD11Þ

Ið3ABÞij ¼ AijBjj − Ai0Bj0 −
Xj
l¼1

ðAil − Aiðl−1ÞÞdBðvÞ
jl ; ðD12Þ

Ið4ABCÞij ¼
Xj
l¼1

1

2
ðAil þ Aiðl−1ÞÞðBil − Biðl−1ÞÞdCðvÞ

jl ; ðD13Þ
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Ið5ABÞi ¼
Xi
l¼1

dAðvÞ
il ðBl − Bl−1Þ; ðD14Þ

Ið6ABCÞi ¼
Xi
l¼1

1

2
ðAil þ Aiðl−1ÞÞðBil − Biðl−1ÞÞdCl; ðD15Þ

where the superscripts (v) and (h) represent the vertical (t0)
and horizontal (t) derivatives in the discretized times; see
Fig. 11 for an intuitive understanding.

We also discretize the derivative using the last two time
steps,

d
dt

gðtÞ ¼ 3

2δt
gðtÞ − 2

δt
gðt − δtÞ þ 1

2δt
gðt − 2δtÞ þOðδt3Þ:

ðD16Þ

Given the time indices i and j, we define and evaluate the
following quantities

fCij;Qij;M2ij; N2ij;Mpij; Npij;Cbari; P2i; Ppi;muig
¼ fCðti; tjÞ; Qðti; tjÞ; f02ðCðti; tjÞÞ; f002ðCðti; tjÞÞ; f0pðCðti; tjÞÞ; f00pðCðti; tjÞÞ; C̄ðtiÞ; f02ðC̄ðtiÞÞ; f0pðC̄ðtiÞÞ; μðtiÞg

plus the respective vertical and horizontal derivatives.
Calling Di ¼ ð3=2dtÞ þ μ0i − ð1=Δ2ÞM2ii − ð2=pΔpÞMpii, the original dynamical equations are integrated as follows:

CijDi ¼
2

dt
Cði−1Þj −

1

2dt
Cði−2Þj þ Cbarjðr2P2i þ rpPpiÞ þ

1

Δ2

ð−_Ið1f02CÞij þ I
ð2f00

2
QCÞ

ij þ I
ð3f0

2
QÞ

ij þ I
ð4f00

2
QCÞ

ij −M2i0Cj0Þ

þ 2

pΔp
ð−_Ið1f0pCÞij þ I

ð2f00pQCÞ
ij þ I

ð3f0pQÞ
ij þ I

ð4f00pQCÞ
ij −Mpi0Cj0Þ; ðD17Þ

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 11. Representation of the initialization and the first two iterations for the evaluation of a two-times observable using the dynamic-
grid algorithm. The empty circles represent slots allocated in memory but not associated with any specific value, while the full circles are
memory slots already associated with a specific value. For any two-times function, it first allocates the memory (a), and then it fills half
of the grid by linear propagation (b). Still using linear propagation, it fills the slots with t − t0 ≪ 1 (c), and it sets the other values by
imposing self-consistency (d). Finally, it halves the grid (e), doubles the time step, and it allocates the memory (f). Then, the algorithm
loops follow the same scheme as in panels (b)–(e).
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QijDi ¼ μ0i − 1þ 2

dt
Qði−1Þj −

1

2dt
Qði−2Þj þ Cbarjðr2P2i þ rpPpiÞ

þ 1

Δ2

ð−_Ið1f02QÞ
ij þ I

ð2f00
2
QðQ−1ÞÞ

ij − I
ð3f0

2
QÞ

ij − I
ð4f00

2
QCÞ

ij −M2i0Ci0Þ

þ 2

pΔp
ð−_Ið1f0pQÞ

ij þ I
ð2f00pQðQ−1ÞÞ
ij − I

ð3f0pQÞ
ij − I

ð4f00pQCÞ
ij −Mpi0Ci0Þ; ðD18Þ

CbariDi ¼
2

dt
Cbari−1 −

1

2dt
Cbari−2 þ r2P2i þ rpPpi þ

1

Δ2

ð−_Ið5f02CbarÞi þ I
ð6f00

2
QCbarÞ

i −M2i0Cbar0Þ

þ 2

pΔp
ð−_Ið5f0pCbarÞi þ I

ð6f00pQCbarÞ
i −Mpi0Cbar0Þ: ðD19Þ

In the systems, we used _I to characterize the integrals, where we remove from the sum the term present in the left-hand side
[e.g., for Cij in Eq. (D17)]. Using Simpson’s integration formula, we define the increments

Δil ¼
1

12
ðQil −Qiðl−1ÞÞfW2

2½−ðM2iðlþ1Þ þ N2iðlþ1ÞCiðlþ1ÞÞ þ 8ðM2il þ N2ilCilÞ þ 5ðM2iðl−1Þ þ N2iðl−1ÞCiðl−1ÞÞ�
þW2

p½−ðMpiðlþ1Þ þ Npiðlþ1ÞCiðlþ1ÞÞ þ 8ðMpil þ NpilCilÞ þ 5ðMpiðl−1Þ þ Npiðl−1ÞCiðl−1ÞÞ�g;

and we determine μ0 as

μ0 ¼ 1þ r2P2i þ rpPpi þ δμ0

þ
Xi−Nt=4

l¼1

Δil − ðW2
2M2i0 þW2

pMpi0ÞCi0; ðD20Þ

with δμ0 initially set to 0.

d. Algorithm

Here, we describe the main steps of the algorithm,
pictorially represented Fig. 11.
Discretize the time ðt; t0Þ in Nt (even) intervals; the

results shown use Nt ¼ 1024.
(1) Initialization. Fill the first Nt=2 times by linear

propagation of the value obtained from the pertur-
bative analysis,

Cij ¼ 1 − ði − jÞdt; ðD21Þ

Qij ¼ 0; ðD22Þ

Cbari ¼ C̄0 þ f½r2f02ðC̄0Þ þ rpf0pðC̄0Þ�
× ð1þ ðC̄0Þ2Þ − C̄0gdt; ðD23Þ

M2ij ¼ f02ðCijÞ; ðD24Þ

N2ij ¼ f002ðCijÞ; ðD25Þ

Mpij ¼ f0pðCijÞ; ðD26Þ

Npij ¼ f00pðCijÞ: ðD27Þ

(2) Fill the grid (small τ). Continue to propagate the
values for small time differences τ ¼ t − t0 ≪ 1. In
terms of the algorithm, we have some elements of the
grid, Nc of them, close to the diagonal that will be
updated by linear propagation because the approxi-
mation of small τ is still valid. In our simulation, the
first Δt is of the order 10−7 and Nc ¼ 2.

(3) Fill the grid (larger τ). The rest of the values will be
copied from the previous t (AtþΔt;t0 ¼ At;t0 ). These
values are the initial guesses for solving the self-
consistent equations (D17)–(D19) and (D20); in this
procedure, the derivatives are updated using the
second-order discretization.

(4) Half the grid and expand. The grid is decimated,
which means that each observable is contracted,
Ai;j ← A2i;2j, and the derivates are updated as

follows: dAðhÞ
i;j ← 1

2
ðdAðhÞ

2i;2j þ dAðhÞ
2i−1;2jÞ, dAðvÞ

i;j ←
1
2
ðdAðvÞ

2i;2j þ dAðvÞ
2i;2j−1Þ. The new time step is now

Δt ← 2Δt.
(5) Start over from step 2.

3. Numerical checks on the dynamical algorithm

The dynamic-grid algorithm has been checked in a
variety of ways.
(a) Cross-checking using the fixed-grid algorithm. For

short times, the dynamical equations were solved
using the fixed-grid algorithm and compared with
the outcome of the dynamic-grid algorithm, obtaining
the same results; see Fig. 12. In the figure, we used the
fixed grid with tmax ¼ 100 and Δt ¼ 6.25 × 10−3.

(b) Same magnetization in the easy region. In the impos-
sible and easy regions, the overlap with the signal of
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both AMP and dynamic-grid integration converges to
the same value. In Fig. 13, we show the overlap
obtained with AMP (black dashed line) and the
overlap achieved by the integration scheme at a given
time. We can see that the overlap with the signal as
obtained by solving the LSE equations converges to
the same value of the fixed point of AMP. Given a
fixed Δ2, we can observe that the time to convergence
increases very rapidly as we decrease Δp. We fit this
increase of the relaxation time to get the boundary of
the Langevin hard region.

(c) Dynamical transition. The dynamical transition where
the finite magnetization fixed point disappears can be
regarded as a clustering or dynamical glass transition.
Indeed, starting at the impossible phase and going
towards the hard phase, at the dynamical transition the
free-energy landscape changes and the unique ergodic
paramagnetic minimum of the impossible phase gets

clustered into an exponential number of metastable
glassy states (see Appendix E). Correspondingly, the
relaxation time of the Langevin algorithm diverges.
Fitting this divergence with a power law, we obtain
an alternative estimation of the dynamical line. In the
right panel of Fig. 14, we plot, with yellow points, the
dynamical transition line as extracted from the fit of
the relaxation time of the Langevin algorithm coming
from the impossible phase and entering the hard phase.

4. Extrapolation procedure

In order to determine the Langevin hard region, given a
fixed value of Δp (Δ2), we measure the time that it takes to
relax to equilibrium. On approaching the Langevin hard
region, this relaxation time increases, and we extrapolate
the growth to obtain the critical Δ�

p (Δ�
2 respectively) where

the relaxation time appears to diverge. The extrapolation

(a)

with

with

with

with

with

with

with

(b)

(c) (d)

with

with

with

with

with

with

with

with
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with

with

with
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with

with

with

with

with

with

FIG. 12. Evolution of the correlation with the signal starting from the solution, C̄0 ¼ 1.0 at fixed Δ2 for different Δp. The dotted red
line overlapping with other lines is the same quantity evaluated using the fixed grid algorithm up to time 100. We have started the LSE
from an informative initial condition.
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is performed starting from C̄0 ¼ 10−40 and assuming a
power-law divergence. Figure 14 shows the results of this
procedure for the cases 2þ 3 and 2þ 4. We remark that the
divergence times increase as p increases. Therefore,
because of the instability of the code for long times, it
becomes difficult to extrapolate the threshold accurately. In
particular, in the right panel of Fig. 14 when estimating the
threshold for 2þ 4, we consider horizontal sections, and
the points extrapolated for Δ2 close to the threshold Δ2 ¼
1.0 are very hard to estimate because of these instabilities.

a. Numerical checks on the extrapolation procedure

To test the quality of the fits, we use a similar numerical
procedure to locate the spinodal of the informative solution,
which is given by the points where the informative solution
ceases to exist. This spinodal must be the same for both the
AMP and the Langevin algorithm [6].
Since we aim at studying the spinodal of the informative

solution, we initialize the LSE with C̄0 ¼ 1 and let it relax,
measuring the time it takes to equilibrate at the value of C̄
given by the informative fixed point of AMP. We perform
this procedure by fixing Δ2 and changing Δp. As we

approach the critical Δp;dyn, the relaxation time will
diverge, and we can fit this divergence with a power
law. The dynamic threshold extracted in this way is finally
compared with the one obtained from AMP. In Fig. 17,
we show how this scheme has been applied for
Δ2 ∈ f1.01; 1.05; 1.10; 2.00g. As we get closer to the
critical line Δ2 ¼ 1, the relaxation time increases (and
the height of the plateau decreases), making the fit harder.
All in all, we observe a very good agreement between the
points found with these extrapolation procedures and the
prediction obtained with AMP, as shown in Fig. 14.

5. Initial conditions

The LSE equations show a rather strong dependence on
the initial condition C̄0. A low initial magnetization will
give a low initial momentum in the direction of the signal,
as can be observed in the linear expansion of C̄, Eq. (D9),
and consequently, the system will not be able to cross even
very small barriers. The direct consequence is that by
reducing the initial magnetization, the estimated threshold
will get worse, in the sense that a larger signal-to-noise ratio
will be required to find the solution. This finding can be

(a) (b)

(c) (d)

FIG. 13. Correlation with the signal of AMP (dotted lines) and Langevin (solid lines) at the kth iteration and t time, respectively,
starting in both cases with an initial overlap of 10−4. The black dashed line is the asymptotic value predicted with AMP. In the easy
region, provided there is enough running time, Langevin dynamics finds the same alignment as AMP. The figures show qualitatively the
same behavior for different values of Δ2.
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observed in Fig. 15, where different initial conditions are
compared on the section Δp ¼ 0.9.
Finally, we remark how the different initial conditions

affect the phase diagram. In Fig. 16, we compare the
Langevin hard-easy threshold evaluated starting from
different initial conditions, showing that the region
gets larger as the initial condition decreases, up to
convergence.

6. Annealing protocol

In this section, we show that by using specific protocols
that separate the matrix and tensor parts of the cost function
(something we do not allow in the main part of this paper
for the purpose of having a model as generic as possible),
we are able to enter in the Langevin hard region. A generic
annealing scheme would lower the noises of both channels
simultaneously, and we will not be able to avoid the
Langevin hard region. Instead, we can use the following
protocol:

FIG. 15. Estimated divergence pointΔ�
2 at fixedΔp ¼ 0.9, with

p ¼ 3 a function of the initial condition C̄, ranging from 10−40 to
10−4. The vertical axis is in the linear scale, while the horizontal
axis is in the log scale. We observe that the dependence of
estimated divergence points on the initial condition is consistent
with the asymptotic value 1=Δ�

2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
2=Δp

p
≈ 1.491 following

from Eq. (15) and depicted by the dashed line. The dotted line
instead represents the AMP threshold, for comparison.

FIG. 16. Phase diagram of the p ¼ 3model, where we compare
the threshold of the Langevin hard region using different values
of the initial conditions, respectively: green circles C̄0 ¼ 10−40,
yellow circles C̄0 ¼ 10−30, red circles C̄0 ¼ 10−20.

FIG. 14. Left panel: Phase diagram of the spiked matrix-tensor model for p ¼ 3 as presented in the left panel of Fig. 7, with the
additional boundary of the Langevin hard phase (green circles and dotted green line). The data points (circles) have been obtained
numerically by fitting the relaxation time at fixedΔp and increasingΔ2. The green dotted line shows fixed points of expression (15). The
blue dashed-dotted line marks a region above which we no longer observe a stable positive 1RSB complexity. Finally, we plot with
orange and yellow dots on the dynamical transition line as extracted from the relaxation time of the Langevin algorithm coming from the
hard and impossible phases, respectively. Right panel: Phase diagram of the spiked matrix-tensor model for p ¼ 4 as presented in the
right panel of Fig. 7 with the additional Langevin hard phase boundary. The data points are obtained by fixing Δ2 and decreasing Δp.
Also in this case, we observe that the Langevin hard phase extends to the AMP easy phase. Interestingly, the Langevin hard phase here
folds and presents a reentrant behavior; investigating the precise character of this reentrance is hampered by the vicinity of the critical
point and is left for future work. The blue dashed line marks a region above which we no longer observe a stable positive 1RSB
complexity.
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T2 ≡ 1;

Tp ≡ TpðtÞ ¼ 1þ C
Δp

e−
t

τann : ðD28Þ

The constant C allows us to select, at the initial time, the
desired effective Δp;eff ¼ Δp þ Ce−ðt=τannÞ far from (and
much larger than) the original one. Instead, τann chooses the
speed of the annealing protocol. Figure 18 shows that using
this protocol, we are able to enter in the Langevin hard
region even with Δ2 close to the AMP threshold. To this
purpose, we initiate the effective Δp;eff close to 100 (i.e.,
C ¼ 100), very far from the Langevin hard region, and we
use different speeds for the annealing of Δp (different
colors in the figures). In the figures, we can observe that
when approaching Δ2 ¼ 1, we need slower and slower
protocols (larger and larger τann). This behavior is due to
the fact that when approaching Δ2 ¼ 1 with Δp ¼ 100, a
longer time is required to gain a nontrivial overlap with the

solution. Evidence of this growing timescale at Δp ¼ 100

is given in Fig. 19, where we show the relaxation time for
magnetizing the solution by varying Δ2. In particular, we
can observe that at Δ2 ¼ 0.70, the relaxation time is of the
order of 100 time units.
For the protocol to be successful, it is therefore crucial

that the annealing time τann is large enough to give the
possibility of magnetizing the solution before Δp;eff

has significantly decreased towards Δp. According to this
analysis, it is not surprising that in Fig. 18, for Δ2 ¼ 0.90,
the proposed protocol seems to be unsuccessful. For this
value of the parameter Δ2, the time to find a solution even
with Δp ¼ 100 should be larger than 1000 time units,
which is much larger than the τann used and out of the time
window of our numerical solution. However, with an
annealing time large enough, it would, in principle, be
possible to recover exactly the same boundaries of the
AMP easy region.

(a) (b)

(c) (d)

FIG. 17. Relaxation time obtained from the LSE starting from an informative initial condition C̄0 ¼ 1. The four cases refer to the 2þ 3
model and are fitted with a power law, and the relaxation time appears to diverge very close to the point predicted by AMP (the AMP
prediction is given in the captions).
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APPENDIX E: GLASSY NATURE OF THE
LANGEVIN HARD PHASE: THE REPLICA

APPROACH

In this section, we study the landscape of the spiked
matrix-tensor problem following the approach of Ref. [25].
We underline here that we are interested in studying the
free-energy landscape problem rather than the energy

landscape since the former is the relevant quantity for
finite temperatures (β ¼ 1 in our case, as discussed in
Appendix A). The results of Ref. [25] suggest that the AMP
hard phase and part of the AMP easy phase are glassy.
Therefore, we could expect that low-magnetization glassy
states trap the Langevin algorithm and forbid the relaxation
to the equilibrium configurations that surround the signal.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 18. The figures show the correlation with the signal in time obtained using different annealing protocols, whose details are
reported in the legend of the first figure. All of the protocols have C ¼ 100, which means that all the dynamics start with close effective
Δp ∼ 100, Tpð0ÞΔp ≃ 100 and an initial overlap C̄0 ¼ 10−4. What changes among the different lines is the relaxation speed, from the
fastest (drawn in blue) to the slowest (drawn in brown). They are compared with the asymptotic value of AMP (dotted line) and the
Langevin dynamics without tensor annealing (dashed line).
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This result may also occur in a region where AMP, instead,
is perfectly fine producing configurations strongly corre-
lated with the signal. In order to check this hypothesis, we
compute the logarithm of the number of glassy states,
called the complexity, by using the replica method [25,74].
The goal of this analysis is to trace an additional line in the
phase diagram that delimits the region where stable one-
step-replica symmetry-breaking (1RSB) metastable states
exist. We conjecture that this method provides a physical
lower bound to the Langevin hard phase in the ðΔp; 1=Δ2Þ
phase diagram.

1. Computation of the complexity through
the replica method

The replica trick is based on the simple identity
E log x ¼ limn→0

∂
∂nExn. Using this observation, we can

compute the expected value of the free energy,
Φ ¼ −ðlogZÞ=N, averaging the Zn and taking the limit
n → 0. This process is, in general, as difficult as the initial
problem; however, if we consider only integer n and
extrapolate to 0, the computation becomes much less
involved due to the fact that, for integer n, the average
Exn can sometimes be performed analytically. Indeed, in
this case, the replicated partition function Zn can be
regarded as the partition function of n identical uncoupled
systems or replicas. Averaging over the disorder, we obtain
a clean system of interacting replicas. The Hamiltonian of
this system displays an emerging replica symmetry since it
is left unchanged by a permutation of replicas. This
symmetry can be spontaneously broken in certain disor-
dered models where frustration is sufficiently strong [44].
In mean field models characterized by fully connected

factor graphs, the resulting Hamiltonian of interacting
replicas depends on the configuration of the system only
through a simple order parameter, the overlap Q̃ between
them, which is an n × n matrix that describes the similar-
ities of the configurations of different replicas in phase
space. Furthermore, the Hamiltonian is proportional to N,

which means that in the thermodynamic limit N → ∞, the
model can be solved using the saddle-point method. In this
case, one needs to consider a simple ansatz for the saddle-
point structure of the matrix Q̃ that allows us to take the
analytic continuation for n → 0. The solution to this problem
comes from spin-glass theory, and general details can be
found in Ref. [44]. The saddle-point solutions for Q̃ can be
classified according to the replica symmetry-breaking level,
going from the replica symmetric solution where replica
symmetry is not spontaneously broken to various degrees of
spontaneous replica symmetry breaking (including full-
replica symmetry breaking). Here, we will not review this
subject, but the interested reader can find details in Ref. [44].
The model we are analyzing can be studied in full generality
at any degree of RSB (see, e.g., Refs. [41,42,53], where the
same models have been studied in the absence of a signal).
However, here we limit ourselves to considering saddle-
point solutions up to a 1RSB level.
The complexity of the landscape can be directly related

to replica symmetry breaking. A replica symmetric solution
implies an ergodic free-energy landscape characterized by a
single pure state. When replica symmetry is broken instead,
a large number of pure states arise, and the phase space
gets clustered in a hierarchical way [44]. Making a 1RSB
approximation means looking for a situation in which the
hierarchical organization contains just one level: The phase
space gets clustered into an exponential number of pure
states with no further internal structure.
If we assume a 1RSB glassy landscape, we can compute

the complexity of metastable states using a recipe from
Monasson [74] (see also Ref. [75] for a pedagogical
introduction). The argument goes as follows.
Let us consider a system with x real replicas infinitesi-

mally coupled. If the free-energy landscape is clustered into
an exponential number of metastable states, the replicated
partition function, namely, the partition function of the
system of x real replicas, can be written as

Zx ≃ eN½Σðf�Þ−xβf��;

where f� is the internal free energy of the dominant
metastable states that is determined by the saddle-point
condition ðdΣ=dfÞðf�Þ ¼ βx and β is the inverse temper-
ature. Note that since we are interested in the Bayes-optimal
case, this corresponds to setting β ¼ 1. In the analysis, we
consider a generic β before taking the limits in order to
derive the average energy by taking its derivative. The
function ΣðfÞ is the complexity of metastable states having
internal entropy f. Therefore, using the free parameter x,
we can reconstruct the form of ΣðfÞ from the replicated
free energy. In order to compute the replicated free
energy, we need to apply the replica trick on the replicated
system, logZx ¼ limn→0ð∂=∂nÞðZxÞn. Calling the repli-
cated free energy Φ ¼ −ð1=NÞlogZx, we get the complex-
ity Σ ¼ xð∂Φ=∂xÞ −Φ.

FIG. 19. Relaxation times of Langevin dynamics at Δp ¼ 100
without using protocols starting from C̄0 ¼ 10−4.
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We can now specify the computation to our case, where
the partition function is the normalization of the posterior
measure. With simple manipulations of the equations [71],
the partition function can be expressed as the integral over
the overlap matrix,

ðZxÞn ¼ Zn
x ∝

Z Y
ab

dQabeβNnxSðQÞ ≃ lim sup
Q

eβNnxSðQÞ;

ðE1Þ

where the overlap Q is a ðnxþ 1Þ × ðnxþ 1Þ matrix

Q ¼

0
B@

1 m � � �m
m Q̃
..
.

m

1
CA

that contains a special row and column that encode the
overlap between different replicas with the signal; there-
fore, the corresponding overlap is the magnetization m.
The 1RSB structure for the matrix Q̃ can be obtained

by defining the following nx × nx matrices: the identity

matrix Iij ¼ δij, the full matrix Jð0Þnx;ij ¼ 1, and a block

diagonal matrix Jð1Þnx ¼diagðJð0Þx ;…;Jð0Þx Þ, where the diago-
nal blocks Jð0Þx have size x × x and are matrices full of 1s.
In this case, the 1RSB ansatz for Q̃ reads

Q̃ ¼ ð1 − qMÞInx þ ðqM − qmÞJð1Þnx þ qmJ
ð0Þ
nx :

Using this ansatz, we can compute SðQÞ, which is given by

βSðQÞ ¼ 1

nx

�
1

2
log detQþ β2

2pΔp

Xn
a;b¼1

Qp
ab þ

β2

4Δ2

Xn
a;b¼1

Q2
ab þ

β

pΔp

Xn
a¼1

Qp
0a þ

β

2Δ2

Xn
a¼1

Q2
0a

�

¼ 1

2
logð1 − qMÞ þ

1

2x
log

1 − qM þ xðqM − qmÞ
1 − qM

þ 1

2

qm −m2

1 − qM þ xðqM − qmÞ

þ β2

2pΔp

�
1 − qpM þ xðqpM − qpmÞ þ 2

β
mp

	
þ β2

4Δ2

�
1 − q2M þ xðq2M − q2mÞ þ

2

β
m2

	
: ðE2Þ

From Eq. (E2), we obtain the saddle-point equations

0 ¼ 2
∂S
∂qM ¼ ðx − 1Þ

�
1

x

�
1

1 − qM þ xðqM − qmÞ
−

1

1 − qM

	
−

qm −m2

½1 − qM þ xðqM − qmÞ�2
þ β2

�
qp−1M

Δp
þ qM

Δ2

	�
;

0 ¼ 2
∂S
∂qm ¼ x

�
qm −m2

½1 − qM þ xðqM − qmÞ�2
− β2

�
qp−1m

Δp
þ qm
Δ2

	�
;

0 ¼ ∂S
∂m ¼ −m

1 − qM þ xðqM − qmÞ
þ β2

�
mp−1

Δp
þ m
Δ2

	
: ðE3Þ

The above 1RSB fixed-point equations can be used to
derive the de Almeida-Thouless instability of the RS
solution towards 1RSB. This stability condition, sometimes
called the replicon, also determines the overlap of the
marginal threshold states. The stability analysis is
performed by expanding Eqs. (E3) in small parameters qM −
qm ¼ ε ≪ 1 and investigating whether, under iterations,
such a small difference grows or decreases. This process
leads directly to the threshold condition on the overlap,

1

β2ð1 − qthÞ2 ¼ ðp − 1Þ ðq
thÞðp−2Þ
Δp

þ 1

Δ2

: ðE4Þ

This condition is then used in the derivation of the Langevin
threshold (15) in the main text.

From Eq. (E2), we also obtain the averaged energy

E ¼ ∂logZx

∂β
����
β¼1

¼ 1 − qpM þ xðqpM − qpmÞ þmp

pΔp

þ 1 − q2M þ xðq2M − q2mÞ þm2

2Δ2

: ðE5Þ

In particular, the threshold states are characterized by qM ¼
qth [fixed by Eq. (E4)], qm ¼ 0, andm ¼ 0. Imposing these
values, we can use the saddle-point equation for qM,
Eq. (E3), to fix the Parisi parameters x,

xðqthÞ ¼ 1

ð1 − qthÞ½ðqthÞp−1Δp
þ qth

Δ2
�
−

1

qth
þ 1: ðE6Þ

These pieces together give Eq. (12) in the main text.
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Having obtained the energy, we can consider β ¼ 1 fixed
for the rest of the analysis. We can observe that starting
from this expression, we can derive the RS free energy,
Eq. (B18), qM ¼ qm, or equivalently in the limit x → 1.
The low-magnetization solution to these equations gives
the complexity of the metastable branch of the posterior
measure, which is given by
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2
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The free parameter x allows us to tune the free energy of
the states for which we compute the complexity. Thus, we
can characterize the part of the phase diagram where an
exponential number of states is present.
To complete the 1RSB analysis, we compute the stability

of the 1RSB saddle-point solution for Q. This computation
is done analogously to the derivation of the replicon
condition (E4), analyzing the stability of the 1RSB towards
further replica symmetry breaking. Following Refs. [53,76],
we obtain two replicon eigenvalues given by
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We can analyze what happens to the landscape when we
fix Δp < 1, start from a large value of Δ2 < Δ2;dynðΔpÞ,
and decrease Δ2. In this case, for sufficiently high Δ2 and
large enough Δp, the system is in a paramagnetic phase,
and no glassy states are present. At the dynamical transition
line, instead, we find a positive complexity as plotted in
Fig. 20. At this point, the equilibrium states that dominate
the posterior measure are the so-called threshold states
for which the complexity is maximal. For those states, the
eigenvalue λII ¼ 0, which confirms that these states are
marginally stable [27]. Decreasing Δ2, one crosses the
information-theoretic phase transition where the relevant
metastable states that dominate the posterior measure have
zero complexity. This process corresponds to a freezing-
condensation-Kauzmann transition. Below the informa-
tion-theoretic phase transition, the thermodynamics of
the posterior measure is dominated by the state containing
the signal. However, one can neglect the high-magnetiza-
tion solution of the 1RSB equations to get the properties of
the metastable branch and compute the complexity of states
that have zero overlap with the signal. The complexity
curves as a function of the Parisi parameter x for decreasing
values of Δ2 are plotted in Fig. 20 for fixed Δp ¼ 0.5 and
several Δ2. The curves contain a stable 1RSB part and an
unstable one where λII is negative. The 1RSB line shown in
Fig. 14 is obtained by looking at when the states with
positive complexity and λII ¼ 0 disappear. This method
gives us the point where the 1RSB marginally stable states
disappear, and therefore, it is expected to be a lower bound
for the disappearance of glassiness in the phase diagram.
The important outcome of this analysis is that, for Δ2 < 1
but not sufficiently small, namely, in part of the AMP easy
phase, the replica analysis predicts the existence of 1RSB
marginally stable glassy states that may stop the Langevin
algorithm from relaxing towards the signal [25]; therefore,
it supports the existence of the Langevin hard phase.
This approach, however, does not quantitatively correctly

FIG. 20. Complexity as a function of the Parisi parameter x for p ¼ 3 on the line Δp ¼ 0.5. The solid line characterizes the stable part
of the complexity, while the dashed line is the unstable one.
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predict the extent on the Langevin hard phase for reasons
that remain obscure and should be investigated further.
Finally, in Fig. 21, we plot the complexity as a function

of the internal free energy of the metastable states for some
values of Δ2 and Δp.

2. Breakdown of the fluctuation-dissipation theorem
in the Langevin hard phase

When the Langevin algorithm is able to reach equilib-
rium, since it is the signal or the paramagnetic state, it
should satisfy the fluctuation-dissipation theorem (FDT),
according to which the response function is related to the
correlation function through Rðt; t0Þ ¼ −½∂Cðt; t0Þ=∂t�.
Furthermore, time translational invariance (TTI) should
arise, implying that both correlation and response functions
should be functions of only the time difference, meaning
that Rðt; t0Þ ¼ Rðt − t0Þ and Cðt; t0Þ ¼ Cðt − t0Þ; note that
all one-time quantities are constant in equilibrium. When
the dynamics is run in the glass phase, metastable states
may forbid equilibration. In this case, time translational
invariance is never reached at long times; it should be
reached only on exponential timescales in the system size,

and the dynamics displays aging violating at the same time
as the FDT relation. The analysis of the asymptotic aging
dynamics has been given by Cugliandolo and Kurchan in
Refs. [27,48] (see also Ref. [70] for a pedagogical review)
in the simplest spin-glass model (see also Ref. [77] for a
much more complex situation), where no signal is present.
The outcome of this work is that when the that dynamics
started from random initial conditions is run in the glass
phase, it drives the system to surf on the threshold states. In
the model analyzed in Ref. [27], these states correspond to
the 1RSB marginally stable glassy states that maximize the
complexity. In this section, we analyze the Cugliandolo-
Kurchan scenario by contrasting the numerical solution of
the dynamical equations with the replica analysis of the
complexity. According to Ref. [27], the long time Langevin
dynamics, but still for times that are not exponentially large
in the system size N, can be characterized by two time
regimes. For short time differences t − t0 ∼Oð1Þ and
t0 → ∞, the system obeys the FDT theorem and TTI; this
regime can be understood as a first fast local equilibration
in the nearest metastable state available. On a longer
timescale t − t0 → ∞ and t=t0 < ∞, the dynamics surfs
on threshold states, and FDT and TTI are both violated. In

(a) (b)

(c) (d)

FIG. 21. The stable part of the 1RSB complexity as a function of the free energy for p ¼ 3 and Δp ¼ 0.5.
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this time window, both the response and the correlation
functions become functions of λ ¼ hðtÞ=hðt0Þ, with hðtÞ an
arbitrary reparametrization of the time variable. The func-
tion hðtÞ must be a monotonously increasing function. The
asymptotic reparametrization invariance is a key property
of the dynamical equations [27]. By defining CðλÞ ¼
Cðt; t0Þ and RðλÞ ¼ tRðt; t0Þ, the Cugliandolo-Kurchan
solution implies that, in this aging regime, the FDT relation
can be generalized to

RðλÞ ¼ x C0ðλÞ; ðE10Þ

with x an effective FDT ratio that controls how much the
FDT is violated. In the scenario of Ref. [27], the value of x
coincides with the 1RSB Parisi parameter that corresponds
to threshold states computed within the replica approach. In
order to test this picture, we follow Cugliandolo and
Kurchan [78], and we plot the integrated response
F ðt; t0Þ ¼ −

R
t
t0 Rðt; t00Þdt00 as a function of Cðt; t0Þ in a

parametric way. This process is given in Fig. 22.
If FDT holds at all timescales, one should see a straight

line with slope −1. Instead, what we see in the Langevin
hard phase is that for large values of t0, the curves approach
two straight lines asymptotically for t0 ≫ 1. For high values
of C, meaning for short time differences t − t0 ∼Oð1Þ,
the slope of the straight line is −1, which means that

F ¼ 1 − C, as implied by the short time FDT relation. On
longer timescales, FDT is violated, confirming the glassi-
ness of the Langevin hard phase. By doing a linear fit, we
can use the data plotted in Fig. 22 to estimate the FDT ratio
x appearing in Eq. (E10). This estimate can be compared
with the Parisi parameter x for which we have marginally
stable 1RSB states. Overall, we find very good agreement
(data coming from the fit are reported in the caption of
Fig. 22). The small discrepancy between the two values of x
can be either due to the numerical accuracy in solving
the dynamical equations or the possibility that the 1RSB
threshold is not exactly the one that characterizes the long
time dynamics. Further investigations are needed to clarify
this point. Finally, according to Ref. [27], the value of C at
which the two straight lines cross should coincide with the
value of qM computed for the threshold states within the
1RSB solution. Again, we find very good agreement.

APPENDIX F: FREE-ENERGY HESSIAN, BBP
TRANSITION, AND LANGEVIN THRESHOLD

In the following, we present the derivation and the
analysis of the Langevin threshold based on the study of
the free-energy Hessian. The starting point of the analysis is
the so-called TAP free energy, i.e., the free energy as a
function of the local magnetizations. The TAP free energy
was introduced in the early days of spin-glass theory [44,50]

FIG. 22. Left panel: Parametric plot of the integrated response function with respect to the correlation function for p ¼ 3, Δ2 ¼ 0.8,
and Δp ¼ 0.2. The different lines represent different waiting times, t0. The black dashed line corresponds to the FDT prediction x ¼ 1.
The vertical dotted line is the point where we observe a kink, which we denote by C ¼ q̂EA and should be equal to the saddle-point value
of qM as extracted from the 1RSB threshold states in the replica computation [27]: q̂EA ¼ 0.633 and qM ¼ 0.638. For C smaller than
qEA, the FDT is violated and is replaced by a generalized version as in Eq. (E10). We can obtain the value of the FDT ratio from a fit of
the slope of the asymptotic curves for C < q̂EA. We obtain x̂ ¼ 0.397, which should be compared with the Parisi parameter that
corresponds to 1RSB marginally stable states obtained from the replica computation, that is, x ¼ 0.408. Right panel: Parametric plot of
the integrated response as a function of the correlation for p ¼ 3 and Δ2 ¼ 1.4 and Δp ¼ 0.2. In this case, the value of the FDT ratio
extracted from fitting the data is x̂ ¼ 0.397, to be compared with the value of the Parisi parameter for the 1RSB threshold states, that is,
x ¼ 0.408. At the same time, data give q̂EA ¼ 0.633, while the replica computation gives qM ¼ 0.638.
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and is now receiving a lot of attention in the mathematical
community; see, e.g., Ref. [51]. A straightforward gener-
alization of the results of Ref. [79] allows one to obtain the
TAP free energy for the model considered in this work, i.e.,
for the Hamiltonian (4):

FðfmigÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp − 1Þ!p

ΔpNðp−1Þ=2
X

i1<…<ip

Ti1…ipmi1…mip

−
1

Δ2

ffiffiffiffi
N

p
X
i<j

Yijmimj þ fðqÞN;

where we set the temperature to 1, q ¼Pi m
2
i =N, and fðqÞ

reads

fðqÞ ¼ −
1

2
logð1 − qÞ − 1

2pΔp
½1þ ðp − 1Þqp − pqp−1�

−
1

4Δ2

½1þ q2 − 2q�:

The so-called TAP states are local minima of FðfmigÞ. We
are interested in the free-energy Hessian evaluated at the
TAP states having zero overlap with the signal:

∂2F
∂mi∂mj

¼ Gij þ δijf0ðqÞ −
1

Δ2

x�i x
�
j

N
þ f00ðqÞmimj

N
; ðF1Þ

where the matrix Gij is defined as

Gij ¼ −
1

Δ2

ffiffiffiffi
N

p ξij

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp − 1Þ!p

ΔpNðp−1Þ=2ðp − 2Þ!
X

i1;…;ip−2

ξiji1…ip−2mi1…mip−2 :

As shown originally in the spin-glass literature [80], and
recently put on a firmer basis by the Kac-Rice method
[22,32], the matrix Gij is statistically equivalent to a random
matrix belonging to the Gaussian orthogonal ensemble
(GOE). In our case, the corresponding GOE matrix has
elements that are i.i.d. Gaussian random variables with mean
zero and variance σ2F=N, where

σ2FðqÞ ¼
ðp − 1Þqp−2

Δp
þ 1

Δ2

:

Neglecting for the moment the last two terms in Eq. (14), one
finds that the free-energy Hessian is the sum of a GOE
matrix and the identity multiplied by f0ðqÞ. The correspond-
ing density of eigenvalues is therefore the Wigner semicircle
with support ½−2σFðqÞþf0ðqÞ;2σFðqÞþf0ðqÞ�. This result
is valid for any TAP state. The threshold states, which are the
ones trapping the Langevin dynamics, are characterized by a
vanishing fraction of zero modes; i.e., the left edge of the

support of the Wigner semicircle is zero. Their overlap is
therefore fixed by the equation

2σFðqthÞ ¼ f0ðqthÞ →
1

1 − qth
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − 1Þqp−2th

Δp
þ 1

Δ2

s
:

ðF2Þ

Let us consider now the role of the last two terms in Eq. (14).
Both are rank-one perturbations and hence can lead to a BBP
transition [15], i.e., an eigenvalue that pops out of theWigner
semicircle with an eigenvector having a finite overlap in the
direction of the perturbation. It can be easily checked that
f00ðqthÞ ≥ 0; therefore, the last term cannot lead to any
negative eigenvalue and does not play any role in determin-
ing the stability of the threshold states. It is the other
term that is responsible for the instability in the direction
of the signal. In fact, it is the contribution due to the spike;
it becomes larger when the signal-to-noise ratio, 1=Δ2,
increases.
The condition for the BBP transition for a GOE matrix

having elements with variance σ2F=N, which is perturbed by
a rank-one perturbation of strength 1=Δ2, is ð1=Δ2Þ ¼ σF.
The equation for the Langevin threshold is

1

Δ2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − 1Þqp−2th

Δp
þ 1

Δ2

s
:

Together with Eq. (F2), this equation leads to Eq. (15)
presented in the main text and implies qth ¼ 1 − Δ�

2 at the
Langevin threshold.
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