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Abstract

Constrained submodular maximization problems encompass a wide variety of
applications, including personalized recommendation, team formation, and revenue
maximization via viral marketing. The massive instances occurring in modern-
day applications can render existing algorithms prohibitively slow. Moreover,
frequently those instances are also inherently stochastic. Focusing on these chal-
lenges, we revisit the classic problem of maximizing a (possibly non-monotone)
submodular function subject to a knapsack constraint. We present a simple random-
ized greedy algorithm that achieves a 5.83 approximation and runs in O(n log n)
time, i.e., at least a factor n faster than other state-of-the-art algorithms. The
robustness of our approach allows us to further transfer it to a stochastic version of
the problem. There, we obtain a 9-approximation to the best adaptive policy, which
is the first constant approximation for non-monotone objectives. Experimental
evaluation of our algorithms showcases their improved performance on real and
synthetic data.

1 Introduction

Constrained submodular maximization is a fundamental problem at the heart of discrete optimization.
The reason for this is as simple as it is clear: submodular functions capture the notion of diminishing
returns present in a wide variety of real-world settings.

Consequently to its striking importance and coinciding NP-hardness [22], extensive research has
been conducted on submodular maximization since the seventies (e.g., [16, 44]), with focus lately
shifting towards handling the massive datasets emerging in modern applications. With a wide variety
of possible constraints, often regarding cardinality, independence in a matroid, or knapsack-type
restrictions, the number of applications is vast. To name just a few, there are recent works on feature
selection in machine learning [14, 15, 34], influence maximization in viral marketing [3, 33], and data
summarization [45, 40, 47]. Many of these applications have non-monotone submodular objectives,
meaning that adding an element to an existing set might actually decrease its value. Two such
examples are discussed in detail in Section 5.
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Modern-day applications increasingly force us to face two distinct, but often entangled challenges.
First, the massive size of occurring instances fuels a need for very fast algorithms. As the running
time is dominated by the objective function evaluations (also known as value oracle calls), it is
typically measured (as in this work) by their number. So, here the goal is to design algorithms
requiring an almost linear number of such evaluations. There is extensive research focusing on this
issue, be it in the standard algorithmic setting [41], or in streaming [4, 10, 26, 1] and distributed
submodular maximization [40, 13]. The second challenge is the inherent uncertainty in problems
like sensor placement or revenue maximization, where one does not learn the exact marginal value
of an element until it is added to the solution (and thus “paid for”). This, too, has motivated several
works on adaptive submodular maximization [27, 28, 30, 43]. Note that even estimating the expected
value to a partially unknown objective function can be very costly and this makes the reduction of the
number of such calls all the more important.

Knapsack constraints are one of the most natural types of restriction that occurs in real-world problems
and are often hard budget, time, or size constraints. Other combinatorial constraints like partition
matroid constraints, on the other hand, model less stringent requirements, e.g., avoiding too many
similar items in the solution. As the soft versions of such constraints can be often hardwired in
the objective itself (see the Video Recommendation application in Section 5), we do not deal with
them directly here. The nearly-linear time requirement, without large constants involved, leaves
little room for using sophisticated approaches like continuous greedy methods [24] or enumeration
of initial solutions [46]. To further highlight the delicate balance between function evaluations and
approximation, it is worth mentioning that, even for the monotone case, the first result combining
O(n log n) oracle calls with an approximation better than 2 is the very recent e

e−1 -approximation
algorithm of Ene and Nguyen [17]. While this is a very elegant theoretical result, the huge constants
involved render it unusable in practice.

At the same time, there is a strikingly simple 3-approximation variant of the modified density greedy
algorithm of Wolsey [49] that deals well with both issues in the monotone case: Sort the items in
decreasing order according to their marginal value over cost ratio and pick as many items as possible
in that order without violating the constraint. Finally, return the best among this solution and the
best single item.1 For simplicity, by modified density greedy we will refer to this algorithm. When
combined with lazy evaluations [39], it requires onlyO(n log n) value oracle calls and can be adjusted
to work well for adaptive submodular maximization [27]. For non-monotone objectives, however,
the only practical algorithm is the (10 + ε)-approximation FANTOM algorithm of Mirzasoleiman
et al. [41] requiring O(n2 log n) value oracle calls (see also Remark 1). Moreover, there is no known
algorithm for the adaptive setting that can handle anything beyond a cardinality constraint [28].

We aim to tackle both aforementioned challenges for non-monotone submodular maximization
under a knapsack constraint, by revisiting the simple algorithmic principle of the modified density
greedy algorithm. Our approach is along the lines of recent results on random greedy combinatorial
algorithms [7, 25], which show that introducing randomness into greedy algorithms can extend their
guarantees to the non-monotone case. Here, we give the first such algorithm for a knapsack constraint.

1.1 Contribution and Outline

The modified density greedy algorithm may produce arbitrarily poor solutions when the objective
is non-monotone. In this work we show that introducing some randomization leads to a simple
algorithm, SAMPLEGREEDY, that outperforms existing algorithms both in theory and in practice.
SAMPLEGREEDY flips a coin before greedily choosing any item in order to decide whether to include
it to the solution or ignore it. The algorithmic simplicity of such an approach keeps SAMPLEGREEDY
fast, easy to implement, and flexible enough to adjust to other related settings. At the same time the
added randomness prevents it from getting trapped in solutions of poor quality.

In particular, in Section 3 we show that SAMPLEGREEDY is a 5.83-approximation algorithm using
only O(n log n) value oracle calls. When all singletons have small value compared to an optimal
solution, the approximation factor improves to almost 4. This is the first constant-factor approximation
algorithm for the non-monotone case using this few queries. The only other algorithm fast enough to

1A somewhat more elaborate 2.8-approximation algorithm is given by Wolsey [49]. For completeness, in the
supplementary material we show the approximation guarantee of the simplified version we mention here.
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be suitable for large instances is the aforementioned FANTOM [41] which, for a knapsack constraint,2
achieves an approximation factor of (10 + ε) with O(nrε−1 log n) queries, where r is the size of the
largest feasible set and can be as large as Θ(n). Even if we modify FANTOM to use lazy evaluations,
we still improve the query complexity by a logarithmic factor (see Remark 1).

Then we study the problem in the adaptive submodular maximization framework of Golovin and
Krause [27] and Gotovos et al. [28], where the stochastic submodular objective is learned as we build
the solution and its value depends only on the state of the elements in the evaluated set. For this
adaptive variant, we show in Section 4 that a natural adaptation of our algorithm, ADAPTIVEGREEDY,
still guarantees a 9-approximation to the best adaptive policy. This is not only a relatively small loss
given the considerably stronger benchmark, but is in fact the first constant approximation known
for the problem in this framework. Hence we fill a notable theoretical gap, given that models
with incomplete prior information, or those capturing evolving settings, are becoming increasingly
important in practice.

From a technical point of view, our algorithm combines the simple principle of always choosing a
high-density item with maintaining a careful exploration-exploitation balance, as is the case in many
stochastic learning problems. It is therefore directly related to the recent simple randomized greedy
approaches for maximizing non-monotone submodular objectives subject to other (i.e., non-knapsack)
constraints [7, 10, 25]. However, there are underlying technical difficulties that make the analysis for
knapsack constraints significantly more challenging. Every single result in this line of work critically
depends on making a random choice in each step, in a way so that “good progress” is consistently
made. This is not possible under a knapsack constraint. Instead, we argue globally about the value of
the SAMPLEGREEDY output via a comparison with a carefully maintained almost integral solution.
When it comes to extending this approach to the adaptive non-monotone submodular maximization
framework, we crucially use the fact that the algorithm builds the solution iteratively, committing in
every step to all the past choices. This is the main technical reason why it is not possible to adjust
algorithms with multiple “parallel” runs, like FANTOM, to the adaptive setting.

Our algorithms provably handle well the aforementioned emerging, modern-day challenges, i.e.,
stochastically evolving objectives and rapidly growing real-world instances. In Section 5 we showcase
the fact that our theoretical results indeed translate into applied performance. We focus on two
applications that fit within the framework of non-monotone submodular maximization subject to a
knapsack constraint, namely video recommendation and influence-and-exploit marketing. We run
experiments on real and synthetic data that indicate that SAMPLEGREEDY consistently performs
better than FANTOM while being much faster. For ADAPTIVEGREEDY we highlight the fact that its
adaptive behavior results in a significant improvement over non-adaptive alternatives.

1.2 Related Work

There is an extensive literature on submodular maximization subject to knapsack or other constraints,
going back several decades, see, e.g., [44, 49]. For a monotone submodular objective subject to a
knapsack constraint there is a deterministic e

e−1 -approximation algorithm [35, 46] which is tight,
unless P = NP [22]. This algorithm has a running time of O(n5) but there are other, much faster,
greedy approaches with weaker approximation guarantees, like the modified density greedy used as
a starting point here, Wolsey’s 2.8-approximation algorithm [49], and the recent 2-approximation
algorithm of Yaroslavtsev et al. [51].

On non-monotone submodular functions Lee et al. [37] provided a 5-approximation algorithm for
k knapsack constraints, which was the first constant factor algorithm for the problem. Fadaei et al.
[19] building on the approach of Lee et al. [37], reduced this factor to 4. One of the most interesting
algorithms for a single knapsack constraint is the 6-approximation algorithm of Gupta et al. [29].
As this is a greedy combinatorial algorithm based on running Sviridenko’s algorithm twice, it is
often used as a subroutine by other algorithms in the literature, e.g., [13], despite its running time
of O(n4). A number of continuous greedy approaches [24, 36, 9] led to the current best factor
of e when a knapsack—or even a general downwards closed—constraint is involved. However,
continuous greedy algorithms are impractical for most real-world applications. The fastest such
algorithm for our setting is the (e + ε)-approximation algorithm of Chekuri et al. [11] requiring

2FANTOM can handle more general constraints, like a p-system constraint and ` knapsack constraints. Here
we refer to its performance and running time when restricted to a single knapsack constraint.
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O(n3ε−4polylog(n)) function evaluations. Possibly the only algorithm that is directly comparable to
our SAMPLEGREEDY in terms of running time is FANTOM by Mirzasoleiman et al. [41]. FANTOM
achieves a (1 + ε)(p+ 1)(2p+ 2`+ 1)/p-approximation for ` knapsack constraints and a p-system
constraint in time O(nrpε−1 log(n)), where r is the size of the largest feasible solution.

As mentioned above, there is a number of recent results on randomizing simple greedy algorithms so
that they work for non-monotone submodular objectives [7, 10, 28, 25, 23]. Our paper extends this
line of work, as we are the first to successfully apply this approach for a knapsack constraint.

Golovin and Krause [27] introduced the notions of adaptive monotonicity and submodularity and
showed it is possible to achieve guarantees with respect to the optimal adaptive policy that are similar
to the guarantees one gets in the standard algorithmic setting with respect to an optimal solution.
Our Section 4 fits into this framework as it was generalized by Gotovos et al. [28] for non-monotone
objectives. Gotovos et al. [28] showed that a variant of the random greedy algorithm of Buchbinder
et al. [7] achieves a e

e−1 -approximation in the case of a cardinality constraint.

Implicitly related to our quest for few value oracle calls is the recent line of work on the adaptive
complexity of submodular maximization that measures the number of sequential rounds of indepen-
dent value oracle calls needed to obtain a constant factor approximation; see [5, 6, 18, 20, 21] and
references therein. For non-monotone functions and a knapsack constraint, Ene et al. [18] give a
O(1)-approximation algorithm that needs O(log2(n)) rounds of independent value oracle calls. This,
however, does not necessarily translate to a practical query complexity. Using standard arguments for
estimating the multilinear extension of the objective and its gradient via sampling [48], the approach
of Ene et al. [18] requires Ω(n4) oracle queries in the worst case.

2 Problem Statement

In this section we formally introduce the problem of submodular maximization with a knapsack
constraint in both the standard and the adaptive setting. A function v : 2A → R+ over a set A, with
|A| = n, is submodular if the marginal values v(i |S) := v({i} ∪S)− v(S) of an element i ∈ A S
with respect to a set S ⊆ A are diminishing. That is, if v(i |S) ≥ v(i |T ) for any S ⊆ T ⊆ A and
i 6∈ T . The function v is non-decreasing (or simply monotone) if v(S) ≤ v(T ) for any S ⊆ T ⊆ A.

In this work we consider general (i.e., not necessarily monotone), normalized (i.e., v(∅) = 0),
non-negative submodular valuation functions v. In Section 3 we assume access to a value oracle that
returns v(S) when given as input a set S. There is a positive cost ci associated with each element
i ∈ A and a given budget B. The goal is to find a subset of A of maximum value among the subsets
whose total cost is at mostB. Formally, we want some S∗ ∈ argmax{v(S) |S ⊆ A,

∑
i∈S ci ≤ B}.

Without loss of generality, we may assume that ci ≤ B for all i ∈ A, since any element with cost
exceeding B is not contained in any feasible solution and can be discarded.

We next present the adaptive optimization framework [27, 28]. On a high level, here we do know
how the world works and what situations occur with which probability. However, which of those
we will be actually dealing with is inferred over time by the bits of information we learn. Along
with set A, we introduce the state space Ω which is endowed with some probability measure. By
ω = (ωi)i∈A ∈ Ω we specify the state of each element in A. The adaptive valuation function v is
then defined over A × Ω; the value over a subset S ⊆ A depends on both the subset and ω. Due
to the probability measure over Ω, v(S, ω) is a random variable. We define v(S) = E [v(S, ω)], the
expectation being with respect to ω. Like before, the costs ci are deterministic and known in advance.

For each ω ∈ Ω and S ⊆ A, we define the partial realization of state ω on S as the couple (S, ω|S),
where ω|S = (ωi)i∈S . It is natural to assume that the true value of a set S does not depend on
the whole state, but only on ω|S , i.e., v(S, ω) = v(S, ψ), for all ω, ψ ∈ Ω such that ω|S = ψ|S .
Therefore, sometimes we overload the notation and use v(S, ω|S) instead of v(S, ω). There is a clear
partial ordering on the set of all possible partial realizations: (S, ω|S) ⊆ (T, ω|T ) if S ⊆ T and ω|T
coincides with ω|S over all the elements of S. We are now ready to introduce the concepts of adaptive
submodularity and monotonicity. The marginal value of an element i given a partial realization is

v(i | (S, ω|S)) = E
[
v({i} ∪ S, ω)− v(S, ω) |ω|S

]
.
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Definition 1. The function v(· , ·) is adaptive submodular if v(i | (S, ω|S)) ≥ v(i | (T, ω|T )) for all
partial realizations (S, ω|S) ⊆ (T, ω|T ) and for any i /∈ T . Further, v(· , ·) is adaptive monotone if
v(i | (S, ω|S)) ≥ 0 for all partial realizations (S, ω|S) and for all i /∈ S.

In Section 4 we assume access to a value oracle that given an element i and a partial realization returns
the expected marginal value of i. Using the properties of conditional expectation, it is straightforward
to show that if v(· , ·) is adaptive submodular, then its expected value v(·) is submodular. In analogy
with [28], we assume v to be state-wise submodular, i.e., v(·, ω) is a submodular set function for each
ω ∈ Ω. In this framework it is possible to define adaptive policies to maximize v. An adaptive policy
is a function which associates with every partial realization a distribution on the next element to be
added to the solution. The optimal solution to the adaptive submodular maximization problem is to
find an adaptive policy that maximizes the expected value while respecting the knapsack constraint
(the expectation being taken over Ω and the randomness of the policy itself).

3 The Algorithmic Idea

We present and analyze SAMPLEGREEDY, a randomized 5.83-approximation algorithm for max-
imizing a submodular function subject to a knapsack constraint. As we mentioned already, SAM-
PLEGREEDY is based on the modified density greedy algorithm of Wolsey [49]. Since the latter
may perform arbitrarily bad for non-monotone objectives, we add a sampling phase, similar to the
sampling phase of the Sample Greedy algorithm of Feldman et al. [25].

SAMPLEGREEDY first selects a subsetA′ ofA by independently picking each element with probability
p. Then it runs Wolsey’s algorithm only onA′. To formalize this second step, using v(i) as a shorthand
for v({i}), let j1 ∈ argmaxi∈A′ v(i)/ci, and jk+1 ∈ argmaxi∈A′ {j1,...,jk} v(i | {j1, . . . , jk})/ci
for k ≥ 1. If ` is the largest integer such that

∑`
i=1 cji ≤ B, then S = {j1, . . . , j`}. In the end, the

output is the one yielding the largest value between S and an element from argmaxi∈A′ v(i).

Due to space constraints, we defer the pseudo-code of SAMPLEGREEDY as well as the proofs of
the statements below to the supplementary material. To facilitate our analysis, however, there we
state an equivalent algorithm (in the sense that the two have identical output distributions) where the
sampling phase does not proceed the greedy part. Instead, we start with the whole set A but when the
algorithm greedily considers an item, it only adds it in the solution with probability p. Lines 5-13 of
ADAPTIVEGREEDY illustrate how this equivalent greedy solution is built.

Theorem 1. For p =
√
2− 1, SAMPLEGREEDY is a

(
3 + 2

√
2
)
-approximation algorithm.

A naive implementation of SAMPLEGREEDY needs Θ(n2) value oracle calls in the worst case. Indeed,
in each iteration all the remaining elements have their marginals updated and for large enough B
the greedy solution may contain a constant fraction of A. Applying lazy evaluations [39], however,
we can cut the number of queries down to O(nε−1 log (n/ε)) losing only an ε in the approximation
factor (see also [17]). To achieve this, instead of recomputing all the marginals at every step, we
maintain an ordered queue of the elements sorted by their last known densities (i.e., their marginal
value per cost ratios) and use it to get a sufficiently good element to add.

More formally, the lazy implementation of SAMPLEGREEDY maintains the elements in a priority
queue in decreasing order of density, which is initialised using the ratios v(i)/ci. At each step we
pop the element on top of the queue. If its density with respect to the current solution is within a
1 + ε factor of its old one, then it is picked by the algorithm, otherwise it is reinserted in the queue
according to its new density and we pop the next element. Submodularity guarantees that the density
of a picked element is at least 1/(1 + ε) of the best density for that step. As soon as an element has
been updated log(n/ε)/ε times, we discard it.

Theorem 2. The lazy version of SAMPLEGREEDY achieves an approximation factor of 3+2
√
2+ ε

using O(nε−1 log (n/ε)) value oracle calls.

Additionally, our analysis implies that SAMPLEGREEDY performs significantly better in the large
instance scenario, i.e., when the value of the optimal solution is much larger than the value of any
single element. While it is not expected to have exact knowledge of the factor δ in the following
proposition, often some estimate is accessible. Especially for massive instances, it is reasonable to
assume that δ is bounded by a very small constant.
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Theorem 3. If maxi∈A v(i) ≤ δ · OPT for δ ∈ (0, 1/2), then SAMPLEGREEDY with p = 1−δ
2 is a

(4 + εδ)-approximation algorithm, where εδ = 4δ(2−δ)
(1−δ)2 .

4 Adaptive Submodular Maximization

In this section we modify SAMPLEGREEDY to achieve a good approximation guarantee in the
adaptive framework. Recall that the adaptive valuation function v(· , ·) depends on the state of the
system which is discovered a bit at a time, in an adaptive fashion. Indeed, SAMPLEGREEDY is
compatible with this framework and can be applied nearly as it is. We stick to the interpretation
of SAMPLEGREEDY discussed right before Theorem 1. That is, there is no initial sampling phase.
Instead, we directly begin to choose greedily with respect the density (marginal value with respect to
the current solution over cost). Each time we are about to pick an element of A, we throw a p-biased
coin that determines whether we keep or discard the element.

Here the main difference with the greedy part of SAMPLEGREEDY is that the marginals are to be
considered with respect to the partial realization relative to the current solution. Moreover, since it is
not possible to return the largest between maxi∈A v(i) and the result of the greedy exploration, the
choice between these two quantities has to be settled before starting the exploration. Formally, at the
beginning of the algorithm a p0-biased coin is tossed to decide between the two. The pseudo-code for
the resulting algorithm, ADAPTIVEGREEDY, is given below.

ADAPTIVEGREEDY

1 Let r0 ∼ Bernoulli(p0)
2 if r0 = 1 then
3 i∗ ∈ argmaxk∈A v (k) /* best single item in expectation */
4 Observe ωi∗ and return v(i∗, ωi∗)

5 S = ∅, R = B /* greedy solution and remaining knapsack capacity */
6 F = {k ∈ A | v(k) > 0} /* initial set of candidate items */
7 while F 6= ∅ do
8 Let i ∈ argmaxk∈F

v(k | (S,ω|S))

ck
9 Let ri ∼ Bernoulli(p) /* independent random bit */

10 if ri = 1 then
11 Observe ωi : S = S ∪ {i}, R = R− ci

12 A = A \ {i}, F =
{
k ∈ A | v(k | (S, ω|S)) > 0 and ck ≤ R

}
13 return S, v(S, ω|S)

We state the main result of this section, which is proved in in the supplementary material. Its analysis
follows a similar path to the one of Theorem 1, but the underlying randomness of the states creates
extra difficulties in some of the steps involved. The two sources of randomness, namely Ω and the
coin tosses {ri}, have to be carefully combined and this leads to a small loss in the approximation
guarantee. Let OPTΩ denote the expected value of the optimal adaptive policy.

Theorem 4. For p0 = 1/3 and p = 1/6, ADAPTIVEGREEDY yields a 9-approximation of OPTΩ,
while its lazy version achieves a (9 + ε)-approximation using O(nε−1 log (n/ε)) value oracle calls.

Moreover, when maxi∈A v(i) ≤ δ·OPTΩ for δ ∈ (0, 1/2), then for p0 = 0 and p = (
√
3− 2δ−1)/2,

ADAPTIVEGREEDY yields a (4 + 2
√
3 + ε′δ)-approximation, where ε′δ ≈ 6δ(2−δ)

(1−δ)2 .

5 Experiments

Out of the numerous applications of submodular maximization subject to a knapsack constraint,
we evaluate SAMPLEGREEDY and ADAPTIVEGREEDY on two selected examples, using real and
synthetic graph topologies. Variants of these have been studied in a similar context; see [41].

A delicate point is tuning the probabilities of acceptance p for improved performance. While the
choices of p in Theorems 1 and 4 minimize our analysis of the theoretical worst-case approximation,
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there are two factors suggesting that a value closer to 1 works better in real-world applications: the
best singleton typically is small and non-monotone objectives are—loosely speaking—not arbitrarily
far from monotonicity. Even so, we do not micro-optimize for p. Instead, we “guess” a good value
for it by running our algorithms 5 times, each with a p chosen uniformly at randomly from [0.9, 1].
As the algorithms are extremely fast, this does not affect our ability to handle very large instances.
Notice that while it is not realistic to run ADAPTIVEGREEDY multiple times in the adaptive case, this
could be seen as a dry run to tune p before trying on actual data.

It is important to note, however, that the theoretically optimal values of p still work well in a number
of different scenarios—including all the experiments here—in the sense that the algorithms perform
significantly better than their worst-case guarantee. Moreover, the best values of p in practice (which
vary among the instances) for all the instances in our experiments are strictly less than 1 and typically
in [0.92, 0.97]. This suggests that randomization helps, even in instances where the deterministic
density greedy algorithm would perform well despite the non-monotonicity.

Video Recommendation: Suppose we have a large collection A of videos from various categories
(represented as possibly intersecting subsets C1, . . . , Ck ⊆ A) and we want to design a recommenda-
tion system. When a user inputs a subset of categories and a target total length B, the system should
return a set of videos from the selected categories of total duration at most B that maximizes an
appropriate objective function. (Of course, instead of time here, we could use costs and a budget
constraint.) Each video has a rating and there is some measure of similarity between any two videos.
We use a weighted graph on A to model the latter: each edge {i, j} between two videos i and j has
a weight wij ∈ [0, 1] capturing the percentage of their similarity. To pave the way for our v(·), we
start from the auxiliary objective f(S) =

∑
i∈S

∑
j∈A wij − λ

∑
i∈S

∑
j∈S wij , for some λ ≥ 1

[38, 41]. This is a maximal marginal relevance inspired objective [8] that rewards coverage, while
penalizing similarity. For λ = 1, internal similarities are irrelevant and f becomes a cut function.
However, one can penalize similarities even more severely as f is submodular for λ ≥ 1 (e.g., Lin
and Bilmes [38] use λ = 5).

In order to mimic the effect of a partition matroid constraint, i.e., the avoidance of many videos from
the same category, we may use two parameters λ ≥ 1, µ ≥ 0. While λ is as above, µ puts extra
weight on similarities between videos that belong to the same category. That leads to a more general
auxiliary objective g(S) =

∑
i∈S

∑
j∈A wij −

∑
i∈S

∑
j∈S(λ+ χijµ)wij , where χij is equal to 1

if there exists ` such that i, j ∈ C` and 0 otherwise. To interpolate between choosing highly rated
videos and videos that represent well the whole collection, here we use the submodular function
v(S) = α

∑
i∈S ρi + βg(S) for α, β ≥ 0, where ρi is the rating of video i. We use λ = 3, µ = 7

and set the parameters α, β so that the two terms are of comparable size.

We evaluate SAMPLEGREEDY on an instance based on the latest version of the MovieLens dataset
[31], which includes 62000 movies, 13816 of which have both user-generated tags and ratings. We
calculate the weights wij using these tags (with the L2 norm of the pairwise minimum tag vector,
see the supplementary material) while the costs are drawn independently from U(0, 1). We compare
against the FANTOM algorithm of Mirzasoleiman et al. [41] as it is the only other algorithm with
a provable approximation guarantee that runs in reasonable time. Continuous greedy approaches
[24] or the repeated greedy of Gupta et al. [29] are prohibitively slow. SAMPLEGREEDY consistently
performs better than FANTOM for a wide range of budgets (Figure 1a). Plotting the number of
function evaluations against the budget, SAMPLEGREEDY is much faster (Figure 1d) despite the fact
that it is run 5 times!
Remark 1. The running time of FANTOM for fixed ε is O(nr log n), where r is the cardinality
of the largest feasible solution. For a knapsack constraint this translates to O(n2 log n). To be as
fair as possible, we implemented FANTOM using lazy evaluations, which improves the number of
evaluations of the objective function to O(n log2 n) and is indeed much faster in practice, for the
knapsack sizes we consider. Even so, our SAMPLEGREEDY is faster by a factor of Ω(log n) which,
including the improvement in the constants involved, still makes a huge difference. Note that in both
Figures 1d and 1e one can discern the superlinear increase of the function evaluations for FANTOM
but not for SAMPLEGREEDY.

Influence-and-Exploit Marketing: Consider a seller of a single digital good (i.e., producing extra
units of the good comes at no extra cost) and a social network on a set A of potential buyers. Suppose
that the buyers influence each other and this is quantified by a weight wij on each edge {i, j} between

7

https://grouplens.org/datasets/movielens/25m/


0.02 0.04 0.06 0.08 0.10

Budget

0.5

1.0

1.5

2.0

2.5

O
bj

ec
tiv

e
Fu

nc
tio

n

×107

Fantom
SampleGreedy
Greedy

(a) Recommendation on MovieLens

0 100 200 300

Number of Vertices

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

O
bj

ec
tiv

e
Fu

nc
tio

n

×103

Fantom
SampleGreedy

(b) Graph Cut on G(n, 0.2)

0.0 0.1 0.2 0.3

Budget

0

1

2

3

4

5

6

7

8

O
bj

ec
tiv

e
Fu

nc
tio

n

×105

DensityGreedy
Greedy
AdaptiveGreedy

(c) Revenue on YouTube graph

0.02 0.04 0.06 0.08 0.10

Budget

0

500000

1000000

1500000

2000000

M
ar

gi
na

lC
al

ls

Fantom
SampleGreedy
Greedy

(d) Recommendation on MovieLens

0 100 200 300

Number of Vertices

0

2500

5000

7500

10000

12500

15000

17500

20000

M
ar

gi
na

lC
al

ls

Fantom
SampleGreedy

(e) Graph Cut on G(n, 0.2)

0 500 1000 1500 2000 2500

Number of Vertices

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

O
bj

ec
tiv

e
Fu

nc
tio

n

×104

DensityGreedy
Greedy
AdaptiveGreedy

(f) Revenue on G(n, 5/
√
n)

Figure 1: The four plots on the left compare the performance and the number of function evaluations of
SAMPLEGREEDY and FANTOM on the video recommendation problem for the MovieLens dataset (a), (d) and
on the maximum weighted cut problem on random graphs (b), (e). Since no ε ≤ 1 affected the performance of
FANTOM noticeably before becoming too computationally expensive, we used ε = 1 to achieve the maximum
possible speedup. The plots on the far right illustrate the performance of ADAPTIVEGREEDY (ignoring single
item solutions, i.e., p0 = 0) on the influence-and-exploit problem for two distinct topologies: the YouTube graph
(c) and random graphs (f). All budgets are shown as fractions of the total cost.

buyers i and j. Each buyer’s value for the good depends on who owns it within her immediate social
circle and how they influence her. A possible revenue-maximizing strategy for the seller is to first give
the item for free to a selected set S of influential buyers (influence phase) and then extract revenue
by selling to each of the remaining buyers at a price matching their value for the item due to the
influential nodes (exploit phase). Here we further assume, similarly to the adaptation of this model
by Mirzasoleiman et al. [41], that each buyer comes with a cost of convincing her to advertise the
product to her friends. The seller has a budget B and the set S should be such that

∑
i∈S ci ≤ B.

We adopt the generalization of the Concave Graph Model of Hartline et al. [32] to non-monotone
functions [3]. Each buyer i ∈ A is associated with a non-negative concave function fi. For
any i ∈ A and any set S ⊂ A {i} of agents already owning the good, the value of i for it is
vi(S) = fi

(∑
j∈S∪{i} wij

)
. The total potential revenue v(S) =

∑
i∈A S vi(S) that we aim to

maximize is a non-monotone submodular function. Besides the theoretical guarantees for influence-
and-exploit marketing in the Bayesian setting [32], there are strong experimental evidence of its
performance in practice [3]. The problem generalizes naturally to different stochastic versions. We
assume that the valuation function of each buyer i is of the form fi(x) = ai

√
x where ai is drawn

independently from a Pareto Type II distribution with λ = 1, α = 2. We only learn the exact value of
a buyer when we give the good for free to someone in her neighborhood.

We evaluate ADAPTIVEGREEDY on an instance based on the YouTube graph [50], containing
1,134,890 vertices. The (known) weights are drawn independently from U(0, 1), and the costs are
proportional to the sum of the weights of the incident edges. As ADAPTIVEGREEDY is the first
adaptive algorithm for the problem, we compare with non-adaptive alternatives like Greedy3 and

3The simple greedy algorithm that in each step picks the element with the largest marginal value.
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Density Greedy4 for different values of the budget. ADAPTIVEGREEDY outperforms the alternatives
by up to 20% (Figure 1c). We observe similar improvements for Erdős-Rényi random graphs of
different sizes and edge probability 5/

√
n and a fixed budget of 10% of the total cost (Figure 1f).

Maximum Weighted Cut: Beyond the above applications, we would like to compare SAMPLE-
GREEDY to FANTOM with respect to both their performance and the number of value oracle calls as
n grows. We turn to weighted cut functions—one of the most prominent subclasses of non-monotone
submodular functions—on dense ErdsRényi random graphs with edge probability 0.2. The weights
and the costs are drawn independently and uniformly from [0, 1] and the budget is fixed to 15% of
the total cost. Again SAMPLEGREEDY consistently performs better than FANTOM, albeit by 5–15%
(Figure 1b). In terms of running time, there is a large difference in favor of SAMPLEGREEDY (even
for multiple runs), while the superlinear increase for FANTOM is evident (Figure 1e). Since here
SAMPLEGREEDY and FANTOM are quite close to each other in terms of performance and Greedy
would lie only slightly below the plot of SAMPLEGREEDY, to improve the readability of Figure 1b
we have removed Greedy from this comparison.
Remark 2. Based on the theoretical query complexities, one would expect the comparison between
FANTOM and SAMPLEGREEDY in Figures 1d, 1e to be qualitatively similar to n log2 n vs. n log n.
However, while FANTOM clearly exhibits a superlinear dependence of the query complexity on the
input size, SAMPLEGREEDY does not. The reason for this is that, in practice, lazy evaluations often
result in much less than log n evaluations per element. So, what we see in Figures 1d, 1e is closer to
n log n vs. n.

6 Discussion

The proposed random greedy method yields a considerable improvement over state-of-the-art al-
gorithms, especially, but not exclusively, regarding the handling of huge instances. With all the
subtleties of our work affecting solely our analysis, the algorithm remains strikingly simple and
we are confident this will also contribute to its use in practice. Simultaneously, this very simplicity
translates into a generality that can be employed to achieve comparably good results for a variety of
settings; we demonstrated this in the case of the adaptive submodularity setting.

Specifically, we expect that our approach can be directly utilised to improve the performance and
running time of algorithms that now use some variant of the algorithm of Gupta et al. [29]. Such
examples include the distributed algorithm of da Ponte Barbosa et al. [13] and the streaming algorithm
of Mirzasoleiman et al. [42] in the case of a knapsack constraint. We further suspect that the same
algorithmic principle can be applied in the presence of incentives. This would largely improve the
current state of the art in budget-feasible mechanism design for non-monotone objectives [12, 2].

A different direction would be to try other greedy algorithms for monotone objectives as a starting
point. For instance, the 2-approximation algorithm of Yaroslavtsev et al. [51] could potentially yield
a better approximation ratio for the standard algorithmic setting. Unfortunately, it does not seem
possible to translate more involved algorithms like that one to the adaptive setting, where one has to
commit to all of their past choices.

Finally, a major question here is whether the same high level approach is valid even in the presence
of additional combinatorial constraints. In particular, is it possible to achieve similar guarantees as
FANTOM for a p-system and multiple knapsack constraints using only O(n log n) value queries?

4The deterministic density greedy part of Wolsey’s algorithm [49].
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Broader Impact

While the performance of our algorithms constitutes a significant improvement over existing methods
with regard to speed as well as the handling of uncertain environments, there already exists a vast
body of research on the type of problems they can be applied to. Our methods could lead to handling
those problems, e.g., summarising training data, recommendation systems, viral marketing, etc., more
efficiently. Even though these applications revolutionized many areas of business and society, we do
not expect the impact of our research to be substantially different from existing methods.
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