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Abstract

The neurophysiological analysis of cooperation has evolved over the past 20 years, moving towards the research of common
patterns in neurophysiological signals of people interacting. Social physiological compliance (SPC) and hyperscanning repre-
sent two frameworks for the joint analysis of autonomic and brain signals, respectively. Each of the two approaches allows
to know about a single layer of cooperation according to the nature of these signals: SPC provides information mainly related
to emotions, and hyperscanning that related to cognitive aspects. In this work, after the analysis of the state of the art of SPC
and hyperscanning, we explored the possibility to unify the two approaches creating a complete neurophysiological model
for cooperation considering both affective and cognitive mechanisms We synchronously recorded electrodermal activity,
cardiac and brain signals of 14 cooperative dyads. Time series from these signals were extracted, and multivariate Granger
causality was computed. The results showed that only when subjects in a dyad cooperate there is a statistically significant
causality between the multivariate variables representing each subject. Moreover, the entity of this statistical relationship
correlates with the dyad’s performance. Finally, given the novelty of this approach and its exploratory nature, we provided
its strengths and limitations.
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Introduction

Cooperation is a complex feature of all social species, includ-
ing human and non-human animals (Brosnan et al., 2010), which
usually points at interaction between actors to reach a common
goal (Fehr and Schurtenberger, 2018). This definition partially
overlaps with the concept of joint actions (Vesper et al., 2016)

which is any kind of social interaction in which subjects share
intentions (Fiebich, 2017). This leverages not only on social cog-
nition processes, and in particular on social interaction, but
also on cognitive and affective mechanisms of a single sub-
ject (Balconi and Vanutelli, 2017b). Recently a three-dimensional
model for cooperation based on the cognitive, behavioural and
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affective axis has been proposed (Fiebich, 2019). According to
this model, cooperation is affected by cognitive or emotional
alteration in subjects sharing intentions. Moreover, understand-
ing the other’s behaviour is based primarily on social under-
standing in terms of mental states, known as Theory of Mind
(Fiebich, 2019).

The interest in neurophysiological analysis of cooperation
was motivated by the will of facilitating team working analysis
(Gorman, 2014), overcoming traditional and subjective evalua-
tion methods like interviews and work quality measurements.
In fact, cooperation could be positive or negative, according to
the results it generates. Difficulties during the team-work gen-
erate the difficulty in creating a shared action plan: this could
be due, for example, to high demanding situations that impact
differently not only on the single subject but on the whole team
(Sciaraffa et al., 2017).

What happens if sustaining a subject’s cooperative behaviour
becomes too hard because of the task difficulty or of the
complexity of understanding other’s behaviour? In this paper,
we answer this question investigating the neurophysiological
mechanisms underlying cooperation taking into account its
multidimensionality.

The past two decades have witnessed the evolution of neu-
rophysiological analysis of cooperation from isolated minds to
interactiveminds conceptual approaches (Hari and Kujala, 2009;
Konvalinka and Roepstorff, 2012; Chatel-Goldman et al., 2013).
The main motivation was that cooperative processes intrinsi-
cally consist of interaction with the other; therefore, analysis of
neurophysiological response during a one-man paradigm could
affect the natural response and have some obvious shortcom-
ings (Koike et al., 2015; Redcay and Schilbach, 2019). Whereas
the isolated minds theory has a solid theoretical basis and well-
defined paradigms, the relatively new approach of interactive
minds still has theoretical and practical open issues. In this con-
text, cooperation in the sense of joint activities (Bratman, 1992)
is only one of the main fields of investigation, together with
the fields of Emotion and Theory of Mind (Chatel-Goldman et al.,
2013). This represents a pitfall because examining Emotion, The-
ory of Mind and Joint actions separately does not allow to be
aware of the three-dimensional aspects of cooperation.

Social physiological compliance

Emotions affect decision-making process, and thusmost human
choices, including cooperationwith others. Fromaneurophysio-
logical point of view, the effects of emotions could be easilymea-
sured becausemost body parameters such as temperature, heart
rate (HR), breathing and sweating are unconsciously controlled
by the autonomic nervous system (Kreibig, 2010). Therefore, car-
diovascular, electrodermal activity (EDA) and respiratory mea-
surement have been considered as fundamental biomarkers of
emotions. In particular, HR and skin conductance level (SCL)
are two autonomic variables employed more often than all of
the other autonomic variables in literature for the analysis of
emotions (Kreibig, 2010). The joint analysis of EDA and HR was
born in the framework of social physiological compliance (SPC)
(Henning et al., 2001). The physiological compliance was defined
in the late 1980s as the psychophysiological change of a joint
nature (Smith and Smith, 1987). Until the 1990s, this concept
was used to analyse social dynamics: high physiological com-
pliance was associated with high social interaction (Hatfield
et al., 1994). The physiological compliance (i.e. the coherence
in this case) of EDA, HR, HR variability and breathing of a dyad

are predictive of team performance as shown during a tracking
task (Henning et al., 2001) and during a building clearing mili-
tary task of four-person teams (Elkins et al., 2009a). Physiological
compliance has been also associated with different shared feel-
ings. Higher synchronization in HR has been correlated with
growing trustfulness in dyads (Mitkidis et al., 2015). Higher syn-
chronization in EDA has been found in dyads after receiving
positive/negative feedback of their performance as a team dur-
ing an attention task (Vanutelli et al., 2017) as well as in negative
interaction compared to positive interaction in romantic couples
(Coutinho et al., 2019). Cooperation has different effects on auto-
nomic measures compared to competition. Previous evidence
indicates that EDA synchronization is significantly higher in a
cooperative mode, while it is not the same for HR because it has
been hypothesized a lower congruence of ECG signals due to dif-
ferent feelings associated with competition (Romero-Martínez
et al., 2019). More recently, the efficiency of SPC has been demon-
strated using a completely natural task and setting for couples of
students (Ahonen et al., 2018). Nevertheless, SPC is not without
pitfalls. The measurement of synchronization between physio-
logical data could be due to coincident synchronization; for this
reason, it is necessary to use methods to test the statistical sig-
nificance of synchronization by applying surrogate or bootstrap
testing (Coutinho et al., 2019).

Hyperscanning

Whereas SPC deals with autonomic signals, hyperscanning han-
dles the synchronized acquisition of brain signals of two dif-
ferent subjects (Montague, 2002). The methods, analyses and
results of the last 20 years of hyperscanning research have been
recently reviewed (Czeszumski et al., 2020). Its first applications
included the use of functional magnetic resonance imaging
(fMRI). While high spatial resolution of fMRI provides detailed
information on deep cerebral areas involved in social interac-
tion, low ecological level and low temporal resolution of this
scanning method prevents the acquisition during real interac-
tive tasks. For this reason, the use of EEG technique has been
proposed: thanks to its portability it has been possible to anal-
yse two or more people really interacting during ecologic tasks
(Poulsen et al., 2017), like, for example, during group interac-
tions in class (Dikker et al., 2017). EEG-hyperscanning appli-
cations have shown, essentially through paradigms based on
joint actions (Liang et al., 2018), that while two subjects interact,
their brain activities are subjected to synchronization (Yi et al.,
2018). High inter-brain synchrony has been observed between
the right temporoparietal (RTP) and frontal areas during coop-
eration (Jahng et al., 2017), and in the posterior region of the
right middle and superior frontal gyrus during cooperative and
obstructive interaction during a Jenga game (Liu et al., 2016).
Higher frontal inter-brain synchrony in the theta band has been
associated with amentalizing process in the case of cooperation
when members of a couple thought more about their partner’s
conduct (Yi et al., 2018), while lower inter-brain synchrony in
the beta band has been associated with competitive behaviour
during a computerized pong-game (Sinha et al., 2017).

The neural coupling in EEG hyperscanning has been anal-
ysed with different methods that could be summarized in three
domains: amplitude covariance, phase synchrony and analysis
of causality between time series. Several studies have shown
that there is covariance in EEG amplitude and power spectra
between interacting people (Babiloni et al., 2007; Astolfi et al.,
2009). The overlap in activations represents only a weak form of
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neural coupling, in fact in some cases, similarities of activation
could be due to the similarity of common tasks, and certainly,
it does not provide information on the temporal dependence
that exists between activations of the involved areas (D. Liu
et al., 2018). The analysis of phase synchrony and causality
could instead provide this information. One of the main used
index of phase synchrony in hyperscanning is the Phase Locking
Value (Lachaux et al., 1999). This measure of phase consistency
is not a measure of information exchange because, as shown
by Burgess (2013), phase synchronization may not be due to
inherent causes but to coincident synchronization. Unlike this
method, causality estimation between time series provides the
measure of information exchange in the form of connections
between subjects. Multivariate autoregressivemodel is themost
widely used tool to analyse temporal dependencies, to obtain
causal relationships, among time series. Time series in the case
of EEG-hyperscanning are the brain activities belonging to dif-
ferent subjects collected in a highly synchronized way as if
they belonged to the same subject (Babiloni and Astolfi, 2014).
However, this approach also has its weaknesses. Whatever the
estimator based on multivariate autoregressive models used to
assess causality, the accuracy of causality estimation is strongly
correlated to the number and size of data segments (Schlogl and
Supp, 2006). In addition, EEG signals almost never meet the nec-
essary condition of stationarity and therefore the white noise
residual assumption. Non-compliancewith the latter is themost
common cause of model misspecification and is very common
in EEG due to signals cross-talk as an effect of volume conduc-
tion (Bressler and Seth, 2011). The effects of volume conduction
in the estimation of brain connectivity at the scalp level are
represented by spurious connections between time series that
cannot be removed. Another important issue is the assessment
of statistical significance of the derived connectivity measures.
In fact, as for SPC, even for inter-brain causality it is necessary
to determine with certainty whether or not exists a connec-
tion between two brain areas by means of both empirical and
theoretical methods (Baccalá et al., 2013).

Therefore, SPC and hyperscanning approaches showed both
pros and cons in cooperation modelling and so far they have
been usually employed separately, disregarding the proposed
three-dimensional model for cooperation.

This work proposes to fill this gap analysing multivariate
Granger causality (GC) of the time series extracted from syn-
chronized recording of EDA, cardiac and EEG signals of sub-
jects during a cooperative task. In fact, based on our hypoth-
esis, cooperation can be seen as the output of a multivariate
system caused by interaction between different components
(behavioural, affective and cognitive mechanisms) belonging to
two subjects.

The behavioural aspect of cooperation in themodel is defined
by the task. We selected a task that allows subjects to be auto-
matically aware of their performance. The subjects were asked
to cooperate in the construction of a Leonardo Da Vinci’s bridge
model. Actually, during the task, subjects automatically per-
ceived their performances which, in a closed-loop, affected
their cognitive and affective mechanism that affected cooper-
ation and so on. This choice has been made according to the
need to introduce a truly interactive and engaging perspective
in paradigms of social cognition (Hari and Kujala, 2009).

For the assessment of affective aspects, synchronous time
series of cardiac and EDA have been extracted from each dyad.
For the assessment of cognitive aspects, EEG data were not used
directly, but time series describing brain activity for each subject

in a dyad in terms of Neurometrics, i.e. indexes based on the
linear combination of spectral power of EEG signals in some
frequency bands and certain Regions of Interest (ROIs). In this
sense, this work took on an exploratory dimension because dif-
ferent Neurometrics related to cooperative mechanisms have
been tested in the model (please refer to the paragraph ROIs
selection). Finally, the same approach has been used to analyse
cooperation effectiveness.

Methods

Participants

Twenty-eight participants (18 female and 2 left-handed,
29±5 years) have been divided into 14 couples (7 couples
female-female; 3 couples male-male, 4 couples female-male).
All participants were healthy with no history of neurological or
psychiatric disorders and with normal or corrected-to-normal
vision. Prior to the experiment, each participant was informed
about the purpose and contents of the study and provided writ-
ten informed consent. This experiment was conducted follow-
ing the principles outlined in the Declaration of Helsinki of 1975
as revised in 2008 and had the permission of the local ethical
committee of the Sapienza University of Rome.

Experimental set-up

The experimental protocol consisted in the construction of the
Leonardo Da Vinci’s bridge model (Figure 1). This model consists
of 15 pieces of three different shapes that must be arranged in
order to make the bridge standing. Participants in each dyad
were seated in front of each other on opposite sides of a rect-
angular table. Before the test, participants were asked to seat
with their eyes closed for 1 min and then to look at a white
sheet for another minute as a baseline value for neurophysio-
logical measurements. After that, the participants were given 1
min to read instructions including a description of every kind
of piece to complete Leonardo’s bridge model. The protocol
comprised three experimental conditions: Alone, cooperation
with forbidden talk (CoopNT) and cooperation with allowed talk
(CoopT). The Alone conditionwas performed firstly for each cou-
ple because, according to the results of pilot experiments, this
phase is necessary so that subjects can create their own strat-
egy which is a necessary condition for cooperation. The order of
the cooperation conditions was counterbalanced across dyads.
To mitigate learning effects, different groups of pieces were
given to the subjects according to the condition. In the Alone
phase, all pieces were given to each participant to complete
the bridge model on their own. During the cooperative condi-
tions, the sticks were divided into two parts and given to each
participant of a dyad separately. The groups of pieces were not
randomly assigned, but balanced division (each participant got
the same kind of pieces) has been conducted for the CoopNT
condition and unbalanced division (each participant has more
or all pieces of one kind) for the CoopT condition. During CoopT
condition, the two players can discuss strategy and agree on how
to set up the bridge model. During CoopNT condition, the par-
ticipants could not talk to each other. For each phase, the max-
imum time available to the subjects was 4 min. This value has
been chosen because it was the average completion time during
pilot experiments.
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Fig. 1. Experimental set-up. Timeline of experimental phases: 60 s of Eye Closed (EC) condition and Rest condition followed by 60 s to read instruction, 4 min to

accomplish the Alone condition followed by the 2 cooperative phases. After each condition, questionnaires to evaluate the perceived workload (NASA-TLX) and

cooperation have been filled. In the picture, a representation of the cooperative execution of the task where the participants seated in front of each other on opposite

sides of a rectangular table while they were constructing a Leonardo’s bridge model.

Performance scoring

The performance of each condition has been computed accord-
ing to the following:

Score= 1−
tel
240

∗
w+m
15

(1)

that is subtracting from 1 the elapsed time in seconds (tel)
divided by the total time available to subjects (240 s) multiplied
for the sum of the number of missing (m) and wrongly placed
pieces (w) respect to the total number of pieces (15). The scores
of the two cooperative phases have been compared performing
a Wilcoxon signed-rank test (α=0.05).

Subjective workload and team-workload evaluation

The weighted NASA Task Load Index (NASA-TLX) questionnaire
(Hart and Staveland, 1988) has been used to measure the men-
tal workload perceived by subjects, a measure of the amount of
cognitive resources required for performing a task. Thanks to
this construct we can analyse both how difficult the task was
perceived, and the possible presence of learning effects. The
NASA-TLX uses six 100-points range subscales to assess mental
workload in terms of Mental demand, Physical demand, Tempo-
ral demand, Performance, Effort and Frustration. Each of these
items is weighted according to a pair comparison procedure (i.e.
the number of times each dimension is chosen between two as
the most relevant for the workload) that each subject performs
before the workload assessments. However, it has been demon-
strated that during the cooperative tasks, the workload mea-
surement is affected in a ‘multiplicative or nonlinear’ way by the

team itself (Funke et al., 2012). For this reason, the Team Work-
load Questionnaire has been used for the assessment of team
workload (Sellers et al., 2014). This is an extension of NASA-TLX
and consists of six 100-points range subscales to assess the team
mental workload in terms of Communication demand, Coordi-
nation demand, Time Share demand, Team Performance, Team
Frustration and Team Support.

Subjective workload has been compared between the three
experimental conditions (Alone, CoopNT and CoopT) perform-
ing a Friedman Test (α=0.05). The post hoc analysis has been
performed by means of Dunn & Sidák’s approach. Subjective
Team-Workload has been compared between the two experi-
mental conditions CoopNT and CoopT performing a Wilcoxon
signed-rank test (α=0.05).

Subjective cooperation assessment

After completion of each cooperation phase, participants filled
in a cooperation questionnaire. It contained six items to
quantify perceived cooperation across the different cooperation
conditions (Lang et al., 2017). Scores for the six items were aver-
aged and compared between the CoopNT and CoopT conditions
performing a Wilcoxon signed-rank test (α=0.05).

ECG recording and analysis

The electrocardiogram (ECG) signal was recorded synchronously
by means of an electrode fixed on the chest of each participant
with a sampling frequency of 256Hz and referred to the potential
recorded at both the earlobes. To emphasize the QRS process,
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ECG signal was band-pass filtered between 5 and 20 Hz with a
5th-order Butterworth filter. The Pan–Tompkins algorithm (J. Pan
and Tompkins, 1985) was employed to find R-waves’ peaks of
ECG, and the distance between each two R peaks was measured
in seconds. Therefore, RR values were processed to find ectopic
interbeat interval.

EDA recording and analysis

EDA was recorded synchronously through the Shimmer3
GSR+Unit (Shimmer Sensing, Ireland) by means of two elec-
trodes on themiddle and ring fingers of the non-dominant hand
for each participant. It was recorded with a sampling frequency
of 64 Hz and downsampled to 16 Hz to be processed using the
Ledalab suite (Bach, 2014). EDA signal contains a slow-changing
part, mostly related to the level of arousal, and a fast-changing
part which occurs in relation to single stimuli reactions (Bouc-
sein, 2012). The Continuous Decomposition Analysis (Benedek
and Kaernbach, 2010) was applied in order to separate them,
respectively, in SCL and skin conductance response. In this anal-
ysis, we considered only the SCL signal normalized respect to the
baseline value for each subject.

EEG recording and analysis

The EEG of the dyads has been recorded synchronously by a digi-
tal monitoring system (BE+ system, EBNeuro S.p.A., Italy) with a
sampling frequency of 256Hz. For each subject, 25 channels (Fpz,
AFz, AF3, AF4, AF7, AF8, Fz, F3, F4, F7, F8, C5, C6, T7, T8, CP3, CP4,
CPz, Pz, P3, P4, PO3, PO4, P7 and P8) were referred to both ear-
lobes and their impedances were kept below 10 kΩ. EEG signals
were band-pass filtered between 1 and 35 Hz with a 5th-order
Butterworth filter, and then a Notch filter has been applied to
remove the 50 Hz component influence. Eye-blink contributions
were corrected (i.e. without losing data) by REBLINCA algorithm
applied to the Fpz channel (Flumeri et al., 2016). The EEG dataset
was segmented into epochs of 1 s to respect the EEG station-
arity, and for the rejection of artefacts, specific procedures of
EEGLAB toolbox (Delorme and Makeig, 2004) were employed. In
particular have been marked as artefacts (i.e. samples of the
epoch per channel have been assigned NaN) all epochs that did
notmeet the threshold criterion (±100µV), the trend estimation
(slope was higher than 10 µV/s) or the sample-to-sample crite-
rion (difference, in terms of absolute amplitude, was higher than
25 µV). The percentage of artifacted epoch*channels set to NaN
is 23.02±8% for the Alone condition, 23.06±8% for the CoopNT
condition and 21.33%±9% for the CoopT condition.

For each epoch and each channel, power spectral density
(PSD) was calculated using a Hanning window of same length of
the considered epoch (1 Hz of frequency resolution). Then, EEG
frequency bands (theta, alpha and beta) were defined for each
participant accordingly with their individual alpha frequency
value (Klimesch, 1999).

ROIs selection

EEG hyperscanning has been employed to study the natural
cooperative behaviour; however, due to the low spatial resolu-
tion of this technique, it is not possible to localize the cortical
activation associated with cooperation. Cooperation as a social
process is mainly associated with the social brain, consisting of

brain areas like the medial prefrontal cortex (PFC), orbitofrontal
cortex, striatum and amygdala (Gallotti and Frith, 2018). Previ-
ous knowledge from fMRI and fNIRS (Functional near-infrared
spectroscopy) studies that have higher spatial resolution pro-
vides the necessary information regarding both activation and
brain mechanisms associated with cooperation. Frontal activity,
and in particular, the PFC activity (Wills et al., 2018), is modu-
lated by cooperation because they are components of mental-
izing network (Chauvigné et al., 2018). In several fNIRS works,
higher coherent PFC activity has been found between actors
(Cui et al., 2012; Cheng et al., 2015; Pan et al., 2017). The right
temporal cortex (RT) plays a key role in cooperation, proved
by several pieces of evidence of high coherence during coop-
erative tasks (Baker et al., 2016; Ahn et al., 2018). The parietal
cortex also is especially expected to be involved due to the theta
synchronization in the right parietal cortex and the key role
in nonverbal social coordination (Yun et al., 2012). Moreover,
the inferior parietal lobule has been proved to be significantly
more active during the joint phase respect to alone during joint
action paradigms (Egetemeir et al., 2011) and several are the
pieces of evidence about high synchronization of temporal and
lateral parietal regions in speakers/observer cooperative/tasks
(Kawasaki et al., 2013). The hypothesis is that such regions are
close to the temporal–parietal junction, the hub of the mental-
izing processes (Saxe and Kanwisher, 2003). Therefore, these
pieces of evidence have been used to explore the validity of the
new approach proposed, and the following nine ROIs have been
defined to be tested into the model:

• Frontal area described by the electrodes F3, F4, F7, F8, Fz;
• Right prefrontal cortex (rPFC) defined by the electrodes

AF4, AF8, F8;
• Left prefrontal cortex (lPFC) defined by the electrodes AF3,

AF7, F7;
• Prefrontal cortex (PFC) defined by the electrodes AF4, AF8,

F8, AF3, AF7, F7;
• Left fronto-temporal area (LFT) defined by the electrodes

T7, F7;
• Parietal area defined by the electrodes Pz, P3, P4, P7, P8;
• Right centro-parietal area (RCP) defined by the electrodes

C6, CP4, P4;
• Right temporo-parietal area (RTP) defined by the elec-

trodes P8, T8;
• Right temporal area (RT) defined by the electrodes C6, T8.

Time series preparation

For a correct estimation of the multivariate model from each
signal and each subject, synchronous neurophysiological time
series have been extracted.

The brain dynamics have been obtained averaging PSD val-
ues for each band in groups of electrodes belonging to the ROIs
identified by the literature review of other hyperscanning stud-
ies. Moreover, two complex Neurometrics have been defined to
describe each subject in terms of his own mental state:

• Mental Workload as the ratio between PSDs estimated on
frontal EEG channels in the theta band and parietal EEG
channels in the alpha band (Klimesch, 1999).

• Engagement as the ratio between PSDs estimated on
frontal EEG channels in the beta band and the sum of
PSDs estimated on frontal EEG channels in the alpha and
theta band (Freeman et al., 1999).
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Fig. 2. Example of the time series extracted from neurophysiological signals for one couple during the CoopNT condition.

If any sample of the time series thus obtainedwasmissed (i.e.
was NaN) due to the artefact rejection phase, the missing value
was found from a spline interpolation of the nearest epochs.

To obtain SCL time series, due to the non-stationarity of the
signal, it has been first differentiated twice thus making feasi-
ble causality analysis without affecting the results (Barnett and
Seth, 2011). Therefore, to synchronize the autonomic signals to
brain dynamics they have been both synchronously resampled
at 1 Hz using spline interpolation (Zanetti et al., 2019). Finally,
each time series has been normalized (Figure 2) and the sta-
tionarity has been tested with augmented Dickey–Fuller test
(Fuller 2009).

Multivariate Granger causality analysis

As we have already said, cooperation can be seen as the out-
put of a multivariate system caused by the interaction between
behavioural, affective and cognitive mechanisms belonging to
two subjects. Therefore, a tool able to measure and explain this
interaction could correctlymodel cooperation. As highlighted so
far, the ‘measures’ we are referring to are the neurophysiological
time series describing the affective and cognitive state of each
subject. To explain interactions between these different compo-
nents of the system, we employed Granger causality (Granger,
1969) in its conditional form (Geweke, 1984). Let us consider
a discrete-time stationary vector stochastic process composed
of M real-valued zero-mean scalar processes, Yn =

[
y1,n . . .yM,n

]T.
Assuming that Yn is a Markov process of order p, in linear sig-
nal processing framework it can be completely described by the
vector autoregressive model:

Yn =

p∑
k=1

AkYn−k +Un (2)

where Ak is the M × M matrix containing the autoregres-
sive coefficients aij,k that relate yj,n to yi,n−k

(
i, j ∈ (1, . . . ,M) ,

k ∈ (1, . . . ,p)
)

and Un =
[
u1,n . . .uM,n

]Tis a vector of M zero-
mean Gaussian innovation process with covariance matrix

Σ = E
[
UnUT

n

]
(where E is the expectation value). The problem

stated in equation (2) can be solved through the ordinary least
square, computing the matrix of coefficients that minimizes the
residual error term (Faes et al., 2017).

Let us assume the process yj,n as the target and yi,n as the
driver process, with the remaining M-2 processes collected in
the vector Yk,n where k= {1, . . . ,M}\

{
i, j
}
. Then, denoting y−m,n =[

ym,n−1,ym,n−2 . . .
]Tas the past history of the generic process ym

we state that the ith process G-causes the jthprocess (conditional
on the other k processes), if y−i,n conveys information about yj,n,

above and beyond all information contained in y−j,n and Y−
k,n. This

definition leads to perform a regression of the present of the
target on the past of all processes, yielding to the prediction
error ej|ijk,n = yj,n −E

[
yj,n|Y−

n

]
, and on the past of all processes

except the driver, yielding to the prediction error ej|jk,n = yj,n −

E
[
yj,n|y

−
j,n,Y

−
k

]
. The prediction error variances resulting from

these ‘full’ and ‘restricted’ regressions, λj|ijk = E
[
e2j|ijk,n

]
and

λj|jk = E
[
e2j|jk,n

]
are then combined to obtain the definition of GC

from yi to yj:

Fi→j = ln
λj|jk

λj|ijk
(3)

In this formulation, the ‘driver’, ‘target’ and conditioning pro-
cesses may themselves be multivariate and therefore repre-
sented by groups of processes. In this sense, it is used the
term ‘multivariate’ G-causality for taking into account the group
interactions as highlighted in Barnett and Seth (2014). Fur-
thermore, with this formulation, it is possible to take into
account the influence of other time series which potentially
affect the analysis of the driver and target considered, avoid-
ing the well-known problems related to GC computation in its
bivariate formulation (Stokes and Purdon, 2017). All the mea-
sures needed for the computation of GC values are performed
through MATLAB 2018a and the freely available ITS toolbox
(Faes et al., 2015). In this work, two different analyses have
been performed.
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In the first analysis, the driver and the target process are
alternatively the vectors X and Y representing a group of time
series (RR, SCL and aNeurometric) belonging, respectively, to the
two subjects. The aim of this step is to select the models signifi-
cantly affected by cooperation. The GChas been computed for 29
different systems where SCL and RR time series are fixed for all,
whereas Neurometric could be Workload, Engagement or each
of the time series describing brain activity in ROI for each band
(9 × 3). After that, the statistical significance of the estimated
GC values has been tested. Surrogate time series have been
generated which share the same power spectrum of the origi-
nal time series but are uncorrelated (Ramseyer and Tschacher,
2011). Specifically, 100 sets of surrogate time series were gener-
ated and the corresponding GC were estimated. The 100 values
of multivariate GC computed on surrogate time series have been
averaged to obtain a distribution of surrogateGC. Therefore, for
each system and condition there are two different distributions
of GC values: realGC and surrogateGC distribution. These distri-
butions have been statistically compared by means of a paired
t-test, and the effect size has been computed according to Cohen
(1992) to find out if the causality obtained is significant, therefore
it is not due to the chance.

The second analysis has been performed only for those sys-
tems that showed a significant causal effect due to cooperation.
The GC as defined in equation (3) has been computed consid-
ering as target process each of the six time series and allowed
to obtain the network of the links within and between the neu-
rophysiological time series of each subject (Figure 3). To avoid
computational problems associated with the estimation of an
empirical distribution with surrogates, in this case, the statisti-
cal significance of each estimated causality link has been tested
using the asymptotic distribution of GC. In particular, Bernett
(2014) showed that under the null hypothesis of zero causality,
GC estimator scaled by the sample size has an asymptotic χ2

distribution. To quantify the effect due to cooperation for each

link, the percentage of subjects showing a significant connec-
tion and the density of connections exchanged between subjects
have been computed. The density of the links between subjects
has been computed as the ratio of the number of existing con-
nections over the total possible amount of connections (Rubinov
and Sporns, 2010). The density has been compared between
conditions performing a Friedman Test (α=0.05).

Correlation analysis

To assess whether there is a relationship between the computed
causality and the performance of each dyad, realGC of each
systemwhich proved to be significantly affected by the effective-
ness of cooperation has been correlated with the score obtained
in both cooperative phases. A Spearman correlation has been
performed.

Results

Behavioural results

According to the equation (1), the score has been computed
for each condition. During the Alone condition, 2 out of 28
subjects have the lowest performance (subject 15 and sub-
ject 17) and only 1 (subject 7) obtains the maximum score.
Figure 4a shows the score, and the red line shows themean score
(0.528±0.243).

Figure 4b shows the score for both cooperative conditions.
The green bars and the green line represent, respectively,
the score during the talk condition (CoopT) for each couple
and the average over the population in the same condition
(0.777±0.233). The red bars are indicative of the no-talk condi-
tion (CoopNT) and the red line of the average over the popula-
tion in this condition (0.768±0.242). No statistically significant
differences have been found (P=0.921).

Fig. 3. Graphical model of performed analysis for a dyad. Each model has been identified by two groups of time series (SCL: skin conductance level, HR: heart rate,

Neuro: Neurometric) each representing a subject. The analysis provided information about the causality within-subject in yellow and in blue, and between-subject in

green. The density of connections between subjects has been compared across the different conditions.
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Fig. 4. In the left panel, the bars represent the score for each subject. The red line is the mean score of the population. In the right panel, the bars represent the score

for each couple during cooperation. The green colour represents the talk condition and the red colour represents the no-talk condition. The lines represent the mean

value of score for the talk condition (in green) and the no-talk (in red) respectively.

Fig. 5. NASA-TLX score for the three conditions. The asterisks show statistical

significance for P<0.05 (*) and for P<0.01(**).

Subjective and neurophysiological assessment results

The NASA-TLX (Figure 5) provides statistically significant dif-
ferences among the three conditions (χ2 =10.57, P=0.005). The
post hoc analysis highlights that the Alone condition has sig-
nificantly higher perceived workload than the cooperative con-
ditions (CoopNT P=0.02; CoopT P=0.009), but there is no
statistically significant difference between CoopT and CoopNT
(P=0.96).

This result has been partially confirmed (Figure 6) by the
neurophysiological computation of mental workload (χ2 =21.5,
P<0.0001) which shows a significant decrement from Alone
condition compared to CoopNT condition (P<0.0001). However,
this measure does not identify the difference between Alone
and CoopT, but it finds a significant increment of workload
during CoopT compared to CoopNT (P= 0.006). Moreover, the
Engagement shows a significant increment of both coopera-
tive conditions compared to Alone condition (χ2 =7.71, P=0.02;
CoopNT P=0.042; CoopT P=0.042).

The two different kinds of interaction during the construc-
tion of the bridge have not been perceived significantly different
both regarding the difficulty of interaction (P=0.6243) and the
quality of cooperation itself (P=0.6751). The results are shown
in Table 1.

From the autonomic point of view (Figure 7), the interbeat
interval (RR, χ2 =12.28, P=0.002) shows a significant increment
in the case of CoopT respect to the Alone condition (P=0.001),
that means lower HR during cooperation. On the other hand,
SCL (χ2 =9.5, P=0.008) shows a significant increment during the
CoopNT respect to the Alone condition (P= 0.009).

The following analyses are organized into twomain sections:
(i) Multivariate Granger causality analysis and (ii) Analysis of
effective and ineffective cooperation.

Multivariate Granger causality analysis

First of all, time series from neurophysiological signals have
been extracted for multivariate GC analysis and ADF test pro-
vided P<0.001 for all of them. Table 2 shows the results of
the statistical comparison between realGC and surrogateGC dis-
tributions. In no system the Alone condition provides realGC
values significantly different to surrogateGC. In an explorative
perspective, 29 possible models have been analysed, and among
these, only 7 systems of variables provide significantly higher
realGC values than surrogateGC in both kinds of interactions
(CoopNT and CoopT). In each of these cases, the effect size
goes from medium (d=−0.595 for PFC Beta in CoopNT) to high
(d=−0.907 for Frontal Beta in CoopNT). The results for Work-
load and Engagement have not been shown in the table because
they were not significant under any conditions.

Figure 8 shows the network for each of the five significant
models (rPFC and lPFC in beta have beenmerged into PFC in beta
because they were both statistically significant). In particular,
for each condition has been shown the circular graph resulting
from the computation of pairwise-conditional Granger causal-
ity between each time series both within (in blue and yellow for
subject a and subject b, respectively) and between time series
belonging to different subjects (in green). Only connections sig-
nificantly different from the chance according to theoretical
distribution have been shown and the threshold for visualiza-
tion has been set on at least two connections. The thickness of
the connections shows the percentage of couples having that
connection and for each row themaximumvalue of the percent-
age reached has been indicated. On the left is shown the density
of connections between subjects for each condition. For the sys-
tem including Frontal beta, the density of the Alone condition is
significantly lower respect to the CoopNT (P= 0.005, χ2 =10.51).
The same is for the density of the model with PFC (P=0.0264)
in beta and RT in the alpha band (P=0.016). The rPFC in theta
(P=0.003) is also significant compared to the CoopT condition.
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Fig. 6. Distributions of Workload and Engagement for each condition. In green, the conditions whose difference is statistically (P < 0.05) significant.

Table 1. Results of the questionnaires on team-workload and cooperation

Subjective measures CoopNT
Mean (s.d.)

CoopT
Mean (s.d.)

P-value z

Team workload assessment 45.77 (11.55) 47.54 (11.75) 0.6243 −0.489
Cooperation assessment 81.96 (16.08) 81.56 (15.00) 0.6751 0.4191

Fig. 7. Distributions of autonomic measures (RR, SCL) for the three conditions (Alone, CoopNT and CoopT). In green, the conditions whose difference is statistically

(P < 0.05) significant.

Analysis of effective and ineffective cooperation

Since it has been shown that talk and no-talk condition did
not provide any statistically significant difference in both
behavioural and perceived measures, all the scores have been
used to create a unique distribution. The first and the third
interquartile range have been computed to define a threshold for
ineffective cooperation and effective cooperation, respectively
(Figure 9). The threshold for ineffective cooperation is Score=0.6
and the threshold for effective cooperation is Score=1. Eigh-
teen instances have been found in the first quartile and 18 in the
third. After labelling each repetition according to this classifica-
tion, the neurophysiological indexes have been computed again
and compared statistically performing a Wilcoxon rank-sum
test.

The autonomic signals and Neurometrics have been com-
puted for each condition, and the rank-sum results are shown
in Table 3. The autonomic variables, engagement and workload
do not differ significantly between these two conditions. The
table also shows the results for each ROI in the three different
bands analysed. The main significant effects have been found
in the beta band: RCP, RT, RTP and parietal activity significantly
increase when cooperation is ineffective. The rPFC area is the
only onewhose activity significantly increases both in alpha and
in beta band (Figure 10).

Similarly to the previous analysis, we have computed con-
ditional Granger causality considering effective and ineffective
classification of the instances. We found (Figure 11) that the
density of connections between subjects is significantly lower
during ineffective cooperation compared to effective in the PFC
model both in alpha (P=0.038) and beta band (P=0.003), in
the model with RT in the alpha band (P=0.023) and the rPFC
model in the beta band (P=0.007). The other models are not
statistically significant.

Correlation

Figure 12 shows Spearman correlation results between the com-
puted causality for each significant system of variables and the
score. In each case, positive medium and significant correlation
has been found.

Discussion

This work aimed at defining a three-dimensional model of
cooperation based on neurophysiological measures. In partic-
ular, it leveraged the evidence of SPC and hyperscanning and
tried to overcome their limitations by analysing interactions
between time series extracted from EEG, EDA and ECG signals
synchronously recorded from dyads, through state-of-the-art
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Fig. 8. Representation of statistically significant causal relationship between the time series. SCLa, RRa and Neuroa are the time series belonging to the subject

a (connections within-subject in blue). SCLb, RRb and Neurob are the time series belonging to the subject b (connections within subject in yellow). In green, the

connections between subjects. The thickness represents the percentage of couples having that significant connection. On the left, the distribution for each model of

the density of the between-subject connections (the asterisks highlight P<0.05).

Fig. 9. Histogram of scores for cooperative phases. The dashed lines represent the first interquartile range (IQR) in orange and the third IQR in blue, the limits,

respectively, of ineffective and effective Cooperation.
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Table 3. Results of the rank-sum test between effective and ineffective cooperation for neurophysiological variables computed

RR SCL Engagement Workload

P-value 0.537 0.476 0.763 0.261

Z −0.62 0.711 −0.300 1.123

ROI Frontal rPFC lPFC RCP RT RTP LFT Parietal

P-value 0.837 0.084 0.739 0.962 0.936 0.886 0.692 0.837
θ

Z −0.205 −1.724 −0.332 0.047 0.079 −0.142 0.395 −0.205
P-value 0.419 0.009 0.261 0.457 0.211 0.073 0.401 0.110

α
Z −0.806 −2.578 −1.123 −0.743 −1.249 −1.787 −0.838 −1.597
P-value 0.558 0.016 0.787 0.032 0.035 0.027 0.401 0.013

β
z −0.585 −2.388 0.268 −2.135 −2.103 −2.198 −0.838 −2.483

Fig. 10. Distribution of PSD values averaged in the rPFC ROI in alpha (left) and beta (right) band. The asterisks define the significance (P < 0.01 ** and P<0.05 *).

measures of causality. To achieve this goal, we recorded neu-
rophysiological signals during the building of Leonardo’s bridge
model, which allowed us to modulate both the level of cooper-
ation (there were both Alone and cooperative phases) and the
kind of interaction (no-talk and talk cooperation phases).

Looking at the cooperation phases, theworkload level related
to the two different levels of interaction and the cooperation
itself is not perceived significantly different by subjects (Table 1).
However, from both a behavioural (Figure 4) and subjective (Fig-
ure 5) point of view, the execution of the task Alone provided
lower performances and higher perceived workload than in the
cooperative phases. Even if this result could be explained in
the framework of joint action according to which sharing a task
makes it easier (Wahn et al., 2018, 2020), the influence of learn-
ing effects cannot be excluded since no subject performed the
task before and the Alone condition was performed firstly to
make subjects able to create their own strategy which is a nec-
essary condition for subsequent cooperation. The analysis of
neurophysiological workload partially confirms the subjective
results with a significantly lower value of workload in no-talk
condition but not in talk condition (Figure 6) and the signifi-
cantly higher value of HR, which is a correlate of the decreased
workload (Jorna, 1993), in talk condition compared to the Alone
phase (Figure 7). However, the Engagement, i.e. an effortful
striving towards task goals which plays a fundamental role in
the description of learning phenomena (Matthews et al., 2003),
is higher in both cooperative phases compared to the Alone
phase (Figure 6). Therefore, we could say that, even if perceived
workload decreases, the subjects are still engaged in the task
and increasing engagement could be the neurophysiological
hint of theorized mental aspects of the joint action, the joint
engagement (Seemann, 2009).

Finally, no-talk condition induces a significant increment of
the tonic component of EDA (Figure 7), that is a reliable indicator
of the arousal (Bach et al., 2010) and the stress level of subjects
(Posada-Quintero et al., 2016). Therefore, this could be inter-
preted as a stressor effect because subjects have been forced to
cooperate without talking to each other, therefore inhibiting a
spontaneous and dominant mechanism (Skoluda et al., 2015).

Multivariate model

For the sake of interactive mind approach, we defined a
multivariate model to derive information from the couple as
an interacting entity. This multivariate approach, based on
synchronized autonomic and cerebral time series of dyads,
allows studying the causality of both affective (from autonomic
signals) and cognitive (from brain signals) mechanisms during a
cooperative task. Given the novelty of this approach, we decided
to analyse, in an explorative way, all the models obtained from
the combination of Neurometrics we found of interest in the
field of social neuroscience; therefore, in total we analysed 29
models.

The first finding is that none of themultivariatemodels anal-
ysed provided a causal effect higher than the chance level for
Alone condition. In contrast, the causal effect is significantly
higher than chance level for both cooperationmodalities in 7 out
of 29 systems of variables explored (Table 2). The relevant Neu-
rometrics are essentially related to activity of the frontal area
in beta band as expected for their role in mentalizing processes
and team coordination dynamics (Tognoli et al., 2011; Chauvigné
et al., 2018). On the one hand, these results fit well in SPC and
hyperscanning frameworks, which have already demonstrated
higher synchronized autonomic (Elkins et al., 2009b; Ahonen
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Fig. 11. Representation of statistically significant causal relation between the time series in case of effective and ineffective cooperation. SCLa, RRa and Neuroa are

the time series belonging to the subject a (connections within-subject in blue). SCLb, RRb and Neurob are the time series belonging to the subject b (connections

within-subject in yellow). In green, the connections between subjects. The thickness represents the percentage of couples having that significant connection. On the

left, the distribution for each model of the density of the between-subject connections (the asterisks highlight P<0.05).

et al., 2018) and cerebral activity (Jahng et al., 2017; Yi et al.,
2018) in case of cooperation. On the other hand, this result
goes beyond because of the application of multivariate Granger
causality to neurophysiological time series that allows to
estimate the measure of information exchange in the form of
connections between subjects and to validate their existence
by applying surrogate testing. Moreover, due to the nature of
the task, we were not interested in assessing the direction of
this causality because it has been assumed that there was no a
predominant role during the task, but the subjects were asked
to try to cooperate equally in building the bridge.

Once the causality at dyad-level has been validated identify-
ing the models significantly affected by cooperative behaviour,

the analysis of conditional GC allows inferring the topological
structure of the network defined by the two subjects. This addi-
tional analysis provided both the causal links between the differ-
ent body districts of the same subject (within-subject network)
and those between the different districts of different subjects
(between-subject network).

In the within-subject networks, a recurrent pattern between
RR, SCL and Neurometric nodes is evident. This result can be
explained in the framework of network physiology (Ulke et al.,
2017): there is a strong coupling between brain activity in beta
band and the autonomic activation of subjects (Kuo et al., 2016).
Moreover, this pattern is more frequent during cooperative
conditions compared to alone, according to a modulation of
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Fig. 12. Spearman correlation between the causality values and the score. On the left, the correlation between the model SCL+RR+PFC in alpha and the score. In

the middle, correlation between the model SCL+RR+PFC in beta band and the score. On the right, correlation between the model SCL+RR+RT in alpha band and

the score.

brain-peripheral network associated with the task and mental
engagement (Zanetti et al., 2019; Antonacci et al., 2020).

In the between-subject networks is evident a statistically sig-
nificant increment of density, i.e. the number of connections
between nodes belonging to different subjects, of the multivari-
ate models involving activity in frontal and PFC in beta, in rPFC
in theta and in RT in alpha in the case of cooperation no-talk
respect to the Alone phase (Figure 8). Moreover, the most fre-
quent connection between subjects is the one between SCL and
RR node of different subjects; therefore, most of the causality is
related to autonomic mechanisms.

We can infer that the causal variation of the autonomic time
series of two subjects is due to truly interactive and cooperative
features of Leonardo’s bridge task, during which subjects auto-
matically perceive their performances which, in a closed-loop,
affect their cognitive and affectivemechanisms that affect coop-
eration. Nevertheless, a less immediate interpretation could be
made about the links of hybrid nature (e.g. a connection between
activity of frontal area in beta band of one subject and HR of the
other), but, in general, it is possible to hypothesize that between
time series describing the mental and affective state of subjects
cooperating, there is a statistical relationship.

Effective and ineffective cooperation

Once it has been demonstrated that it is possible to find a
statistical relationship between time series describing neu-
rophysiological states of subjects cooperating, we analysed
whether the proposed approach is valid also to analyse coop-
eration effectiveness.

The first result is that even during a cooperative task inwhich
subjects are aware of their performance, withdrawal reaction
associated with ineffective cooperation is triggered. In fact, the
only relevant result in alpha band is the increment of activ-
ity in right PFC area during the ineffective cooperation (Fig-
ure 10). We can infer that it happens because the subject is
aware of his low performance and the right PFC is involved in
a system facilitating withdrawal behaviour from aversive sen-
sation (Spielberg et al., 2008). Moreover, there is a significant
increment of activity in beta band in right-temporal-parietal
areas and, in general, in parietal area in case of ineffective
cooperation. This is coherent with previous knowledge that
ineffective cooperation induces higher activation of the right
hemisphere due to negative valence (Balconi and Vanutelli,
2017a) because it induces feelingsmore pertinent to competitive
behaviour. Adversely, nor autonomic, Workload or Engagement

are affected by cooperation effectiveness. Therefore, we can
deduce that a variation in engagement could be associated with
the cooperative nature of the task and not with the effectivity of
the cooperation itself.

The second result, obtained by computing Granger causality,
shows that there is a statistical relationship between coopera-
tion effectiveness and exchange of information among nodes of
the network. In particular, also in this case, there is a recur-
rent pattern in the within-subject network, mainly during the
effective cooperation, and the density of the between-subject
connections was significantly higher during the effective coop-
eration compared to the ineffective (Figure 11). Moreover, for
eight out of nine couples analysed, there is a connection
between the frontal brain activity in beta band of one subject and
the SCL of the other subject. We hypothesized that this hybrid
connection could be a dyad extension of the coupling between
brain activity in beta band and the autonomic activation so far
demonstrated for the single subject (Kuo et al., 2016).

Therefore, among the models analysed, those involving the
PFC in alpha and beta band show to be affected not only by the
cooperative nature of the task but also by its effectiveness. In
particular, we found that independently of the kind of interac-
tions, the values of Granger causality for significant models pro-
vided medium and significant correlation with the pairs’ score
(Figure 12). This result is in line not only with SPC framework
that found in the synchronization between autonomic signals
a correlate of the team performance (Henning et al., 2001) but
also with the hyperscanning results that associate brain net-
work properties with cooperation effectiveness (Sciaraffa, N.,
Borghini, G., Aricò, P., et al., 2017). At the same time, however,
this result goes beyond because it has been obtained integrating
information from both autonomic and cognitive mechanisms.

Limitations and conclusions

To the best of our knowledge, this work is the first example of
synchronized autonomic and brain signals of dyads performing
a cooperative task analysed in a uniquemultivariate model. The
pros of this approach could be summarized inmultifaceted anal-
ysis of cooperation (affective mechanisms analysed by means
of autonomic signals, cognitive mechanisms by means of EEG)
without failing in the analysis of non-stationary time series and
coincidental synchrony, but with an attempt of validating the
causality emerged from the task.

However, also this research showed some limitations. First,
the number of couples investigated is limited and needs to be
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improved, even if the interactive minds approach for its own
nature is penalized respect to the isolated minds. Second, due
to the novelty of this work, we have chosen to perform an
exploratory study of all the models obtained from the com-
bination of Neurometrics we found of interest in the field of
social neuroscience, and therefore, we have not corrected sta-
tistical analysis for multiple comparisons according to Rothman
(1990). Moreover, even if the surrogate time series have been cre-
ated to assess the estimated links in the network, this is just
one of the possible approaches that can be used. However, the
empirical approaches like this have to be preferred to theoretical
since they are less influenced by effect size (Hacker and Abdul-
nasser, 2006). For a more complete model also other biosignals
should be taken into account. However, this is not easily imple-
mentable due to methodological limitations: the accuracy of
causality analysis is strongly influenced by the ratio between the
number of time series and the number of data samples available
(Antonacci et al., 2017, 2019). Finally, the ROIs have been selected
from a literature review of different hyperscanning works and
then translated in the most adequate EEG channels. This pro-
cedure is biased by the low number of EEG channels employed.
An optimal approach should use a combined EEG and fNIRS sys-
tem or high-resolution EEG in order to overcome the low spatial
resolution related issues.

Taking these limitations into account, the results remain
noteworthy because they have shown that both cooperation and
the kind of interaction affect the neurophysiological condition of
subjects involved in the task. For the first time, neurophysiolog-
ical effects of joint engagement at the basis of joint action have
been observed during the cooperative task, alongside stress-
ful effects of obstructive cooperation. Finally, the multivariate
approach shows that only during cooperation there is a causal
relationship significantly different by the chance level between
the time series describing the cognitive and emotional state of
each dyad and that the entity of this causality is correlated to
the effectiveness of cooperation itself.
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