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Introduction
In this paper, we are interested in the asymptotic behavior, as λ → 0+, of the solutions of the following system
of weakly coupled Hamilton–Jacobi (HJ) equations:

m∑
j=1

bijuj + λui + Hi(x, Dui) = c in M

for i ∈ {1, . . . ,m}, whereM is a compact, connected Riemannianmanifoldwithout boundary, c is a real num-
ber,H1, . . . , Hm are continuous functions on T∗M, convex and coercive in the gradient variable, and B = (bij)
is anm × m irreducible and weakly diagonally dominant matrix, see Section 1.2 for the precise assumptions.
The sign and degeneracy condition assumed on the coefficients of B amounts to requiring that −B is the
generator of a semigroup of stochastic matrices. The solution u = (u1, . . . , um)T : M → ℝm is assumed to be
continuous and to solve the above system in the viscosity sense.

It is convenient to restate the system in the following vectorial form:(B + λId)u +ℍ(x, Du) = c𝟙 in M, (1)

wherewehaveused thenotationsℍ(x, Du) = (H1(x, Du1), . . . , Hm(x, Dum))T and𝟙 = (1, . . . , 1)T ∈ ℝm. The
conditions assumed on B imply, in particular, that B𝟙 = 0.
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2 | A. Davini and M. Zavidovique, Convergence of the solutions of discounted HJ systems

When λ = 0, there is a unique value c for which (1) admits solutions, hereafter denoted by c(ℍ) and
termed critical. Furthermore, the solutions of the critical system

Bu +ℍ(x, Du) = c(ℍ)𝟙 in M (2)

are not unique, not even up to addition of vectors of the form a𝟙, in general.
When λ > 0, on the other hand, system (1) satisfies a comparison principle, yielding the existence of

a unique continuous solution uλ,c : M → ℝm for every fixed c ∈ ℝ. Moreover, the solutions {uλ,c | λ > 0} are
equi-Lipschitz. The peculiarity of the discounted system (1) when c := c(ℍ) relies on the fact that the corre-
sponding solutions uλ := uλ,c(ℍ) are also equi-bounded. By the Ascoli–Arzelà Theorem and by the stability
of the notion of viscosity solution, we infer that they uniformly converge, along subsequences as λ goes to 0,
to viscosity solutions of the critical system (2). Since the solutions of the critical system are not unique, it is
not clear at this level that the limits of the uλ along different subsequences yield the same critical solution.

In this paper, we address this question. The main theorem we will establish is the following:

Theorem 1. Let uλ be the solution of system (1) with c := c(ℍ) and λ > 0. The functions uλ uniformly converge
as λ → 0+ to a single solution u0 of the critical system (2).

We will characterize u0 in terms of a generalized notion of Mather minimizing measure for HJ systems.
Notice that the relationship between uλ and uλ,c when c varies is rather straightforward: it is easily

verified that uλ,c = uλ + c−c(ℍ)
λ 𝟙. As a consequence, we derive from Theorem 1 the following fact:

Theorem 2. Let uλ,c be the solution of system (1) with λ > 0. Then, as λ → 0+, the functions λuλ,c uniformly
converge in M to the constant vector (c − c(ℍ))𝟙 and the functions ûλ,c := uλ,c −miniminx uλ,ci 𝟙 uniformly
converge to u0 −miniminx u0i 𝟙 in M.

Theorem 2 for c = 0 can be restated by saying that the ergodic approximation selects a specific critical solu-
tion in the limit. The ergodic approximation is a classical technique introduced in [15] for the case of a single
equation (i.e. with m = 1 and B = 0). Since then, it has been extended and applied to many different set-
tings, including the case ofweakly coupled systems of Hamilton–Jacobi equations, see [3, 17]. This technique
is typically employed to show the existence and uniqueness of the critical value c(ℍ) and the existence of
a solution of the corresponding critical problem. This is achieved by renormalizing the discounted solutions
so to produce a family of equi-bounded and equi-Lipschitz functions satisfying suitable perturbed discounted
problems (for instance, the family {ûλ,0 | λ > 0} in the case of HJ systems) and by taking limits, along sub-
sequences as λ → 0+, of these renormalized functions. The fact that the limit is unique has been recently
established in [6] for the case of a single equation by using tools and results issued from weak KAM theory.
This selection principle was subsequently generalized in different directions, see [1, 7, 11, 13, 14, 19], testi-
fying the interest for the issue.

The extension of the selection principle to HJ systems provided in the present work is based on a gener-
alization of the theory of Mather minimizingmeasures, which is new in this setting and enriches the frame of
analogieswithweakKAM theory developed for scalar eikonal equations. This streamof researchwas initiated
in [3] with the proof of the long-time convergence of the solutions to evolutive HJ systems, under hypotheses
close to [20]. Other outputs in this vein can be found in a series of works including [18, 21]. The links with
weak KAM theory were further made precise by the authors of the present paper in [9] where, by purely using
PDE tools and viscosity solution techniques, an appropriate notion of Aubry set for systems was given and
some relevant properties were generalized from the scalar case. A dynamical and variational point of view
of the matter, integrating the PDE methods, was later brought in by [12, 16]. This angle allowed the authors
to detect the stochastic character of the problem, displayed by the random switching nature of the dynamics
and by the role of an adapted action functional. Representation formulae for viscosity (sub)solutions of the
critical systems and a cycle characterization of the Aubry set were derived.

This random frame was further developed in [8] and applied to weakly coupled evolutive HJ equations.
This work is the starting point of our analysis. It is exploited to provide suitable random representation
formulae for the solutions of both the critical and the discounted system. A point that is crucial to our pur-
poses consists in showing the existence of admissible minimizing curves in such formulae. This is done by
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making use of the results proved in [8] and by adapting the construction therein employed to the discounted
system case.

We point out that our approach strongly relies on the assumptions made on the coupling matrix B. The
sign and degeneracy conditions assumed on the elements of the coupling matrix B, see condition (B1) in
Section 1.2, amount to requiring that {e−Bt}t⩾0 is a semigroup of stochastic matrices, and this is at the base
of the probabilistic and variational interpretation of the systems exploited in the paper. The irreducibility
assumption on B, see condition (B2) in Section 1.2, is instead crucial for the extension of Aubry–Mather
theory to systems provided in [9, 12, 16] and in the current paper. Yet, a generalization of Theorems 1 and 2
under a wider set of assumptions on the coupling matrix is possible. This issue will be investigated in the
forthcoming paper [10].

The paper is organized as follows: in Section 1 we fix notations and the standing assumptions, and we
provide some preliminary results on the critical and discounted systems. In Section 2 we present the ran-
dom frame in which our analysis takes place and we prove suitable random representation formulae for the
solutions of the critical and discounted systems. In Section 3 we generalize the theory of Mather minimizing
measures to the case of HJ systems. Section 4 contains the proof of Theorem 1.

1 Preliminaries

1.1 Notations

In this work, we will denote by M the N-dimensional flat torus 𝕋N , where N is an integer number. This is
done to simplify the notation and to be consistent with the references we will use. We remark however that
our results and proofs keep holding, mutatis mutandis, whenever M is a compact connected Riemannian
manifold without boundary. The associated Riemannian distance on M will be denoted by d. We denote by
TM the tangent bundle and by (x, v) a point of TM, with x ∈ M and v ∈ TxM = ℝN . In the same way, a point
of the cotangent bundle T∗M will be denoted by (x, p), with x ∈ M and p ∈ T∗xM a linear form on the vector
space TxM. The latter will be identified with the vector p ∈ ℝN such that

p(v) = ⟨p, v⟩ for all v ∈ TxM = ℝN ,
where ⟨ ⋅ , ⋅ ⟩ denotes the Euclidean scalar product in ℝN . The fibers TxM and T∗xM are endowed with the
Euclidean norm | ⋅ |, for every x ∈ M.

With the symbolsℕ andℝ+ wewill refer to the set of positive integer numbers and nonnegative real num-
bers, respectively. We say that a property holds almost everywhere (a.e. for short) in a subset E of M (respec-
tively, ofℝ) if it holds up to a negligible subset of E, i.e. a subset of zero N-dimensional (resp., 1-dimensional)
Lebesgue measure.

Given a continuous function u onM and a point x0 ∈ M, wewill denote by D−u(x0) and D+u(x0) the set of
subdifferential and superdifferential of u at x0, respectively. When u is locally Lipschitz in M, we will denote
by ∂cu(x0) the set of Clarke’s generalized gradient of u at x0, see [5] for a detailed presentation of the subject.

We will denote by ‖g‖∞ the usual L∞-norm of g, where the latter is a measurable real function defined
onM. Wewill denote by (C(M))m the Banach space of continuous functions u = (u1, . . . , um)T fromM toℝm,
endowed with the norm ‖u‖∞ = max

1⩽i⩽m
‖ui‖∞, u ∈ (C(M))m .

We will write un  u in M to mean that ‖un − u‖∞ → 0. A function u ∈ (C(M))m will be termed Lipschitz
continuous if each of its components is κ-Lipschitz continuous, for some κ > 0. Such a constant κ will be
called a Lipschitz constant for u. The space of all such functions will be denoted by (Lip(M))m.

We will denote by 𝟙 = (1, . . . , 1)T the vector of ℝm having all components equal to 1, where the upper-
script symbol T stands for the transpose. We consider the following partial relations between elements
a, b ∈ ℝm: a ⩽ b if ai ⩽ bi (resp., <) for every i ∈ {1, . . . ,m}. Given two functions u, v : M → ℝm, we will
write u ⩽ v in M (respectively, <) to mean that u(x) ⩽ v(x) (resp., u(x) < v(x)) for every x ∈ M.
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4 | A. Davini and M. Zavidovique, Convergence of the solutions of discounted HJ systems

1.2 Weakly coupled systems

Throughout the paper, we will assume the Hamiltonians Hi to be continuous functions on T∗M satisfying,
for every i ∈ {1, . . . ,m}:
(H1) Convexity: p → Hi(x, p) is convex onℝN for any x ∈ M.
(H2) Coercivity: there exist two coercive functions α, β : ℝ+ → ℝ such that

α(|p|) ⩽ Hi(x, p) ⩽ β(|p|) for every (x, p) ∈ T∗M.

For our analysis, it will be convenient and non-restrictive, see Section 2, to reinforce this coercivity condition
in favor of the following:
(H2’) Superlinearity: there exist two superlinear functions α, β : ℝ+ → ℝ such that

α(|p|) ⩽ Hi(x, p) ⩽ β(|p|) for every (x, p) ∈ T∗M.

We recall that a function f : ℝ+ → ℝ is termed coercive if f(h)→ +∞ as h → +∞, while it is termed superlinear
if f(h)

h → +∞ as h → +∞.
In the sequel, we will denote by ∂pHi(x, p) the set of subdifferentials at p of the function p → Hi(x, p)

in the sense of convex analysis. We recall that, due to conditions (H1)-(H2), the function Hi(x, ⋅ ) is locally
Lipschitz in T∗xM, with a local Lipschitz constant that can be chosen independently of x ∈ M. In particular,
the sets {∂pHi(x, p) | x ∈ M, |p| ⩽ R} are uniformly bounded for fixed R > 0.

The coupling matrix B = (bij) has dimensions m × m and satisfies
(B1) bij ⩽ 0 for j ̸= i,∑mj=1 bij = 0,
(B2) B is irreducible, i.e. for everynonempty subset I ⊊ {1, . . . ,m} there exist i ∈ Iand j ̸∈ I such that bij ̸= 0.

For λ ⩾ 0 and c ∈ ℝ, we consider the following weakly coupled system of Hamilton–Jacobi equations:(B + λId)u +ℍ(x, Du) = c𝟙 in M, (1.1)

where we have adopted the notationℍ(x, Du) = (H1(x, Du1), . . . , Hm(x, Dum))T .
Let u ∈ (C(M))m. We will say that u is a viscosity subsolution of system (1.1) if the following inequality

holds for every (x, i) ∈ M × {1, . . . ,m}:
Hi(x, p) + ((B + λId)u(x))i ⩽ c for every p ∈ D+ui(x).

We will say that u is a viscosity supersolution of system (1.1) if the following inequality holds for every(x, i) ∈ M × {1, . . . ,m}:
Hi(x, p) + ((B + λId)u(x))i ⩾ c for every p ∈ D−ui(x).

We will say that u is a viscosity solution if it is both a sub and a supersolution. In the sequel, solutions, sub-
solutions and supersolutions will be always meant in the viscosity sense, hence the adjective viscosity will
be omitted.

When λ = 0, there exists a unique value c for which system (1.1) admits solutions, hereafter denoted by
c(ℍ) and termed critical. In fact, c(ℍ) can be also characterized as

c(ℍ) = min{c ∈ ℝ | system (1.1) with λ = 0 admits subsolutions}, (1.2)

see [9] for a detailed analysis.
We recall from [9] the following result that will be crucial for our analysis:

Proposition 1.1. Let u = (u1, . . . , um)T ∈ (C(M))m be a subsolution of (1.1) with λ = 0 and c ∈ ℝ. Then there
exist constants Cc and κc, only depending on c, on the Hamiltonians H1, . . . , Hm and on the coupling matrix B,
such that
(i) ‖ui − uj‖∞ ⩽ Cc for every i, j ∈ {1, . . . ,m},
(ii) u is κc-Lipschitz continuous in M.

We proceed presenting some basic facts about the discounted system, i.e. system (1.1) when λ > 0. The fol-
lowing existence and uniqueness result depends on the fact that the matrix B + λId is non-degenerate as
soon as λ > 0.
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Proposition 1.2. Let λ > 0 and c ∈ ℝ. Let v, u ∈ (C(M))m be respectively a subsolution and a supersolution
to (1.1). Then v ⩽ u. In particular, there exists a unique solution uλ,c in (C(M))m.
Proof. The first assertion is a consequence of [9, Proposition 2.8], while the second follows via a standard
application of Perron’s method.

As alreadymentioned in the Introduction, the relationship between those solutions when c varies is given by
uλ,c = uλ,c + c−c

λ 𝟙. In particular, it follows that as λ → 0+, the family uλ,c may be bounded at most for one
value c.

We now explain why this is the case for c = c(ℍ).
Proposition 1.3. Let us denote by uλ the unique solution in (C(M))m of (1.1)with c = c(ℍ) and λ > 0. Then the
functions {uλ | λ > 0} are equi-Lipschitz and equi-bounded. In particular, ‖λuλ‖∞ → 0 as λ → 0+.

Proof. Let u ∈ (C(M))m be a solution of (1.1) with c = c(ℍ) and λ = 0. By taking A > 0 big enough, it follows
that uu := u + A𝟙 takes onlypositive values andu := u − A𝟙 takes onlynegative values. Therefore,uanduare
respectively a super- and a subsolution of (1.1) with c = c(ℍ) for any parameter λ > 0. By Proposition 1.2 we
infer that u ⩽ uλ ⩽ u in M for all λ > 0, thus proving the asserted equi-bounded character of the {uλ | λ > 0}.

Let us now prove that uλ is Lipschitz and its Lipschitz constant can be chosen independently of λ > 0. Let
us set b = maxi∈{1,...,m}maxx∈M Hi(x, 0). The functionw ≡ −𝟙(b − c(ℍ))1λ is obviously a subsolution of (1.1)
with c = c(ℍ). By Proposition 1.2, we must have λuλ ⩾ (−b + c(ℍ))𝟙 in M, hence

Buλ +ℍ(x, Duλ) = −λuλ + c(ℍ)𝟙 ⩽ b𝟙 in M

in the viscosity sense. According to Proposition 1.1 we conclude that uλ is κ-Lipschitz, where the constant κ
only depends on the constant b, on the Hamiltonians H1, . . . , Hm and on the coupling matrix B.

Remark 1.4. Note that b := maxi∈{1,...,m}maxx∈M Hi(x, 0) ⩾ c(ℍ). This readily follows from the characteriza-
tion of c(ℍ) given in (1.2) after noticing that the null function is a subsolution of (1.1) with λ = 0 and c = b.
2 Random representation formulae for solutions
In this section, we will establish suitable representation formulae for the solution of the following system:(B + λId)u +ℍ(x, Du) = c(ℍ)𝟙 in M (2.1)

when either λ > 0 or λ = 0. This will be done by adopting the random frame introduced in [8] and by adapt-
ing the strategy therein employed to the case at issue. In the sequel, we shall refer to system (2.1) and its
corresponding (sub, super) solutions as discounted when λ > 0, critical when λ = 0.

To implement this program, we need to assume that the Hamiltonians satisfy the stronger growth
assumption (H2’). We want to explain here why this is not restrictive for our analysis. According to the
proof of Proposition 1.3, the discounted solutions uλ satisfy

Buλ +ℍ(x, Duλ) ⩽ b𝟙 in M

in the viscosity sense with b := maximaxx Hi(x, 0). By Remark 1.4, this is also true for the (sub-)solutions of
the critical system. So all these functions are κ-Lipschitz continuous, with κ = κb chosen according to Propo-
sition 1.1.We can thereforemodify eachHamiltonianHi outside the compact set K := {(x, p) ∈ T∗M : |p| ⩽ κ}
to obtain a new Hamiltonian H̃i which is still continuous and convex, and satisfies the stronger growth con-
dition (H2’). Since Hi ≡ H̃i on K for each i ∈ {1, . . . ,m}, it is easily seen that c(ℍ) = c(ℍ̃) and the solutions
of the corresponding critical and discounted systems are the same.

In the remainder of the paper,wewill therefore assumeeachHamiltonianHi to be convex and superlinear
in p, i.e. hypotheses (H1) and (H2’) will be in force. This allows us to introduce the associated Lagrangian
Li : TM → ℝ defined as follows:

Li(x, v) := sup
p∈ℝN
{⟨p, v⟩ − Hi(x, p)} for every (x, v) ∈ TM. (2.2)
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As well known, Li satisfies properties analogous to (H1)–(H2’). By the definition of Li we derive

Hi(x, p) + Li(x, v) ⩾ ⟨p, q⟩ for all (x, p) ∈ T∗M and (x, v) ∈ TM,

which is known as Fenchel’s inequality.

2.1 Random frame

We briefly recall the random frame in which our analysis takes place, see [8] for more details. We take as
sample spaceΩ the spaceof pathsω : ℝ+ → {1, . . . ,m} that are right-continuous andpossess left-hand limits
(known in literature as càdlàg paths, a French acronym for continu à droite, limite à gauche, see Billingsley’s
book [2] for a detailed treatment of the topic). By càdlàg property and the fact that the range ofω ∈ Ω is finite,
the points of discontinuity of any such path are isolated and consequently finite in compact intervals of ℝ+
and countable (possibly finite) in the whole ofℝ+. We call them jump times of ω.

The spaceΩ is endowedwith a distance, named after Skorohod, see [2], which turns it into a Polish space.
We denote by F the corresponding Borel σ-algebra and, for every t ⩾ 0, by πt : Ω → {1, . . . ,m} the map that
evaluates eachω at t, i.e. πt(ω) = ω(t) for everyω ∈ Ω. It is known thatF is theminimal σ-algebra thatmakes
all the functions πt measurable, i.e. π−1t (i) ∈ F for every i ∈ {1, . . . ,m} and t ⩾ 0.

Let us now fix an m × m matrix B satisfying assumption (B1)-(B2). We record that e−tB is a stochastic
matrix for every t ⩾ 0, namely amatrix with nonnegative entries and with each row summing to 1. We endow
Ω of a probability measure ℙ defined on the σ-algebra F in such a way that the right-continuous process(πt)t⩾0 is aMarkov chain with generator matrix −B, i.e. it satisfies the Markov propertyℙ(ω(tk) = ik | ω(t1) = i1, . . . , ω(tk−1) = ik−1) = (e−B(tk−tk−1))ik−1 ik (2.3)

for all times 0 ⩽ t1 < t2 < ⋅ ⋅ ⋅ < tk, states i1, . . . , ik ∈ {1, . . . ,m} and k ∈ ℕ. Wewill denote byℙi the probabil-
itymeasureℙ conditioned to the eventΩi := {ω ∈ Ω | ω(0) = i}andwrite𝔼i for the corresponding expectation
operators. It is easily seen that the Markov property (2.3) holds withℙi in place ofℙ, for every i ∈ {1, . . . ,m}.

In the sequel, we will call random variable a map X : (Ω,F)→ (𝔽,B(𝔽)), where 𝔽 is a Polish space and
B(𝔽) its Borel σ-algebra, satisfying X−1(A) ∈ F for everyA ∈ B(𝔽). Let us denote byC(ℝ+;M) the Polish space
of continuous paths taking values in M, endowed with a metric that induces the topology of local uniform
convergence inℝ+.

We call admissible curve a random variable γ : Ω → C(ℝ+;M) such that
(i) it is uniformly (in ω) locally (in t) absolutely continuous, i.e. given any bounded interval I and ε > 0,

there is δε > 0 such that ∑
j
(bj − aj) < δε ⇒ ∑

j
d(γ(bj , ω), γ(aj , ω)) < ε

for any finite family {(aj , bj)} of pairwise disjoint intervals contained in I and for any ω ∈ Ω,
(ii) it is nonanticipating, i.e. for any t ⩾ 0,

ω1 ≡ ω2 in [0, t] ⇒ γ( ⋅ , ω1) ≡ γ( ⋅ , ω2) in [0, t].
We will say that γ is an admissible curve starting at y ∈ M when γ(0, ω) = y for every ω ∈ Ω.

Given an admissible curve γ : Ω → C(ℝ+;M) and ω ∈ Ω, we will denote by ‖γ̇( ⋅ , ω)‖∞ the L∞-norm of
the derivative of the curve γ( ⋅ , ω).

We record for later use the following Dynkin’s formula, see [8, Theorem 4.7] for a proof:

Theorem 2.1. Let g : ℝ+ ×M → ℝm be a locally Lipschitz function and γ an admissible curve. Then, for every
index i ∈ {1, . . . ,m}, we have

d
dt𝔼i[gω(t)(t, γ(t, ω))]t=s = 𝔼i[−(Bg)ω(s)(s, γ(s, ω)) + d

dt gω(s)(t, γ(t, ω))t=s] (2.4)

for a.e. s ∈ ℝ+.
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2.2 Representation formulae

In this subsection, we establish some representation formulae for solutions of system (2.1). We begin with
the critical system.

Theorem 2.2. Let u ∈ (Lip(M))m be a critical solution, namely a solution of system (2.1) with λ = 0, and let(y, ℓ) ∈ M × {1, . . . ,m} and t > 0 be fixed.
(i) The following holds:

uℓ(y) = inf
γ(0,ω)=y
𝔼ℓ[uω(t)(γ(t, ω)) + t∫

0

(Lω(s)(γ(s, ω), −γ̇(s, ω)) + c(ℍ))ds],
where the minimization is performed over all admissible curves γ : Ω → C(ℝ+;M) starting at y.

(ii) There exists an admissible curve η : Ω → C(ℝ+;M) starting at y for which such a minimum is attained.
Moreover, for every ω ∈ Ω, the following holds:− η̇(s, ω) ∈ ∂pHω(s)(η(s, ω), ∂cuω(s)(η(s, ω))) for a.e. s ∈ (0, t). (2.5)

In particular, there exists a constant k∗, only depending on H1, . . . , Hm and B such that ‖η̇( ⋅ , ω)‖∞ ⩽ k∗
for every ω ∈ Ω.

Proof. The assertion follows as a simple consequence of the results proved in [8]. It is easily seen that the
function v(t, x) := u(x) is a solution of the time-dependent system

∂v
∂t
+ Bv +ℍ(x, Dv) − c(ℍ)𝟙 = 0 in (0, +∞) ×M

with initial datum v(0, ⋅ ) = u. Item (i) and the first assertion in (ii) readily follow from [8, Theorem 6.1].
Let us prove (2.5). Fix ω ∈ Ω. According to [8, Lemma 6.8 and Lemma 1.4], for a.e. s ∈ (0, t) there exists
ps ∈ ∂cuω(s)(η(s, ω)) such that⟨ps , −η̇(s, ω)⟩ = Lω(s)(η(s, ω), −η̇(s, ω)) + c(ℍ) + (Bu(η(s, ω)))ω(s),
hence, by Fenchel’s duality we get −η̇(s, ω) = ∂pHω(s)(η(s, ω), ps).
The remainder of the statement follows from Proposition 1.1 and the fact that ∂pHi(x, p) is bounded on
compact subsets of T∗M due to (H1)–(H2’).

Let us now consider the discounted system.

Theorem 2.3. Let uλ ∈ (Lip(M))m be the solution of (2.1) with λ > 0. Let (y, ℓ) ∈ M × {1, . . . ,m} be fixed.
(i) The following holds:

uλℓ(y) = inf
γ(0,ω)=y
𝔼ℓ[+∞∫

0

e−λs(Lω(s)(γ(s, ω), −γ̇(s, ω)) + c(ℍ))ds], (2.6)

where the minimization is performed over all admissible curves γ : Ω → C(ℝ+;M) starting at y.
(ii) There exists an admissible curve ηλ : Ω → C(ℝ+;M) starting at y for which such a minimum is attained.

Moreover, for every ω ∈ Ω, the following holds:− η̇λ(s, ω) ∈ ∂pHω(s)(ηλ(s, ω), ∂cuω(s)(ηλ(s, ω))) for a.e. s ∈ (0, +∞). (2.7)

In particular, there exists a constant k∗, only depending on H1, . . . , Hm and B such that ‖η̇λ( ⋅ , ω)‖∞ ⩽ k∗
for every ω ∈ Ω and λ > 0.

Proof. Let γ : Ω → C(ℝ+;M) be an admissible curve starting at y. By applying Dynkin’s formula to the func-
tion g(t, x) := e−λtuλ(x) and by integrating (2.4) on (0, +∞) we get

uλℓ(y) = 𝔼ℓ[+∞∫
0

e−λt((B + λId)uλ)ω(s)(γ(s, ω))) + ⟨Duλω(s)(γ(s, ω)), −γ̇(s, ω)⟩].
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8 | A. Davini and M. Zavidovique, Convergence of the solutions of discounted HJ systems

We now make use of Fenchel’s inequality together with the fact that uλ is a solution of the discounted sys-
tem (2.1). Arguing as in the proof of [8, Proposition 5.6] we end up with

uλℓ(y) ⩽ 𝔼ℓ[ +∞∫
0

e−λs(Lω(s)(γ(s, ω), −γ̇(s, ω)) + c(ℍ))ds]. (2.8)

Next, we prove that there exists an admissible curve ηλ : Ω → C(ℝ+;M) starting at y for which (2.8) holds
with an equality. This will be obtained via a slight modification of the strategy employed in [8], to which we
refer for more details. Let v(t, x) = eλtuλ(x). It is readily verified that v verifies the following system:

∂v
∂t
+ Bv + eλt(ℍ(x, e−λtDv) − c(ℍ)𝟙) = 0 in (0, +∞) ×M.

In particular, vi is, for each fixed i ∈ {1, . . . ,m}, a solution to the equation
∂vi
∂t
+ Gi(t, x, Dvi) = 0 in (0, +∞) ×M,

where Gi(t, x, p) = eλt(Hi(x, e−λtp) − c(ℍ)) +∑mk=1 bikvk(t, x). As vi is locally Lipschitz, it is standard, see for
instance [8, Appendix A], that it verifies the following Lax–Oleinik formula for every (t, z) ∈ (0, +∞) ×M:

vi(t, z) = infγ vi(0, γ(−t)) + 0∫
−t

LGi (t + s, γ(s), γ̇(s))ds, (2.9)

where LGi is the Lagrangian associated to Gi by duality and the infimum is taken amongst all absolutely
continuous curves γ : [−t, 0]→ M such that γ(0) = z. By standard results in the Calculus of Variations, we
know that this infimum is in fact a minimum. For any fixed τ > 0, let us denote by γτ,z : [−τ, 0]→ M an
absolutely continuous curve with γτ,z(0) = z and realizing the minimum in (2.9) with t := τ. By the Dynamic
Programming Principle, such a curve γτ,z is also a minimizer of (2.9) for every t ⩽ τ. Arguing as in the proof
of Theorem 2.2, we get

γ̇τ,z(s) ∈ ∂pGi(t + s, γτ,z(s), ∂cvi(t + s, γτ,z(s))) = ∂pHi(γτ,z(s), ∂cui(s, γτ,z(s))) (2.10)

for a.e. s ∈ (−t, 0). Due to the equi-Lipschitz character of the functions {uλ | λ > 0} established in Propo-
sition 1.3, we infer that there exists a constant κ∗, independent of (t, z) ∈ (0, +∞) ×M and λ > 0, so that‖γ̇τ,z‖∞ ⩽ κ∗. Note that LGi (t, x, v) = eλt(Li(x, v) + c(ℍ) −∑mk=1 bikuλk(x)). It follows that

uλi (z) = e−λtuλi (γτ,z(−t)) + 0∫
−t

eλs(Li(γτ,z(s), γ̇τ,z(s)) + c(ℍ) − m∑
k=1

bikuλk(γτ,z(s)))ds
for every t ⩽ τ. Letting τ → +∞ and extracting a subsequence, we obtain a curve γi,z : (−∞, 0]→ M with
γi,z(0) = z and satisfying the previous equality for every t > 0. By sending t → +∞, we end up with

uλi (z) = 0∫
−∞

eλs(Li(γi,z(s), γ̇i,z(s)) + c(ℍ) − m∑
k=1

bikuλk(γi,z(s)))ds. (2.11)

Now theproof ends exactly as in [8]. For every (z, i) ∈ M × {1, . . . ,m},wedenoteby Γ(z, i) the set of absolutely
continuous curves γ : (−∞, 0]→ M with γ(0) = z satisfying (2.11). The set Γ(z, i) is nonempty, in view of
the preceding discussion. Moreover, any curve in Γ(z, i) satisfies (2.10) for a.e. s ∈ (0, +∞), in particular it
is κ∗-Lipschitz continuous. We derive that (z, i) → Γ(z, i) is compact-valued and upper semicontinuous as
a set-valued map fromM × {1, . . . ,m} to C(ℝ+;M), in particular it is measurable. By [4, Theorem III.8], there
exists a measurable function Ξ : M × {1, . . . ,m}→ C(ℝ+;M) such that

Ξ(z, i) ∈ Γ(z, i) for every (z, i) ∈ M × {1, . . . ,m}.
For any fixed ω ∈ Ω, let (τk(ω))k⩾0 be the sequence of jump times of ω, where τ0(ω) := 0 and τk(ω) is the k-th
jump time. We define inductively a sequence (yk(ω))k⩾0 of points in M by setting y0 := y and

yk(ω) := Ξ(yk−1(ω), ω(τk−1(ω))(τk(ω)) for every k ⩾ 1.
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The sought curve is given by

ηλ(t, ω) := Ξ(yk(ω), ω(τk(ω)))(−t) if t ∈ [τk(ω), τk+1(ω)),
for every k ⩾ 0 and ω ∈ Ω. Arguing as in [8, Section 6], one can check that ηλ is an admissible curve starting
at y for which (2.8) holds with an equality. The fact that ηλ satisfies (2.7) is clear by construction in view
of (2.10).

3 Mather measures for the critical system
In this section we generalize the notion of Mather minimizing measure to the case of the critical system, i.e.

Bu +ℍ(x, Du) = c(ℍ)𝟙 in M. (3.1)

It is not so surprising that such measures will be concentrated on the support of minimizing controls associ-
ated to solutions of (3.1).

We start by adapting the notion of closed measure to this setting.

Definition 3.1. A Borel probability measure μ on TM × {1, . . . ,m} will be termed closed if

(i) ∫
TM×{1,...,m}

|v|dμ(x, v, i) < +∞,
(ii) ∫

TM×{1,...,m}

(Bϕ(x))i + ⟨Dϕi(x), v⟩dμ(x, v, i) = 0 for every ϕ ∈ (C1(M))m .
We will denote byM the set of closed measures on TM × {1, . . . ,m}.
Theorem 3.2. The following holds:− c(ℍ) = min

μ∈M
∫

TM×{1,...,m}

Li(x, v)dμ(x, v, i). (3.2)

In particular,M is nonempty.

Proof. We first observe that, for every ε > 0, there exists a functionwε ∈ (C1(M))m such that

Bwε +ℍ(x, Dwε) ⩽ (c(ℍ) + ε)𝟙 for every x ∈ M. (3.3)

To see this, take a solution u of (3.1) and regularize it via convolution with a standard mollifier. The above
inequality follows, for a proper choice of the mollifier, via a well known argument based on Jensen’s inequal-
ity, the convexity of the Hamiltonians and the fact that u is Lipschitz, see for instance [9, Section 4].

By integrating (3.3) with respect to a measure μ ∈M and by using Fenchel’s inequality we get∫
TM×{1,...,m}

(Bwε)i + ⟨Dwε
i (x), v⟩ − Li(x, v)dμ(x, v, i) ⩽ c(ℍ) + ε.

Since μ is closed, the left hand side is equal to −∫TM×{1,...,m} Li dμ. By letting ε → 0+, we obtain∫
TM×{1,...,m}

Li(x, v)dμ(x, v, i) ⩾ −c(ℍ).
Let us nowproceed to prove the existence of aminimizing closedmeasure. To this aim, take a critical solution
u and fix (y, ℓ) ∈ M × {1, . . . ,m}. For every k ∈ ℕ, let ηk : Ω → C(ℝ+;M) be an admissible curve starting at y
and such that

uℓ(y) = 𝔼ℓ[uω(k)(ηk(k, ω)) + k∫
0

(Lω(s)(ηk(s), −η̇k(s)) + c(ℍ))ds]. (3.4)
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10 | A. Davini and M. Zavidovique, Convergence of the solutions of discounted HJ systems

We define a Borel probability measure μk on TM × {1, . . . ,m} by setting∫
TM×{1,...,m}

f dμk := 1k 𝔼ℓ[ k∫
0

fω(s)(ηk(s, ω), −η̇k(s, ω))ds], f ∈ (Cc(TM))m.
ByTheorem2.2, thesemeasureshave support contained in a commoncompact subset of TM × {1, . . . ,m}, so,
up to subsequences, (μk)k weakly converges to aBorel probabilitymeasure μ on TM × {1, . . . ,m}. Let us show
that μ is closed. It clearly satisfies item (i) of Definition 3.1 since its support is compact. Letϕ ∈ (C1(M))m. By
applying Dynkin’s formula to the function g(t, x) := ϕ(x), see Theorem 2.1, and by integrating (2.4) in (0, k)
we get 𝔼ℓ[ k∫

0

(Bϕ)ω(s)(s, ηk(s, ω)) + ⟨Dϕω(s)(ηk(s, ω)), −η̇k(s, ω)⟩ds] = ϕℓ(y) − 𝔼ℓ[ϕω(k)(ηk(k, ω))],
otherwise stated ∫

TM×{1,...,m}

(Bϕ(x))i + ⟨Dϕi(x), v⟩dμk(x, v, i) = ϕℓ(y) − 𝔼ℓ[ϕω(k)(η(k, ω))]
k

.

By sending k → +∞we infer that μ satisfies item (ii) in Definition 3.1 as well. To prove that μ is minimizing,
we remark that, in view of (3.4) and the fact that the measures (μk)k have equi-compact support, we have∫

TM×{1,...,m}

(Li(x, v) + c(ℍ))dμ = lim
k→+∞

∫
TM×{1,...,m}

(Li(x, v) + c(ℍ))dμk
= lim

k→+∞

1
k (uℓ(y) − 𝔼ℓ[uω(k)(ηk(k, ω))]) = 0.

We will callMather measure a closed Borel probability measure on TM × {1, . . . ,m} which minimizes (3.2).
The set of Mather measures will be denoted byM0 in the sequel.

4 Convergence of the discounted solutions
This section is devoted to the proof of Theorem 1, namely that the solutions (uλ)λ>0 of the discounted sys-
tem (2.1) converge to a particular solution u0 of the critical system (3.1) as λ → 0+.

The first step consists in identifying a good candidate u0 for the limit of the solutions uλ. To this end,
we consider the family F of subsolutions w ∈ (C(M))m of the critical system (3.1) satisfying the following
condition: ∫

TM×{1,...,m}

wi(y)dμ(y, v, i) ⩽ 0 for every μ ∈M0,

whereM0 denotes the set of Mather measures, see Section 3.
Note that, given any critical subsolutionw, the functionw − 𝟙‖w‖∞ is in F. Therefore F is not empty.

Lemma 4.1. The family F is uniformly bounded from above, i.e.

sup{wi(x) | w ∈ F} < +∞ for every (x, i) ∈ M × {1, . . . ,m}.
Proof. Let us denote by κ and C the constants provided by Proposition 1.1 for c := c(ℍ). Pick μ ∈M0. For
w ∈ F, we have

min
i

min
M

wi ⩽ ∫
TM×{1,...,m}

wi(y)dμ(y, v, i) ⩽ 0.
Let j ∈ {1, . . . ,m} such that minM wj = miniminM wi. Since wj is κ-Lipschitz, we infer

max
M

wj ⩽ max
M

wj −min
M

wj ⩽ κ diam(M) < +∞.
On the other hand, for i ̸= j we have wi ⩽ wj + ‖wi − wj‖∞ ⩽ κdiam(M) + C in M.
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Therefore we can define u0 : M → ℝm by

u0i (x) := sup
w∈F

wi(x) for every (x, i) ∈ M × {1, . . . ,m}.
As the supremum of an equi-Lipschitz family of critical subsolutions, we get that u0 is Lipschitz continuous
and a critical subsolution as well, see [9, Proposition 1.6]. The fact that u0 is a critical solution belonging toF
will be a consequence of our convergence result.

Weproceedby studying theasymptotic behavior of thediscounted solutionsuλ as λ → 0+ and the relation
with u0. Let us denote by

S := {u ∈ (Lip(M))m  u = lim
k→+∞

uλk for some sequence λk → 0}.
Note that any function inS is a solution to the critical system (3.1) by the stability of the notion of viscosity
solution.

We begin with the following result:

Proposition 4.2. Let u ∈ S. Then ∫
TM×{1,...,m}

ui(x)dμ(x, v, i) ⩽ 0 for every μ ∈M0.

In particular, u ⩽ u0.
Proof. Fix μ ∈M0. The assertion will be a direct consequence of the following fact:∫

TM×{1,...,m}

uλi (x)dμ(x, v, i) ⩽ 0 for every λ > 0. (4.1)

Indeed, let us fix λ > 0. Regularizinguλ by convolution,wefinda sequence of smooth functionswn : M → ℝm
such thatwn  uλ and(B + λId)wn(x) +ℍ(x, Dwn(x)) ⩽ (c(ℍ) + 1n)𝟙 for every x ∈ M.

By integrating this inequality with respect to μ and by using Fenchel’s inequality we get

c(ℍ) + 1
n
⩾ ∫
TM×{1,...,m}

((B + λId)wn(x))i + Hi(x, Dwn
i )dμ⩾ ∫

TM×{1,...,m}

((B + λId)wn(x)ε)i + ⟨Dwn
i (x), v⟩ − Li(x, v)dμ= c(ℍ) + ∫

TM×{1,...,m}

λwn
i dμ,

where for the last equality we have used the fact that μ is closed and minimizing. Inequality (4.1) follows
after sending n → +∞ and dividing by λ > 0.
The next (and final) step is to show that u ⩾ u0 in M whenever u ∈ S. This will be obtained by defining
a special family of Borel probability measures on TM × {1, . . . ,m} for the discounted systems (2.1). The
construction is the following: fix (y, ℓ) ∈ M × {1, . . . ,m} and, for every λ > 0, let ηλ : Ω → C(ℝ+;M) be an
admissible curve starting at y that realizes the infimum in (2.6). We define a Borel probability measure μλy on
TM × {1, . . . ,m} by setting

∫
TM×{1,...,m}

fi dμλy := λ𝔼ℓ[ +∞∫
0

e−λs fω(s)(ηλ(s, ω), −η̇λ(s, ω))ds] (4.2)

for every f ∈ (Cc(TM))m. The following proposition holds.
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12 | A. Davini and M. Zavidovique, Convergence of the solutions of discounted HJ systems

Proposition 4.3. Themeasures {μλy | λ > 0} defined above are Borel probability measures on TM × {1, . . . ,m},
whose supports are all contained in a common compact subset of TM × {1, . . . ,m}. In particular, they are
relatively compact in the space of Borel probability measures on TM × {1, . . . ,m}with respect to the weak con-
vergence. Furthermore, if (μλny )n is weakly converging to μy for some sequence λn → 0+, then μy is a minimizing
Mather measure.

Proof. According to Theorem 2.3, there exists a constant κ∗ such that ‖η̇λ( ⋅ , ω)‖∞ ⩽ k∗ for every ω ∈ Ω
and λ > 0. Set K := {(x, v) ∈ TM | |v| ⩽ κ∗}. Then the measures μλy are all supported in the compact set
K × {1, . . . ,m} and are Borel probability measures, as it can be easily checked by their definition. This
readily implies the asserted relative compactness of {μλy | λ > 0}. Let now assume that (μλny )n is weakly con-
verging to μy for some λn → 0. Then μy is a Borel probability measure with support in K × {1, . . . ,m}, in
particular it satisfies item (i) in Definition 3.1. Moreover, ifϕ ∈ (C1(M))m, by Dynkin’s formula applied to the
function g(t, x) := e−λtϕ(x), see Theorem 2.1, we get𝔼ℓ[ +∞∫

0

e−λs(⟨Dϕω(s)(ηλ(s, ω)), −η̇λ(s, ω)⟩ + (Bϕ)ω(s)(ηλ(s, ω)) + λϕω(s)(ηλ(s, ω)))ds] = ϕℓ(y),
yielding ∫

TM×{1,...,m}

(Bϕ(x))i + ⟨Dϕi(x), v⟩dμλy = λϕℓ(y) − λ ∫
TM×{1,...,m}

ϕi dμλy .

By setting λ := λn in the previous equality and sending n → +∞ we infer∫
TM×{1,...,m}

(Bϕ(x))i + ⟨Dϕi(x), v⟩dμy = 0,
thus proving that μy is closed.

To prove that μy is minimizing, we recall that, by definition,

λuλℓ(y) = ∫
TM×{1,...,m}

(Li(x, v) + c(ℍ))dμλy for every λ > 0.
The assertion follows by setting λ := λn and sending n → +∞.
We proceed by proving a lemma that will be crucial for the proof of Theorem 1.

Lemma 4.4. Letw be any critical subsolution. For every λ > 0 and (y, ℓ) ∈ M × {1, . . . ,m} we have
uλℓ(y) ⩾ wℓ(y) − ∫

TM×{1,...,m}

wi dμλy , (4.3)

where μλy is the Borel probability measure defined by (4.2).

Proof. Let w be a critical subsolution. By convolution with a regularizing kernel, we construct a family of
smooth functionwn : M → ℝm uniformly convergingw such that

Bwn(x) +ℍ(x, Dwn(x)) ⩽ (c(ℍ) + 1n)𝟙 for every x ∈ M.

Starting again from the definition of uλ and by exploiting Fenchel’s inequality, we obtain

uλℓ(y) = 1λ ∫
TM×{1,...,m}

(Li(x, v) + c(ℍ))dμλy
⩾ 1
λ ∫
TM×{1,...,m}

(⟨Dwn
i (x), v⟩ − Hi(x, Dwn

i (x)) + c(ℍ))dμλy⩾ 1
λ ∫
TM×{1,...,m}

(⟨Dwn
i (x), v⟩ + (Bwn(x))i − 1n)dμλy .
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Using the definition of μλy and Dynkin’s formula with g(t, x) = e−λtwn(x), see Theorem 2.1, we get

uλℓ(y) ⩾ 𝔼ℓ[ +∞∫
0

e−λs(⟨Dwn
ω(s)(ηλ(s, ω)), −η̇λ(s, ω)⟩ + (Bwn)ω(s)(ηλ(s, ω)) − 1n)ds]

= wn
ℓ (y) + 𝔼ℓ[ +∞∫

0

(−λe−λswn
ω(s)(ηλ(s, ω)) − e−λsn )ds]= wn

ℓ (y) − ∫
TM×{1,...,m}

wn
i dμ

λ
y − 1

λn
.

The desired inequality follows by sending n → +∞.
We have now all the ingredients to prove our main result.

Proof of Theorem 1. Let u ∈ S. By Proposition 4.2, we already know that u ⩽ u0. Let us prove the oppo-
site inequality. By definition, there exists a sequence λn → 0+ such that uλn  u as n → +∞. Pick w ∈ F
and fix (y, ℓ) ∈ TM × {1, . . . ,m}. By setting λ := λn in (4.3) and by sending n → +∞, we infer, thanks to
Proposition 4.3, that there exists a Mather measure μy ∈M0 such that

uℓ(y) ⩾ wℓ(y) − ∫
TM×{1,...,m}

wi dμy ⩾ wℓ(y),
where, for the last inequality, we have used the fact that w ∈ F. As this is true for any w ∈ F and arbitrary(y, ℓ) ∈ M × {1, . . . ,m}, we infer that u ⩾ u0. This concludes the proof.
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