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1. Introduction and general setting

It is well known that the harmonic series restricted to prime numbers diverges, as the
harmonic series itself. This was first proved by Leonhard Euler in 1737 [7], and it is
considered as a landmark in number theory. The proof relies on the fact that

N

∑
n=1

1
n

= logN + γ+O(1/N) ,

where γ 4 0.577215 . . . is the Euler–Mascheroni constant. The corresponding result
for primes is one of the formulae proved by Mertens, namely

∑
p≤N

1
p

= log logN +A+O
$

1
logN

%
,

where A 4 0.2614972 . . . is the Meissel–Mertens constant. It is also referred to as
Hadamard–de la Vallée-Poussin constant that appears in Mertens’ second theorem.

Recently, Bettin, Molteni and Sanna [2] studied the random harmonic series

(1) X :=
∞

∑
n=1

sn

n
,

where s1, s2, . . . are independent uniformly distributed random variables in {−1,+1}.
Based on the previous work by Morrison [9, 10] and Schmuland [12], they proved the
almost sure convergence of (1) to a density function g, getting lower and upper bounds
of the minimum of the distance of a number τ ∈ R to a partial sum ∑N

n=1 sn/n. In 1976
Worley studied the same problem in terms of upper bound of (1) both in the case τ = 0
(see [13]) and for a generic τ ∈ R (see [14]); his approach is not probabilistic but he
has achieved an upper bound comparable to that of [2]. For further references, see also
Bleicher and Erdős [3, 4], where the authors treated the number of distinct subsums
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of ∑N
1 1/n, which corresponds to taking si independent uniformly distributed random

variables in {0,1}. A more complete list of references can be found in [2].
The purpose of this paper is firstly to show that basically the same results hold

for a general sequence of integers under some suitable, and not too restrictive, con-
ditions; moreover, that a stronger result can be reached if we restrict to integers with
exactly k distinct prime factors.

Although Bettin, Molteni and Sanna [2] treat both the lower bound and the upper
bound, we are mainly interested in the upper bound using a probabilistic approach. As
we will see, in the cases that we treat, we will not be able to say anything about the
lower bound, except in terms of numerical computations.

We will use a consistent notation with the previous works by Bettin, Molteni
and Sanna [1], [2], Crandall [6] and Schmuland [12].

1.1. General setting of the problem

We denote by N the set of positive integers. Let (an)n∈N be a strictly decreasing se-
quence of positive real numbers such that

(2) lim
n→+∞

an = 0 and ∑
n≥1

an = +∞.

Notice that
∑
n≥1

(−1)nan

converges (not absolutely) by Leibniz’s rule. Hence, by Riemann’s theorem, given λ,
Λ ∈ [−∞,+∞] with λ ≤ Λ, we can arrange the choice of the signs sn = sn(λ,Λ) ∈
{−1,1}, in such a way that

liminf
N→+∞ ∑

n≤N
snan = λ and limsup

N→+∞
∑

n≤N
snan = Λ.

As we said above, we are mainly interested in prime numbers, so we introduce some
further reasonable hypotheses on the sequence an: we assume that bn = a−1

n ∈ N, so
that bn is strictly increasing, and that

(3) n ≤ bn ≤ nB(n),

where B(n) = nβ(n), with β a real-valued decreasing function such that β(n) = o(1). In
order to prove Proposition 20 below, we will assume a more restrictive condition on β,
that is

(4) β(n) ≤ 1
8loglogn

for sufficiently large n.

Actually, this assumption is not strictly necessary and we will discuss this in Remark
25. Nevertheless, since the series ∑an must diverge, this condition is not too restric-
tive, and besides it is satisfied by most of the interesting sequences, like arithmetic
progressions, the one of primes, and primes in arithmetic progressions.
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Let us introduce some more notation: we consider the set

(5) S(N) =
;

∑
n≤N

snan : sn ∈ {−1,1} for n ∈ {1, . . . ,N}
<

,

and, for a given τ ∈ R, we set

mN(τ) = min
3
|SN − τ| : SN ∈ S(N)

4
.

In other words, for a given N ∈ N, the goal is to find the choice of signs such that
|SN − τ| attains its minimum value. Finally, we define the random variable

XN :=
N

∑
n=1

snan,

where the signs sn are taken uniformly and independently at random in {−1,1}. We
will study its small scale distribution. With a slight abuse of notation, we denote by sn
both the signs in the definition (5) and the random variables in the definition above.

1.2. Results

For ease of comparison with the results in Bettin, Molteni and Sanna [2], we now state
our main results in the following form, even though more precise versions of them are
to be found within the paper.

Theorem 12. Let β satisfy (4). Then there exists C > 0 such that for every τ ∈ R we
have

mN(τ) < exp(−C log2 N)

for all sufficiently large N depending on τ.

Theorem 13. Let (bn)n∈N be the sequence of integers having exactly k distinct prime
factors. Then, for every τ ∈ R and for all sufficiently large N depending on τ, we have

mN(τ) < exp(− f (N)),

where f is any function satisfying

f (N) = o
&

N1/(2k+1)−ε
'

.

Remark 14. We emphasize the fact that the estimate obtained in Theorem 13 holds
uniformly for every τ ∈ R in any fixed compact set.

Corollary 15 (J. Benatar and A. Nishry). For any fixed τ∈R, ε > 0 and any sufficiently
large N there exists a choice of signs (sn)n≤N ∈ {−1,1}N, such that

11111 ∑
n≤N

sn

n
− τ

11111 2τ,ε exp
&
−N1/3−ε

'
.
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We collect some numerical results for k = 1 in Tables 1, 2 and 3. The sequence
of Tables 1 and 2 appears in OEIS A332399: see [5].

Acknowledgements. We thank Sandro Bettin and Giuseppe Molteni for many conver-
sations on the subject, and Mattia Cafferata for his help in computing the tables at the
end of the present paper. We also warmly thank Jacques Benatar and Alon Nishry for
their fruitful suggestions which improved our paper, for providing us references and for
letting us include their proof of Corollary 15 in this paper. R. Tonon and A. Zaccagnini
are members of the INdAM group GNSAGA, which partially funded their participa-
tion to the Second Symposium on Analytic Number Theory in Cetraro, where some of
this work was done.

2. Lemmas

In this section we study some properties of the general sequence defined in (2), using
the classical notation: E[X ] denotes the expected value of a random variable X , P(E)
the probability of an event E. For each continuous function with compact support
Φ ∈ Cc(R) we denote by BΦ its Fourier transform defined as follows:

BΦ(x) :=
!

R
Φ(y)e−2πixy dy.

We are actually interested in smooth functions, because the smoothness of the density
of any random variable X is related to the decay at infinity of its characteristic function,
defined precisely by its Fourier transform.

For each N ∈ N∪ {∞}, for any x ∈ R and for any sequence satisfying (2), we
also define the product

ρN(x) :=
N

∏
n=1

cos(πxan) and ρ(x) := ρ∞(x).

We begin with the following lemma, which is a more general version of Lemma
2.4 from [2].

Lemma 16. We have

E[Φ(XN)] =
!

R
BΦ(x)ρN(2x)dx

for all Φ ∈ C 1
c (R).

Proof. By the definition of expected value we have

E[Φ(XN)] =
1

2N ∑
s1,...,sN∈{−1,1}

Φ

(
N

∑
n=1

snan

)
.
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Using the inverse Fourier transform we get

E[Φ(XN)] =
1

2N ∑
s1,...,sN∈{−1,1}

!

R
BΦ(x)exp

(
2πix

N

∑
n=1

snan

)
dx

=
!

R
BΦ(x)

1
2N ∑

s1,...,sN∈{−1,1}
exp

(
2πix

N

∑
n=1

snan

)
dx.

Exploiting the fact that eiα + e−iα = 2cos(α), we have

∑
s1,...,sN∈{−1,1}

exp

(
2πix

N

∑
n=1

snan

)
=

1
2 ∑

s1,...,sN∈{−1,1}
2cos

(
2πx

N

∑
n=1

snan

)
.

Finally, taking advantage of Werner’s trigonometric identities, we obtain

E[Φ(XN)] =
!

R
BΦ(x)ρN(2x)dx. ()

We will need also a generalisation of Lemma 2.5 from [2], which is the follow-
ing

Lemma 17. For all N ∈ N and x ∈ [0,
√

N] we have

ρN(x) = ρ(x)
"
1+O

"
x2/N

##
.

Proof. We recall that an is defined as in (2) and satisfies (3). In particular an = O(1/n),
so that the same argument in the proof of Lemma 2.5 of [2] holds. ()

Let us now define, for every positive integer N and any real δ and x the set

S
"
N,δ,x,(an)n≥1

#
:= {n ∈ {1, . . . ,N} : BxanB≥ δ},

where B · B denotes the distance from the nearest integer. For brevity, we sometimes
drop the dependence on the sequence (an)n≥1.

Lemma 18. For all N ∈ N and for all x,δ ≥ 0 we have

|ρN(x)|≤ exp
$
−π2δ2

2
·#S(N,δ,x)

%
.

Proof. It is a straightforward consequence of the inequality

|cos(πx)|≤ exp
$
−π2BxB2

2

%
. ()

Lemma 19. For any N ∈ N, x ∈ R and 0 < δ < 1/2 we have

N
2
−D(N,y(δ),x) < #S(N,δ,x) < N −D(N,y(δ)/2,x),
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where

D(N,y,x) = D(N,y,x,(bn)n≥1) := ∑
x−y<m<x+y

∑
bn|m

N/2≤n≤N

1

and y(δ) := δNB(N).

Proof. As in Lemma 3.3 of [2], we observe that

N
2
−T (N,δ,x) < #S(N,δ,x) < N −T (N,δ,x),

where

T (N,δ,x) := #{n ∈ N∩ [N/2,N] : BxanB < δ}.

Now, recalling that an = 1/bn, we have

T (N,δ,x) = #{n ∈ N∩ [N/2,N] : ∃! ∈ N, !−δ < xan < !+δ}
= #{n ∈ N∩ [N/2,N] : ∃! ∈ N, x−δbn < !bn < x+δbn}.

From our hypothesis (3) we know that bn ≤ NB(N); then

T (N,δ,x) < #{n ∈ N∩ [N/2,N] : ∃! ∈ Z, x− y(δ) < !bn < x+ y(δ)}
= D(N,y(δ),x).

This proves the lower bound; the upper bound follows with the same argument. ()

Proposition 20. Let A be a fixed positive constant and, for N sufficiently large,

β(N) ≤ 1
8loglogN

.

Then there exists C7 > 0 such that |ρN(x)| < x−A for all sufficiently large positive inte-
gers N and for all x ∈ [N,exp(C7(logN)2)].

Proof. The proof follows along the same lines as Proposition 3.2 of [2]: we take

δ =
2
√

2A logx
π

N−1/2 and x ∈
=

N,exp
$

π2N
32A

%%
,

so that 0 < δ < 1/2 and y(δ) = δNB(N) < x.
By Lemmas 18 and 19, if we show that D(N,y(δ),x) < N/4, then we get

|ρN(x)|< 1/xA. Considering that bn is a sequence of positive integers, we use Rankin’s
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trick with w ∈ (1/4,1/2) and Ramanujan’s result on σ−s(n) [11] to obtain

D(N,y(δ),x) <
4
π

*
2AN logxB(N) ·max

m≤2x
∑

bn|m
N/2≤n≤N

1

<
4
π

*
2AN logxB(N) ·max

m≤2x
∑
k|m

N/2≤k≤NB(N)

1

≤ 4
π

*
2AN logxB(N) ·max

m≤2x
∑
k|m

N/2≤k≤NB(N)

$
NB(N)

k

%w

=
4
π

N
1
2 +wB(N)1+w

*
2A logx ·max

m≤2x
∑
k|m

N/2≤k≤NB(N)

k−w

≤ 4
π

N
1
2 +wB(N)1+w

*
2A logx ·max

m≤2x
σ−w(m)

<
4
π

N
1
2 +wB(N)1+w

*
2A logx · exp

$
C1

(log2x)1−w

log log2x

%
,

where C1 is the constant of Ramanujan’s theorem, as it is stated in Lemma 3.4 of [2].
Let w = w(x) := 1/2−ϕ(x), where ϕ is a positive decreasing function that we

will choose later. Then we have

B(N)1+w = exp
$$

3
2
−ϕ(x)

%
β(N) logN

%
,

and so we would be done if we showed that

N1−ϕ(x)+(3/2−ϕ(x))β(N)
*

logx · exp

(
C1

(log2x)1/2+ϕ(x)

log log2x

)
= o(N),

that is
*

logx · exp

(
C1

(log2x)1/2+ϕ(x)

log log2x

)
= o(Nϕ(x)+(ϕ(x)−3/2)β(N)).

Hence we must have
ϕ(x)+(ϕ(x)−3/2)β(N) > 0,

that is

β(N) <
ϕ(x)

3/2−ϕ(x)
≈ 2

3
ϕ(x).

Since ϕ is decreasing and we want to maintain the same range for x as in [2], that is
x ∈

E
N,exp

"
C7(logN)2

#F
, we need to have

β(N) # 2
3

ϕ
"
exp

"
C7(logN)2## .
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Let us take ϕ(x) = (log log2x)−1 and β(N) such that for x ∈
E
N,exp

"
C7(logN)2

#F
it

holds

(6) β(N) ≤ 2
3J

ϕ(x) =
2
3J

1
loglog2x

,

where J ∈ R, J > 1. Then we would achieve our goal if we showed that

*
logx · exp

(
C1e

(log2x)1/2

loglog2x

)
= o

$
exp

$$
1− 1

J
+o(1)

%
logN

log log2x

%%
,

that is

exp

(
C1e

(log2x)1/2

log log2x
−

$
1− 1

J
+o(1)

%
logN

log log2x
+

1
2

loglogx

)
= o(1).

This condition is equivalent to

C1e
(log2x)1/2

log log2x
−

$
1− 1

J
+o(1)

%
logN

log log2x
+

1
2

loglogx →−∞.

Taking into account the ranges for x, we see that it is sufficient to have

1
loglogN

=
C1

√
C7 e logN(1+o(1))−

$
1− 1

J

%
logN +O

"
(log logN)2#

>
→−∞.

We recall that, by our choice of x and N, we have loglogx H log logN. Hence, we just
need to take C7 sufficiently small, in a way that

(7) C7 <
$

J−1
C1eJ

%2

,

to guarantee that D(N,y(δ),x) < N/4 for large N. For the sake of simplicity, we take
J = 2 and the proposition is proved as stated. ()

Remark 21. We remark here that condition (4) on β, which we assumed to prove the
proposition, was necessary to ensure the existence of the function ϕ satisfying all the
properties we needed, and in particular (6).

Corollary 22. Let A be a fixed positive constant and β satisfy (4). Then |ρ(x)| < x−A

for all sufficiently large x ∈ R.

Proof. It holds

|ρ(x)| =
11111ρ%x&+1(x) ∏

n>%x&+1
cos(πxan)

11111 < x−A.()
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Theorem 23. Let C7 > 0 satisfy (7) and β satisfy (4). Then for all intervals I ⊆ R of
length |I| > exp(−C7(logN)2) one has

P[XN ∈ I] =
!

I
g(x)dx+o(|I|),

as N → ∞, where

g(x) := 2
! ∞

0
cos(2πux)

∞

∏
n=1

cos
$

2πu
bn

%
du = 2

! ∞

0
cos(2πux)ρ(2u)du.

The proof follows along the same lines as Theorem 2.1 in [2] and we omit the
details for brevity.

Corollary 24. Let β satisfy (4). For all τ ∈ R and C7 > 0 satisfying (7), we have

#

!
(s1, . . . ,sN) ∈ {−1,+1}N :

11111τ−
N

∑
n=1

sn

bn

11111 < δ

:
∼ 2N+1g(τ)δ(1+oC7,τ(1))

as N → ∞ and δ → 0, uniformly in δ ≥ exp(−C7(logN)2). In particular, for large
enough N, one has mN(τ) < exp(−C7(logN)2).

Remark 25. We have imposed condition (4) for β to keep the same range of validity
for x as in [2]. We remark that the hypotheses on β could be relaxed at the price of
restricting this range: for example, we could take

β(N) =
log loglogN

log logN
,

and obtain the result of Proposition 20 for x ∈ [N,exp(loga N)], where a ∈ (1,2) is a
suitable constant. In fact, this would weaken directly the estimates that we have just
found in Theorem 23 and Corollary 24, where exp(−C7(logN)2) would be replaced by
exp(− loga N).

3. Products of k primes

We now leave the general case and concentrate on primes and products of k distinct
primes. Hence, we define

Pk := {n ∈ N | n is the product of k distinct primes} ;

we will denote by b(k)
n the n-th element of the ordered set Pk. Let us recall the definition

of S(N,δ,x) in the case an = 1/b(k)
n :

S(N,δ,x) := {n ∈ {1, . . . ,N} : Bx/b(k)
n B≥ δ} .
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We remark that, since we left the general case, we can now take B(n) = b(k)
n /n, and

denote it by Bk(n). In 1900, Landau [8] proved that

πk(t) := |Pk ∩{n ∈ N | n ≤ t }| = t
log t

(log log t)k−1

(k−1)!
+O

$
t(log log t)k−2

log t

%
,

which implies that

(8) Bk(n) ∼ logn
(k−1)!

(log logn)k−1 .

We can now start with a refinement of Proposition 20, where we extend the interval of
validity for x in the case bn = b(k)

n .

Proposition 26. Let A be a fixed positive constant, k ∈ N be fixed and an = 1/b(k)
n ,

where b(k)
n is the n-th element of the ordered set Pk. Then |ρN(x)| < x−A for all suffi-

ciently large positive integers N and for all x ∈ [U,exp( f (N))], where logN = o( f (N))
and

f (N) = o

($
N

B2
k(N)

%1/(2k+1)
)

,

and U > 1 is a constant depending on f .

Proof. Let x ∈ [N,exp( f (N))]. As in the proof of Proposition 20, we need to show that
D(N,y(δ),x) < N/4, where δ is chosen in the same way and y(δ) = δNBk(N). Since
now we are considering x ≥ N, it is easy to see that for sufficiently large N we have
y(δ) ≤ x. We recall here that the prime omega function ω(n) is defined as the number
of different prime factors of n, and that

ω(n) 2 logn
log logn

,

as a consequence of the prime number theorem. In this case, we have

D(N,y(δ),x) := ∑
x−y(δ)<m<x+y(δ)

∑
b(k)

n |m
N/2≤n≤N

1 ≤ ∑
x−y(δ)<m<x+y(δ)

∑
p1...pk|m

pi distinct primes

1

≤ ∑
x−y(δ)<m<x+y(δ)

ω(m)k ≤ (2y(δ)+1) max
m<x+y(δ)

ω(m)k

2 (N logx)1/2Bk(N)
$

log2x
log log2x

%k

2 N1/2Bk(N)(logx)k+1/2,

where we used the trivial bound for the prime omega function. If we show that this
quantity is o(N), we are done. So we need

logx = o

($
N

B2
k(N)

%1/(2k+1)
)

.
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Hence we can take any f that satisfies

f (N) = o

($
N

B2
k(N)

%1/(2k+1)
)

,

where we recall that Bk satisfies (8). The theorem is then proved for x∈ [N,exp( f (N))].
If x < N, it holds

|ρN(x)|≤ |ρ%x&(x)|,
hence the result we have just proved holds also whenever x ≤ exp

"
f (%x&)

#
. But there

must exist U > 0 such that this holds for any x > U , since logx = o( f (x)). ()

We are now ready to prove a more general version of Theorem 2.1 of [2] for the
sequence

"
b(k)

n
#

n∈N.

Theorem 27. Let f and an be defined as in Proposition 26. Then for all intervals I ⊆R
of length |I| > exp(− f (N)) one has

P[XN ∈ I] =
!

I
g(x)dx+o(|I|),

as N → ∞, where

g(x) := 2
! ∞

0
cos(2πux)

∞

∏
n=1

cos

(
2πu

b(k)
n

)
du = 2

! ∞

0
cos(2πux)ρ(2u)du.

Proof. The proof follows the one of Theorem 2.1 of [2]. Let ε > 0 be fixed. We define

ξ = ξN,−ε := exp(−(1− ε) f (N)),
ξ+ = ξN,+ε := exp(−(1+ ε) f (N)),
ξ0 := ξN,0 = exp(− f (N)),

so that ξ−1 < ξ−1
0 and Proposition 26 holds for x ∈ [N,ξ−1

0 ]. For an interval I = [a,b]
with b−a > 2ξ0, let us define I+ := [a−ξ,b+ξ] and I− := [a+ξ+,b−ξ+]. Then one
can construct two smooth functions Φ±

N,ε,I(x) : R → [0,1] (from now on, we will drop
the subscripts when they are clear by the context) such that





suppΦ+ ⊆ I+

Φ+(x) = 1 for x ∈ I,
suppΦ− ⊆ I
Φ−(x) = 1 for x ∈ I−,
(Φ±)( j)(x) 2 j ξ− j for all j ≥ 0.

By the last equation, we know that the Fourier transforms of Φ± satisfy

(9) DΦ±(x) 2B (1+ |x|ξ)−B for any B > 0 and x ∈ R.
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Since
E[Φ−(XN)] ≤ P[XN ∈ I] ≤ E[Φ+(XN)],

we just need to show that

E[Φ±(XN)] =
!

R
Φ±(x)g(x)dx+oε(|I|).

From now on, Φ will indicate either Φ+ or Φ−. By Lemma 16 we have

E[Φ(XN)] =
1
2

!

R
BΦ(x/2)ρN(x)dx = I1 + I2 + I3,

where I1, I2 and I3 are the integrals supported respectively in |x|< Nε, |x|∈ [Nε,ξ−(1+ε)]
and |x| > ξ−(1+ε). Note that ξ−(1+ε) = exp((1− ε2) f (N)) > exp(ε logN) = Nε, that

ξ−(1+ε) = ξ−(1−ε2)
0 < ξ−1

0 , and that ξ−(1+ε) ·ξ = ξ−ε = ξ−ε(1−ε)
0 →+∞ as N →+∞. By

Lemma 17 and Corollary 22, we have

I1 =
1
2

! Nε

−Nε
BΦ(x/2)ρN(x)dx =

1
2

! Nε

−Nε
BΦ(x/2)ρ(x)dx+O

&
BBΦB∞N−1+3ε

'

=
1
2

!

R
BΦ(x/2)ρ(x)dx+OA

&
BBΦB∞N−(A−1)ε

'
+O

&
BBΦB∞N−1+3ε

'

=
!

R
BΦ(x)ρ(2x)dx+Oε

"
BΦB1N−1+3ε# ,

where to conclude we chose A = A(ε) sufficiently large. For the second integral, we
use Proposition 26 and obtain

|I2|≤ BBΦB∞

! ξ−(1+ε)

Nε
|ρN(x)|dx ≤ BΦB1

! ξ−(1+ε)

Nε
x−A dx ≤ BΦB1

! +∞

Nε
x−A dx

2ε BΦB1N−Aε+ε 2ε BΦB1N−1,

where, as before, to conclude we took A = A(ε) sufficiently large. For the last integral,
we recall that trivially |ρN(x)|≤ 1; using the bound (9), we obtain

|I3|≤
!

|x|>ξ−(1+ε)
|BΦ(x/2)|dx 2B

! +∞

ξ−(1+ε)
(1+ xξ)−B dx = (B−1)(ξ−1 +ξ−(1+ε))1−B

2B ξB−1
0 = oε(ξ0) = oε(|I|),

where to conclude we chose B = B(ε) sufficiently large. We can now put these results
together: using Parseval’s theorem and the fact that BΦB1 = Oε(|I|), we get

E[Φ(XN)] =
!

R
BΦ(x)ρ(2x)dx+Oε

"
BΦB1N−1+3ε#+oε(|I|) =

!

R
Φ(x)g(x)dx+oε(|I|)

and the theorem is then proved. ()
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Remark 28. By Corollary 22, for any n ∈ N it holds

! +∞

−∞
|tnρ(t)|dt < ∞,

which implies by standard arguments (see e.g. §5 of [12]) that the density g is a smooth
strictly positive function. Besides, by the same corollary, g(x) 2D x−D for any D > 0.

Corollary 29. For all τ ∈ R, we have

#

!
(s1, . . . ,sN) ∈ {−1,1}N :

11111τ−
N

∑
n=1

sn

b(k)
n

11111 < δ

:
∼ 2N+1g(τ)δ(1+oτ(1))

as N → ∞ and δ → 0, uniformly in δ ≥ exp(− f (N)), where f is defined as in Proposi-
tion 26. In particular, for N large enough, one has mN(τ) < exp

"
− f (N)

#
.

4. Addendum (by J. Benatar and A. Nishry): proof of Corollary 15

Proof. Let cm denote the m-th non-prime integer, so that c1 = 1, c2 = 4, c3 = 6, . . . We
first approximate τ with a restricted harmonic sum of the form ∑m≤M smcm, where
M = M(N) = N −π(N). Since Cm := cm/m ∼ 1, we may apply Theorem 12 to obtain
a sequence of signs (sn)n≤M ∈ {−1,1}M such that

−1 ≤ τ7 := ∑
m≤M

smcm − τ ≤ 1.

Moreover, taking (pn)n∈N to be the sequence of primes, we have that B(n) ∼ logn and
hence we may apply Theorem 13 to get a choice of signs (σn)n≤π(N) ∈ {−1,1}π(N)

such that 111τ7− ∑
n≤π(N)

σn

pn

111 2τ,ε exp
&
−N1/3−ε

'
.()
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1. Numerical data

N mN(0) · p1 · · · pN
1 1
2 1
3 1
4 23
5 43
6 251
7 263
8 21013
9 1407079

10 4919311
11 818778281
12 2402234557
13 379757743297
14 3325743954311
15 54237719914087
16 903944329576111
17 46919460458733911
18 367421942920402841
19 17148430651130576323
20 1236225057834436760243
21 4190310920096832376289
22 535482916756698482410061
23 29119155169912957197310753
24 443284248908491516288671253
25 28438781483496930396689638231
26 10196503226925713726754541885481
27 137512198125317766267968137765087
28 5572821202475305606211985553786081
29 77833992457426020006787481021085581
30 24244850423688161715955346535954790877
31 2030349334778419995324119439659994086131
32 76860130392109667765387079377871685276909
33 5191970624445760882844533168270184721318637
34 329643209271348431895096550792159132283920307
35 19171590315567357340242017182966253037383120953
36 58192378490977430486851365332352874578233287403
37 837477642920747839191618216897250374978659503996169
38 130665466261033919414441892800025408642432364448372023
39 7541550169407232608689149525984967898398947805296216009
40 23868339955752715692132986729285170427530832996153507207

Table 1: The values, multiplied by p1 · · · pN , of the smallest signed harmonic sums
with the first N primes, with N up to 40. See also OEIS A332399.
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N ∆N · p1 · · · pN
1 1
2 1
3 1
4 2
5 22
6 35
7 263
8 4675
9 24871

10 104006
11 2356081
12 6221080
13 141769355
14 6096082265
15 6928889495
16 367231143235
17 1283811918935
18 78312527055035
19 5246939312687345
20 372532691200801495
21 8815359347599933286
22 223849990729887044174
23 6148176498383067879445
24 179847837287937160817963
25 663024394602752425373130

Table 3: The values, multiplied by p1 · · · pN , of the shortest distances ∆N between
different signed harmonic sums with the first N primes, with N up to 25.


