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Abstract
Let X be a metric space with a doubling measure satisfying μ(B) � rnB for any ball
B with any radius rB > 0. Let L be a non negative selfadjoint operator on L2(X). We
assume that e−t L satisfies a Gaussian upper bound and that the flow eit L satisfies a
typical L1 − L∞ dispersive estimate of the form

‖eit L‖L1→L∞ � |t |− n
2 .

Then we prove a similar L1 − L∞ dispersive estimate for a general class of flows
eitφ(L), with φ(r) of power type near 0 and near ∞. In the case of fractional powers
φ(L) = Lν , ν ∈ (0, 1), we deduce dispersive estimates for eit L

ν
with data in Sobolev,

Besov or Hardy spaces H p
L with p ∈ (0, 1], associated to the operator L .
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1 Introduction

Let (X , d, μ) be a metric space endowed with a nonnegative Borel measure μ satis-
fying the doubling condition: there exists a constant C > 0 such that

μ(B(x, 2r)) ≤ Cμ(B(x, r)) (1)

for all x ∈ X , r > 0 and all balls B(x, r) := {y ∈ X : d(x, y) < r}. In this paper we
shall assume in addition that

μ(B(x, r)) � rn (2)

for all x ∈ X and r > 0 and for some n ≥ 1.
We note that the doubling property (1) yields a constant D > 0 so that

μ(B(x, λr)) ≤ CλDμ(B(x, r)), (3)

for all λ ≥ 1, x ∈ X and r > 0; and that

μ(B(x, r)) ≤ C

(
1 + d(x, y)

r

)ñ
μ(B(y, r)), (4)

for all x, y ∈ X and r > 0.
The main question discussed here is the following. Suppose a selfadjoint operator

L on L2(X) satisfies an L1 − L∞ dispersive estimate of the form

‖eit L‖L1→L∞ � |t |−a . (5)

This is frequently the case for many important operators, notably the Laplacian L =
−� and its potential perturbations. Under this assumption, is it possible to deduce
similar estimates for the more general class of flows eitφ(L):

‖ψ(L)eitφ(L)‖L1→L∞ � |t |−b? (6)
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For instance, if we choose φ(L) = √
L , we are asking if a dispersive estimate for

the wave flow eit
√
L can be deduced directly from a corresponding estimate for the

Schrödinger flow eit L . The possibility of such a reduction is suggested by a suitable
subordination formula connecting the two flows (see [33]); the formula was applied
in [15] to the Hermite operator and the twisted Laplacian. Our main goal here is to
extend this idea to more general functions φ(L) with power–like behaviour near 0
and ∞, and to prove sharper estimates in terms of Sobolev, Hardy or Besov norms,
appropriately defined. Of course, the interest in dispersive estimates is justified by
their crucial role in a large number of important applications to linear and nonlinear
evolution equations and in harmonic analysis.

We shall make the following assumptions on the selfadjoint nonnegative operator
L:

(A1) The Schrödinger flow eit L satisfies a dispersive estimate:

‖eit L‖L1→L∞ � t−n/2, t ∈ (0, T0)

where T0 ∈ (0,+∞].
(A2) The kernel pt (x, y) of e−t L admits a Gaussian upper bound: ∃C, c > 0 such

that for all x, y ∈ X and t > 0,

|pt (x, y)| ≤ C

μ(B(x,
√
t))

exp

(
−d(x, y)2

ct

)
.

Under (A1)–(A2), we can prove rather sharp pointwise decay estimates for the flow
eitφ(L), provided φ(r) ∼ rm1 near 0 and φ(r) ∼ rm2 near ∞, m1,m2 > 0 (see the
precise assumptions (H1), (H2) at the beginning of Sect. 3). Our general estimates for
eitφ(L) are given in Theorem 3.3 for the low frequency regime and Theorem 3.4 for
the high frequency regime.

We illustrate our results in the special, and particularly interesting case of fractional
powers φ(L) = Lν , ν ∈ (0, 1) (see Theorems 3.7 and 3.9):

Theorem 1.1 Assume L satisfies (A1) and (A2), and let ν ∈ (0, 1). Then we have:

(i) For s > (1 − ν)n + ν,

‖eit Lν

f ‖L∞ � |t |− n−1
2 ‖(I + L)s/2 f ‖L1 , |t | < T0.

(ii) For p ∈ (0, 1) and s = n(1/p − ν) + ν,

‖eit Lν

f ‖L∞ � |t |− n−1
2 ‖Ls/2 f ‖H p

L
, |t | < T0.

(iii) Moreover, for s = (1 − ν)n + ν we have

∥∥∥eit Lν

f
∥∥∥
L∞ � |t |− n−1

2 ‖ f ‖Ḃs,L
1,1

.
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Here H p
L is the Hardy space associated to L , which can be defined via square

functions or, equivalently, by atomic decompositions; see Sect. 2.2 for details. To our
knowledge, the use of Hardy spaces with p < 1 is novel in this context (recall however
that Beals [5] proved dispersive estimates for H1 data). The spaces Ḃs,L

1,1 associated
to L are a generalization of classical Besov spaces to the setting of metric measure
spaces, also new to our knowledge. Their construction and some properties are given
at the end of Sect. 3. Note in particular that in some cases (e.g., L = −� + |x |2) we
can prove that the new Besov spaces contain properly the standard ones with the same
indices.

The decay rate ∼ |t |− n−1
2 appearing in the Theorem is independent of ν and may

be surprising at first. However it is easy to check that one can not expect a better
decay for general L; see Sect. 3.2 for a discussion of this phenomenon and related
counterexamples. Note however that for L = −� on L2(Rn) estimate (iii) reduces to

‖eit(−�)1/2‖L∞ � |t |− n−1
2 ‖ f ‖

Ḃ
n+1
2

1,1

which is known to be sharp for the wave flow.
The plan of the paper is the following. In Sect. 2 we prove some preliminary

kernel estimates and recall the definition of Hardy spaces associated to L , giving
an equivalent atomic characterization. In Sect. 3 we prove the crucial subordination
formulas, extending the earlier results in [33]; we then apply the formulas to prove
general dispersive estimates for the flows eitφ(L). We also sharpen our results in the
case of fractional powers, and in particular we define Besov spaces associated to the
operator L . In the final Sect. 4 we examine some applications to concrete operators,
namely Hermite and Laguerre operators and the twisted Laplacian, and in particular
we improve both the rate of decay and the loss of derivatives compared with the similar
estimates in [15].

2 Preliminary results

2.1 Kernel estimates

Let L be a nonnegative, self-adjoint operator on L2(X) satisfying (A2). Denote by
EL(λ) the spectral decomposition of L . Then by spectral theory, for any bounded
Borel function F : [0,∞) → C we can define

F(L) =
∫ ∞

0
F(λ)dEL(λ)

as a bounded operator on L2(X).
We have the following useful lemma.

Lemma 2.1 (a) Let ϕ ∈ S (R) be an even function. Then for any N > 0 there exists
C such that
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|K
ϕ(t

√
L)

(x, y)| ≤ C

μ(B(x, t)) + μ(B(y, t))

(
1 + d(x, y)

t

)−N

, (7)

for all t > 0 and x, y ∈ X.
(b) Let ϕ ∈ S (R) be an even function. Then for any 1 ≤ p ≤ q ≤ ∞ we have

‖ϕ(t
√
L)‖L p→Lq � t−( np − n

q )
, t > 0. (8)

Estimate (7) was proved in [9, Lemma 2.3] for X = R
n . We now give a new proof for

the general case. To do this, we need the following estimates.

Lemma 2.2 Let λ > 0. Then we have:

(a) For any N > 0 and s = N + D + 1/2, there exits C = C(N ) so that

|F(λ
√
L)(x, y)| ≤ C√

μ(B(x, λ))μ(B(y, λ))

(
1 + d(x, y)

λ

)−N

‖F‖W 2
s

(9)

for all x, y ∈ R
n and all Borel functions supported in [1/2, 2].

(b) For any N > 0 and s = 2(N + D + 1) there exits C = C(N ) so that

|F(λ
√
L)(x, y)|≤ C√

μ(B(x, λ))μ(B(y, λ))

(
1+ d(x, y)

λ

)−N

‖F‖W∞
s

(10)

for all smooth functions F supported in [0, 2] with F (2ν+1)(0) = 0 for all ν ∈ N.

Proof (a) Set G(x) = F(
√
x)ex . Then we have

G(λ2L)e−λ2L = 1

2π

∫
R

e−λ2(1−iτ)L Ĝ(τ )dτ

where Ĝ is the Fourier transform of G.
This, along with the fact that F(λ

√
L) = G(λ2L)e−λ2L , implies

KF(λ
√
L)

(x, y) = 1

2π

∫
R

Ĝ(τ )pλ2(1−iτ)(x, y)dτ. (11)

Recalling [10, Lemma 4.1] we have

|pz(x, y)| ≤ C[
μ(B(x,

√
|z|

cos θ
))μ(B(y,

√
|z|

cos θ
))

]1/2

× exp

(
−c

d(x, y)2

|z| cos θ

)
1

(cos θ)D

for all x, y ∈ X and z ∈ C+ = {z ∈ C : �z > 0} where θ = arg z.
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It follows that

|pλ2(1−iτ)(x, y)| ≤ C[
μ(B(x, λ

√
1 + τ 2))μ(B(y, λ

√
1 + τ 2))

]1/2

× exp

[
−c

d(x, y)2

λ2(1 + τ 2)

]
(1 + τ 2)D/2

≤ C

[μ(B(x, λ))μ(B(y, λ))]1/2
exp

[
−c

d(x, y)2

λ2(1 + τ 2)

]
(1 + |τ |)D.

This, along with (11), implies that

|F(λ
√
L)(x, y)| �

∫
R

|Ĝ(τ )| 1√
μ(B(x, λ))μ(B(y, λ))

× exp

(
−c

d(x, y)2

λ2(1 + τ 2)

)
(1 + |τ |)Ddτ

� 1√
μ(B(x, λ))μ(B(y, λ))

(
1 + d(x, y)

λ

)−N

∫
R

|Ĝ(τ )|(1 + |τ |)N+Ddτ

� 1√
μ(B(x, λ))μ(B(y, λ))

(
1 + d(x, y)

λ

)−N

×
(∫

R

|Ĝ(τ )|(1 + |τ |2)N+D+1dτ

)1/2 (∫
R

(1 + |τ |2)−1dτ

)1/2

� 1√
μ(B(x, λ))μ(B(y, λ))

(
1 + d(x, y)

λ

)−N

‖G‖W 2
s

where s = N + D + 1.
Since supp F ⊂ [1/2, 2], ‖G‖W 2

s
∼ ‖F‖W 2

s
. Hence, we obtain

|F(λ
√
L)(x, y)| � 1√

μ(B(x, λ))μ(B(y, λ))

(
1 + d(x, y)

λ

)−N

‖F‖W 2
s
.

(b) Since F can be extended to be an even function, we can write F(x) = f (x2)
for all x ≥ 0 and ‖ f ‖W 2

s
� ‖F‖W∞

2s
for every s > 0. See [40]. At this stage, arguing

similarly to (a) we obtain (10). 
�
We are ready to prove Lemma 2.1.

Proof of Lemma 2.1 (a) Let ψ0 ∈ C∞(R) supported in [0, 2] such that ψ0 = 0 on
[0, 1] and 0 ≤ ψ0 ≤ 1. Set ψ(λ) = ψ0(λ) − ψ0(2λ) and ψ j (λ) = ψ(2− jλ) for
j ≥ 1. Then we have
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∑
j≥0

ψ j (λ) = 1, λ > 0.

Hence,

ϕ(t
√
L) =

∑
j≥0

ψ j (t
√
L)ϕ(t

√
L). (12)

By (10) we have

|ψ0(t
√
L)ϕ(t

√
L)(x, y)| ≤ 1√

μ(B(x, λ))μ(B(y, λ))

(
1 + d(x, y)

λ

)−N

. (13)

Since suppψ ⊂ [1/2, 2], using (9) and (3), we have, for j ≥ 1,

|ψ j (t
√
L)ϕ(t

√
L)(x, y)| ≤ C√

μ(B(x, 2− j t))μ(B(y, 2− j t))

×
(
1 + d(x, y)

2− j t

)−N

‖h j‖W 2
s

≤ C2 j D

√
μ(B(x, t))μ(B(y, t))

(
1 + d(x, y)

t

)−N

‖h j‖W 2
s

where s = N + D + 1 and h j (λ) = ψ(λ)ϕ(2 jλ).
Since ϕ ∈ S (R), ‖h j‖W 2

s
≤ C2− j(D+1). As a consequence,

|ψ j (t
√
L)ϕ(t

√
L)(x, y)| ≤ C2− j

√
μ(B(x, t))μ(B(y, t))

(
1 + d(x, y)

t

)−N

.

This, along with (12) and (13), implies that for each N > 0 there exists C such that

|ϕ(t
√
L)(x, y)| ≤ C√

μ(B(x, t))μ(B(y, t))

(
1 + d(x, y)

t

)−N

for all x, y ∈ X and t > 0.
Applying (4), we will obtain (7) as desired. This completes the proof of (a).

(b) From the estimate in part (a) and (2) we have

‖ϕ(t
√
L)‖L1→L∞ � t−n and ‖ϕ(t

√
L)‖L1→L1 � 1

for all t > 0.
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By interpolating, we have

‖ϕ(t
√
L)‖L1→Lq � t−(n− n

q )

for all t > 0 and 1 ≤ q ≤ ∞.
On the other hand, from the estimate in part (a) again we have

‖ϕ(t
√
L)‖Lq→Lq � 1.

The last two estimates, in combination with interpolation, imply (8) as desired. 
�

2.2 Hardy spaces associated to operators

Wefirst recall from [25,27] the definition of theHardy spaces associated to an operator.
Let L be a nonnegative self-adjoint operator on L2(X) satisfying the Gaussian upper
bound (A2). Let 0 < p ≤ 1. Then theHardy space H p

L (X) is defined as the completion
of

{ f ∈ L2(X) : SL f ∈ L p(X)}

under the norm ‖ f ‖H p
L (X) = ‖SL f ‖L p , where the square function SL is defined as

SL f (x) =
(∫ ∞

0

∫
d(x,y)<t

|t2Le−t2L f (y)|2 dμ(y)dt

μ(B(x, t))

)1/2
.

Definition 2.3 (Molecules for L) Let ε > 0, 0 < p ≤ 1 and M ∈ N. A function m(x)
is called a (p, 2, M, L, ε)-molecule associated to a ball B ⊂ X of radius rB if there
exists a function b ∈ D(LM ) such that

(i) m = LMb;
(ii) ‖Lkb‖L2(S j (B)) ≤ 2− jεr2(M−k)

B μ(2 j B)1/2−1/p for all k = 0, 1, . . . , M and j =
0, 1, 2 . . .

where S j (B) = 2 j\2 j−1B as j ≥ 1 and S0(B) = B.

The definition of atoms is taken from [25,27] which requires (ii)-(iii). Assumption
(ii) in particular can be thought of as a mild locality condition on the operator L .

Definition 2.4 (Hardy spaces associated to L) Given ε > 0, 0 < p ≤ 1 and M ∈ N,
we say that f = ∑ λ jm j is a molecule (p, 2, M, L, ε)-representation if {λ j }∞j=0 ∈
�p, each m j is a (p, 2, M, L, ε)-atom, and the sum converges in L2(X). The space
H p
L,mol,M,ε(X) is then defined as the completion of

{
f ∈ L2(X) : f has a molecule (p, 2, M, L, ε)-representation

}
,
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with the norm given by

‖ f ‖p
H p
L,mol,M,ε (X)

= inf
{∑

|λ j |p : f =
∑

λ jm j is a molecule (p, 2, M, L, ε)-representation
}

.

Theorem 2.5 [17] Let ε > 0, p ∈ (0, 1] and M >
n(2−p)

4p . Then the Hardy spaces

H p
L,mol,M,ε(X) and H p

L (X) coincide and have equivalent norms.

We note that if L = −� on L2(Rn), then H p
L (Rn) reduces to the standard Hardy

space H p(Rn) on R
n for p ∈ (0, 1]. In general, depending on the choice of the

operator L , it may happen that either H p(Rn) ⊂ H p
L (Rn), or H p

L (Rn) ⊂ H p(Rn), or
H p(Rn) �= H p

L (Rn) without inclusions. See for example [16,18]. We examine now
in more detail the case of the Hermite operator L = −� + |x |2 on R

n , for which the
Hardy spaces can be characterized via a new atomic decompositions as follows.

Let ρ(x) = min{1, |x |−1} for x ∈ R
n . Let p ∈ (0, 1]. A function a is called a

(p,∞, ρ)-atom associated to the ball B(x0, r) if

(i) supp a ⊂ B(x0, r);
(ii) ‖a‖L∞ ≤ |B(x0, r)|−1/p;

(iii)
∫

xαa(x)dx = 0 for all |α| ≤ �n(1/p − 1)� if r < ρ(x0)/4.

The Hardy space H p
at,ρ(Rn) is then defined as the set of all functions f which can be

expressed in the form f =∑ j λ j a j where (λ j ) j ∈ �p and a j are (p,∞, ρ)-atoms.
Its norm is given by

‖ f ‖p
H p
at,ρ (Rn)

:= inf

⎧⎨
⎩
∑
j

|λ j |p : f =
∑
j

λ j a j

⎫⎬
⎭

where the infimum is taken over all possible atomic decompositions of f . From the
definition, it is obvious that H p(Rn) � H p

at,ρ(Rn) for all p ∈ (0, 1]; more importantly,
we have H1

at,ρ(Rn) ≡ H1
L(Rn) (see for instance [20]), thus the Hardy space associated

to the Hermite operator is larger than the standard one.
We recall an important result in [17, Proposition 3.27] which plays an important

role in the sequel.

Proposition 2.6 Let ε > 0, p ∈ (0, 1] and M >
n(2−p)

4p . Suppose that f =∑N
j=1 λ j a j

for some N ∈ N, where a′
j s are (p, 2, 2M, L, ε) molecules and

∑N
j=1 |λ j |p < ∞.

Then there exists a representation f =∑K
j=1 γ jm j for some K ∈ N where m′

j s are
(p, 2, M, L, σ ) molecules for some σ > 0 such that

K∑
j=1

|γ j |p ∼ ‖ f ‖H p
L (X).
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3 Dispersive estimates for eit�(L)

3.1 Subordination formulas and dispersive estimates for eit�(L)

Let φ : R
+ → R be a smooth function. We denote by (H1) and (H2) the following

assumptions on φ:

(H1) There exists 0 < m1 ≤ 1 such that

φ′(r) ∼ rm1−1 and |φ′′(r)| � rm1−2, r ≥ 1.

(H2) There exists m2 > 0 such that

φ′(r) ∼ rm2−1 and |φ′′(r)| � rm2−2, 0 < r < 1.

The following two results are crucial for the rest of the paper, and are strongly
inspired by ideas from [33].

Theorem 3.1 Assume φ satisfies (H1) and g is a C∞ function supported in [1/2, 2].
Then there exist c0 > 1, and functions and ρt (x, λ) and at (s, λ) defined on R

2 for
each t satisfying

supp ρt (·, λ) ⊂ [λ2/5, 5λ2] and |ρt (x, λ)| ≤ C(k, ‖g‖Ck , φ)(tλ2m1)−k, k ≥ 0,

(14)

and

supp at (·, λ) ⊂ [2c−1
0 , 2c0] and |at (s, λ)| ≤ C(‖g‖C1 , φ), (15)

so that

g(λ−1√x)eitφ(x) = ρt (x, λ) +
√
tλ2m1η(λ−2x)

∫
eixtλ

2m1−2sat (s, λ)ds (16)

for all x, t > 0 and λ ≥ 1, where η ∈ C∞(R) is supported in [1/5, 5] and η ≡ 1 on
[1/4, 4].

Proof Let k ∈ Z and t > 0. For λ ≥ 1 we denote by �λ(ξ) the Fourier transform of
g(λ−1√x)eitφ(x), i.e.,

�λ(ξ) =
∫

g(λ−1√x)eitφ(x)e−i xξdx

= λ2
∫

g(
√
u)ei[tφ(λ2u)−λ2uξ ]du.

(17)
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Let τ ∈ C∞(R) supported in [2c−1
0 , 2c0] with τ ≡ 1 in [c−1

0 , c0] where c0 will be
determined later. Then by the Fourier inversion formula we have

g(λ−1√x)eitφ(x) = η(λ−2x)
∫ (

1 − τ

(
ξ

tλ2m1−2

))
�λ(ξ)eiξ xdξ

+ η(λ−2x)
∫

τ

(
ξ

tλ2m1−2

)
�λ(ξ)eiξ xdξ

=: ρt (x, λ) + At (x, λ)

where η ∈ C∞(R) is supported in [1/5, 5] and η ≡ 1 on [1/4, 4].
Observe that

∂u[tφ(λ2u) − λ2uξ ] = λ2tφ′(λ2u) − λ2ξ

We note that the integrand in the expression for ρt (x, λ) is supported where either
ξ < c−1

0 tλ2m1−2 or ξ > c0tλ2m1−2. In this situation, by (H1) we can choose c0 large
enough so that

|∂u[tφ(λ2u) − λ2uξ ]| � (λ2|ξ | + tλ2m1)

Hence, by integration by parts in (17), we have for these ξ that

|�λ(ξ)| ≤ Ck,g,φλ2(λ2|ξ | + tλ2m1)−k, ∀k ≥ 0, λ ≥ 1.

This implies

|ρt (x, λ)| ≤ Ck,g,φ(tλ2m1)−k, k ≥ 0,

which proves (14).
We now estimate the term At (x, λ). By a change of variables, we have

At (x, λ) = tλ2m1−2η(λ−2x)
∫

τ(s)�λ(tλ
2m1−2s)eixtλ

2m1−2sds

= tλ2m1η(λ−2x)
∫

τ(s)eixtλ
2m1−2s

∫
g(

√
u)ei[tφ(λ2u)−tλ2m1us]duds

=
√
tλ2m1η(λ−2x)

∫
eixtλ

2m1−2sat (s, λ)ds

where

at (s, λ) =
√
tλ2m1

∫
τ(s)g(

√
u)ei[tφ(λ2u)−tλ2m1us]du.
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It is clear that supp a(·, λ) ⊂ [2c−1
0 , 2c0]. Moreover, on the support of g we have

1/4 < u < 4. In this situation, by (H1) we have

∣∣∣∣ ∂2

∂u2
[tφ(λ2u) − tλ2m1us]

∣∣∣∣ � tλ2m1 .

Hence, by van der Corput’s Lemma in [38] we obtain

|at (x, λ)| � 1.

This implies |a(s, λ)| � 1 for all s ∈ [2c−1
0 , 2c0] and λ ≥ 1. This proves (15). 
�

In a similar way we have the following result:

Theorem 3.2 Assume φ satisfies (H2) and g is a C∞ function supported in [1/2, 2].
Then there exist c0 > 1, and functions and ρt (x, λ) and at (s, λ) defined on R

2 for
each t satisfying

|ρt (x, λ)| ≤ C(k, ‖g‖Ck , φ)(tλ2m2)−k, k ≥ 0, (18)

and

supp at (·, λ) ⊂ [2c−1
0 , 2c0] and |at (s, λ)| ≤ C(‖g‖C1 , φ). (19)

so that

g(λ−1√x)eitφ(x) = ρt (x, λ) +
√
tλ2m2η(λ−2x)

∫
eixtλ

2m2−2sat (s, λ)ds

for all x, t > 0 and 0 < λ < 1, where η ∈ C∞(R) is supported in [5, 1/5] and η ≡ 1
on [1/4, 4].
Proof The proof of this theorem is similar to that of Theorem 3.1 and we omit details.


�
We now apply the previous Theorems to obtain a high frequency (resp. low fre-

quency) dispersive estimate for the flow eitφ(L):

Theorem 3.3 Assume L satisfies (A1) and (A2), φ satisfies (H1), and ψ ∈ C∞(R)

is supported in [1/2, 2]. Then we have

|ψ(λ−1
√
L)eitφ(L) f | � |t |− n−1

2 λ(1−m1)n+m1‖ f ‖L1 , λ ≥ 1, |t | < T0. (20)

Proof From Theorem 3.1 and spectral theory, there exist functions ρ, a and η as in
Theorem 3.1 so that

ψ(λ−1
√
L)eitφ(L) = ρt (L, λ) +

√
tλ2m1η(λ−2L)

∫
eitλ

2m1−2sLat (s, λ)ds

= ρt (L, λ) + At,λ(L).
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We first estimate the term related to At,λ(L). By using (A1), (A2) and (15) we have

‖At,λ(L)‖L1→L∞ �
√

λ2m1 t[λ2m1−2t]−n/2
∫ 2c0

2c−1
0

s−n/2|at (s, λ)|ds

� t−
n−1
2 λ(1−m1)n+m1 .

We now take care of the term ρt (L, λ). Let ϕ ∈ C∞(R) with supp ϕ ⊂ [1/6, 6]
and ϕ ≡ 1 in [1/5, 5]. Since ρt (·, λ) is supported in [λ2/5, 5λ2], we have

ρt (L, λ) = ϕ(λ−1
√
L)ρt (L, λ)ϕ(λ−1

√
L).

Therefore,

‖ρt (L, λ)‖L1→L∞ ≤ ‖ϕ(λ−1
√
L)‖L1→L2‖ρt (L, λ)‖L2→L2‖ϕ(λ−1

√
L)‖L2→L∞ .

Using (8) we have

‖ϕ(λ−1
√
L)‖L1→L2 � λn/2, and ‖ϕ(λ−1

√
L)‖L2→L∞ � λn/2. (21)

By (14) we deduce

‖ρt (L, λ)‖L2→L2 ≤ ‖ρt (·, λ)‖L∞ � (λ2m1 t)−
n−1
2 .

Therefore,

‖ρt (L, λ)‖L1→L∞ � λn(λ2m1 t)−
n−1
2 = t−

n−1
2 λ(1−m1)n+m1 .

Summing up, we have proved that

‖ψ(λ−1
√
L)eitφ(L)‖L1→L∞ � t−

n−1
2 λ(1−m1)n+m1, λ ≥ 1. (22)

This completes our proof. 
�
For the low frequency estimate we have:

Theorem 3.4 Assume L satisfies (A1) and (A2), φ satisfies (H2), and ψ ∈ C∞(R)

is supported in [1/2, 2]. Then we have

|ψ(λ−1
√
L)eitφ(L) f | � |t |− n−1

2 λ(1−m2)n+m2‖ f ‖L1 , 0 < λ < 1, |t | < T0. (23)

Proof If T0 = ∞, then we can argue similarly to the proof of Theorem 3.3. It remains
to consider the case T0 < ∞. Arguing as for (21) we obtain

|ψ(λ−1
√
L)eitφ(L) f | � λn‖ f ‖L1 .
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Now we note that

λn � |t |− n−1
2 λ(1−m2)n+m2 ⇐⇒ |t |λ2m2 � 1

and indeed we have

|t |λ2m2 ≤ T0 · 1 = T0

which concludes the proof. 
�
Combining Theorems 3.3 and 3.4 we conclude:

Corollary 3.5 Let L satisfy (A1) and (A2) and let φ satisfy (H1) and (H2) with
m1 = m2 = m. Assume that ψ ∈ C∞(R) supported in [1/2, 2] then we have

|ψ(λ−1
√
L)eitφ(L) f | � |t |− n−1

2 λ(1−m)n+m‖ f ‖L1 , λ > 0, |t | < T0. (24)

3.2 A case study: dispersive estimates for fractional Schrödinger semigroups

We consider in more detail the following special case of Corollary 3.5:

Proposition 3.6 Let L satisfy (A1) and (A2), and let ν ∈ (0, 1). Assume that ψ ∈
C∞(R) is supported in [1/2, 2]. Then we have

|ψ(λ−1
√
L)eit L

ν

f | � |t |− n−1
2 λ(1−ν)n+ν‖ f ‖L1 , λ > 0, |t | < T0. (25)

Readers familiar with the stationary phase method may suspect that the estimate (25)
is not sharp. Indeed, for the family of flows eit(−�)ν the decay rate is governed by the
phase

φ(t, x, ξ) = x · ξ + t |ξ |2ν,

more precisely by the curvature of the surface ∇ξφ = 0. In the case ν = 1/2, cor-
responding to the wave equation, the surface is degenerate and one gets a decay rate

∼ |t |− n−1
2 , while for ν �= 1/2 one expects better decay, at least for suitable data. How-

ever, it is not difficult to check that for nonhomogeneous phases this simple picture
is wrong: for arbitrary ν ∈ (0, 1), one can construct operators L such that eit L has

a decay rate ∼ t− n
2 while eit L

ν
decays like ∼ t− n−1

2 at best in general. Thus, in this
sense, our result is sharp.

We show the explicit construction for ν = 1/3. Define a piecewise C1 function
a0 : [0,+∞) → [0,+∞) as follows:

a0(s) =
⎧⎨
⎩
s2/2 if 0 ≤ s ≤ 1/2,
s3 if 1/2 ≤ s ≤ 1,
3s2 − 2 if s ≥ 1

so that a′
0(s) =

⎧⎪⎨
⎪⎩
s if 0 ≤ s ≤ 1/2,

3s2 if 1/2 ≤ s ≤ 1,

6s if s ≥ 1.
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Note that a′ is strictly increasing with (positive) jumps at s = 1/2 and s = 1, and that
for all s �= 1/2, 1 we have

s ≤ a′
0(s) ≤ 6s, 1 ≤ a′′

0 (s) ≤ 6.

We can obviously modify a0 in two small neighbourhoods of the jump points and
obtain a new C∞ function a : [0,+∞) → [0,+∞) such that for all s ≥ 0

s ≤ a′(s) ≤ Ks, 1 ≤ a′′(s) ≤ K

for some positive constant K > 6, and in addition

a(s) =
⎧⎨
⎩
s2/2 if 0 ≤ s ≤ 1/2 − δ,

s3 if 1/2 + δ ≤ s ≤ 1 − δ,

3s2 − 2 if s ≥ 1 + δ

δ = 1/100.

Note that we have also the symbol type property

|a( j)(s)| � s2− j , j = 0, 1, 2, . . . .

We then define the oscillatory integral with a radial phase

I (t, x) =
∫

ei(x ·ξ+tφ(ξ))ψ(ξ)dξ with φ(ξ) = a(|ξ |), t ∈ R, x ∈ R
n

where ψ ∈ C∞
c (Rn) is a fixed test function; note that ψ satisfies trivially the symbol

property

|∂αψ(ξ)| � |ξ |−|α|.

By the stationary phase method one gets the uniform estimate

|I (t, x)| ≤ C |t |− n
2 , ∀t �= 0, x ∈ R

n . (26)

For instance, this is a special case of Theorem 3.1 in [26] (with the choices m1 =
m2 = 2, b1 = b2 = 0 so that ν1 = ν2 = 0). The assumptions of the Theorem require,
besides the symbol properties of φ,ψ , that φ(ξ) satisfy

|∇ψ | � 1, C1 ≤ | det D2φ| ≤ C2

for some constants C1,C2 > 0; these conditions are easily verified from the above
construction.

From estimate (26) one obtains immediately the dispersive estimate

‖eit L f ‖L∞ � |t |− n
2 ‖ f ‖L1 (27)
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for the flow associated to the operator

L = φ(D) i.e. L f = F−1(φ(ξ) f̂ ).

Indeed, one can split f in frequency on the ball |ξ | ≤ 10, and to this first piece one
applies (26); on the remaining piece, the operator L coincides with −3� − 2 and
hence the estimate follows from the standard dispersive estimate for the Schrödinger
equation.

However, the flow associated to L1/3 can not decay faster than |t |− n−1
2 in general.

Indeed, for functions f with

supp f̂ ⊂ {1/2 + δ < |ξ | < 1 − δ}

we have

L f = (−�)3/2 f �⇒ eit L
1/3

f = eit |D| f

so that eit L
1/3

f is precisely the wave flow applied to f , for which the sharp decay rate

is known to be ∼ |t |− n−1
2 .

It is clear that a similar construction can be performed for any power Lν , ν ∈ (0, 1).
By a suitable frequency decomposition, we can deduce from 3.6 the following

dispersive estimates with a loss of derivatives:

Theorem 3.7 Let L satisfy (A1) and (A2), and let ν ∈ (0, 1).

(i) For s > (1 − ν)n + ν,

‖eit Lν

f ‖L∞ � |t |− n−1
2 ‖(I + L)s/2 f ‖L1 , |t | < T0.

(ii) For p ∈ (0, 1) and s = n(1/p − ν) + ν,

‖eit Lν

f ‖L∞ � |t |− n−1
2 ‖Ls/2 f ‖H p

L
, |t | < T0.

Proof (i) Let ϕ0 ∈ C∞[0,∞) so that ϕ0(λ) = 1 for λ ∈ [0, 1] and suppϕ0 ⊂ [0, 2].
Let ϕ(λ) = ϕ0(λ) − ϕ0(2λ) and set ϕ j (λ) = ϕ(2− jλ), j ≥ 1. Then we have
suppϕ ⊂ [1/2, 2] and

∑
j≥0

ϕ j (λ) = 1, ∀λ ≥ 0
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so that

(I + L)−s/2 =
∑
j≥0

ϕ j (
√
L)(I + L)−s/2

=
∑
j≥0

2− js
[
2 jsϕ j (

√
L)(I + L)−s/2

]

=:
∑
j≥0

2− js ϕ̃ j (
√
L)

It follows that

eit L
ν

f =
∑
j≥0

2− js ϕ̃ j (
√
L)eit L

ν

(I + L)s/2 f .

Hence,

‖eit Lν

f ‖L∞ ≤
∑
j≥0

2− js‖ϕ̃ j (
√
L)eit L

ν

(I + L)s/2 f ‖L∞

=
∑
j≥0

I j

For j ≥ 1, by applying Proposition 3.6 we have

∑
j≥1

I j �
∑
j≥1

2− js |t |− n−1
2 2 j[(1−ν)n+ν]‖(I + L)s/2 f ‖L1

� |t |− n−1
2 ‖(I + L)s/2 f ‖L1

as long as s > (1 − ν)n + ν.
For j = 0 we have

ϕ̃0(
√
L)eit L

ν

(I + L)s/2 f =
∑
k≤1

ψ(2−k
√
L)ϕ̃0(

√
L)eit L

ν

(I + L)s/2 f

where ψ ∈ C∞
0 (R) is a partition of unity function, i.e., ψ ∈ S(R) such that suppψ ⊂

[1/2, 2] and
∑
j∈Z

ψ(2− jλ) = 1 on (0,∞).

By applying Proposition 3.6 we have

I0 �
∑
k≤1

|t |− n−1
2 2k[(1−ν)n+ν]‖ϕ̃0(

√
L)(I + L)s/2 f ‖L1

� |t |− n−1
2 ‖ϕ̃0(

√
L)(I + L)s/2 f ‖L1 .
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Since ϕ̃0(λ) can be extended to be an even function in S (R), then by (8) we have

‖ϕ̃0(
√
L)(I + L)s/2 f ‖L1 � ‖(I + L)s/2 f ‖L1 .

As a consequence,

I0 � |t |− n−1
2 ‖(I + L)s/2 f ‖L1 .

Therefore,

‖eit Lν

f ‖L∞ � |t |− n−1
2 ‖(I + L)s/2 f ‖L1 , s > (1 − ν)n + ν.

(ii) Let {ψ(2− j ·)} j∈Z with suppψ ⊂ [1/2, 2] be a partition of unity function on
R\{0}. We then have

eit L
ν

f =
∑
j∈Z

ψ(2− j
√
L)eit L

ν

f

=
∑
j∈Z

L−s/2ψ(2− j
√
L)eit L

ν

Ls/2 f

where s = n(1/p − ν) + ν.

Let Ls/2 f ∈ H p
L (X) ∩ L2(X). Then, similarly to classical results [5,31], from

Theorem 2.5 and Proposition 2.6 it suffices to prove (ii) for all f such that Ls/2 f has
a finite molecule presentation, i.e.,

Ls/2 f =
N∑

�=0

λ�a�

for some N ∈ N, where a j are (p, 2, M, L, ε) molecules with ε > 0, M >
n(2−p)

2p ,
and

‖Ls/2 f ‖H p
L

∼
(

N∑
�=1

|λ�|p
)1/p

.

From the molecule presentation of Ls/2 f we have

eit L
ν

f =
N∑

�=0

λ�

∑
j∈Z

L−s/2ψ(2− j
√
L)eit L

ν

a�

so that

‖eit Lν

f ‖L∞ ≤
N∑

�=0

|λ�|
∑
j∈Z

‖L−s/2ψ(2− j
√
L)eit L

ν

a�‖L∞ . (28)
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We now claim that

∑
j∈Z

‖L−s/2ψ(2− j
√
L)eit L

ν

a‖L∞ � |t |− n−1
2 (29)

for all (p, 2, M, L, ε) molecules with M >
n(2−p)

2p and ε > 0.
Once (29) is proved, the estimate in (ii) follows immediately. Indeed, from (28)

and (29), we have

‖eit Lν

f ‖L∞ � |t |− n−1
2

∞∑
�=0

|λ�| ≤ |t |− n−1
2

(∑
�

|λ�|p
)1/p

∼ |t |− n−1
2 ‖Ls/2 f ‖H p

L

which proves (ii).
So, it suffices to prove (29). To do this, suppose that a is a (p, 2, M, L, ε)molecule

associated to a ball B with M >
n(2−p)

2p and ε > 0. Then there exists b ∈ D(LM ) so

that a = LMb satisfies (i) and (ii) in Definition 2.3. We now split the sum on the left
hand side of (29) into 2 parts as follows:

∑
j∈Z

‖L−s/2ψ(2− j
√
L)eit L

ν

a‖L∞ =
∑

j≥− log2 rB

‖L−s/2ψ(2− j
√
L)eit L

ν

a‖L∞

+
∑

j<− log2 rB

‖L−s/2ψ(2− j
√
L)eit L

ν

a‖L∞

=: E1 + E2.

Let us take care of E1 first. To do this, we write

E1 =
∑

j≥− log2 r
2
B

‖L−s/2ψ(2− j
√
L)eit L

ν

a‖L∞

=
∑

j≥− log2 rB

2− js‖2 js L−s/2ψ(2− j
√
L)eit L

ν

a‖L∞ .

Applying Proposition 3.6 we deduce that

E1 �
∑

j≥− log2 rB

2− js2 j[(1−ν)n+ν]|t |− n−1
2 ‖a‖L1

�
∑

j≥− log2 rB

2− jn(1/p−1)|t |− n−1
2 ‖a‖L1 .

(30)
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From (ii) in Definition 2.3 and (2) we have

‖a‖L1 =
∞∑
k=0

‖a‖L1(Sk (B)) ≤
∞∑
k=0

μ(2k B)1/2‖a‖L2(Sk (B)) (due toHölder’s inequality)

≤
∞∑
k=0

2−kεμ(2k B)1−1/p

≤
∞∑
k=0

2−k(ε+n(1/p−1))r−n(1/p−1)
B

which implies ‖a‖L1 � r−n(1/p−1)
B .

Therefore,

E1 �
∑

j≥− log2 rB

[2− j r−1
B ]n(1/p−1)|t |− n−1

2

� |t |− n−1
2 .

For the term E2 inserting a = LMb into the expression of E2 we have

E2 =
∑

j<− log2 rB

‖LM−s/2ψ(2− j
√
L)eit L

ν

b‖L∞

=
∑

j<− log2 rB

2 j(2M−s)‖2− j(2M−s)LM−s/2ψ(2− j
√
L)eit L

ν

b‖L∞ .

By Proposition 3.6 we have

E2 �
∑

j<− log2 rB

2 j(2M−s)2 j[(1−ν)n+ν]|t |− n−1
2 ‖b‖L1

�
∑

j<− log2 rB

2 j[2M−n(1/p−1)]|t |− n−1
2 ‖b‖L1 .

On the other hand, arguing similarly to (30) we have

‖b‖L1 � r [2M−n(1/p−1)]
B .

Therefore,

E2 �
∑

j<− log2 rB

[2 j rB][2M−n(1/p−1)]|t |− n−1
2

� |t |− n−1
2

as long as M >
n(2−p)

2p >
n(1−p)

2p .
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From the estimates of E1 and E2 we obtain (29). This competes our proof. 
�
Some comments on Theorem 3.7 are in order:

(i) An estimate like (i) in Theorem 3.7 was proved earlier in [15, Theorem 1.2] for
the special case of the twisted Laplacian L on R

2d , with d ≥ 2. Note however
that the estimate in [15] was

‖eit Lν

f ‖L∞ �
(
|t | + |t | s−2d

2ν

)
‖Ls/2 f ‖L1 (31)

for s in the range 2d > s > 2d − 2min{ν, 1− ν}. Due to the spectral gap in this
situation, the term (I + L)s/2 in (i) of Theorem 3.7 can be replaced by Ls/2.
Thus, even in this special case, estimate (i) in Theorem 3.7 improves (31) giving
both a better range for s and a better decay.

(ii) The estimate (ii) in Theorem 3.7 is new. To the best of our knowledge, this is the
first H p

L − L∞ dispersive estimate in the literature.
(iii) In the particular case when L = −�, estimate (25) can be improved as follows:

for all ν ∈ (0, 1)\{1/2},

|ψ(λ−1
√
L)eit L

ν

f | � |t |− n
2 λ(1−ν)n‖ f ‖L1 , λ > 0, |t | < ∞. (32)

See for example [24, Theorem 1]. Thus, following the proof of Theorem 3.7, we
obtain that for ν ∈ (0, 1)\{1/2}

‖eit Lν

f ‖L∞ � |t |− n
2 ‖(I + L)s/2 f ‖L1 , s > n(1 − ν), (33)

and

‖eit Lν

f ‖L∞ � |t |− n
2 ‖Ls/2 f ‖H p , p ∈ (0, 1), s = n(1/p − ν), (34)

where H p is a classical Hardy space. To our knowledge, the estimates (33) and
(34) are new.

We now focus on the special case ν = 1/2, which corresponds to the wave–type
flow eit

√
L . Arguing similarly to Theorem 3.7 we obtain:

Theorem 3.8 Let L satisfy (A1) and (A2).

(i) For s > n−1
2 , we have

∥∥∥∥∥
eit

√
L

√
L

f

∥∥∥∥∥
L∞

� |t |− n−1
2 ‖(I + L)s/2 f ‖L1 , |t | < T0.

(ii) For p ∈ (0, 1) and s = n( 1p − 1
2 ) − 1

2 , we have

∥∥∥∥∥
eit

√
L

√
L

f

∥∥∥∥∥
L∞

� |t |− n−1
2 ‖Ls/2 f ‖H p

L
, |t | < T0.
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Note that the decay |t |− n−1
2 in Theorem 3.8 is sharp, as shown by the well known

dispersive estimates for the free wave equation corresponding to the choice L = −�.
For L = −� + V with small potentials V ∈ S (Rn), n ≥ 3, it was proved in [5] (see
also [30]) that

∥∥∥∥∥
eit

√
L

√
L

f

∥∥∥∥∥
L∞

� |t |− n−1
2 ‖(I − �)s/2 f ‖H1 , s = n − 1

2
. (35)

We see that estimate (ii) in Theorem 3.8 is new for 0 < p < 1 even when L = −�.
We alsomention that for Schrödinger operators L = −�+V our assumptions (A1),

(A2) are known to hold for several classes of potentials V (x) on R
n , both locally and

globally in time. Concerning the global in time case, heat kernel estimates (A2) hold
in any dimension under very mild assumptions on V , e.g. for Kato class potentials (see
e.g. [14,36]). Dispersive estimates for the Schrödinger propagator of the form (A1)
are known for rather general classes of potentials (see [1,13,28,41,42]); sharp results
are known only for dimension n = 1 [13] and n = 3 [4].

Note that Theorems 3.7 and 3.8 give dispersive estimates corresponding to s >

n(1 − ν) + ν. In order to prove estimates for the critical case s = n(1 − ν) + ν,
we need a new version of homogeneous Besov spaces. We conclude this section by
proving a version of dispersive estimates for initial data in Besov spaces generated by
L . Fix a Littlewood–Paley dyadic partition of unity � = {ψ j } j∈Z on R, and define
for all s ∈ R, 1 ≤ p, q < ∞ the Besov space Ḃs,L

p,q (X) as the completion of the set

{
f ∈ L2(X) : ‖ f ‖Ḃs,L

p,q
< ∞

}

for the norm ‖ · ‖Bs,L
p,q

given by

‖ f ‖Ḃs,L
p,q

:=
⎧⎨
⎩
∑
j∈Z

(
2 js‖ψ j (

√
L) f ‖L p

)q⎫⎬
⎭

1/q

.

We note that this definition is independent of the choice of �. Indeed, suppose that
� = {ϕk}k∈Z is another dyadic partition of unity. Then for j ∈ Z and f ∈ L2 we
have

ψ j (
√
L) f =

j+2∑
k= j−2

ψ j (
√
L)ϕk(

√
L) f .

By (8) we have

2 js‖ψ j (
√
L) f ‖L p �

j+2∑
k= j−2

2 js‖ϕk(
√
L) f ‖L p ∼

j+2∑
k= j−2

2ks‖ϕk(
√
L) f ‖L p (36)
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and this implies, as claimed,

⎧⎨
⎩
∑
j∈Z

(
2 js‖ψ j (

√
L) f ‖L p

)q⎫⎬
⎭

1/q

∼
⎧⎨
⎩
∑
j∈Z

(
2 js‖ϕ j (

√
L) f ‖L p

)q⎫⎬
⎭

1/q

.

We can now prove our dispersive estimate for Besov initial data. Note that for wave
type flows eit

√
L we recover the sharp derivative loss s = n−1

2 which is well know for
the wave equation:

Theorem 3.9 Let L satisfy (A1) and (A2), and let ν ∈ (0, 1). Then we have

∥∥∥eit Lν

f
∥∥∥
L∞ � |t |− n−1

2 ‖ f ‖
Ḃ(1−ν)n+ν,L
1,1

. (37)

In the particular case ν = 1
2 we get

∥∥∥∥∥
eit

√
L

√
L

f

∥∥∥∥∥
L∞

� |t |− n−1
2 ‖ f ‖

Ḃ
n−1
2 ,L

1,1

. (38)

Proof Let � = {ψ j } be a Littlewood–Paley partition of unity. Then we have

ψ j (
√
L) =

j+2∑
k= j−2

ψ j (
√
L)ψk(

√
L)

so that

ψ j (
√
L)eit L

ν

f =
j+2∑

k= j−2

ψ j (
√
L)ψk(

√
L)eit L

ν

f .

This implies

‖ψ j (
√
L)eit L

ν

f ‖L∞

=
j+2∑

k= j−2

‖ψk(
√
L)eit L

ν

ψ j (
√
L) f ‖L∞

�
j+2∑

k= j−2

|t |− n−1
2 2k((1−ν)n+ν)‖ψ j (

√
L) f ‖L1 ∼ |t |− n−1

2 2 j((1−ν)n+ν)‖ψ j (
√
L) f ‖L1
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where we used (25) in the second inequality. As a consequence,

‖eit Lν

f ‖L∞ ≤
∑
j∈Z

‖ψ j (
√
L)eit L

ν

f ‖L∞

�
∑
j∈Z

|t |− n−1
2 2 j((1−ν)n+ν)‖ψ j (

√
L) f ‖L1

∼ |t |− n−1
2 ‖ f ‖

Ḃ(1−ν)n+ν,L
1,1

which proves (37).
The proof of (38) can be done in the same manner, hence we omit details. This

completes our proof.

�

4 Some applications

In this sectionwewill apply the obtained results in Sect. 3 to study dispersive estimates
for Hermite operators, twisted Laplacians and Laguerre operators. It is worth noticing
that the list of applications is not exhaustive, sincewe just intend to show the generality
of our theory. Apart from these applications, one can find more applications in other
setting such as Schrödinger operators with smooth potentials.

The estimates in Theorems 3.7, 3.8 and 3.9 hold true for all operators below. Hence,
we will not list all of them, but concentrate on some specific estimates.

4.1 Hermite operators

Let L = −� + |x |2 be the Hermite operator on R
n with n ≥ 1. Let pt (x, y) denote

the kernel of the semigroup e−t L . It is clear that pt (x, y) enjoys the Gaussian upper
bound (A2), and we have an explicit representation for the kernel pt (x, y):

pt (x, y) = 1

πn/2

(
e−2t

1 − e−4t

)n/2

exp

(
−1

4

1 + e−2t

1 − e−2t |x − y|2 − 1

4

1 − e−2t

1 + e−2t |x + y|2
)

for all t > 0 and x, y ∈ R
n . See for example [39].

It is well-known that for any δ > 0 there exists C > 0 so that

‖eit L‖L1→L∞ ≤ C

tn/2 , |t | < π/2 − δ.

Therefore, the Hermite operator L satisfies the conditions (A1) and (A2).
As a consequence of Theorems 3.7 and 3.8, we have
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Proposition 4.1 Let L = −� + |x |2 be the Hermite operator on R
n with n ≥ 1. Then

we have

‖eit Lν

f ‖L∞ � |t |− n−1
2 ‖Ls/2 f ‖H p

L
, |t | < π/2 − δ

for p ∈ (0, 1) and s = n(1/p − ν) + ν; and

∥∥∥∥∥
eit

√
L

√
L

f

∥∥∥∥∥
L∞

� |t |− n−1
2 ‖Ls/2 f ‖H p

L
, |t | < π/2 − δ

for p ∈ (0, 1) and s = n( 1p − 1
2 ) − 1

2 .

As mentioned in Sect. 2.2 that H p(Rn) � H p
L (Rn), hence the estimate above is

sharper than the following estimate:

‖eit Lν

f ‖L∞ � |t |− n−1
2 ‖Ls/2 f ‖H p , |t | < π/2 − δ

forp ∈ (0, 1)ands = n(1/p − ν) + ν; and

∥∥∥∥∥
eit

√
L

√
L

f

∥∥∥∥∥
L∞

� |t |− n−1
2 ‖Ls/2 f ‖H p , |t | < π/2 − δ

for p ∈ (0, 1) and s = n( 1p − 1
2 ) − 1

2 .

Proposition 4.2 For each 0 < s < 2 we have Ḃs,L
1,1 (Rn) ↪→ Ḃs

1,1(R
n).

Proof Let � = {ψ j } be a partition of unity, ψ j (s) = ψ(2− j s). Then we have

ψ(2− j
√−�) f =

∑
k∈Z

ψ(2− j
√−�)ψ(2−k

√
L) f

so that
∑
j∈Z

2 jsψ(2− j
√−�) f =

∑
j∈Z

2 js
∑
k∈Z

ψ(2− j
√−�)ψ(2−k

√
L) f .

It follows that
∑
j∈Z

2 js‖ψ(2− j
√−�) f ‖L1 ≤

∑
j∈Z

2 js
∑
k∈Z

‖ψ(2− j
√−�)ψ(2−k

√
L) f ‖L1

≤
∑
j∈Z

2 js
∑
k≥ j

‖ψ(2− j
√−�)ψ(2−k

√
L) f ‖L1

+
∑
j∈Z

2 js
∑
k< j

‖ψ(2− j
√−�)ψ(2−k

√
L) f ‖L1

=: I1 + I2.
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By using (8) we have

I1 �
∑
j∈Z

∑
k≥ j

2( j−k)s2ks‖ψ(2−k
√
L) f ‖L1

�
∑
k∈Z

2ks‖ψ(2−k
√
L) f ‖L1 = ‖ f ‖Ḃs,L

1,1
.

To estimate the term I2, by (8) we have

I2 =
∑
j∈Z

2 js
∑
k< j

‖(−�)−1ψ(2− j
√−�)(−�)L−1Lψ(2−k

√
L) f ‖L1

�
∑
j∈Z

2 js
∑
k< j

2−2 j‖(−�)L−1Lψ(2−k
√
L) f ‖L1

�
∑
j∈Z

2 js
∑
k< j

2−2 j‖Lψ(2−k
√
L) f ‖L1

+
∑
j∈Z

2 js
∑
k< j

2−2 j‖|x |2L−1Lψ(2−k
√
L) f ‖L1

�
∑
j∈Z

2 js
∑
k< j

2−2( j−k)‖ψ̃(2−k
√
L) f ‖L1

+
∑
j∈Z

2 js
∑
k< j

2−2( j−k)‖|x |2L−1ψ̃(2−k
√
L) f ‖L1

where ψ̃(x) = x2ψ(x).
It was proved in [2] that |x |2L−1 is bounded on L1. Hence,

I2 �
∑
j∈Z

2 js
∑
k< j

2−2( j−k)‖ψ̃(2−k
√
L) f ‖L1

=
∑
j∈Z

∑
k< j

2−(2−s)( j−k)2ks‖ψ̃(2−k
√
L) f ‖L1

�
∑
k∈Z

2ks‖ψ̃(2−k
√
L) f ‖L1 .

Arguing similarly to the proof of (36) we have

∑
k∈Z

2ks‖ψ̃(2−k
√
L) f ‖L1 � ‖ f ‖Ḃs,L

1,1
.

Hence, I2 � ‖ f ‖Ḃs,L
1,1

. This completes our proof. 
�

Proposition 4.3 We have Ḃ0
1,1 � Ḃ0,L

1,1 .
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Proof We claim that if
∫∞
0 ‖t2Le−t2L f ‖L1 t−1dt < ∞, then f ∈ Ḃ0,L

1,1 and

‖ f ‖Ḃ0,L
1,1

�
∫ ∞

0
‖t2Le−t2L f ‖L1

dt

t
. (39)

Indeed, let ψ j (s) = ψ(2− j s) be a partition of unity. By functional calculus we have
for j ∈ Z

ψ(2− j
√
L) f = c

∫ ∞

0
(t2L)2e−t2Lψ(2− j

√
L) f

dt

t

where c =
[∫∞

0 z2e−z dz
z

]−1
. Hence

∑
j∈Z

‖ψ(2− j
√
L) f ‖ �

∑
j∈Z

∑
k∈Z

∫ 2−k

2−k−1
‖(t2L)2e−t2Lψ(2− j

√
L) f ‖L1

dt

t

�
∑
j∈Z

∑
k≥ j

∫ 2−k

2−k−1
‖(t2L)2e−t2Lψ(2− j

√
L) f ‖L1

dt

t

+
∑
j∈Z

∑
k< j

∫ 2−k

2−k−1
‖(t2L)2e−t2Lψ(2− j

√
L) f ‖L1

dt

t

=: I1 + I2.

(40)

For the term I1 we have

I1 �
∑
j∈Z

∑
k≥ j

∫ 2−k

2−k−1
t222 j‖t2Le−t2L ψ̃(2− j

√
L) f ‖L1

dt

t

�
∑
j∈Z

∑
k≥ j

∫ 2−k

2−k−1
22( j−k)‖t2Le−t2L ψ̃(2− j

√
L) f ‖L1

dt

t

�
∑
k∈Z

∫ 2−k

2−k−1
‖t2Le−t2L f ‖L1

dt

t

where ψ̃(x) = x2ψ(x). Here we have applied (8). Thus

I1 �
∫ ∞

0
‖t2Le−t2L f ‖L1

dt

t
. (41)
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Similarly, for ψ(x) = x−2ψ(x), we have

I2 �
∑
j∈Z

∑
k< j

∫ 2−k

2−k−1
t−22−2 j‖(t2L)3e−t2Lψ(2− j

√
L) f ‖L1

dt

t

�
∑
k∈Z

∫ 2−k

2−k−1
‖(t2L)3e−t2L f ‖L1

dt

t
.

We can write

(t2L)3e−t2L f = 8

(
t2

2
L

)2
e− t2

2 L
[
t2

2
Le− t2

2 L f

]
.

Since the kernel of
(
t2
2 L
)2

e− t2
2 L satisfies the Gaussian upper bound (see for example

[12]), we have

‖(t2L)3e−t2L f ‖L1 �
∥∥∥∥ t

2

2
Le− t2

2 L f

∥∥∥∥
L1

.

As a consequence,

I2 �
∑
k∈Z

∫ 2−k

2−k−1

∥∥∥∥ t
2

2
Le− t2

2 L f

∥∥∥∥
L1

dt

t
�
∫ ∞

0
‖t2Le−t2L f ‖L1

dt

t
.

This, along with (41) and (40), implies

∑
j∈Z

‖ψ(2− j
√
L)‖ �

∫ ∞

0
‖t2Le−t2L f ‖L1

dt

t

which proves the claim (39).
We now turn to prove Ḃ0

1,1 � Ḃ0,L
1,1 . Indeed, if f ∈ Ḃ0

1,1, it was proved in [8] that

∫ ∞

0
‖t2Le−t2L f ‖L1

dt

t
� ‖ f ‖Ḃ0

1,1
.

Therefore, applying (39) we have f ∈ Ḃ0,L
1,1 and

‖ f ‖Ḃ0,L
1,1

�
∫ ∞

0
‖t2Le−t2L f ‖L1

dt

t
� ‖ f ‖Ḃ0

1,1
.

This completes the proof. 
�
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We would like to illustrate the advantage of dispersive estimates in Theorem 3.9
and of the new Besov spaces. In our situation L = −� + |x |2, if n = 1, estimate (38)
becomes

∥∥∥∥∥
eit

√
L

√
L

f

∥∥∥∥∥
L∞

� |t |− n−1
2 ‖ f ‖Ḃ0,L

1,1
. (42)

In this situation, the estimate (42) is sharper than the following estimate

∥∥∥∥∥
eit

√
L

√
L

f

∥∥∥∥∥
L∞

� |t |− n−1
2 ‖ f ‖Ḃ0

1,1
,

since by Proposition 4.3, Ḃ0
1,1 ⊂ Ḃ0,L

1,1 .
Although in the general case n ≥ 2 it is not clear whether the following estimate

holds true

∥∥∥∥∥
eit

√
L

√
L

f

∥∥∥∥∥
L∞

� |t |− n−1
2 ‖ f ‖

Ḃ
n−1
2

1,1

,

for the particular case n = 2, 3, 4 we can find the spaces Ḃ
n−1
2 ,L

1,1 ⊂ Ḃ
n−1
2

1,1 (see
Proposition 4.2) such that

∥∥∥∥∥
eit

√
L

√
L

f

∥∥∥∥∥
L∞

� |t |− n−1
2 ‖ f ‖

Ḃ
n−1
2 ,L

1,1

.

We do not know at present if there exists f ∈ Ḃ
n−1
2

1,1 such that eit
√
L√
L

f /∈ L∞.

4.2 Twisted Laplacians

Consider the twisted Laplacian on R
n with n = 2d, d ∈ N:

L = −1

2

d∑
j=1

[
(∂x j − iy j )

2 − (∂y j + i x j )
2
]
.

It is well-known that the kernel pt (x, y) of e−t L admits a Gaussian upper bound

|pt (x, y)| ≤ C

td
exp

(
−|x − y|2

ct

)
.

See [32].
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Moreover, by continuation of the corresponding heat kernel in [32] we obtain

‖eit L‖L1→L∞ � t−d , |t | < π/2 − δ.

Therefore, the twisted Laplacian L satisfies (A1) and (A2). As a consequence, all of
the estimates in Theorems 3.7, 3.8 and 3.9 hold true for the twisted Laplacian.

4.3 Laguerre operators

Consider the space X = (0,∞)n equipped with the Euclidean distance d and measure
μ given by dμ(x) = dμ1(x) . . . dμn(x) where dμk = x2αk+1

k dxk, αk > −1 for
k = 1, . . . , n.

It is easy to see that

μ(B(x, r)) ∼
n∏

k=1

(r + xk)
2αk+1r (43)

where B(x, r) = {y ∈ X : |x − y| < r} is the ball centered in x = (x1, x2, . . . , xn)
with radius r . It follows that the measure μ satisfies the doubling condition (1). More-
over, if αk > −1/2 for all k, then we have

μ(B(x, r)) � r N , N = 2n +
n∑

k=1

2αk ≥ 1

for all x ∈ X and r > 0.
In this section, we always assume that αk > −1/2 for all k.
For m ∈ N and αk > −1/2, k = 1, 2, . . . , n, consider the Laguerre functions ψα

k
which are defined by

ψαk
m (x) =

(
2m!

�(m + αk + 1)

)1/2
Lαk
m (x2)e−x2/2, x ∈ R, (44)

where Lαk
m are the m-th Laguerre polynomials. See for example [29].

We setψα
m(x) =∏n

k=1 ψ
αk
m (xk) for each k = 1, 2, . . . , n and x = (x1, x2, . . . , xn).

It is well known that the Laguerre functions form an orthonormal basis for L2(X , dμ).
We now consider the Laguerre operator L , defined by

L = −� −
n∑

k=1

2αk + 1

xk

d

dxk
+ |x |2. (45)

It is well known that

Lψα
m = λm,αψα

m, λm,α = (4m + 2)n +
n∑

k=1

2αk .
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Then the operator L has a non-negative self-adjoint extension which is still denoted
by L with domain

D(L) = { f ∈ L2(X , dμ) :
∑
m

λ2m,α|〈 f , ψα
m〉dμ|2 < ∞}.

Moreover, the heat kernel pt (x, y) associated to the semigroup e−t L is given by

pt (x, y) =
n∏

k=1

2e−2t

1 − e−4t

× exp

(
−1

2

1 + e−4t

1 − e−4t (x
2
k + y2k )

)
(xk yk)

−αk Iαk

(
2e−2t

1 − e−4t xk yk

)
,

(46)

for all t > 0, x, y ∈ X and Iαk being the Bessel function. See for example [29].

Theorem 4.4 Let αk > −1/2 for all k = 1, . . . , n and let L be the Laguerre operator
defined by (45). Then we have

0 < pt (x, y) � C

μ(B(x,
√
t))

exp

(
−|x − y|2

ct

)
(47)

for all x, y ∈ X and t > 0.
Moreover,

‖eit L‖L1→L∞ � t−N/2, |t | < π/2 − δ (48)

where N = 2n +∑n
k=1 2αk .

Hence, the Laguerre operator satisfies (A1) and (A2).

Proof We refer to [6, Lemma 3.1] for the proof of the Gaussian upper bounds (46)
and [37, Lemma 3.5] for the proof of the dispersive estimate (48). 
�
Definition 4.5 Let p ∈ ( N

N+1 , 1]. A function a is called a p-atom associated to the
ball B if

(i) supp a ⊂ B
(ii) ‖a‖L∞(X) ≤ μ(B)−1/p

(iii)
∫

a(x) dμ(x) = 0.

To define the Hardy space H p
CW for p below 1, we need to introduce the Lipschitz

spaces Lα . We say that the function f ∈ Lα if there exists a constant c > 0, such that

| f (x) − f (y)| ≤ c|B|α

for all ball B and x, y ∈ B, and the best constant c can be taken to be the norm of f
and is denoted by ‖ f ‖Lα

.
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Definition 4.6 (Hardy spaces of Coifman and Weiss) Let N
N+1 < p ≤ 1. We say that

a function f ∈ H p
CW (X) if f ∈ L1(X) for p = 1, or f ∈ L∗

1/p−1 for p < 1, and
there exists a sequence (λ j ) j∈N ∈ �p and a sequence of p-atoms (a j ) j∈N such that
f =∑ j λ j a j in L1(X) for p = 1, and f =∑ j λ j a j in L∗

1/p−1 for p < 1. We set

‖ f ‖H p
CW

= inf

⎧⎪⎨
⎪⎩
⎛
⎝∑

j

|λ j |p
⎞
⎠

1/p

: f =
∑
j

λ j a j

⎫⎪⎬
⎪⎭ .

From Theorems 3.7 and 3.8, we have

Proposition 4.7 Let αk > −1/2 for all k = 1, . . . , n and let L be the Laguerre
operator defined by (45). Then we have

‖eit Lν

f ‖L∞ � |t |− N−1
2 ‖Ls/2 f ‖H p

L
, |t | < π/2 − δ

for p ∈ (0, 1) and s = N (1/p − ν) + ν; and

∥∥∥∥∥
eit

√
L

√
L

f

∥∥∥∥∥
L∞

� |t |− N−1
2 ‖Ls/2 f ‖H p

L
, |t | < π/2 − δ

for p ∈ (0, 1) and s = N ( 1p − 1
2 ) − 1

2 .

From [7, Theorem 6.6] we have H p(Rn) � H p
L (Rn) for N

N+1 < p ≤ 1. Hence the
estimates above are sharper than the following estimates:

‖eit Lν

f ‖L∞ � |t |− N−1
2 ‖Ls/2 f ‖H p

CW
, |t | < π/2 − δ

for p ∈ ( N
N+1 , 1) and s = N (1/p − ν) + ν; and

∥∥∥∥∥
eit

√
L

√
L

f

∥∥∥∥∥
L∞

� |t |− N−1
2 ‖Ls/2 f ‖H p

CW
, |t | < π/2 − δ

for p ∈ ( N
N+1 , 1) and s = N ( 1p − 1

2 ) − 1
2 .
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