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Abstract

Prior-free auctions are robust auctions that assume no distribution over bidders’ valuations
and provide worst-case (input-by-input) approximation guarantees. In contrast to previous
work on this topic, we pursue good prior-free auctions with non-identical bidders.

Prior-free auctions can approximate meaningful benchmarks for non-identical bidders
only when sufficient qualitative information about the bidder asymmetry is publicly known.
We consider digital goods auctions where there is a total ordering of the bidders that is
known to the seller, where earlier bidders are in some sense thought to have higher valuations.
We use the framework of Hartline and Roughgarden (STOC ’08) to define an appropriate
revenue benchmark: the maximum revenue that can be obtained from a bid vector using
prices that are nonincreasing in the bidder ordering and bounded above by the second-
highest bid. This monotone-price benchmark is always as large as the well-known fixed-price
benchmark F (2), so designing prior-free auctions with good approximation guarantees is only
harder. By design, an auction that approximates the monotone-price benchmark satisfies a
very strong guarantee: it is, in particular, simultaneously near-optimal for essentially every
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Bayesian environment in which bidders’ valuation distributions have nonincreasing monopoly
prices, or in which the distribution of each bidder stochastically dominates that of the next.
Even when there is no distribution over bidders’ valuations, such an auction still provides a
quantifiable input-by-input performance guarantee.

In this paper, we design a simple O(1)-competitive prior-free auction for digital goods
with ordered bidders. We also extend the monotone-price benchmark and ourO(1)-competitive
prior-free auction to multi-unit settings with limited supply.

Keywords: Algorithmic Mechanism Design, Prior-free Auctions, Revenue Maximization

1. Introduction

Suppose you own a set of goods and want to make money by selling them. What is the
best way to do it? This question is non-trivial even in digital goods auctions, where the seller
has an unlimited supply of identical goods (like mp3s), and there are n bidders, each of
whom wants only one good and has a private valuation (i.e., maximum willingness-to-pay)
for it.

The question becomes easy if the seller has a prior product distribution on bidders’
valuations. Since supply is unlimited and valuations are independent, the seller can optimize
for each bidder separately. For a bidder i with valuation distribution Fi, the expected
revenue is maximized by posting a monopoly price — a “take-it-or-leave-it” offer at a price
in argmaxp[p · (1− Fi(p))].

What if good prior information is expensive or impossible to acquire? What if a single
auction is to be re-used several times, in settings with different or not-yet-known bidder
valuations? Are there prior-free auctions that admit more robust, “worst-case” revenue
guarantees? Particularly germane to this paper, do such auctions exist when none of the
bidders are identical?

1.1. Revenue Benchmarks

Goldberg et al. [11, 12] were the first to pursue prior-free auctions, and they proposed
a competitive analysis framework based on revenue benchmarks [6, 20]; see also the survey
by Hartline and Karlin [15].6 The idea is to define a real-valued function on inputs (i.e.,
bid vectors) that represents an upper bound on the maximum revenue achievable by any
“reasonable” auction on each input. They proposed the fixed-price benchmark F (2) for digital
goods auctions, defined as the maximum revenue that can be obtained from a given bid vector
by offering every bidder a common posted price that is at most the second-highest bid.

Comparing the revenue of an auction to F (2) initially looks like an “apples vs. oranges”
comparison — the auction does not know bidders’ valuations but can employ arbitrary
prices, while the benchmark is privy to all the private information but handicapped in the
prices it can use. Nevertheless, Goldberg et al. [11] demonstrated the effectiveness of the

6For other recent approaches to the design and analysis of auctions with non-Bayesian sellers, see Chen
and Micali [6] and Lopomo et al. [20].
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fixed-price benchmark for meaningful competitive analysis: no auction achieves more than
a ≈ .42 fraction of F (2) for every bid vector, and there are interesting auctions that obtain
a constant fraction of this benchmark on every input.

1.2. The Bayesian Thought Experiment

To extend the revenue benchmark approach to new objective functions and asymmetric
outcome spaces, Hartline and Roughgarden [16] advocated a general framework based on a
“Bayesian thought experiment.” Roughly, this framework works as follows. The first step is
to temporarily think of bidders’ valuations as drawn i.i.d. from some valuation distribution.
The second step is to characterize the collection C of all optimal auctions that can arise
— those with maximum-possible expected objective function value with respect to some
valuation distribution. For example, for revenue maximization in digital goods auctions, C
is the set of common posted prices (bidders are i.i.d. and hence have a common monopoly
price). Finally, given a bid vector b, the benchmark is defined as the maximum objective
function value obtained by an auction in C on the input b. In digital goods auctions, this is
the maximum revenue that can be obtained by offering every bidder a common posted price.
Thus, modulo the restriction that prices are at most the second-highest bid, the Bayesian
thought experiment automatically regenerates the F (2) benchmark. (For technical reasons,
the upper bound on prices still needs to be added to permit interesting results [11].) More
importantly, all benchmarks generated by this framework are automatically well motivated: if
the performance of an auction is within a constant factor of such a benchmark for every input,
then in particular it is simultaneously near-optimal in every Bayesian i.i.d. environment.7 In
addition, if there is no distribution over inputs, then the auction still provides a quantifiable
input-by-input guarantee.

There are several analogs elsewhere in theoretical computer science: worst-case regret
guarantees in online decision-making (e.g., if cost vectors are drawn i.i.d. from a distribution,
then the optimal action is time-invariant); and static optimality in data structure design (e.g.,
if searches are i.i.d., then there is some fixed optimal binary search tree). The framework
in [16] and some variants of it have been used successfully to extend the reach of prior-free
mechanism design to new objective functions [16] and more complex environments [7, 17, 18].

1.3. Beyond I.I.D. Bidders

The primary goal of this paper is the following.

To design good prior-free auctions for benchmarks derived from non-identical bidders.

Why is this non-trivial? Let’s apply the Bayesian thought experiment to a digital goods
auction, now assuming that bidder i’s valuation is drawn (independently) from its own dis-
tribution Fi. For fixed distributions F1, . . . , Fn, the optimal auction offers each bidder its

7This weaker goal of designing good prior-independent auctions — where a distribution over inputs is
assumed and used in the analysis of a mechanism, but not in its design — is now studied in its own right.
See Dhangwatnotai et al. [9] and the references therein.
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respective monopoly price. Ranging over all choices of F1, . . . , Fn, we find that the collec-
tion C corresponds to the set of all posted price vectors.8 Thus, for every bid vector b, there
is an auction Ab ∈ C that uses the price vector b and hence obtains the full welfare

∑n
i=1 bi

as revenue. There is no digital goods auction that always obtains a constant fraction of the
optimal welfare [11], so the Bayesian thought experiment with non-i.i.d. bidders generates a
benchmark that is far too strong for meaningful competitive analysis.

The exercise above suggests the following principle for prior-free auction design with
non-identical bidders.

Prior-free auctions can approximate benchmarks derived from non-identical bidders
only if “sufficient qualitative information” about bidder asymmetry is publicly known.

As an example, suppose there is a publicly known partition of the bidders into groups of
otherwise indistinguishable bidders. We then require the Bayesian thought experiment to
conform to the public information, meaning that the valuations of bidders in the same group
are i.i.d. draws from a distribution. Then, the optimal auctions C are the price vectors that
offer a common posted price to each group of bidders. The induced prior-free benchmark
is the maximum revenue that can be obtained from the given bid vector using such a price
vector. This is essentially the same benchmark proposed in work on attribute auctions [3, 4]
that predates the benchmark framework in [16]. There are prior-free digital goods auctions
with expected revenue at least a constant fraction of this benchmark when every group has
at least 2 bidders (by an easy reduction to the standard setup) and when there is a constant
number of groups [3, 4].

1.4. Ordered Bidders and Stochastic Dominance

What about the general case when all bidders are distinguishable? We initially consider
digital goods (unlimited supply) auctions where there is a total ordering of the bidders that
is known to the seller. Without loss of generality, we assume that bidders are ordered
1, 2, . . . , n.9 Earlier bidders are in some sense expected to have higher valuations. This
information could be derived from, for example, zip codes, eBay bidding histories, credit
history, previous transactions with the seller, and so on. We emphasize that the known
information is only qualitative, and is not quantitative or distributional, as is standard in
Bayesian auction design.

To generate a prior-free benchmark, we consider Bayesian thought experiments that con-
form to the known information. Call the distributions F1, . . . , Fn ordered if the corresponding
monopoly prices are nonincreasing. For example, the Fi’s could be:

1. Uniform distributions on intervals [0, hi] with nonincreasing hi’s.

2. Exponential distributions with nondecreasing rates.

8This fact holds even if we restrict the Fi’s to be, say, uniform distributions with supports [0, hi] (and
hence monopoly prices hi/2).

9Ties between bidders can also be accommodated easily, either with cosmetic changes to the auction and
analysis in this paper, or by handling groups of indistinguishable bidders separately using known techniques.
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3. Lognormal distributions with nonincreasing means.

Letting (F1, . . . , Fn) range over all ordered distributions, the corresponding collection C of
optimal auctions is the set of monotone price vectors p, where p1 ≥ · · · ≥ pn. We denote
the induced revenue benchmark by M(1), the maximum revenue that can be obtained from
a given bid vector from a monotone price vector. For example, if a bid vector b is itself
monotone, with b1 ≥ · · · ≥ bn, then setting p = b shows that M(1)(b) is the full welfare∑n

i=1 bi. If b1 ≤ · · · ≤ bn, however, then the revenue-maximizing monotone price vector is
simply a constant price — equal to the bid bi that maximizes j · bj. We emphasize that the
benchmark M(1)(b) is defined, and we demand a good approximation to it, on every bid
vector b, including those that defy the semantics of the bidder ordering.

By definition, an auction with revenue at least a constant fraction ofM(1) on every input
is simultaneously near-optimal in every Bayesian digital goods auction with independent and
ordered distributions. A similar simultaneous approximation result holds under the stan-
dard notion of stochastic dominance. Recall that a distribution Fi stochastically dominates
another Fi+1 if Fi(x) ≤ Fi+1(x) for every x ≥ 0. Proposition Appendix A.1 shows that
if Fi stochastically dominates Fi+1 for every i = 1, 2, . . . , n − 1, and every distribution is
regular10, then there is a monotone price vector with expected revenue at least 50% of that
of an optimal price vector. It follows that an auction with revenue at least a constant frac-
tion of M(1) on every input is simultaneously near-optimal in every Bayesian digital goods
auction in which the distribution of each bidder stochastically dominates that of the next.

1.5. The Monotone Price Benchmark M(2)

Given a digital goods environment with ordered bidders, we define the monotone price
benchmark M(2)(b) for every bid vector b as the maximum revenue obtainable via a mono-
tone price vector in which every price is at most the second-highest bid. As in the standard
model with indistinguishable bidders [11], the upper bound on prices is necessary for the
existence of prior-free auctions with non-trivial approximation guarantees.11 Indeed, since a
constant price vector is monotone,M(2)(b) ≥ F (2)(b) for every b and so designing auctions
competitive with the monotone-price benchmark is at least as difficult as with the fixed-price
benchmark. Taking bi = 1

i
for i = 1, 2, . . . , n shows that there exist bid vectors for which

M(2)(b) exceeds F (2)(b) by an Ω(log n) factor. As far as we know, all prior-free auctions
proposed prior to the present work are Ω(log n)-competitive with M(2).

The monotone-price benchmark was previously considered, with a completely different
motivation, by Aggarwal and Hartline [1]. In [1], which predates the benchmark framework
in [16], M(2) was one of three ad hoc benchmarks proposed for “knapsack auctions,” where
bidders have a public size and feasible solutions correspond to subsets of bidders with total

10A distribution F is regular [22] if v − (1− F (v))/f(v) is nondecreasing in v.
11An auction that always has revenue at least a constant fraction of M(2) is still simultaneously near-

optimal in every Bayesian environment with ordered or stochastically dominating distributions, with some-
what worse constant factors, provided these distributions satisfy some mild extra conditions. See Section 4.1
for further discussion.
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size at most a publicly known budget. Aggarwal and Hartline [1] gave a digital goods auction
that, for every bid vector b, has expected revenue at least 1

c
M(2)(b)−O(h log log log h), where

c > 0 is a constant and h is the ratio between the maximum and minimum bids. Our results
improve over those in [1] in several respects: we obtain a constant-factor approximation
guarantee without an additive loss term and without any dependence on the magnitude of
the valuations, and we also obtain results for limited-supply auctions.

1.6. Our Results: Unlimited Supply

Section 3 gives a digital goods auction that is O(1)-competitive with the monotone price
benchmark M(2). Our auction is simple and natural. It follows the standard approach of
randomly partitioning the bidders into two groups, and using one group of bidders to set
prices for the other. It computes an optimal monotone price vector for the “training set”
of bidders, subject to using prices that are powers of 2, and extends this price vector to the
“test set” of bidders. To handle inputs where the monotone price benchmark derives most of
its revenue from a small number of bidders, with constant probability we invoke an auction
that is O(1)-competitive with the fixed-price benchmark F (2).

1.7. Our Results: Limited Supply

Section 4 extends our results to multi-unit auctions, where the number of items k can
be less than the number of bidders. We consider the analog M(2,k) of the monotone price
benchmark, which maximizes only over (monotone) price vectors that sell at most k units.
We prove that every auction that is O(1)-competitive with the benchmark M(2,k) is simul-
taneously near-optimal for a range of Bayesian multi-unit environments — roughly, those
in which the (ironed) virtual valuation functions of the bidders form a pointwise total or-
dering. We adapt a reduction from [1] to show how to build a limited-supply auction that
is O(1)-competitive with respect to M(2,k) from an unlimited-supply auction that is O(1)-
competitive with respect to M(2).

2. Preliminaries

This section reviews mechanism design basics and digital goods auctions; the expert can
skip to Section 3. Section 4 describes the changes needed to accommodate limited-supply
settings.

In a digital goods auction, there is one seller and n bidders. There is an unlimited
supply of identical goods. Each bidder wants only one good, and has a private — i.e.,
unknown to the seller — valuation vi. We study direct-revelation auctions, in which the
bidders report bids b to the seller, and the seller then decides who wins a good and at what
price.12 For a fixed (randomized) auction, we use Xi(b) and Pi(b) to denote the winning
probability and expected payment of bidder i when the bid profile is b. As in previous
works on prior-free auction design, we consider only auctions that are individually rational

12For the questions we ask, the “Revelation Principle” (see, e.g., Nisan [23]) ensures that there is no loss
of generality by considering only direct-revelation auctions.
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— meaning Pi(b) ≤ bi · Xi(b) for every i and b — and truthful, meaning that for each
bidder i and fixed bids b−i by the other bidders, bidder i maximizes its quasi-linear utility
vi ·Xi(bi,b−i)−Pi(bi,b−i) by setting bi = vi. Since we consider only truthful auctions, from
now on we use bids b and valuations v interchangeably.

Truthful and individually rational digital goods auctions have a nice canonical form: for
every bidder i there is a (possibly randomized) function ti(v−i) that, given the valuations v−i
of the other bidders, gives bidder i a “take-it-or-leave-it offer” at the price ti(v−i). This
means that bidder i is given a good if and only if vi ≥ ti(v−i), in which case it is charged
the price ti(v−i). It is clear that every choice (t1, . . . , tn) of such functions defines a truthful,
individually rational digital goods auction; conversely, every such auction is equivalent to
a choice of (t1, . . . , tn) [11]. A special case of such an auction is a price vector p, where
each ti is the constant function ti(v−i) = pi. As noted in Section 1, in Bayesian settings
with independent valuations, price vectors maximize expected revenue over all truthful and
individually rational auctions.

The revenue of an auction on the valuation profile v is the sum of the payments collected
from the winners. Let v(2) denote the second-highest valuation of a profile v. The fixed-price
benchmark F (2) is defined, for each valuation profile v, as the maximum revenue that can be
obtained from a constant price vector whose price is at most v(2):

F (2)(v) = max
p≤v(2)

( ∑
i : vi≥p

p

)
.

Now suppose there is a known ordering on the bidders, say 1, 2, . . . , n. The monotone-price
benchmark M(2) is defined analogously to F (2), except that non-constant monotone price
vectors are also permitted:

M(2)(v) = max
v(2)≥p1≥p2≥···≥pn

( ∑
i : vi≥pi

pi

)
. (1)

Clearly, M(2)(v) ≥ F (2)(v) for every input v.
We reiterate that the monotonicity and upper-bound constraints are enforced only in the

computation of the benchmark M(2). Auctions, while obviously not privy to the private
valuations, can employ whatever prices they see fit. This is natural for prior-free auctions
and also necessary for non-trivial results [10].

Finally, when we say that an auction is α-competitive with or has approximation factor α
for a benchmark, we mean that the auction’s expected revenue is at least a 1/α fraction of
the benchmark for every input v.

3. A Prior-Free O(1)-Approximate Digital Goods Auction with Ordered Bidders

3.1. The Auction

We propose the auction A∗, displayed in Figure 1. We next elaborate on the steps
of the auction. In the first step, we run an arbitrary digital goods auction that is O(1)-
competitive with respect to the fixed-price benchmark F (2). The best-known approximation
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Input: a valuation profile v for a totally ordered set N = {1, 2, . . . , n} of bidders.

1. With probability 1/2, run a digital goods auction on v that is O(1)-competitive with
respect to the benchmark F (2), and halt.

2. Choose a subset A ⊆ N uniformly at random, and partition N into the two sets A
and B = N \ A. Let vA denote the valuation profile v in which we set the valuations
in B to 0.

3. Compute the revenue-maximizing price vector p for vA that is monotone and that
uses prices restricted to be values in {2t : t ∈ Z} that are at most the second-highest
valuation in vA.

4. Sell items to bidders in B only, uses the prices p.

Figure 1: The auction A∗.

factor is 3.12 [19]; there are also very simple auctions with approximation factors 4 [11]
and 4.68 [2]. Intuitively, this step is meant to extract good revenue from the set of bidders
with valuations almost as high as the second-highest valuation.

The second step of the algorithm randomly partitions the bidders into a “training set” A
and a “test set” B. Almost all prior-free auctions have this structure, with the bidders in the
training set setting prices for those in the test set. For simplicity, we sell (in the fourth step)
only to bidders in the test set B. An obvious optimization is to sell simultaneously to bidders
in A, using the bids of B; this would improve the hidden constant in our approximation
guarantee by a factor of 2.

The second step also defines the valuation profile vA. This profile has the same length
of v, with the valuations of the bidders in B zeroed out.

The third step computes the monotone price vector that maximizes revenue with respect
to the valuation profile vA, subject to the extra constraint that every price is a (possibly
negative) integer power of 2 bounded above by the second-highest valuation of vA. Using
dynamic programming, this step (and hence the entire auction) can be implemented in
polynomial time.

Let p be the price vector computed in the third step. In the language of Section 2, the
fourth step sets the take-it-or-leave-it offer ti(v−i) to +∞ for bidders i ∈ A and to pi for
bidders i ∈ B. Since p is computed using only the valuations of the bidders in A, these
ti(v−i)’s are well defined and the auction A∗ is truthful and individually rational.

We prove the following.

Theorem 3.1. There is a constant c > 0 such that, for every input v, the expected revenue
of the auction A∗ is at least c · M(2)(v).

Very roughly, the intuition behind the auction A∗ and Theorem 3.1 is the following.
Consider first a valuation profile v in which a constant fraction of the revenue inM(2)(v) is
provided by (a constant number of) bidders with valuation at least a constant timesM(2)(v).
In this case, the fixed-price benchmark F (2)(v) is within a constant factor of M(2)(v), and
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the first step of A∗ ensures that the auction is constant-competitive. Thus, the difficult
inputs are those in which a large number of bidders contribute toM(2)(v). For these inputs,
however, concentration bounds should imply that the training set A strongly resembles the
test set B, and hence the computed price vector p should generalize well. We note, however,
that this high-level intuition appears also in previous works [1] that obtained worse bounds;
to prove a constant-competitive guarantee, the analysis has to be executed with some care.

3.2. Analysis Preliminaries: Some Important Events

This section identifies some important probabilistic events and proves that, for every
valuation profile, they hold with constant probability over the coin flips of A∗ (i.e., the
random choice of A). The next section shows that the revenue of A∗ is close to M(2)(v)
whenever these events hold, which implies Theorem 3.1.

For the rest of this section, fix an arbitrary valuation profile v. Let RevA(p) denote
the revenue extracted by the prices p from the bidders in A in the third step of A∗. Let
RevB(p) denote the revenue extracted by p from the bidders in B in the fourth step of A∗.
Define Rev(p) = RevA(p) + RevB(p).

By definition, event E1 occurs when Rev(p) ≥M(2)(v)/6.

Lemma 3.2. The event E1 holds with probability at least 1/16.

Proof. Let p∗ achieve the maximum in (1) for v. With probability 1/4, the bidders with the
highest and second-highest valuations lie in A. Given this event, the conditional expected
revenue from bidders in A and in B under the price vector p∗ is, respectively, at least
M(2)(v)/2 and at most M(2)(v)/2. The conditional expected revenue from bidders in A
under p∗ is at leastM(2)(v)/3 with probability at least 1

4
. This follows by applying Markov’s

inequality to bound the probability that the conditional expected revenue from bidders in B
is more than 2M(2)(v)/3. Since the bidders with highest and second-highest valuations lie
in A, rounding every price of p∗ down to the nearest power of 2 yields a candidate for the
price vector p computed by the auction A∗ in its third step, and the revenue extracted by
this candidate is at least half that of p∗. Thus, RevA(p) ≥ M(2)(v)/6 with probability at
least 1

4
· 1
4

= 1
16

. Since Rev(p) ≥ RevA(p) with probability 1, the lemma follows.

Identifying the next collection of important events requires some definitions.

Definition 3.1. For every integer l ≥ 0, the l-th price level is the (unique) price q in
{2t : t ∈ Z} such that M(2)(v)/2l+1 < q ≤M(2)(v)/2l.

We use p(l) to denote the l-th price level.

Definition 3.2. For a nonnegative integer l, a level-l triple (i, j, l) is two bidders i < j with
vi, vj ≥ p(l).

We denote by Wijl the bidders between i and j (inclusive) that would win at a price of
p(l):

Wijl = {k ∈ N : i ≤ k ≤ j and vk ≥ p(l)}.

9



We call a level-l triple (i, j, l) large if |Wijl| ≥ 288l. We call a level-l triple (i, j, l) balanced
under a partition of the bidders into A and B if its winners are split 1

3
-2
3

or better between
the two sets:

1

3
× |Wijl| ≤ |A ∩Wijl|, |B ∩Wijl| ≤

2

3
× |Wijl|.

By definition, event E2(l) occurs when every large level-l-triple is balanced. We let E2
denote ∩l≥24E2(l). We proceed to lower bound the probability of this event.

Claim 3.1. For every integer l ≥ 0, the number of level-l-triples is at most 22l+2.

Proof. Consider a bidder k with valuation vk ≥ p(l) > M(2)(v)/2l+1. The definition of
M(2)(v) implies that there are at most 2l+1 such bidders. Since a level-l-triple (i, j, l) is
uniquely determined by two bidders with valuation at least p(l), there are at most (2l+1)2 =
22l+2 level-l-triples.

We use the following version of the Chernoff bound (see e.g. [21]).

Theorem 3.3. Let T1, . . . , Tm be i.i.d random variables such that Ti ∈ {0, 1} for all i ∈
{1, . . . ,m}. Define T =

∑m
i=1 Ti and µ = E[T ]. For all 0 < δ < 1:

Pr[(1− δ)µ ≤ T ≤ (1 + δ)µ] ≥ 1− 2× exp

(
−µδ

2

4

)
.

Claim 3.2. For every l ≥ 24, Pr[E2(l)] ≥ 1− 1/2l.

Proof. Fix a large level-l-triple (i, j, l). By definition, the number of winning bidders in
(i, j, l) is at least 288l. Since each of these bidders is included in the set A independently
and uniformly at random, Theorem 3.3 implies that the triple (i, j, l) is not balanced with
probability at most 2/e4l. By Claim 3.1, there are at most 22l+2 level-l-triples. By the union
bound, the probability that some large level-l-triple is not balanced is at most 22l+2×2/e4l ≤
1/2l when l ≥ 24.

Lemma 3.4. The event E2 holds with probability at least 31/32.

Proof. By Claim 3.2 and the union bound,

1− Pr[E2] ≤
∑
l≥24

(1− Pr[E2(l)]) ≤
∑
l≥24

1

2l
≤ 1

32
.

Lemmas 3.2 and 3.4 imply the following.

Corollary 3.5. Pr[E1 ∩ E2] ≥ 1/32.
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3.3. The Main Analysis

Fix a valuation profile v. Let Il(p) = {j ∈ N : pj = p(l)} denote the bidders offered
the price p(l) in p. Since p in a monotone price vector, Il(p) is an interval of bidders. Let
Wl(p) = {i ∈ Il(p) : vi ≥ p(l)} denote the bidders of Il(p) that win under the price vector p.
The interval Il(p) is good if |Wl(p)| ≥ 288l and bad otherwise. Let Revl(p) = |Wl(p)| × p(l)
denote the contribution of these bidders toward Rev(p). Since every bidder belongs to
exactly one interval, Rev(p) =

∑
l≥0Revl(p).

The next claim shows that the bad intervals Il(p) with l ≥ 24 contribute relatively little
revenue.

Claim 3.3. With probability 1,∑
l≥24 : Il(p) is bad

Revl(p) ≤ 1

18
×M(2)(v).

Proof. Fix a bad interval Il(p). Since |Wl(p)| < 288l and p(l) ≤M(2)(v)/2l,

Revl(p) = |Wl(p)| × p(l) <
288l

2l
×M(2)(v).

Summing over all bad intervals Il(p) with l ≥ 24, we obtain∑
l≥24 : Il(p) is bad

Revl(p) ≤
∑
l≥24

288l

2l
×M(2)(v) ≤ 1

18
×M(2)(v).

We can now prove our main result.

Proof of Theorem 3.1: Fix a valuation profile v. First suppose thatM(2)(v) ≤ 432 · F (2)(v).
With 50% probability, the auction A∗ executes an auction that is α-competitive with F (2)

for a constant α. Thus, the expected revenue of A∗ on this input is at least F (2)(v)/2α ≥
M(2)(v)/864α.

For the rest of the proof, we assume thatM(2)(v) > 432 · F (2)(v). We claim that in this
case, with probability 1, the first few intervals contribute little revenue:

23∑
l=0

Revl(p) ≤M(2)(v)/18. (2)

For otherwise, there is an interval Ih(p) with h ∈ [0, 23] with

Revh(p) = |Wh(p)| × p(h) >M(2)(v)/(18× 24).

Consider the fixed-price vector p′ with common offer price p(h). Since every price of p is
at most the second-highest valuation in vA (and hence in v), the same holds for p′. The
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fixed-price benchmark F (2)(v) is at least the revenue extracted by p′, which is at least
|Wh(p)| × p(h) >M(2)(v)/432; this contradicts our initial assumption.

Assume now that E1 ∩ E2 holds. Since E1 holds, Rev(p) ≥ M(2)(v)/6. Combining this
with Claim 3.3 and (2), the good intervals from the bigger levels provide large revenue:∑

l≥24 : Il(p) is good

Revl(p) ≥
(

1

18

)
×M(2)(v). (3)

Consider a good interval Il(p) with l ≥ 24. Denote by i and j the first and last bidders
in Wl(p), respectively, so that for all k ∈ Wl(p) we have i ≤ k ≤ j. Since pi = pj = p(l) and
vi, vj ≥ p(l), (i, j, l) is a level-l-triple. Because the interval is good, |Wl(p)| ≥ 288l, and hence
the triple (i, j, l) is large. Since E2 holds and l ≥ 24, the triple (i, j, l) is balanced. Hence,

|Wl(p) ∩B| ≥
(

1

3

)
× |Wl(p)|

and the revenue from the bidders in Il(p)∩B under p is at least (1/3)×Revl(p). Summing
over all good intervals Il(p) with l ≥ 24 and applying (3) yields

RevB(p) ≥
∑

l≥24 : Il(p) is good

(
1

3

)
×Revl(p) ≥

(
1

54

)
×M(2)(v). (4)

Since the auctionA∗ executes steps 2–4 with 50% probability, and since Pr[E1∩E2] ≥ 1/32
(Corollary 3.5), the expected revenue of A∗ on such an input v is at least

1

2
× 1

32
× E

[
RevB(p) | E1 ∩ E2

]
≥ M

(2)(v)

3456
.

This completes the proof. �

4. Limited-Supply Multi-Unit Auctions

This section extends our results to multi-unit auctions with limited supply. To develop
this theory, we extend the monotone price benchmark M(2) to the case of an arbitrary
number k ≥ 2 of units for sale. We call a price vector p feasible for the valuation profile v
and supply limit k if: (i) p1 ≥ p2 ≥ · · · ≥ pn; (ii) all prices are at most the second-highest
valuation of v; and (iii) there are at most k bidders i with vi > pi. We allow our benchmark
to break ties in an optimal way. Thus, the revenue earned by a feasible price vector is∑

i : vi>pi
pi plus, if there are ` items remaining after these sales, the sum of the prices offered

to up to ` bidders i with vi = pi. We define the k-unit monotone price benchmarkM(2,k)(v)
as the maximum revenue obtained by a price vector that is feasible for v and k.

There are two main issues to address. The first issue is to identify a class of prior
distributions such that approximatingM(2,k) pointwise implies simultaneous approximation
of the optimal expected revenue across all Bayesian multi-unit settings with priors belonging
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to the class. The challenge, relative to the unlimited-supply setting in Section 3, is that
limited-supply Bayesian optimal auctions are considerably more complex than unlimited-
supply ones. Section 4.1 shows, essentially, that the benchmark M(2,k)(v) is meaningful
whenever the valuation distributions have pointwise ordered ironed virtual valuations. The
second issue is to design auctions competitive with the benchmark M(2,k)(v). Section 4.2
accomplishes this by adapting a reduction in [1] to show how to obtain a limited-supply
auction that is O(1)-competitive with respect toM(2,k)(v) from a digital goods auction that
is O(1)-competitive with respect to M(2).

4.1. Justifying the k-Unit Monotone Price Benchmark

The goal of this section is to prove that every prior-free auction that is O(1)-competitive
with the benchmark M(2,k)(v) has expected revenue at least a constant fraction of optimal
in every Bayesian multi-unit environment with valuation distributions lying in a prescribed
class. Making this precise requires some terminology and facts from the theory of Bayesian
optimal auction design, as developed by Myerson [22].

4.1.1. Optimal Auction Theory

Consider a bidder with valuation drawn from a prior distribution F with positive and
continuous density f on some interval. The virtual value v at a point v in the support is
defined as

φ(v) = v − 1−F(v)

f(v)
.

For example, if F is the uniform distribution on [0, b], then the corresponding virtual valua-
tion function is φ(v) = 2v − b.

For clarity, we first discuss the case of regular distributions, meaning distributions with
nondecreasing virtual valuation functions. In this case, the Bayesian optimal auction awards
items to the (at most k) bidders with the highest positive virtual valuations. The payment of
a winning bidder is the minimum bid at which it would continue to win (keeping others’ bids
the same). That is, if the (k+1)th highest virtual valuation is z, then every winning bidder i
pays φ−1i (max{0, z}). For these prices to be related to the monotone price benchmark, we
need to impose conditions on the φ−1i (z)’s. This contrasts with the unlimited-supply setting,
where restricting the φ−1i (0)’s — that is, the monopoly reserve prices — to be nonincreasing
in i is enough to justify the monotone-price benchmark (Section 1.4). Since the (k + 1)th
highest virtual valuation could be anything, the natural requirement is to restrict φ−1i (z) to
be nonincreasing in i for every non-negative number z.

Accommodating irregular distributions, for which the optimal Bayesian auction is more
complicated, presents additional complications. Each virtual valuation function φi is replaced
by the “nearest nondecreasing approximation”, called the ironed virtual valuation function φ̄i.
The optimal auction awards the items to the (at most k) bidders with the highest positive
ironed virtual valuations. Since ironed virtual valuation functions typically have non-trivial
constant regions, ties can occur, and we assume that ties are broken randomly. That is, if
there are k items, a group S of bidders that all have ironed virtual valuation equal to z > 0,
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and ` < k bidders with ironed virtual value greater than z with ` + |S| > k, then k − `
winners from S are chosen uniformly at random.

4.1.2. Pointwise Ordered Distributions

We call valuation distributions F1, . . . , Fn pointwise ordered if φ̄−1i (z) is nonincreasing
in i for every non-negative z.13 The motivating parametric examples discussed in Section 1.4
— uniform distributions with intervals [0, hi] and nonincreasing hi’s, exponential distribu-
tions with nondecreasing rates, and lognormal distributions with nonincreasing means — are
pointwise ordered in this sense.

We also require a second condition, which we inherit from the standard i.i.d. unlimited-
supply setting. The issue is that, with arbitrary irregular distributions, no prior-free auction
can be simultaneously near-optimal in all Bayesian environments, even with i.i.d. bidders and
unlimited supply.14 Various mild conditions are sufficient to rule out this problem; see [16]
for a discussion. Here, for simplicity, we restrict attention to well-behaved Bayesian multi-
unit environments, meaning that the Bayesian optimal auction derives at most a constant
fraction (90%, say) of its revenue from outcomes in which some winner is charged a price
higher than the second-highest valuation. (Such a winner is necessarily the bidder with the
highest valuation.) Textbook distributions generally yield well-behaved environments.

4.1.3. Connecting M(2,k) to Bayesian Multi-Unit Settings

The main result of this section is that approximating the k-unit monotone price bench-
mark M(2,k) guarantees simultaneous approximation of the optimal auction in all well-
behaved Bayesian multi-unit environments with pointwise ordered distributions. We require
the following lemma, which states that “projecting” onto a subset of bidders can only de-
crease the value of the benchmark M(2,k).

Lemma 4.1. For every valuation profile v, k ≥ 2, and subset S of the bidders with induced
profile vS, M(2,k)(v) ≥M(2,k)(vS).

Proof. Fix an input v, with monotone prices p∗ determining M(2,k)(v). By induction, we
only need to show that adding a single new bidder i to an arbitrary position in the ordering
can only increase the value of the benchmark. Start by offering i the same price r as its
predecessor in the ordering (or the second-highest valuation, if there is no predecessor).
If i rejects (i.e., vi < r), this extended price vector is feasible and we are done (the optimal
feasible price vector is only better). If i accepts (i.e., vi ≥ r) and the price vector is infeasible
(with k + 1 winners), then we argue as follows. Go through the bidders after i one by one,

13Since φ̄i is continuous and nondecreasing, φ̄−1
i (z) is an interval. If the inverse image has multiple points,

we define φ̄−1
i (z) by the infimum. If the inverse image is empty, we define φ̄−1

i (z) as the left or right endpoint
of the distribution’s support, as appropriate.

14Informally, consider valuation distributions that take on only two values, one very large (say M) and the
other 0. Suppose the probability of having a very large valuation is very small (say 1/n2). If the distribution
is known, the optimal auction uses a reserve price of M for each bidder. Elementary arguments, as in [16],
show that no single auction is near-optimal for all values of M .

14



increasing the offer price to r. This preserves monotonicity. If a previously winning bidder
ever rejects this higher offer price, we are done — feasibility is restored and the overall
revenue is higher. If not, there is now a “suffix” of bidders with the common offer price r.
We now increase the common offer price to the bidders in this suffix until it equals the price
offered to the previous bidder in p∗. This increases the number of bidders in the suffix, and
the price-increasing process continues. Eventually a bidder that was winning under p∗ will
reject the new offer price — otherwise we contradict the optimality of p∗. This leaves us
with a feasible monotone price vector with revenue at least that of the original one.

Theorem 4.2. If the expected revenue of a multi-unit auction A is at least a constant fraction
of M(2,k)(v) on every input, then, in every well-behaved multi-unit Bayesian environment
with pointwise ordered distributions, the expected revenue of A is at least a constant fraction
of that of the optimal auction for the environment.

Proof. Fix an auction A that is β-competitive with M(2,k). Fix a well-behaved Bayesian
multi-unit environment with pointwise ordered valuation distributions F1, . . . , Fn. Let OPT
be the optimal auction for this environment. We claim that, for every input v in which the
revenue collected by OPT from the bidder with the highest valuation is at most the second-
highest valuation, the benchmark M(2,k)(v) is at least half the expected revenue of OPT
on v. This implies that the expected revenue of A is at least 1/2β times that of OPT on
this input. Since the environment is well behaved, the theorem follows from this claim.

To prove the claim, fix an input v, as above. Recall that OPT , as a Bayesian optimal
auction, awards items to the (at most k) bidders with the highest positive ironed virtual
valuations, breaking ties randomly. The tricky case of the proof is when ties occur. Assume
there are k items, a group S of bidders with common ironed virtual value z > 0, and
a group T of ` ∈ (k − |S|, k) bidders with ironed virtual value greater than z (so |S| >
k − `). We next explicitly compute the payments collected by OPT on this input, using
the standard payment formula for incentive-compatible mechanisms (see [22] or [14]). Let ai
and bi denote the left and right endpoints, respectively, of the interval of values v that
satisfy φ̄i(v) = z. Since the distributions are pointwise ordered, the ai’s and the bi’s are
nonincreasing in i. Let q = (k − `)/|S| denote the winning probability of a bidder in S.
Define q′ = (k − ` + 1)/(|S| + 1) as the hypothetical winning probability of a bidder in T
if it lowered its bid to the value φ̄−1i (z). The expected payment of a bidder i in S is qai
— ai in the event that it wins. The payment of a bidder i in T (who wins with certainty)
is q′ai + (1 − q′)bi. To complete the proof, we argue that M(2,k)(v) is at least the revenue
collected by OPT from the bidders in S, and also at least that from the bidders in T .

Recall from Lemma 4.1 that projecting onto a subset of bidders only decreases the value
of M(2,k)(v). First, project onto the k bidders of S with the highest ai values. Consider
charging each such bidder the price ai. This is a monotone price vector. By our assumption
on the input v, all of these prices are at most the second-highest valuation in v. By the
definitions, vi ≥ ai for every bidder i ∈ S so every offer will be accepted. The resulting
revenue is at least the revenue collected by OPT from bidders in S, and M(2,k)(v) is only
higher.
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Similarly, project onto the (at most k) bidders of T , and consider charging each such
bidder i the price q′ai + (1 − q′)bi. Again, this is a monotone price vector with all prices
bounded above by the second-highest valuation of v, and every offer will be accepted. The
value of the monotone price benchmark can only be larger, so M(2,k)(v) is also at least the
revenue collected by OPT from bidders in T . The proof is complete.

4.2. Reduction from Limited to Unlimited Supply

Having justified the k-unit monotone price benchmark M(2,k)(v), we turn to designing
auctions that approximate it well. We show that competing with this benchmark reduces
to competing with the benchmark M(2) in unlimited-supply settings. The reduction from
limited to unlimited supply for ordered bidders was given in [1] for knapsack auctions. This
reduction is also a generalization of the one in [11] for identical bidders. The idea is to
first identify the k “most valuable” bidders, and then run an unlimited-supply auction on
them. Observe that the most valuable bidders with an ordering are not necessarily those
with the highest valuations. For example, a high-valuation bidder late in the ordering need
not be valuable, because extracting high revenue from it might necessitate excluding many
moderate-valuation bidders earlier in the ordering. We report the “black-box reduction” of
[1] in Figure 2.

Input: A valuation profile v for a totally ordered set N = {1, 2, . . . , n} of bidders and k
identical items. A denotes a truthful digital goods (unlimited-supply) auction with ordered
bidders.

1. Let p achieve the optimum monotone price benchmark M(2,k)(v) for v and k. Let
S = {i ∈ N : vi ≥ pi} be the set of winners under p.

2. Run the unlimited supply auctionA on the bidders S, with the induced bidder ordering.

3. Charge suitable prices so that truthful reporting is a dominant strategy for every
bidder.

Figure 2: The auction Black-Box Reduction (BBR).

Theorem 4.3. If A is a truthful unlimited-supply auction with ordered bidders that is β-
competitive with respect to M(2), then the Black-Box Reduction (BBR) auction is a
truthful limited-supply auction with ordered bidders that is 2β-competitive with M(2,k)(v).

Proof. The analysis in [1] immediately implies that the Black-Box Reduction (BBR)
auction is truthful, individually rational, and has at most k winners. We also note that
the first step can be implemented efficiently using dynamic programming, so if A runs in
polynomial time, then so does the Black-Box Reduction (BBR) auction.

We prove the performance guarantee by arguing two statements: (i) the unlimited supply
benchmarkM(2)(vS) applied to S is at least half of the limited-supply benchmarkM(2,k)(v)
applied to the original bidder set; and (ii) the expected revenue of Black-Box Reduction
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(BBR) on the original bidder set is at least that of the auction A with the bidders S.
The second statement follows immediately from the facts that the winners of Black-Box
Reduction (BBR) are the same as those of A, and that the winners’ payments are only
higher. For statement (i), consider prices p that determine the benchmark M(2,k)(v). The
projection pS of this price vector onto the set S of bidders has revenue exactly M(2,k)(v).
If pS is feasible, then it certifies that the benchmark M(2)(vS) is at least M(2,k)(v). The
only issue is if pS uses a price larger than the second-highest valuation v(2,S) of vS. Setting
p̂i = min{pi, v(2,S)} for each i ∈ S yields a monotone and feasible price vector p̂. Every price
of pS is at most the second-highest valuation v(2) of the original bidders, and pS extracts a
price higher than v(2,S) from at most one bidder of S (the one with highest valuation). Thus,
the revenue extracted by p̂S from vS is at least that of pS, less v(2). SinceM(2,k)(v) ≥ 2v(2)

— consider the price vector that offers v(2) to everybody — p̂S retains at least half the
revenue of pS. Statement (i) and the theorem follow.

Of course, we can use the auction A∗ from Section 3 in Theorem 4.3 to obtain a truthful
limited-supply auction that is O(1)-competitive with the benchmarkM(2,k)(v). Theorem 4.2
implies that the resulting auction enjoys a strong simultaneous approximation guarantee in
Bayesian environments.

5. Conclusions

This paper introduced the problem of prior-free auction design with ordered bidders. The
bidder ordering represents qualitative information about which bidders are in some sense
expected to have higher valuations. We used the “Bayesian thought experiment” of [16] to
prove that every auction that is O(1)-competitive with the monotone-price benchmarkM(2)

of [1] is simultaneously near-optimal across a wide range of Bayesian settings. Our main
result is a construction of such a prior-free auction. We also extend the monotone price
benchmark, its connection to Bayesian auction design, and our O(1)-competitive prior-free
auction to limited-supply settings.

There are a number of promising directions for future research.

1. For the problems studied in this paper, it would be interesting to design auctions
with much better constant-factor approximation guarantees. The profit-extraction
and consensus techniques, as in [13], could be useful for this purpose.

2. For settings more general than identical goods, it would be interesting to generalize
all of the contributions of this paper — the prior-free benchmark, the connection to
Bayesian settings, and the design of O(1)-competitive auctions. Matroid settings [18],
where the feasible outcomes correspond to independent sets of a matroid on the bidder
set, are a natural place to begin.

3. It would be interesting to incorporate budgets into the model. Thus far, all work on
prior-free auction design with budgets handles only equal budgets [8]. Can any of our
techniques for heterogeneous (ordered) bidders be transferred to deal with heteroge-
neous budgets?
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4. Finally, it would be interesting to pursue prior-independent guarantees in the spirit
of [9] in Bayesian environments with ordered or stochastically dominating distributions.
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Appendix A. Stochastically Dominating Distributions

Consider a digital goods environment in which the valuation distribution of bidder i is
regular and stochastically dominates that of bidder i+ 1. The optimal auction need not use
a monotone price vector, but there is always a near-optimal auction that does. The following
result was communicated to us by Dhangwatnotai and Hartline (personal communication,
November 2011), and we provide a proof for completeness.
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Proposition Appendix A.1. In a digital goods auction with n bidders, if the valuation
distribution Fi for bidder i stochastically dominates Fi+1 for every i = 1, 2, . . . , n− 1, and if
every distribution Fi is regular, then there is a monotone price vector with expected revenue
at least 50% of that of an optimal price vector.

Proof. We use the probabilistic method. Choose z ∈ [0, 1] uniformly at random and consider
the price vector p(z) = (F−11 (z), . . . , F−1n ). Since each Fi stochastically dominates Fi+1,
p(z) is monotone with probability 1. The expected revenue extracted from bidder i by this
random price vector is the expected revenue of a random reserve price pi drawn from the
valuation distribution Fi. Since Fi is regular, the Bulow-Klemperer theorem [5] implies that
the expected revenue extracted from the ith bidder is at least 50% times that of a monopoly
price; see also [9, Lemma 3.6]. By linearity of expectation, the expected revenue (over z and
v) of p(z) is at least half that of the optimal auction. There exists a choice of z ∈ [0, 1]
such that the (monotone) price vector p(z) obtains expected revenue at least half that of an
optimal one.
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