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Abstract
Let X be a metric space with a doubling measure satisfying j1(B) 2 rj for any ball
B with any radius 73 > 0. Let L be a non negative selfadjoint operator on L?(X). We
assume that e 'L satisfies a Gaussian upper bound and that the flow ¢!'" satisfies a
typical L' — L dispersive estimate of the form

le™ Ml e S 10172,
Then we prove a similar L' — L dispersive estimate for a general class of flows
") with ¢ (r) of power type near 0 and near co. In the case of fractional powers
¢(L) =L",v € (0, 1), we deduce dispersive estimates for ¢'"L" with data in Sobolev,
Besov or Hardy spaces H f with p € (0, 1], associated to the operator L.
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1 Introduction

Let (X, d, t) be a metric space endowed with a nonnegative Borel measure p satis-
fying the doubling condition: there exists a constant C > 0 such that

n(B(x,2r)) < Cu(B(x,r)) ey

forallx € X,r > 0 and all balls B(x,r) :={y € X : d(x, y) < r}. In this paper we
shall assume in addition that

w(B(x,r)) zr" 2

forall x € X and r > 0 and for some n > 1.
We note that the doubling property (1) yields a constant D > 0 so that

W(B(x, ar)) < CAPu(B(x, 1)), A3)
forall L > 1,x € X and r > 0; and that

d(x,y)

n(B(x,r)) =C (1 + ) n(B(y,r)), “)

forallx,y € X andr > 0.
The main question discussed here is the following. Suppose a selfadjoint operator
L on L2(X) satisfies an L' — L® dispersive estimate of the form

itL —
e Mg poe S 1177 (5

This is frequently the case for many important operators, notably the Laplacian L =
—A and its potential perturbations. Under this assumption, is it possible to deduce
similar estimates for the more general class of flows e!/¢():

Iy (L)e " B 1 oo S 121702 (©6)
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On the flows associated to selfadjoint operators on metric...

For instance, if we choose ¢ (L) = /L, we are asking if a dispersive estimate for
the wave flow ¢/'VL can be deduced directly from a corresponding estimate for the
Schrodinger flow //%. The possibility of such a reduction is suggested by a suitable
subordination formula connecting the two flows (see [33]); the formula was applied
in [15] to the Hermite operator and the twisted Laplacian. Our main goal here is to
extend this idea to more general functions ¢ (L) with power—like behaviour near 0
and oo, and to prove sharper estimates in terms of Sobolev, Hardy or Besov norms,
appropriately defined. Of course, the interest in dispersive estimates is justified by
their crucial role in a large number of important applications to linear and nonlinear
evolution equations and in harmonic analysis.

We shall make the following assumptions on the selfadjoint nonnegative operator
L:

(A1) The Schrodinger flow 'L satisfies a dispersive estimate:

e el i oo S 72, 1€ (0, To)

~

where Ty € (0, +o0].
(A2) The kernel p;(x, y) of e~*L admits a Gaussian upper bound: 3C, ¢ > 0 such
that forall x, y € X and ¢ > 0,

C _d(x,y)2>
[p:(x, )| < —M(B(x,ﬁ)) eXP( )

Under (A1)—-(A2), we can prove rather sharp pointwise decay estimates for the flow
") provided ¢ (r) ~ r"™ near 0 and ¢ (r) ~ r™2 near oo, m1, my > 0 (see the
precise assumptions (H1), (H2) at the beginning of Sect. 3). Our general estimates for
¢''?(L) are given in Theorem 3.3 for the low frequency regime and Theorem 3.4 for
the high frequency regime.

We illustrate our results in the special, and particularly interesting case of fractional
powers ¢ (L) = LY, v € (0, 1) (see Theorems 3.7 and 3.9):

Theorem 1.1 Assume L satisfies (A1) and (A2), and let v € (0, 1). Then we have:
(1) Fors > (1 —v)n+v,

P _n—1
1™ Flipee S1EI™"Z I + LY flipr, el < To.
@) Forpe (0,1)ands =n(1/p —v) +v,
Ty _n—1
™™ flizoe S 10172 IL 2 fllgp. 1] < To.

(iii) Moreover, for s = (1 — v)n + v we have

LY <1 TN o
S S T Ty P

@ Springer



T.A.Buietal.

Here H f is the Hardy space associated to L, which can be defined via square
functions or, equivalently, by atomic decompositions; see Sect. 2.2 for details. To our
knowledge, the use of Hardy spaces with p < 1is novel in this context (recall however
that Beals [5] proved dispersive estimates for H! data). The spaces BilL associated
to L are a generalization of classical Besov spaces to the setting of metric measure
spaces, also new to our knowledge. Their construction and some properties are given
at the end of Sect. 3. Note in particular that in some cases (e.g., L = —A + Ix[%) we
can prove that the new Besov spaces contain properly the standard ones with the same
indices.

The decay rate ~ |t |_% appearing in the Theorem is independent of v and may
be surprising at first. However it is easy to check that one can not expect a better
decay for general L; see Sect. 3.2 for a discussion of this phenomenon and related
counterexamples. Note however that for L = —A on L2(R™) estimate (iii) reduces to

()12 _nz1
[ PR I IIfIIBn;I
1,1

which is known to be sharp for the wave flow.

The plan of the paper is the following. In Sect. 2 we prove some preliminary
kernel estimates and recall the definition of Hardy spaces associated to L, giving
an equivalent atomic characterization. In Sect. 3 we prove the crucial subordination
formulas, extending the earlier results in [33]; we then apply the formulas to prove
general dispersive estimates for the flows ¢//?"). We also sharpen our results in the
case of fractional powers, and in particular we define Besov spaces associated to the
operator L. In the final Sect. 4 we examine some applications to concrete operators,
namely Hermite and Laguerre operators and the twisted Laplacian, and in particular
we improve both the rate of decay and the loss of derivatives compared with the similar
estimates in [15].

2 Preliminary results
2.1 Kernel estimates
Let L be a nonnegative, self-adjoint operator on L?(X) satisfying (A2). Denote by

E (1) the spectral decomposition of L. Then by spectral theory, for any bounded
Borel function F : [0, co) — C we can define

F(L) = foo FOD)AEL ()
0

as a bounded operator on L2(X).
We have the following useful lemma.

Lemma 2.1 (a) Let ¢ € L (R) be an even function. Then for any N > O there exists
C such that

@ Springer



On the flows associated to selfadjoint operators on metric...

1K o) (5 )] = - (Hd(x’y))_N @
eV L= (B(x, 1) + w(B(y, 1)) 4 ’

forallt >0andx,y € X.
(b) Let ¢ € Z(R) be an even function. Then for any 1 < p < g < o0 we have

loUND)|Lrore 7570, 1> 0. 8)

Estimate (7) was proved in [9, Lemma 2.3] for X = R”. We now give a new proof for
the general case. To do this, we need the following estimates.

Lemma 2.2 Let . > 0. Then we have:

(a) Forany N > 0ands = N + D + 1/2, there exits C = C(N) so that

C <1+d(x,y)

-N
N (B(y, 1)) 2 ) [Fllwz (9

|FONL)(x,y)] < T

forall x,y € R" and all Borel functions supported in [1/2,2].
(b) Forany N > O0ands = 2(N + D + 1) there exits C = C(N) so that

c (H_d(x,y)

-N
N(B(y, ») 3 ) [Fllwe  (10)

|FOWL)(x, y)| < Ny

for all smooth functions F supported in [0, 2] with F?*+D(0) = 0 for all v € N.

Proof (a) Set G(x) = F(4/x)e*. Then we have

G(A2L)ye™L = i/ e M U=IOLG (1)t
2 R

where G is the Fourier transform of G. ,
This, along with the fact that F(Av/L) = G(A>L)e™* L, implies

1 —~
Ky 0) = 5 A;{ G (D) P20 _in(x. V). (11)

Recalling [10, Lemma 4.1] we have

C

|pZ(-x7 )’)| S

1/2
[M(B(x, LB, coile))]

( d(x, ) ) 1
x exp| —c cos 6

1z (cos )P

forallx,y € Xandz € Cy = {z € C: 9z > 0} where 6 = arg z.
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It follows that

C
1/2
(1B AV TH DB T+ )] !

d(x,y)* 2\D/2
s |4

< ¢ exp [—c—d(x’ y)2
T (B (x, M)(B(y, A1Y? 22(1 4 12)

[Po2—iny (X, ¥)| <

X exp [—c

} (1+]z)hP.

This, along with (11), implies that
1
V(B (x, M) (B(y, 1)

d(x, y)* D
X exp (—cm> (1 +1]th~7dr

|FONL)(x, )| < fR G (1)

N
. 1 ( L do, y))
JEBG I EBO.) x
/ G @)1+ thV+Pdx
R

- 1 ( L e, y))‘N
~ (B, DBy, 1) 2

R 1/2 12
x (/ IG(D)I(1 + |r|2>N+D+‘dr) (/(1 + |r|2>‘dr)
R R

1 d(‘x’ y)>—N
< 14 o
~ Vu(Bx, M)(B(y, 1)) ( x 1G w2

where s = N + D + 1.
Since supp F' C [1/2, 2], ”G”Wsz ~ |IF| W2- Hence, we obtain

| dx, )\
<
'F(“/Z)(x’y)'“Ju(B(x,x>m(B<y,x>> (H x ) ¥ lwz-

(b) Since F can be extended to be an even function, we can write F(x) = f(x2)
for all x > 0 and ”f”Wsz < ||F||W2°§ for every s > 0. See [40]. At this stage, arguing
similarly to (a) we obtain (10). ]

We are ready to prove Lemma 2.1.

Proof of Lemma 2.1 (a) Let Y9 € C*°(R) supported in [0, 2] such that 9 = 0 on

[0,1]and 0 < 9 < 1. Set ¥ (A) = Yo(A) — Yo (2A) and ¥ (L) = 1//(2’1')») for
Jj = 1. Then we have
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> i) =1.2>0.

j=0
Hence,
VL) =Y YtV L)p(tVL). (12)
j=0
By (10) we have
WotvVD)p(VI)(x, y)| < ! (H‘“"’”)_N. (13)
Vit(B(x, Mu(B(y, 1) A
Since supp ¥ C [1/2, 2], using (9) and (3), we have, for j > 1,
C
1YtV LyptvVL)(x, y)| < . )
Vi(B(x, 277 1) (B (y, 2771))
dx, )\ N
x (1+ = ) Il
Cc2/P d(x, y))_N
< 1+ hj
= (B, 0)u(B(y, 1) ( t 12l

where s = N + D+ land 7 () = ¥ (D27 1).
Since ¢ € .Z(R), ”hj”W? < C27/(P+D As a consequence,

c2-J (1 N d(x, y))N'

(v L)ptvVL)(x,
V(v L)V L)(x y)|5\/,u(B(x,t)),u(B(y,f)) !

This, along with (12) and (13), implies that for each N > 0 there exists C such that

c de, )\ N
P (14 42)
lo(t )(x y)|<\/M(B(x7t))'u¢(B(y,t)) !

forallx,y € X and ¢t > 0.
Applying (4), we will obtain (7) as desired. This completes the proof of (a).

(b) From the estimate in part (a) and (2) we have
loGVD) g~ St and eGVDlpip S 1

forall ¢t > 0.
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By interpolating, we have

oDl pg S17070

~

forallt > 0and 1 < g < 0.
On the other hand, from the estimate in part (a) again we have

lo~vL)La—ra S 1.

The last two estimates, in combination with interpolation, imply (8) as desired. O

2.2 Hardy spaces associated to operators

We first recall from [25,27] the definition of the Hardy spaces associated to an operator.
Let L be a nonnegative self-adjoint operator on L>(X) satisfying the Gaussian upper
bound (A2).Let0 < p < 1. Then the Hardy space H f (X) is defined as the completion
of

{f € LX(X): Sp.f € LP(X))

under the norm ||f||Hf(X) = ||SL f|llL», where the square function Sy, is defined as

* _ du(y)de \'?
S - 27 1L 2_) '
Lf® (/0 /d@,ym't < O By

Definition 2.3 (Molecules for L) Lete > 0,0 < p < 1 and M € N. A function m(x)
is called a (p, 2, M, L, €)-molecule associated to a ball B C X of radius rp if there
exists a function b € D(L™) such that

i) m=LMp;
Qi) ILED I 125, m)) < 2770 20 BY2=1/P forall k = 0,1,..., M and j =
0,1,2...

where S;(B) =2/\2/"!B as j > 1 and Sy(B) = B.

The definition of atoms is taken from [25,27] which requires (ii)-(iii). Assumption
(ii) in particular can be thought of as a mild locality condition on the operator L.

Definition 2.4 (Hardy spaces associated to L) Givene€ > 0,0 < p < land M € N,
we say that f = ) Ajm; is a molecule (p, 2, M, L, €)-representation if {}; }?":0 €
£P,eachmjisa (p,2, M, L, €)-atom, and the sum converges in L2(X). The space

H [,mol, M. <(X) is then defined as the completion of

{f € L2(X) : f has a molecule (p,2, M, L, 6)-representati0n} ,

@ Springer
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with the norm given by

1717,

L,mol,M,e(X)

= inf {Z |kj|P L f = ijmj is amolecule (p,2, M, L, e)—representation} .

Theorem 2.5 [17] Lete > 0, p € (0,1] and M > %;p). Then the Hardy spaces
Hprmol,M’e(X) and H[ (X) coincide and have equivalent norms.

We note that if L = —A on L%(R"), then H f (R™) reduces to the standard Hardy
space H?(R") on R" for p € (0, 1]. In general, depending on the choice of the
operator L, it may happen that either H”(R") C H; (R"), or H (R") C HP (R"), or
HP(R") # H f (R™) without inclusions. See for example [16,18]. We examine now
in more detail the case of the Hermite operator L = —A + |x|? on R”, for which the
Hardy spaces can be characterized via a new atomic decompositions as follows.

Let p(x) = min{l, |x|~'} for x € R". Let p € (0, 1]. A function a is called a
(p, 00, p)-atom associated to the ball B(xg, ) if

(1) suppa C B(xg,r);
(i) lallze < |B(xo, r)|~1/P;

(iii) /x“a(x)dx =0forall o] < [n(1/p — D] ifr < p(x0)/4.

The Hardy space Hu”,y »(R") is then defined as the set of all functions f* which can be
expressed in the form f = Zj Ajaj where (A;); € £? and a; are (p, 00, p)-atoms.
Its norm is given by

p — P — (1
11 gy = inf Zlkjl .f_ZA]a]
J J

where the infimum is taken over all possible atomic decompositions of f. From the
definition, itis obvious that H” (R") g Hap,, o (R") forall p € (0, 1]; more importantly,
we have Halty o R"Y=H Ll (R™) (see for instance [20]), thus the Hardy space associated
to the Hermite operator is larger than the standard one.

We recall an important result in [17, Proposition 3.27] which plays an important
role in the sequel.

Proposition2.6 Lete > 0, p € (0, 1]and M > %;p). Suppose that f = Z?’Zl Ajaj
for some N € N, where a’,.s are (p,2,2M, L, €) molecules and Z?]:l [Xj17 < oo

Then there exists a representation f = Zle yjmj for some K € N where m’js are
(p,2, M, L, o) molecules for some o > 0 such that

K
P~
Dol ~ I f ey

j=1
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3 Dispersive estimates for et?L)
3.1 Subordination formulas and dispersive estimates for e/*?)

Let ¢ : Rt — R be a smooth function. We denote by (H1) and (H2) the following
assumptions on ¢:

(H1) There exists 0 < m < 1 such that
¢'(r)y~ ™~ and 19" Z M7 r= 1
(H2) There exists my > 0 such that
¢'(r)~rm! and [¢"(r)| 2™ 0<r <1

The following two results are crucial for the rest of the paper, and are strongly
inspired by ideas from [33].

Theorem 3.1 Assume ¢ satisfies (HI) and g is a C* function supported in [1/2, 2].
Then there exist co > 1, and functions and p,(x, 1) and a,(s, 1) defined on R?* for
each t satisfying

supp p; (-, 1) C [A2/5,502] and |pi(x, M| < C(k, |Igllck, 9) A2 k > 0,
(14)

and
suppa; (-, A) C [2651, 2¢0] and la;(s, M) < Cllglcr, @), (15)
so that

g TX)e W = p(x, 1) +\/t,\Zmln(r%c)/eimz””‘zsa,(s,x)ds (16)

forall x,t > 0 and A > 1, where n € C®°(R) is supported in [1/5,5] and n = 1 on
[1/4,4].

Proof Let k € Z and t > 0. For A > 1 we denote by W, (&) the Fourier transform of
gL /x)el?™ e,

v;.(8) = /g(k‘lﬁ)eit¢(x)e—ixgdx

17
:)LZ/‘g(ﬁ)ei[t¢(k2u)—)»2u§]du.
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Let T € C*°(R) supported in [2¢, 1, 2¢o] with T = 1in [¢, 1, co] where cg will be
determined later. Then by the Fourier inversion formula we have

g7 /X)) = n(er)f <1 -1 (—mzilz» Wi (€)e't dE

+n( %) / v (mfﬁ) W5 (§)e'* dg

= ,Ot(x, )") + Al‘(x7 )")

where n € C*°(R) is supported in [1/5,5] and n = 1 on [1/4, 4].
Observe that

Aultd W2u) — A2ue] = 22t (W 2u) — 2%

We note that the integrand in the expression for p;(x, A) is supported where either
& < c()_ltk2m'_2 or £ > cotA¥™ 2. In this situation, by (H1) we can choose cq large
enough so that

|ultg 02u) = 22ug 1| 2 (A2[E] +122™)
Hence, by integration by parts in (17), we have for these £ that

242 2mi\—k
WL ()] = CrgpA” (A7IE[+127") ™0, VE= 0,4 = 1.

This implies

101 (x, M| < Crg.p(@2®™) 7 k>0,

which proves (14).
We now estimate the term A;(x, A). By a change of variables, we have

)LZWI 1 723,

Ar(x, A) = t)\.zml_zn()\._2x)/f(s)\lj)h(t)\'zml—zs)el'xt ds
:t)“zmln()‘_zx)v/I(S)eixmzml_zs/g(«/ﬁ)@i[m’(kzu)_t}”zmlus]duds

— /t)\2mln()\'—2x)/eix[}‘,zml—2sat(s’)\’)ds
where
ar(s, X)) = Vtr2m /r(s)g(ﬁ)ei[t"’()‘zu)_’)‘zml“S]du.
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It is clear that suppa(-, 1) C [2¢, ! 2¢0]. Moreover, on the support of g we have
1/4 < u < 4. In this situation, by (H1) we have

32
ﬁ[m(ﬂu) — tAPMys]| > AP
u

Hence, by van der Corput’s Lemma in [38] we obtain
lar (x, V)] S 1.

This implies |a(s, 2)| < 1forall s € [206]’ 2co] and A > 1. This proves (15). O
In a similar way we have the following result:

Theorem 3.2 Assume ¢ satisfies (H2) and g is a C* function supported in [1/2,2].
Then there exist co > 1, and functions and p;(x, A) and a;(s, L) defined on R2 for
each t satisfying

o (x, )] < Clk, ligllee, ¢) @275, &k =0, (18)
and
suppa; (-, ) C [2¢ ', 2c0] and a;(s, 2)| < C(lIgllcr. ¢)- (19)
so that
g L/X)e Y = po(x, 1) + mn()fzx) / em)”zmrzsa,(s, Ads
forallx,t > 0and0 < A < 1, where n € C*°(R) is supported in [5,1/5] and n = 1

on [1/4,4].

Proof The proof of this theorem is similar to that of Theorem 3.1 and we omit details.
O

We now apply the previous Theorems to obtain a high frequency (resp. low fre-
quency) dispersive estimate for the flow e/¢(1):

Theorem 3.3 Assume L satisfies (A1) and (A2), ¢ satisfies (H1), and v € C*(R)
is supported in [1/2, 2]. Then we have

WO IVLD) D < e T A ATy f > 1 e < To. (20)

Proof From Theorem 3.1 and spectral theory, there exist functions p, a and 7 as in
Theorem 3.1 so that

YO VDEPD = p(L.2) + Va2 (.2L) / FOSL (3 ds

= p(L, A) + Ay 5. (L).
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We first estimate the term related to A; 5 (L). By using (A1), (A2) and (15) we have
2co
A Dl g S VR 2072 [ s, olds
2¢y
< t—%k(l—ml)n-%ml.

We now take care of the term p, (L, A). Let ¢ € C*°(R) with supp ¢ C [1/6, 6]
and ¢ = 11in [1/5, 5]. Since p; (-, A) is supported in [A2/5, 5)2], we have

pi(L. ) = o 'VL)p (L, M. VL).
Therefore,
e (L M1z < Nl VD) i p2llo0 (L M 2 2l VL) 2, e
Using (8) we have
le™'VD) L2 SA72 and eVl 0 SAE Q1)

By (14) we deduce
lor (Ll < Do Wl S G2~
Therefore,
o (L, Ml K"(Az’"lt)_% — Ty (mmntmy
Summing up, we have proved that
N e R e N (22)

This completes our proof. O
For the low frequency estimate we have:

Theorem 3.4 Assume L satisfies (A1) and (A2), ¢ satisfies (H2), and v € C*(R)
is supported in [1/2, 2]. Then we have

WO VL)E D ) < e T A0 fl 0 <A< 1L ] < Tp. (23)

Proof If Ty = oo, then we can argue similarly to the proof of Theorem 3.3. It remains
to consider the case Ty < oo. Arguing as for (21) we obtain

WL D 1 <A il
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Now we note that
e UL PSS EUSS
and indeed we have
[tA*2 < Ty -1 =T
which concludes the proof. 0

Combining Theorems 3.3 and 3.4 we conclude:

Corollary 3.5 Let L satisfy (Al) and (A2) and let ¢ satisfy (H1) and (H2) with
m1 = my = m. Assume that y € C*°(R) supported in [1/2, 2] then we have

WO WVL)E WD ) < e T A0 p S 0, < To. (24)

3.2 A case study: dispersive estimates for fractional Schrodinger semigroups

We consider in more detail the following special case of Corollary 3.5:

Proposition 3.6 Ler L satisfy (Al) and (A2), and let v € (0, 1). Assume that €
C*®(R) is supported in [1/2, 2]. Then we have

W OTVDE 1 < T AT L A0, < To. (25)

Readers familiar with the stationary phase method may suspect that the estimate (25)
is not sharp. Indeed, for the family of flows e!/(=®)" the decay rate is governed by the
phase

ot x,6) =x-&+1|E]%,

more precisely by the curvature of the surface Ve¢ = 0. In the case v = 1/2, cor-
responding to the wave equation, the surface is degenerate and one gets a decay rate
~ |t|_% , while for v # 1/2 one expects better decay, at least for suitable data. How-
ever, it is not difficult to check that for nonhomogeneous phases this simple picture

is wrong: for arbitrary v € (0, 1), one can construct operators L such that e!’" has
a decay rate ~ =% while /'L decays like ~ =" at best in general. Thus, in this
sense, our result is sharp.

We show the explicit construction for v = 1/3. Define a piecewise C' function
ap : [0, +00) — [0, +00) as follows:

s2/2 if0<s<1/2, s if0<s<1/2,
ap(s) = 3 if1/2<s <1, sothat a(/)(s) = {352 if1/2 <s <1,
37 -2 if s>1 6s  ifs > 1.
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Note that a’ is strictly increasing with (positive) jumps at s = 1/2 and s = 1, and that
forall s # 1/2, 1 we have

s < ay(s) < 6s, 1 <agy(s) <6.

We can obviously modify ag in two small neighbourhoods of the jump points and
obtain a new C* function a : [0, +00) — [0, +00) such that for all s > 0

s <d(s) <Ks, 1<d’(s) <K
for some positive constant K > 6, and in addition
s2/2 if0<s <1/2-38,
a(s) =4 s3 if1/24+58<s<1-39, 8 =1/100.
352 -2 if s> 1+
Note that we have also the symbol type property

aW ) <s277,  j=0,1,2,....

We then define the oscillatory integral with a radial phase

I(z,x)=/ef<xf+’¢<f>>w(g)ds with (&) = a(€]), t€R, xeR"

where ¢ € C2°(R") is a fixed test function; note that y satisfies trivially the symbol
property

0%y &) < 15171

By the stationary phase method one gets the uniform estimate

[I(t,x)| <Clt|"2Z, Vt#0, xeR" (26)
For instance, this is a special case of Theorem 3.1 in [26] (with the choices m| =
my =2, by = by = 0so that v = v = 0). The assumptions of the Theorem require,
besides the symbol properties of ¢, ¥, that ¢ () satisfy

VY|~ 1,  C) <|detD*¢| < Cy

for some constants C1, C» > 0; these conditions are easily verified from the above

construction.
From estimate (26) one obtains immediately the dispersive estimate

e fllpoe S 1e172 0 1l @7)
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for the flow associated to the operator

L=¢D) ie. Lf=F4E7.

Indeed, one can split f in frequency on the ball |£| < 10, and to this first piece one
applies (26); on the remaining piece, the operator L coincides with —3A — 2 and
hence the estimate follows from the standard dispersive estimate for the Schrodinger
equation.

. _n=l,
However, the flow associated to L'/3 can not decay faster than |¢|~ 2 in general.
Indeed, for functions f with

suppf C {1/2+68 < || <1—6}
we have
Lf=(—A)3/2f — ei[Ll/szeit‘le

so that e/ f is precisely the wave flow applied to f, for which the sharp decay rate

n—1

is known tobe ~ |f|” 2 .
Itis clear that a similar construction can be performed for any power L", v € (0, 1).
By a suitable frequency decomposition, we can deduce from 3.6 the following
dispersive estimates with a loss of derivatives:

Theorem 3.7 Let L satisfy (A1) and (A2), and let v € (0, 1).

i) Fors > (1 —v)n+v,
e flloe S 117" T 0 + LY fllp, 1] < To,
@) Forpe (0,1)ands =n(1/p —v) +v,
I il S 1T TNL f Ly, 1t < To.

Proof (i) Let g9 € C*°[0, 00) so that gg(1) = 1 for A € [_0, 1] and supp o C [0, 2].
Let (M) = @o(X) — @o(2A) and set ¢; (L) = @(27/1), j = 1. Then we have
suppe C [1/2,2] and

> i =1, VA=0
Jj=0
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so that
T+ L) =>"¢;(VL)I + L)~/
j=0
=Y 2 [y D+ 1)
Jj=0
=Y 277G;(VL)
j=0
It follows that
eitLVf — Zz—js@'j(ﬁ)eitl‘”([ + L)S‘/Zf
Jj=0
Hence,

e fllee < Y2718, (VDe™ (I + L) flip

j=0

:le

Jj=0

For j > 1, by applying Proposition 3.6 we have

> 1S Y2 U T I Ly
jzl1 izl

_n=l
ST 1T + L £l

aslongass > (1 —v)n +v.
For j = 0 we have

GoVD)E ™ (I + 1) f =Yy @ VD)oV (1 + Ly f

k<l

where € Ci°(R) is a partition of unity function, i.e., ¥ € S(R) such that supp ¢ C
[1/2,2] and

Zw(z—-/x) =1 on (0, ).

JEZ

By applying Proposition 3.6 we have

Io £ 37 117" M= G (VYT + L)
k<1

_nzl
ST 1@ LU + L) £l 1.
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Since @o(A) can be extended to be an even function in . (R), then by (8) we have
I1GoVIYUT + Ly fllp SIA + Ly £l

As a consequence,

_n—1
Io S 1™ 2 I+ L2 £l

Therefore,

v _n-l
”ettL f”LOO S It~ | +L)s/2f||les > (1 —v)n—+v.

(ii) Let {¢/(27/-)}jez with suppy C [1/2,2] be a partition of unity function on
R\{0}. We then have

eitva — Z w(z—jﬁ)eiZva
JEZL
— ZL—S/Zw(z—jﬁ)eilLvLS/Z.f

JEZ

where s =n(1/p —v) + v.

Let Ls/zf € Hf (X) N L*(X). Then, similarly to classical results [5,31], from
Theorem 2.5 and Proposition 2.6 it suffices to prove (ii) for all f such that L°/2 f has
a finite molecule presentation, i.e.,

N
Ls/zf = Z)\(ga(
=0

for some N € N, where a; are (p, 2, M, L, €) molecules with e > 0, M > %;”),
and

N 1/p
L2 fll gy ~ (Z |w) .

=1

From the molecule presentation of L*/? f we have

N
e”va = ZM Z L_S/zt/f(Z_j\/Z)e”Luag

£=0 JEZL
so that
- N
”eltL f”Loo S Z |)\'€| Z ||L_S/2w(2_jﬁ)eltL QZHLOO' (28)
=0 JjEZ
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We now claim that

YL Py VD al S 17T (29)

JEZ

for all (p,2, M, L, €) molecules with M > @ and € > 0.
Once (29) is proved, the estimate in (ii) folfows immediately. Indeed, from (28)
and (29), we have

1 s 1 e 1
itLY _n—l _n—1l _n—1 2
le"™ fllzee S 1rl7 2 |Ael <t 2 |Ael? ~TTIL f e
£=0 J2 t

which proves (ii).
So, it suffices to prove (29). To do this, suppose thata isa (p, 2, M, L, €) molecule
associated to a ball B with M > @ and € > 0. Then there exists b € D(LM) so

that a = LM b satisfies (i) and (ii) in Definition 2.3. We now split the sum on the left
hand side of (29) into 2 parts as follows:

DIy VD ale = 3 LTy @IV  al

JEZL j=—log,rp

+ Y Iy TIVDE  alx
j<—log, rp

=: E1 + E».
Let us take care of E| first. To do this, we write

Er= Y IL7yQ@ VD)™ al

j=—log; 1}

S 2L Py @I VDE  all .

jz—=log,rp

Applying Proposition 3.6 we deduce that

s —1
EvS Y, 27/l = g
j=—logyrp

(30)

. n—1
S Y 27D T a0

j=z—logyrp
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From (ii) in Definition 2.3 and (2) we have
o o0

lallzr =Y lallpisamy < D w@ B llall 25, sy (dueto Hlder’s inequality)
k=0 k=0

S 2_k6,bb(2kB)l_1/p

WK

~
Il
=}

pk(e+n(1/p=1)),—n(1/p=1)

M

~
Il
=

which implies |la| ;1 < r;n(l/[’—l)_

Therefore,

i _ _nzl1
E < Z [2 JrBl]n(l/P 1)|t| >
j=—log,rp

ST

For the term E, inserting a = LM b into the expression of E; we have

Ey= Y LMy VL™ b

j<—log, rp

— Z 2'j(2M_s)||2_j(2M_S)LM_S/2I//(2_j«/Z)€itLUb”Loo,

j<—log, rp
By Proposition 3.6 we have

Eys ), YNl Ti ),

j<—log, rp

D D el TS

j<—log, rp
On the other hand, arguing similarly to (30) we have

bl S gL

Therefore,
Er < Z [zjrB][zM—n(l/p—l)]|,|—%
j<—log,rp
n—1
Sl
2— 1—
as long as M > "(2_171’) - 'l(z_pp).
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From the estimates of E1 and E, we obtain (29). This competes our proof. O

Some comments on Theorem 3.7 are in order:

(i) An estimate like (i) in Theorem 3.7 was proved earlier in [15, Theorem 1.2] for
the special case of the twisted Laplacian L on R??, with d > 2. Note however
that the estimate in [15] was

itV s—2d
e Flle S (11 + 1005 ) 1272 7 31)

for s in the range 2d > s > 2d — 2 min{v, 1 — v}. Due to the spectral gap in this
situation, the term (I + L)*/? in (i) of Theorem 3.7 can be replaced by Ls/2,
Thus, even in this special case, estimate (i) in Theorem 3.7 improves (31) giving
both a better range for s and a better decay.

(i1) The estimate (ii) in Theorem 3.7 is new. To the best of our knowledge, this is the
first H [ — L®° dispersive estimate in the literature.

(iii) In the particular case when L = — A, estimate (25) can be improved as follows:
for all v e (0, 1)\{1/2},

1 OTWVDEE LS A f I, A >0, <o (32)

See for example [24, Theorem 1]. Thus, following the proof of Theorem 3.7, we
obtain that for v € (0, 1)\{1/2}

”eitL”f”LC>O S |l‘ —%”(1 + L)S/2f||L]’ s > n(l — U), (33)
and
"™ fllee SUI2IL fllgr, p € 0. D, s =n(l/p—v), (34

where H? is a classical Hardy space. To our knowledge, the estimates (33) and
(34) are new.

We now focus on the special case v = 1/2, which corresponds to the wave—type

flow eV, Arguing similarly to Theorem 3.7 we obtain:

Theorem 3.8 Let L satisfy (Al) and (A2).

(i) Fors > %, we have

eizﬁ
VL

n—1
ST TN+ LY, il < To.
LOO

f

(i) For p € (0,1)and s = n(% — %) — %, we have

eitﬁ
VL

n—1 .
SITZUL P f gy, 1] < To.
LOO

f
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Note that the decay |t|’% in Theorem 3.8 is sharp, as shown by the well known
dispersive estimates for the free wave equation corresponding to the choice L = —A.
For L = —A + V with small potentials V € . (R"), n > 3, it was proved in [5] (see
also [30]) that

eitﬁ n—1 /2 n —
fll S 2 0d =AY fllgr, s = ——. (35
VL . " 2
We see that estimate (ii) in Theorem 3.8 is new for 0 < p < 1 even when L = —A.
We also mention that for Schrédinger operators L = —A 4V our assumptions (A1),

(A2) are known to hold for several classes of potentials V (x) on R”, both locally and
globally in time. Concerning the global in time case, heat kernel estimates (A2) hold
in any dimension under very mild assumptions on V, e.g. for Kato class potentials (see
e.g. [14,36]). Dispersive estimates for the Schrodinger propagator of the form (Al)
are known for rather general classes of potentials (see [1,13,28,41,42]); sharp results
are known only for dimension n = 1 [13] and n = 3 [4].

Note that Theorems 3.7 and 3.8 give dispersive estimates corresponding to s >
n(l —v) + v. In order to prove estimates for the critical case s = n(1 —v) + v,
we need a new version of homogeneous Besov spaces. We conclude this section by
proving a version of dispersive estimates for initial data in Besov spaces generated by
L. Fix a Littlewood-Paley dyadic partition of unity ¥ = {v/;};cz on R, and define

foralls € R, 1 < p, g < oo the Besov space B;s (X) as the completion of the set
[£er2a0: s <ol
for the norm || - || s, given by
p.q

l/q

1710 =43 (215D flee)’

JEZ

We note that this definition is independent of the choice of W. Indeed, suppose that
® = {@}kez is another dyadic partition of unity. Then for j € Z and f € L? we
have

Jj+2
viVDf= Y ¥iVDaWD)f.
k=j—2
By (8) we have
' 2 j+2
25N VD fllie S Y 2PN WD) fllie ~ Y 25N VL) flle (36)
k=j—-2 k=j—-2
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and this implies, as claimed,

1/q 1/q

S (@I WDrIe) t ~ Y (2P WD fi)

JEZ JEZ

We can now prove our dispersive estimate for Besov initial data. Note that for wave

n—1

type flows e’ VL we recover the sharp derivative loss s = “5= which is well know for

the wave equation:

Theorem 3.9 Let L satisfy (Al) and (A2), and let v € (0, 1). Then we have

itL" —nl
)el fHLOO S |t| 2 ||f||Bl(}rl))n+v.L.

In the particular case v = % we get

eitﬁ
VL

_n=1
SUTTUfN as
Lo Bl,l

f

Proof Let W = {1} be a Littlewood—Paley partition of unity. Then we have

j+2
YiVL)y = Y (VDL
k=j-2
so that
. Jj+2 o
ViDL f= 3" g VDD f.
k=j-2
This implies
1y (VL) £l oo
Jj+2 '
= Y I De™ Y (VL) fllr
k=j—2
j+2

(37

(38)

—n-l — _nzl -
SO T 2RIy (VL) fllpr ~ 1) 27Ty (VL) £l

k=j-2
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where we used (25) in the second inequality. As a consequence,

™ Flle <Y Iy (VL)e"™ £l

JEZ

_n=l =
S 1T 20y (VI £l

JEZ

n—1
~ |t 2 ||f||3:}l—u>;z+v,L

which proves (37).
The proof of (38) can be done in the same manner, hence we omit details. This
completes our proof.
O

4 Some applications

In this section we will apply the obtained results in Sect. 3 to study dispersive estimates
for Hermite operators, twisted Laplacians and Laguerre operators. It is worth noticing
that the list of applications is not exhaustive, since we just intend to show the generality
of our theory. Apart from these applications, one can find more applications in other
setting such as Schrédinger operators with smooth potentials.

The estimates in Theorems 3.7, 3.8 and 3.9 hold true for all operators below. Hence,
we will not list all of them, but concentrate on some specific estimates.

4.1 Hermite operators

Let L = —A + |x|? be the Hermite operator on R” with n > 1. Let p;(x, y) denote
the kernel of the semigroup e~'%. It is clear that p;(x, y) enjoys the Gaussian upper
bound (A2), and we have an explicit representation for the kernel p;(x, y):

(x )_L i erx _11+—e_2’|x_ |2_11_—e_2t|x+ 12
Pt Y=o \1 = e A Y 41+e 2 Y

forall + > O and x, y € R". See for example [39].
It is well-known that for any 6 > 0 there exists C > 0 so that

lt] < 7/2 —38.

: C
tL
e Nl < 2

Therefore, the Hermite operator L satisfies the conditions (A1) and (A2).
As a consequence of Theorems 3.7 and 3.8, we have
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Proposition 4.1 Let L = —A + |x|* be the Hermite operator on R" withn > 1. Then
we have

I Fllie S 1T IL 2y, 1) < /2 -8
forpe0,1)ands =n(1/p —v)+v; and
oVL
VL

n—1 .
SUTTNL 2 fllgp. It < m/2 =8
LOO

f

1 _1y_1
forp e O, Dands=n(; —3) -5

As mentioned in Sect. 2.2 that H? (R") ; HLp (R™), hence the estimate above is
sharper than the following estimate:

e flloe S 10172 WL fllge, 1] < /28
forp € (0, )ands = n(1/p —v) + v; and
oiVL
VL

ST NL P f o, Nt < 7m/2— 8
LDC

f

for p € (0, 1)ands=n(%_%)_%.

Proposition 4.2 For each 0 < s < 2 we have Bi’f‘(R”) — Bil(R").
Proof Let W = {1/} be a partition of unity, ¥;(s) = ¥ (27/s). Then we have

YQIV=A =) yQIV=A YTV f

keZ

so that

Y 2y IVEA =Y 20 Yy eIV Ay e VD /.

JEZ JEZ keZ
It follows that

D 2 QTIV=A fllp <Y 28 Y QT V=2 TV fll

JEZ JEZL keZ

=Y 2 e V=R e VD fli

JEZ  kzj

+3 25 S @IV VD) £,

JEZ k<j
=11 + Db.
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By using (8) we have

LSy 200k L) il

JEL k=]
S 22N @D fll = £l g
keZ '

To estimate the term /5, by (8) we have

L= 2" (=AY Q=AML LYy @ VL) £l

JjEZ k<j
220 Y AL Ly @7V f
JEL k<j
S22 2 ILy @ VD flw
JEL k<j
+ 227 ) 2L Ly @7 VD) fl
JEZ k<j
S22 2TV fli
JEZ k<j
+3 20y 2P Y @ VD) f il
JEL k<j

where J(x) = x21//(x).
It was proved in [2] that |x|2L~! is bounded on L'. Hence,

LSy 20y 22UtV fllp

J€Z k<j

=Y 27U G 2 VL) fll

jeZk<j

<Y 2@V fll

keZ

Arguing similarly to the proof of (36) we have

22TVl S 1Sl gy

keZ

Hence, I, < || f] Bk This completes our proof. O

Proposition 4.3 We have BY | C B?”IL.
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Proof We claim that if [;* I12Le=""L £|| 1+~ 'dt < oo, then f € B?"IL and

dt

* 2 2L
IIfIIB?,ILS/O lt“Le™" f||L17~ (39)

Indeed, let ¥ (s) = ¥ (27/s) be a partition of unity. By functional calculus we have
for j e Z

Y IVI)f = ¢ / S 2L ly Ve
0
where ¢ = [fooo et dz]_l. Hence

z

2—k
v IVL) Il < 1LY 2" Ly @IV £l @
2—k—1 t

JjEZ JEL kel
S T dt
§ZZ[ 120%™ Yy @IV i —
jezisy ! (40)
+>.> / T ey Ly @IV [l 2
c ‘ Jo—k—1 ¢ Lt t
JEZ k<]
=11 + b.
For the term I; we have
2t 252j 11,2 2L ] dt
I SZZ/ 22X Le Y QTINVL) fllp—
IS 2—k—1 t
2t 20j—k) (42 2L n—j dt
SZZ/ 22U 02 Le QL) fllp—
IS 2—k—1 t
27k
dt
< I2L —l‘zL -
NZ/TH I Le™ flipn=
keZ
where IZ()C) = x24(x). Here we have applied (8). Thus
o dt
h 5/ ||l2L€7l2Lf||LlT~ 41)
0
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Similarly, for ¥ (x) = x 24 (x), we have

2—[(
. 2y — . dt
bL< ZZ[TH 17272 (2L e E Yy IV L) Fl s

JEL k<]
27k
2 dt
S Z/ L) e fllp—.
kez /27! !

We can write

2

2 2
t 12 t 12
(2L Ly =8 <5L> 7L |:3Le_2Lf:| .

2 2
Since the kernel of (%L) e~ 7 L satisfies the Gaussian upper bound (see for example
[12]), we have

2 2

t
1L e fl S | S Le T s

~

L1

As a consequence,
2—k
ney
—k—1
kez ’?

This, along with (41) and (40), implies

2

t 2
__Le— 2L
7 e f

t o dt

— 5/ 12 Le L fll 1.

Ll t 0 t
i o ) dt

v VD) 5/ 2 Le™F fll—

JEL 0 !

which proves the claim (39).

We now turn to prove B? 1 ; B?’IL . Indeed, if f € B? |» it was proved in [8] that

o0 ) dt
| iR 1S S s,
0 t 1.1
Therefore, applying (39) we have f € B?]L and
* dt
. < 2y —2L < R
e S [ IPLE AL S0 1

This completes the proof. O
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We would like to illustrate the advantage of dispersive estimates in Theorem 3.9

and of the new Besov spaces. In our situation L = —A + |x|?, if n = 1, estimate (38)
becomes
eit\/z n—1
<|t” 7 S0.L . 42
vad LI (42)

In this situation, the estimate (42) is sharper than the following estimate

eit«/f
VL

f

_n—1
S o s
L '

since by Proposition 4.3, B?’l @ B?IL .
Although in the general case n > 2 it is not clear whether the following estimate
holds true

eitﬁ
f S Itl_*llfll nsls
ﬁ L>® l l
,n—l . n—l
for the particular case n = 2, 3,4 we can find the spaces B12l T C 3121 (see

Proposition 4.2) such that

eitﬁ
VL

S Ifl_illfll nl g

L® 11

f

nl

We do not know at present if there exists f € B1 1 such that e N f ¢ L.

4.2 Twisted Laplacians

Consider the twisted Laplacian on R” withn = 2d,d € N:

IZ[ xj zy] (By].—l—ixj)z].

j=1

It is well-known that the kernel p; (x, y) of e~ admits a Gaussian upper bound

C Ix — y|?
|p:(x, y)| < 7 &P (——y .

ct
See [32].
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Moreover, by continuation of the corresponding heat kernel in [32] we obtain
le™ Npiope St740 It <m/2—8.

Therefore, the twisted Laplacian L satisfies (A1) and (A2). As a consequence, all of
the estimates in Theorems 3.7, 3.8 and 3.9 hold true for the twisted Laplacian.

4.3 Laguerre operators

Consider the space X = (0, 0c0)" equipped with the Euclidean distance d and measure
ju given by du(x) = dpi(x) ...du,(x) where dug = x;%'dxg, ax > —1 for
k=1,...,n.

It is easy to see that

n

u(B(x,r) ~ [ o + x> (43)
k=1
where B(x,r) = {y € X : |[x — y| < r}is the ball centered in x = (x1, x2, ..., X,)

with radius r. It follows that the measure u satisfies the doubling condition (1). More-
over, if ¢y > —1/2 for all k, then we have

n
wBx, =N, N =2n+22(xk > 1
k=1

forallx € X and r > 0.

In this section, we always assume that o > —1/2 for all k.

Form e Nand o > —1/2,k = 1,2, ..., n, consider the Laguerre functions w,f‘
which are defined by

o, 2m! 12 o, 2\ —x2/2
Yk(x) = m Lk (x%)e ,x € R, (44)

where L, are the m-th Laguerre polynomials. See for example [29].

We set 2 (x) = [Tj_; ¥ (xx) foreachk = 1,2, ..., nandx = (x1, x2, ..., X,).
Itis well known that the Laguerre functions form an orthonormal basis for L*(X.,d nw.
We now consider the Laguerre operator L, defined by

n
200 +1 d 2
L=—-A-— — + . 45
1?:1 o dus x| (45)

It is well known that

n
Llﬁfi = )\m,awffls )Wn,a = (4m +2)n + Z 20
k=1

@ Springer



On the flows associated to selfadjoint operators on metric...

Then the operator L has a non-negative self-adjoint extension which is still denoted
by L with domain

D(L) = {f € L*(X.dp) : Y _hp I(f ¥&)aul® < oo}

t

Moreover, the heat kernel p; (x, y) associated to the semigroup e 'L is given by

n =2t
2e
pi(x,y) = l_[ P

k=1
Tl4e™ 5 o 2e=2
X exp <—§m(xk + i) ) Goye) ™ L, Tk )
(46)
forallt > 0,x,y € X and I, being the Bessel function. See for example [29].
Theorem4.4 Let oy > —1/2forallk = 1,...,n and let L be the Laguerre operator
defined by (45). Then we have
c lx =y
0<pi(x,y) S ———F~—exp <— (47
(B (x, V1)) ct
forallx,y € X andt > 0.
Moreover,
le™ e SN2t <m/2 -8 (48)

where N =2n + Y ;| 20.
Hence, the Laguerre operator satisfies (Al) and (A2).

Proof We refer to [6, Lemma 3.1] for the proof of the Gaussian upper bounds (46)
and [37, Lemma 3.5] for the proof of the dispersive estimate (48). O

Definition 4.5 Let p € (NLH’ 1]. A function a is called a p-atom associated to the
ball B if

(i) suppa C B
(i) llalleox) < p(B)~1/P

(iii) /a(x)du(x) =0.

To define the Hardy space Hg w for p below 1, we need to introduce the Lipschitz
spaces £,. We say that the function f € £, if there exists a constant ¢ > 0, such that

|f () = fODI = clBI*

for all ball B and x, y € B, and the best constant ¢ can be taken to be the norm of f
and is denoted by || fl g,
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Definition 4.6 (Hardy spaces of Coifman and Weiss) Let NLH < p < 1. We say that

a function f € Hpy (X) if f € L'(X) for p = 1,or f € £, for p < 1, and
there exists a sequence (A;) jen € £7 and a sequence of p-atoms (a;)jen such that

f=2;xjajin L'(X)forp=1,and f = > jhjajin £y, for p < 1. We set

1/p

I flgz, =inf J D117 f =R
J J

From Theorems 3.7 and 3.8, we have

Proposition4.7 Let o > —1/2 for all k = 1,...,n and let L be the Laguerre
operator defined by (45). Then we have

1S Flloe S 11T IL 2 g, 1) <7/2 -8
forpe (0,1)ands = N(1/p —v) + v, and

eitﬁ
VL

Fl ST T flgp el < 72 =8
LOO

L1y 1
forpe© Dands =N(; —3) = 5.

From [7, Theorem 6.6] we have H? (R") g Hf(R") for NLH < p < 1. Hence the
estimates above are sharper than the following estimates:

itLV _N-1
e Fllooe S 17T IL2 fll e o ) < 7/2 =6
for p € (NLH, I)ands = N(1/p —v) + v; and

eitﬁ
VL

N-1
< 41— "7 1175/2 _
fl ST f s <728
LOO

N Nl _1y_1

for p € (771D and s = N(p 5)— 3
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