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Abstract 

Machine Learning (ML) is a branch of Artificial Intelligence (AI) that allow computers to learn 

without being explicitly programmed. Various are the applications of ML in pharmaceutical 

sciences, especially for the prediction of chemical bioactivity and physical properties, 

becoming an integral component of the drug discovery process. ML is characterized by three 

learning paradigms that differ in the type of task or problem that an algorithm is intended to 

solve: supervised, unsupervised, and reinforcement learning. In chapter 2, supervised 

learning methods were applied to extracts of Lycium barbarum L. fruits for the development 

of a QSPR model to predict zeaxanthin and carotenoids content based on routinely 

colorimetric analyses performed on homogenized samples, developing a useful tool that 

could be used in the food industry. In chapters 3 and 4, ML was applied to the chemical 

composition of essential oils and correlated to the experimentally determined associated 

biofilm modulation influence that was either positive or negative. In these two studies, it was 

demonstrated that biofilm growth is influenced by the presence of essential oils extracted 

from different plants harvested in different seasons. ML classification techniques were used 

to develop a Quantitative Activity-Composition Relationship (QCAR) to discover the chemical 

components mainly responsible for the anti-biofilm activity. The derived models 

demonstrated that machine learning is a valuable tool to investigate complex chemical 

mixtures, enabling scientists to understand each component's contribution to the activity. 

Therefore, these classification models can describe and predict the activity of chemical 

mixtures and guide the composition of artificial essential oils with desired biological activity. 

In chapter 5, unsupervised learning models were developed and applied to clinical strains of 

bacteria that cause cystic fibrosis. The most severe infections reoccurring in cystic fibrosis are 

due to S. aureus and P. aeruginosa. Intensive use of antimicrobial drugs to fight lung infections 

leads to the development of antibiotic-resistant bacterial strains. New antimicrobial 

compounds should be identified to overcome antibiotic resistance in patients. Sixty-one 

essential oils were studied against a panel of 40 clinical strains of S. aureus and P. aeruginosa 

isolated from cystic fibrosis patients, and unsupervised machine learning algorithms were 

applied to pick-up a small number of representative strains (clusters of strains) among the 

panel of 40. Thus, rapidly identifying three essential oils that strongly inhibit antibiotic-

resistant bacterial growth. 
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1 Introduction 

 

1.1 What is Machine Learning? 

Machine Learning (ML) is a branch of Artificial Intelligence (AI). Its foundation lies in algebra, 

statistics, probability, and it collects methods developed in the last decades of the twentieth 

century in various scientific disciplines which uses mathematical optimization and statistical 

methods to improve the performance of an algorithm in identifying patterns in data: 

computational statistics, information theory, pattern recognition, Bayesian methods, 

neuroscience, artificial neural networks, dynamical systems theory, image processing, data 

mining, adaptive algorithms, and last but not least bioinformatics and cheminformatics. In the 

field of computer science, machine learning is a variant of traditional programming in which 

a machine develops the ability to learn something from data independently, without explicit 

programmed. Arthur Samuel coined the term Machine Learning in 1959, which describes it as 

“the field of study that gives computers the ability to learn without being explicitly 

programmed”1. Arthur Samuel identifies two distinct approaches. The first method, referred 

to as a neural network, develops general-purpose machine learning machines that learn from 

a randomly connected switching network, following a reward-and-punishment-based 

learning routine (reinforcement learning). The second, more specific method is to reproduce 

the equivalent of a highly organized network designed to learn only specific activities. The 

second procedure, which requires supervision and requires reprogramming for each new 

application, is much more computationally efficient. 

A more formal definition was provided by Tom Mitchell which states: "A computer program 

is said to learn from experience E with respect to some class of tasks T and performance 

measure P, if its performance at tasks in T, as measured by P, improves with experience E."2. 

For example, if we considering playing checkers, the experience of playing many games of 

checkers is E, the task of playing checkers is T, and the probability that the program will win 

the next game is P. A machine learning algorithm build a mathematical model by training itself 

on sample data (training data). This model can be used to make predictions and decisions on 

new, unseen samples (unknown data). 
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The generic workflow of the development of an ML model consists of six steps, independent 

of the algorithm adopted3: 

1. Collect and prepare the data in a format that can be given as input to the algorithm. 

The data needs to be cleaned and pre-processed in a structured format. The accuracy 

of the learned function depends on the input object representation. The input object 

is transformed into a feature vector, which contains several features that are 

descriptive of the object. The number of features should contain enough information 

to predict the output accurately. 

2. Perform a feature selection of the most relevant properties to the learning process. 

Some data features need to be removed, and a subset of the most important features 

needs to be obtained. 

3. Chose the ML algorithm that mostly suits a specific class problem. Selecting the best 

ML algorithm and therefore determining the structure of the learned function is 

critical for getting the best results. 

4. Select the model’s parameters. Some learning algorithms require the user to 

determine specific control parameters. These parameters are regulated by optimizing 

performance on a subset of the training set (validation set) or via cross-validation. 

5. Train of the algorithm using a part of the dataset as training data. 

6. Evaluate the model performance. The model must be tested against unseen data to 

be validated against various performance parameters. 

The overall process in unsupervised learning modeling can be summarized in Figure 1. 

Three broad machine learning paradigms exist that differ on the type of task or problem an 

algorithm is intended to solve, how it is being trained, and the input/output type4. 

• Supervised Learning: the algorithm is given examples in the form of possible inputs 

and their respective desired outputs, and the goal is to extract a general rule that 

associates the input with the correct output. 

• Unsupervised Learning: the algorithm aims to find a structure in the inputs provided, 

without the inputs being labeled by any means. 

• Reinforcement Learning: the algorithm learns from a series of reinforcements 

(rewards and punishments) by interacting with a dynamic environment in which it 
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tries to reach a goal by making decisions to achieve the highest reward (for example, 

to design new molecules with specific desired properties5). It learns through trial and 

error, and a sequence of successful decisions will result in the process being reinforced 

because it best solves the problem in question. 

 

 

Figure 1. The machine learning analysis process 

 

 

1.2 Supervised Learning 

In supervised learning, the algorithm task is that of learning a mathematical function that 

maps an input (typically a vector x) to an output variable (y) by observing input-output pairs 

(training set). The inferred function can be used for mapping new examples. 

Formally, given a training set of N example input-output pairs 

(𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3), … (𝑥𝑁 , 𝑦𝑁) 

where each pair was generated by an unknown function 𝑦 = 𝑓(𝑥), discover a hypothesis 

function h, drawn from a hypothesis space H of possible functions that approximate the true 

function f. A second sample of (𝑥𝑖, 𝑦𝑖) pairs called test set is needed to evaluate the quality 

Data

Feature selection, 
extraction, scaling
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Result interpretation 
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of the hypothesis and, therefore, of predictions4. The hypothesis h generalizes well if it 

accurately predicts the outputs of the test set.  

Supervised learning problems are categorized into classification and regression problems. 

In a classification problem, samples belong to two or more classes, and the response values 

are categorical. For example, we want to predict if a molecule is active or inactive versus a 

biological target. Therefore, we are trying to map input variables to a discrete function. 

Logistic Regression, k-Nearest Neighbors (kNN)6, Support Vector Machines (SVM) 7, Random 

Forests8, Gradient Boosting Machines9, and Neural Networks are methods commonly used in 

classification. 

In a regression problem, the output value to predict consists of one or more continuous 

variables, meaning that we are trying to map input variables to a continuous function. For 

example, predicting the molecule’s pIC50 (that inhibits an enzyme) as a function of its 

physicochemical properties is a regression problem. Linear regression, Nonlinear regression, 

k-Nearest Neighbors (kNN)10, Support Vector Machines (SVM) 7, Random Forests8, Gradient 

Boosting Machines9, and Neural Networks are methods commonly used in regressions. 

To develop machine learning models with good predictive capabilities, it is necessary to adopt 

specific methods that allow establishing:  

• which are the best settings of the specific parameters of the algorithms taken into 

consideration for the development of the models (hyperparameter fine-tuning); 

•  the predictive capabilities and intrinsic robustness of the model, using appropriate 

evaluation metrics. 

The confidence that the trained model will generalize well on the unseen data can never be 

high without proper model validation. Fitting the parameters of a prediction function and 

testing it on the same data is a methodological mistake. A model that would reproduce the 

samples' labels that it has just seen would have an excellent score but would fail to predict 

anything valuable on yet-unseen data (overfitting). Model validation helps assure that the 

model performs well on new data and, therefore, it is robust. It is possible to select the best 

model, the parameters, and the accuracy metrics through model validation and grid search 

techniques. Once the models are trained, it is possible to test their reliability through two 

important validation procedures, such as cross-validation (CV, or internal validation, carried 
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out taking into consideration the same dataset used in the development of the model) and 

external validation (applied when new data are used). When evaluating different settings 

(hyperparameters) for machine learning estimators, there is a risk of overfitting on the test 

set because the parameters can be tweaked until the estimator performs optimally. 

Knowledge of the test set can leak into the model, and evaluation metrics no longer report 

on generalization performance. A solution to this problem is to hold out yet another part of 

the dataset (validation set). Training progresses on the training set, after which evaluation is 

done on the validation set, and when the learning process seems to be successful, the final 

evaluation can be done on the test set. By partitioning the available data into three sets, we 

drastically reduce the number of samples that can be used to learn the model, and the 

validation outcomes can depend on a distinct random choice for the pair of train and 

validation sets. The cross-validation (CV) procedure is a solution to this problem. The 

validation set is no longer needed when doing CV, as it is intrinsically created at each iteration. 

In the basic approach, called k-fold CV, the training set is split into k smaller sets (Figure 2).  

 

Figure 2. Subdivision of the dataset in the k-fold cross-validation with k = 5. 

 

For each of the k folds, a model is trained using 𝑘 − 1 of the folds as training data, and the 

resulting model is validated on the remaining part of the data by using a performance 

measure. The performance measure reported by k-fold cross-validation is the average of the 

values computed in the loop. This approach has a significant advantage in problems such as 

inverse inference, where the number of samples is small, as it does not waste too much data 

(as is when fixing an arbitrary validation set), although it can be computationally expensive. 

A particular case of k-fold cross-validation is represented by the Leave-One-Out (LOO) 

method. Let d be a dataset consisting of N observations: the number of folds in which to divide 
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d will be equal, in the case of the LOO, to the number of observations n (k = N) so that at each 

iteration, only one sample will be used as a test set. This approach is recommended with small 

datasets. 

In classification problems, the stratified variant for cross-validation is preferred as it preserves 

the proportions of each class, not only in the training set but also in the folds created to 

represent the test set.  

Y-scrambling (also known as Y-randomization or response randomization) techniques should 

be used to rule out the possibility of chance correlation and to inspect for reliability and 

robustness by permutation testing: the dependent-variable vector, y-vector, is randomly 

shuffled, and a new model is trained using the initial independent-variable matrix X11. The 

process is repeated many (N) times, and the performance of the models trained with 

scrambled data is measured by calculating the average values of the validation metrics. The 

model is considered robust if the N models' statistical parameters, trained with scrambled 

data, show much lower performance12. 

Hyperparameter optimization13 techniques, such as grid search, random search14, and 

Bayesian optimization15, represent optimization strategies for classification and regression 

models. By tuning the model’s parameters, it is possible to find the parametric combination 

that best enhances the learning algorithm's performance. These techniques are particularly 

useful for algorithms that require the setting of two or more parameters simultaneously. The 

greater the number of parameters to be set, the greater the calculation times required to 

realize the technique. 

The most common metrics for measuring the performance of classification tasks are: 

• Accuracy (ACC). Equation ((1) is the proportion of true positives (TP) and true 

negatives (TN) among the total cases examined (P + N). That is the ratio of correct 

classifications to the total number of correct or incorrect classifications. 

 

 ACC =  
TP  +  TN

𝑃 +  𝑁
 (1) 

 

• Precision, Positive Predictive Values (PPV). Equation (2) describes the ability of the 

classifier not to label as positive samples that are negative. That is, given a positive 
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prediction, how likely is the classifier to be correct. The best value is 1, and the worst 

value is 0. 

 PPV  =  
TP

TP  +  FP
 (2) 

 

• Recall, Sensitivity, True Positive Rate (TPR). Equation (3) measures the proportion of 

positively predicted labels that are correctly identified as such. That is the ability of 

the classifier to find all the positives samples. The best value is 1, and the worst value 

is 0. 

 TPR  =  
TP

𝑃
  =  

TP

TP  +  FN
 (3) 

 

• True Negative Rate (TNR). Equation (4) measures the proportion of negative 

predicted labels that are correctly identified as such. That is, is the ability of the 

classifier to find all the negative samples. The best value is 1, and the worst is 0. 

 TNR =  
TN

𝑁
=  

TN

TN  +  FP
 (4) 

 

• Receiver Operating Characteristic (ROC) Curve16. It shows a binary classifier model's 

ability to discriminate between positive and negative classes as its discrimination 

threshold varies from high to low. The true positive rate (TPR) is plotted against the 

false positive rate (FPR) at various thresholds to obtain the curve. An area under the 

curve (AUC) of the ROC curve of 1.0 represents a model that correctly made all 

predictions. An AUC of 0.5 represents a model that is as good as a random 

classification (Figure 3). 
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Figure 3. The ROC curve plotted with the TPR (sensitivity) against the FPR (1 – specificity). When 
AUC is 0.5 (dashed line), the model has no discrimination capacity to distinguish between positive 
class and negative class 

 

• Matthews Correlation Coefficient17 (MCC). Equation (5) is a measure of the quality of 

binary (two-class) classifications. The best value is 1, and the worst value is 0. It 

considers TP, FP, FN, TN, and is generally regarded as a balanced measure that can be 

used even if the classes are of different sizes. The MCC is a correlation coefficient value 

between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average 

random prediction, and -1 an inverse prediction. Only in the binary case does this 

relate to information about true and false positives and negatives. 

 MCC  =  
TP  ×  TN  −  FP  ×  FN

√(TP  +  FP)(TP  +  FN)(TN  +  FP)(TN  +  FN)
 (5) 
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The most widespread metrics for measuring the performance of regression tasks are: 

• Coefficient of determination (R2 or r2). Equation (6) represents the proportion of 

variance (of y) explained by the model's independent variables. It is a measure of how 

unseen samples are likely to be predicted correctly by the model through the 

proportion of explained variance. Therefore, it indicates the goodness of fit. The best 

possible score is 1, and it can be negative (because the model can be arbitrarily worse). 

A constant model will get an R² score of 0 if it always predicts the expected value of y, 

disregarding the input features. In equation (6), 𝑦𝑖̂ is the predicted value of the i-th 

sample and 𝑦𝑖 is the corresponding true value for total 𝑛 samples. 

 𝑅2(𝑦, 𝑦̂) = 1 −
∑ (𝑦𝑖 − 𝑦î)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 (6) 

 

• Root Mean Square Error (RMSE). Equation (7) is a measure of the difference between 

the predicted value and the true values. RMSE is the square root of the average of 

squared errors. It is a measure of accuracy, and it is scale-dependent. RMSE values 

have a range of [0, +∞]  where a value equal to zero would indicate a perfect 

prediction. Therefore, a lower RMSE is better than a higher one. In equation (7), 𝑦𝑖̂ is 

the predicted value of the i-th sample and 𝑦𝑖 is the corresponding true value for total 

𝑛 samples. 

 RMSE(𝑦, 𝑦̂) = √(
1

𝑛samples
∑ (𝑦𝑖 − 𝑦𝑖̂)2

𝑛samples−1

𝑖=0

) (7) 
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1.3 Unsupervised Learning 

Unsupervised learning algorithms process a training set that consists of a set of unlabeled 

input vectors x through evaluating the intrinsic and hidden structure of the data. Unlike 

supervised learning, only non-annotated examples are provided to the algorithm during 

learning, as the classes are not known a priori but must be learned automatically. The 

objective in such problems may be to discover groups of similar examples within the data, 

where it is called clustering, or to determine the distribution of data within the input space, 

known as density estimation, or to project the data from a high-dimensional space down to 

two or three dimensions for visualization known as dimensionality reduction.4 

Unsupervised learning techniques work by comparing data and looking for similarities or 

dissimilarities. They are very efficient with numerical elements since they can use all the 

techniques derived from statistics, but they are less efficient with non-numerical data. These 

algorithms work correctly in data containing clear and identifiable sorting or grouping. If the 

data is endowed with an intrinsic ordering, the algorithms are still able to extract information. 

On the contrary, they can fail. 

A typical example of these algorithms is found in search engines. Given one or more keywords, 

these programs can create a list of links referring to the pages that the search algorithm 

considers relevant to the search performed. The validity of these algorithms is linked to the 

usefulness of the information they can extract from the database. In the above example, it is 

linked to the relevance of the links with the searched topic. 

1.3.1 Dimensionality reduction 

Dimensionality reduction methods transform data from a high-dimensional space into a low-

dimensional space representation that retains a subset of the original data's properties, 

ideally close to its intrinsic dimension (the number of variables needed for a minimal 

representation of the data). Working in high-dimensional spaces can be inconvenient for 

various reasons: 

• Raw data are often sparse.  

• Analyzing the data is usually computationally intractable.  

Dimensionality reduction is standard in fields that deal with large numbers of observations 

and/or large numbers of variables, such as bioinformatics and cheminformatics.18 



11 
 

Dimensionality reduction algorithms can be classified into linear and non-linear.18 Moreover, 

they can also be classified into feature selection and feature extraction methods.19 

Dimensionality reduction can be used for noise reduction, feature engineering, data 

visualization, cluster analysis, or intermediate steps to facilitate other analyses. 

The primary technique for feature extraction is the Principle Component Analysis (PCA)20. PCA 

performs a linear mapping of the data to a lower-dimensional space so that the variance of 

the data in the low-dimensional representation is maximized. The lost information is usually 

regarded as noise. 

 

1.3.2 Clustering 

Clustering is the unsupervised partitioning of data into homogeneous groups (clusters). Items 

in each group are more like each other than items in another group. Therefore, the objective 

is the identification of homogeneous subgroups among a set of heterogeneous items. The 

definition of object and features in each clustering analysis depends on the hypothesis being 

tested. The dimensionality is defined by the number of features an object has rather than the 

number of objects clustered. 

Clustering is a standard method for analyzing data sets in pharmaceutical sciences. The 

clustering objective is to gain insight into the underlying structure in the complex data, find 

basic patterns within the data, uncover relationships between molecules, biomolecules, 

biological entities, conditions, and use these discoveries to generate hypotheses and decide 

further biological experimentation. It is a fundamental analysis for understanding and 

visualizing the complex data acquired in high-throughput multidimensional biological 

experiments. The amount of data generated in pharmaceutical sciences is experiencing a 

massive scale-up. Extraction of relevant information is becoming increasingly challenging, and 

data analysis methods such as clustering are essential. Molecules in chemical clustering are 

usually encoded as physicochemical descriptors, fingerprints, or graph properties input 

vectors. The chemical space is estimated to be 1063 compounds in the context of computer-

aided drug discovery. Therefore, clustering techniques can be useful to select promising 

subgroups inside a sizeable chemical library by discarding a priori the bulk of the dataset with 

either no pharmaceutical interest or characterized by redundancy in physicochemical and 

topological properties. Moreover, clustering analysis helps identify outliers, understand a 
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particular functional group's behavior, and identify common scaffolds in each set of 

molecules. 

There are many clustering algorithms and no single best method for all datasets. Typical 

cluster models include: 

• Connectivity models - are based on distance connectivity (e.g., hierarchical 

clustering21,22) 

• Centroid models - represent each cluster as a single average vector (e.g., k-means23,24) 

• Distribution models - use statistical distributions for clusterization (e.g., gaussian 

mixture25) 

• Density models define clusters as connected dense regions in the data space (e.g., 

density-based spatial clustering (DBSCAN)26,27) 

 

1.4 Quantitative structure-activity (property) relationship 

The most critical application of Machine Learning in pharmaceutical sciences is predicting 

chemical bioactivity and physical properties. This research field is known as quantitative 

structure-activity relationship (QSAR) modeling and quantitative structure-property 

relationship (QSPR) modeling, a well-established computational approach to chemical data 

analysis. It has found a broad range of physical organic and medicinal chemistry applications 

in the past 55+ years.28  

QSAR/QSPR models are developed by establishing empirical, linear, or non-linear 

relationships between values of chemical descriptors computed from molecular structure and 

experimentally measured properties or bioactivities of those molecules, followed by applying 

these models to predict or design novel chemicals with desired properties. 

The traditional areas of QSAR/QSPR modeling are drug discovery and development and 

chemical safety prediction.29 Recent technological advancements in Machine Learning 

allowed the application of new algorithms, modeling methods, and validation practices to a 

wide range of pharmaceutical research areas outside of traditional QSAR/QSPR boundaries, 

including analytical chemistry, synthesis planning, nanotechnology, materials science, clinical 

informatics, biomaterials,  and quantum mechanics.28–30 Many publications have advanced 

the traditional QSAR modeling28,29, such as prediction of biological activities and ADME/Tox 
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properties, building on the successful use of QSAR modeling in chemical, agrochemical, 

pharmaceutical, and cosmetic industries28. However, new and exciting directions and 

application areas have also emerged, such as process chemistry31,32, synthetic route 

prediction and optimization, and retrosynthetic analysis28. Thus, machine learning models 

have become an integral component of the drug discovery process, providing substantial 

guidance in planning experiments29,33. 

 

1.5 Carotenoid content in Goji berries 

In the present work, machine learning methods were applied to extracts of Lycium barbarum 

L. fruits34. Fruits of Lycium barbarum L. have been of much interest due to its biological 

constituents' potential health benefits. The high level of carotenoids in these fruits offers 

protection against the development of cardiovascular diseases, diabetes, and related 

comorbidities. Two different selections of Lycium barbarum L., cultivated in Italy and coming 

from three discrete harvest stages, were subjected to two different grinding procedures and 

a simplified extraction method of the carotenoid component. CIELAB colorimetric analysis of 

the freshly prepared purees and HPLC-DAD analysis of carotenoid extracts were performed 

and compared. A significant carotenoid fraction, responsible for the characteristic orange-red 

color, makes Goji berries one of the richest carotenoid natural sources. Zeaxanthin 

dipalmitate, a molecule with a highly valuable biological role, was the most representative 

compound of this class. Machine learning techniques were applied for the analysis of the 

samples extracted. A QSPR model was developed through supervised learning methods. 

Linear correlations between carotenoid and zeaxanthin amounts with colorimetric features 

were defined and statistically validated. The encouraging results indicate that quick and 

economic colorimetric analysis, directly performed on homogenized samples and enhanced 

by machine learning, could enable the zeaxanthin and carotenoids quantity prediction. Thus, 

the final QSPR model provides a reliable tool to directly assess carotenoid content by 

performing cheap and routinely colorimetric analyses for the food industry. 
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1.6 Antimicrobial and antibiofilm activity of essential oils 

Essential oil is a mixture of low molecular weight constituents that are responsible for its 

characteristic aroma. These constituents include terpenoid and non‐terpenoid hydrocarbons 

and their oxygenated derivatives. It is well known that essential oil compositions can differ 

according to geographical region, seasonality, and extraction methodology35–37. Therefore, 

essential oil’s chemical composition is heterogeneous with unique characteristics 

(chemotype) and specific effects on microorganisms. 

A biofilm is a complex aggregation of a syntrophic consortium of microorganisms 

characterized by the secretion of an adhesive and protective matrix, composed of 

extracellular polymeric substances (a conglomeration of polysaccharides, proteins, lipids, and 

nucleic acids) that adheres to a biological (for example, roots of plants and epithelium of 

animals) or inert (for example, prostheses or rocks) surface38,39. The ability to form biofilms is 

a universal attribute of bacteria39. Bacillus, Escherichia, Pseudomonas, Staphylococcus, and 

Streptococcus are among the clinically relevant species belonging to genera forming 

biofilms39. 

Biofilm formation of bacteria is related to their colonization of new environments. A biofilm 

lifestyle is associated with a high tolerance to exogenous stress. Therefore, the treatment of 

biofilms with antibiotics or other biocides is usually ineffective at eradicating them. Biofilm 

formation is a major problem in many fields, from the food industry to medicine, and is the 

cause of persistent infections implicated in 80% or more of all microbial cases, releasing 

harmful toxins, and even obstructing indwelling catheters. The development of anti-biofilm 

agents is considered of significant interest and represents a key strategy as non-biocidal 

molecules are highly valuable to avoid escape mutants' rapid appearance. Considering these 

assumptions, the interest in developing new approaches for preventing bacterial adhesion 

and biofilm formation has increased. Antimicrobial and antifungal properties have been 

attributed to essential oils. The wide use of essential oils applies to aromatherapy, household 

cleaning products, personal beauty care, and natural medical treatments. Recently, several 

reports indicated in vitro efficacy of non-biocidal essential oils as a promising treatment to 

reduce bacterial biofilm production and prevent drug resistance40–42.  

Machine learning techniques were applied to the chemical composition of essential oils and 

correlated to the experimentally determined associated biofilm modulation influence that 
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was either positive or negative. Quantitative Activity-Composition Relationships (QCAR) were 

developed through machine learning classification techniques to discover the chemical 

components mainly responsible for the anti-biofilm activity. QCAR models are an example of 

machine learning applied to investigate complex chemical mixtures.  

Statistically, robust classification models were developed, and their analysis in terms of 

feature importance and partial dependence plots led to indicating those chemical 

components mainly responsible for biofilm production, inhibition, or stimulation for each 

studied strain, respectively. Model agnostic feature importance and partial dependence plots 

were used to find the marginal effect that each essential oil chemical component has on the 

predicted outcome of the binary classification models. From the results of these studies, it 

could be observed that each essential oil has a specific effect on biofilm formation, likely 

depending on its characteristics and unique chemical composition.43,44 

In the last chapter, unsupervised learning analysis of clinical strains of bacteria that cause 

cystic fibrosis is reported45. The most severe infections reoccurring in cystic fibrosis, one of 

the most common lethal genetic disorders in the Caucasian population, are due to S. aureus 

and P. aeruginosa46. Intensive use of antimicrobial drugs to fight lung infections inevitably 

leads to the onset of antibiotic-resistant bacterial strains. New antimicrobial compounds 

should be identified to overcome antibiotic resistance in these patients. Therefore, an 

extensive study on 61 essential oils against a panel of 40 clinical strains of S. aureus and P. 

aeruginosa isolated from cystic fibrosis patients was conducted. To reduce the in vitro 

procedure and render the investigation as convergent as possible, unsupervised machine 

learning algorithms were applied to pick-up a fewer number of representative strains (clusters 

of strains) among the panel of 40. This approach allowed the rapid identification of three 

essential oils that strongly inhibit bacterial growth of all bacterial strains considered in this 

research. Interestingly, the antibacterial activity of essential oils was unrelated to each strain's 

antibiotic resistance profile. 
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2 Carotenoid content of Goji berries: CIELAB, HPLC-DAD analyses and 

quantitative correlation 

 

2.1 Introduction 

Fruits provide nutrients for humans but also prevent nutrition-related diseases. Degenerative 

illnesses, such as cardiovascular diseases, diabetes, and relative comorbidities, are among the 

leading causes of death in all industrialized countries. Thus, consumers are oriented toward 

consuming food with documented health properties in search of a better lifestyle to prevent 

these pathologies47. Lycium barbarum L. fruit (Goji berry, GB) represents the focus of many 

scientific studies aiming to evaluate its content in bioactive compounds that could improve 

health. Goji berries are traditional Asian food, and China is the largest producer in the world48. 

More than 70 different species of Lycium exist in nature, among which Lycium chinense49 is 

more common than the most appreciated for its phytochemical composition50,51 and its 

antioxidant and radical scavenging properties, Lycium barbarum. 

GBs are used in traditional Chinese medicine for liver protection, antioxidant purposes. They 

are also recommended as food supplements for their promising antiaging and cancer 

preventive role, cardiovascular protection, and therapeutic activities on immune system 

functionality52. This fruit's health benefit potential demanded investigations of its chemical 

composition, thus leading to the identification of polysaccharides, monosaccharides, organic 

acids, proteins, flavonoids and derivatives, carotenoids, vitamins, and mineral salts53,54. 

Carbohydrates represent about 51% of berries components55 among which the water-soluble 

polysaccharide fraction has received significant attention in the last years. Furthermore, 

arabinogalactan proteins have been identified as significant bioactive molecules for their 

hypoglycemic and hypolipidemic effect52,56. 

The antioxidant and protective role of GBs was evaluated by Oxygen Radical Absorbance 

Capacity (ORAC) and by radical scavenging activity and associated with the high content of 

phenylpropanoids and (iso)flavonoids (caffeic and chlorogenic acid, quercetin-3-O-rutinoside 

and kaempferol-3-O-rutinoside), coumarins, lignans54,57–59. 
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Goji berries are one of the richest natural sources of carotenoids (CAR). Their significant 

carotenoid fraction is responsible for the characteristic orange-red color. One of the most 

common carotenoids found in goji berries is zeaxanthin (ZEA) in the form of zeaxanthin 

dipalmitate48. 

 

 

Figure 4. Zeaxanthin (ZEA). 

 

ZEA accumulates in the macula densa of the retina and plays a protective role by preventing 

ultraviolet radiation degenerative effects. Lutein and zeaxanthin are protective agents 

towards age-related macular degeneration (AMD), and dried wolfberries are a rich source of 

such zeaxanthin esters60. AMD is a neurodegenerative disease that is considered the leading 

cause of acquired blindness. This progressive illness affects a significant number of elder 

people (over 55 years, about 9% worldwide) and has a multifactorial etiology: genetic, 

environmental risk factors, smoking, and dietary habits play a significant role61,62. A regular 

daily intake of fruits and vegetables that are rich sources of carotenoid antioxidant pigments 

and many other bioactive molecules has been associated with a reduced risk of chronic and 

degenerative diseases63. Several factors could influence the bioavailability of these 

components (chemical nature, food matrix, human metabolism, absorption efficiency in the 

intestinal lumen), and consequently, their efficacy in health promotion63. The fact that 

hydrophilic polysaccharides and lipophilic carotenoids exert different functions such as 

generic protection towards oxidation, type-2 diabetes, inflammation, cancer, and that could 

help prevent specific illnesses, increase the interest for GBs as a food supplement. Type-2 

diabetes and cardiovascular diseases could also have some critical roles in AMD progression 

and diseases associated with retinopathies. Hypoglycemic polysaccharides prevent the onset 

and the progression of diabetes56. Their combined action with ZEA, active in the macular 

protection, could provide a synergic effect in the blindness prevention. The present work's 

objective was to monitor the carotenoid content in Goji berries cultivated in Italy, evaluating 
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the differences among varieties, harvesting periods, seasons, and extraction procedures. 

CIELAB colorimetric and quali-quantitative HPLC-DAD analyses were performed and the 

obtained data were statistically analyzed to build correlation models aimed to predict CAR 

and ZEA contents directly from colorimetric measurements. 

 

2.2 Material and Methods 

 

2.2.1 Materials 

Ethanol (≥ 96%), double-distilled water, cyclohexane RPE, methanol RS, and acetone RS for 

HPLC were purchased from Carlo Erba (Milan, Italy). HPLC-grade glacial acetic acid and ethyl 

acetate were obtained from Fluka (Milan, Italy). GBs were generously gifted by Azienda 

Natural Goji® and were harvested at different commercial harvesting periods 1-5 (2015: July 

6th 1; July 23rd, 2; August 3rd, 3; and 2016: July 26th, 4; August 4th, 5) in Fondi (Latina 

province, Lazio region, Italy) based on their stage maturity as determined by the producer. 

They were “Poland” and “Wild” varieties, P and W, respectively. Ten different samples (P1-P5 

and W1-W5) were then collected, quickly frozen at -80 °C and stored at -18 °C, until the 

analyses were performed. Zeaxanthin dipalmitate standard (purity ≥ 98%) was purchased 

from Extrasynthese (Lyon, France). 

 

2.2.2 Samples preparation 

 

The defrosted GBs were washed and wiped up on paper towels at room temperature. 

Afterward, they were ground and homogenized with two different procedures: at room 

temperature for 2 minutes using a domestic mixer at 16,000 rpm (D samples) or by a T18 

Ultraturrax® homogenizer (IKA®, Staufen, Germany) at 10,000 rpm (U samples). The 

procedure steps were conducted cautiously to reduce the loss of pigments due to GBs lability. 

The resulting fruit purees were further divided into two aliquots: one for the CIELAB 

colorimetric analysis and the second for the extraction procedure leading to a panel of 20 

experiments (P1D-P5D, P1U-P5U, W1D-W5D, and W1U-W5U - Table 1 and Table 2). 
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Table 1. P1D-P5D, P1U-P5U, W1D-W5D, and W1U-W5U Residue isolated from the cyclohexane 
fraction (ORG), zeaxanthin (ZEA), carotenoids (CAR), and yields from Goji berry (GB) extractions. The 
ratio between ZEA and CAR is also reported. All data are expressed as mg per gram (g) of GBs dry 
weight. Sample names were compiled merging the selection P or W, the number of harvesting (1-5), 
and the homogenization technique (D or U) as reported in the text. Mean values were from four 
different experiments (errors in the range of 5-10% of the reported values). 

SAMPLE ORG ZEA CAR ZEA/CAR ratio (%) 

P1D 20.85 5.03 6.40 78.6 

P2D 18.56 2.63 3.92 67.3 

P3D 21.13 1.90 2.61 73.1 

P4D 20.17 4.49 6.00 74.9 

P5D 14.50 2.74 1.82 72.8 

P1U 29.66 4.02 5.04 79.7 

P2U 36.83 2.28 5.94 77.3 

P3U 33.91 2.45 3.32 73.8 

P4U 30.53 4.30 5.64 76.3 

P5U 21.89 2.94 3.95 74.3 

W1D 20.27 5.54 6.86 80.7 

W2D 20.36 3.25 5.66 57.7 

W3D 18.64 2.16 3.93 55.1 

W4D 20.18 4.99 6.38 78.3 

W5D 13.81 2.54 1.83 69.2 

W1U 30.51 4.26 5.87 72.8 

W2U 43.61 2.56 9.18 56.2 

W3U 30.70 1.92 6.41 30.1 

W4U 25.36 3.94 4.94 79.7 

W5U 20.00 2.27 3.26 69.8 

 

 

 



20 
 

Table 2. Colorimetric data of the Goji berry P1D-P5D, P1U-P5U, W1D-W5D, and W1U-W5U 

samples. Mean values were from four different experiments (errors in the range of 1-2% of the 

reported values). 

SAMPLE L* a* b* C* hab 

P1D 37.63 21.78 18.92 28.85 40.98 

P2D 40.47 24.66 23.89 34.33 44.10 

P3D 40.27 24.54 23.43 33.93 43.66 

P4D 39.61 26.17 20.88 33.48 38.58 

P5D 37.93 22.50 18.50 29.13 39.42 

P1U 40.54 26.26 23.27 35.01 41.65 

P2U 39.18 22.58 21.43 31.13 43.51 

P3U 42.18 26.90 26.86 38.01 44.95 

P4U 39.03 25.90 20.82 33.23 38.79 

P5U 38.86 24.30 19.85 31.38 39.25 

W1D 38.22 22.06 19.34 29.34 41.25 

W2D 39.71 24.04 22.00 32.59 42.46 

W3D 40.42 23.58 23.31 33.16 44.67 

W4D 38.34 23.89 19.38 30.76 39.04 

W5D 35.65 16.81 14.71 22.34 41.17 

W1U 44.44 30.54 28.95 42.08 43.47 

W2U 43.86 29.20 29.16 41.27 44.96 

W3U 43.45 27.27 28.12 39.17 45.87 

W4U 39.46 26.49 20.79 33.65 38.16 

W5U 39.09 23.67 19.77 30.85 39.87 

 

 

2.2.3 Extraction of organic fractions 

About 5 g of the obtained purees were extracted for 3 hours with 15 mL of a hydroalcoholic 

mixture (ethanol:water 70:30 v/v; water was previously acidified with 0.5% acetic acid) and 

15 mL of cyclohexane, at room temperature and in the dark, under stirring. An upper organic 

phase, an intermediate hydroalcoholic, and a lower solid phase were present. The resulting 

suspension was centrifuged at 12000 g for 10 minutes at 4 °C, and the supernatant was 

collected and dried by a rotary evaporator at reduced pressure and 40 °C. Storage of residues 

(ORG) was reduced to a minimum, and samples were protected from light, heat, and air 
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exposure. Finally, an aliquot of 5 mg was weighed and dissolved in ethyl acetate (5 mL) for 

the subsequent HPLC-DAD analyses. 

 

2.2.4 HPLC-DAD analysis 

Each dried organic fraction was subjected to HPLC analysis employing a Perkin-Elmer 

apparatus equipped with a series LC 200 pump, a series 200 diode array detector, and a series 

200 autosampler. Data acquisition and processing were carried out with a Perkin-Elmer 

Totalchrom software. The chromatographic separation was performed using a Luna 

(Phenomenex) RP18 column (250×4.6 mm, i.d. 5 μm). The mobile phase (flow rate of 1 

mL/min) consisting of acetone (solvent A) and methanol (solvent B) in 35 minutes was 

changed from 55% A and 45% B to 80% A and 20% B. 20 μL were injected setting at 450 nm 

the detector wavelength64. Peak assignments were made based on their ultraviolet-visible 

spectra, co-chromatography respect to commercial standards, when available, and by 

comparison with elution order as reported in other published studies65. ZEA was quantified 

by an external-matrix matched calibration method on the basis of the area ratios respect to 

the pure chemical standard. CAR was calculated as the sum of all the identified 

chromatographic peaks. The concentrations were reported as mg/100 g of dry fruit (Table 1). 

 

2.2.5 Colorimetric analysis 

CIELAB parameters (L*, a*, b*) were determined directly on the homogenized samples using 

a colorimeter X-Rite SP-62 (X-Rite Europe GmbH, Regensdorf, Switzerland), equipped with 

D65 illuminant and an observer angle of 10° (Table 2). Cylindrical coordinates C*ab and hab are 

calculated from a* and b* by equations (8) and (9)66. 

 𝐶𝑎𝑏
∗ = (𝑎∗2 + 𝑏∗2)

1
2 (8) 

 ℎ𝑎𝑏 = tan−1
𝑏∗

𝑎∗
 (9) 

 

 

2.2.6 Statistical analysis 

Data analysis, calculations, and simulations were performed employing Python programming 

language (version 3.6.4, Python Software Foundation, https://www.python.org/). All 
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calculations were done on a blade server (dual socket Intel Xeon E5520 2.27GHz CPUs and 24 

GB DDR3 RAM) with a Debian GNU/Linux 9.3 operating system. Several Python libraries were 

used: the interactive shell IPython67 (version 6.2.1), NumPy68 (version 1.13.3), Matplotlib69 

(version 2.1.1) Pandas70,71 (version 0.22.0) for software prototyping and development, 

interactive data analysis and visualization, optimizations, and simulated annealing 

simulations. The Huber Loss Regression (HLR) model and its validation were performed 

employing the Machine-Learning library Scikit-learn72 (version 0.19.1). A cross-validation 

procedure assessed models’ robustness (internal predictivity) with the leave one out (LOO) 

method. Models’ chance correlations were evaluated via the Y-Scrambling approach, using 

1000 iterations. 

 

2.3 Results and discussion 

2.3.1 Water content detection 

About 5 g of freshly defrosted GBs samples were dried to constant weight, and their water 

content was assessed to be about 78%, approximately 8% less than those previously 

reported60,65. This determination allowed us to compare our experimental results, obtained 

by fresh samples, with literature data often referred to as dry weight73. 

 

2.3.2 Homogenization and extraction 

During homogenization, fresh tissues are destroyed, leading to the release of enzymatic and 

acid components that might alter both the oxidative state and the trans-cis isomerization of 

the carotenoid fraction74. Therefore, two different techniques were applied to simulate the 

domestic and industrial procedures before optimizing the carotenoid extraction. Despite their 

lipophilic nature, carotenoids are within the aqueous biological matrix, so that their 

quantitative extraction requires hydrophilic solvents that could penetrate inside the tissues 

and lipophilic solvents to dissolve them. This issue is often addressed by a preliminary 

extraction followed by a liquid/liquid partitioning74,75. In this report, to the best of our 

knowledge, for the first time, an extraction method based on a double phase system was used 

so that polar and carotenoid fractions were simultaneously extracted and purified from each 

other. The resulting mixtures were then submitted to a centrifugation step to split the two 

phases better. In Table 1 are reported the extraction yields of the residue isolated from the 



23 
 

cyclohexane fraction (ORG) in the twenty analyzed samples. All extraction experiments were 

performed in quadruplicate (all the errors fall in the range of 5-10%). Average values range 

between 0.3 and 1.0% in fresh weight and 1.4 and 4.4% in dry weight of Goji fruits. The highest 

value was found in W2U, and it is about three-fold respect to the lowest value found in P5D 

(Table 1). ORG was found more abundant in extractions performed by the U procedure (29.9 

mg/g dry weight), more than 1.5-fold higher respect to the D method (about 19.2 mg/g dry 

weight). Considering the two GBs varieties (Figure 5), no differences were found in the mean 

values (P = 24.6 mg/g dry weight, W = 23.2 mg/g dry weight). Differences were shown 

between seasons 2015 (exp. 1-3, 26.3 mg/g dry weight) and 2016 (exp. 4, 5; 20.3 mg/g dry 

weight) with a 30% more in 2015. So, the more marked variations are shown between the 

Series D and U, suggesting that Ultraturrax® homogenization enables a better solvent 

permeation and limits the lipophilic component degradation respect to the domestic mixer 

application. 

 

2.3.3 HPLC analysis 

The residues from the organic phases were further characterized by HPLC-DAD analysis at 450 

nm to determine the carotenoid components (CAR). Among them, the presence of ZEA, as 

the most representative element of the CAR fraction of Goji berries, was confirmed by a pure 

reference standard and literature data76. The samples W1D and W3D (maximum and 

minimum value of zeaxanthine dipalmitate, respectively) were reported as example 

chromatograms. From eight to thirteen peaks were detected, only some of which were 

tentatively identified by comparison with previously published data as zeaxanthin, β-

cryptoxanthin, and antheraxanthin mono and diacylates65,77. The results obtained by the 

performed analyses are shown in Table 1 and in Figure 5, where the mean values obtained 

by the different series were compared. CAR content was calculated as the sum of all the peak 

areas revealed at 450 nm and expressed as ZEA equivalents. Taking into account this 

approximation, ZEA ranged between 55% and 81% of the total carotenoids, with the only 

exception of sample W3U (Table 1). These data are consistent with Karioti et al. (2014), which 

reported zeaxanthin dipalmitate as principal component (82 and 87%) of carotenoids 

extracted by commercial samples of dried GBs64. No differences were shown between 

varieties P and W. Comparing U vs D and 2015 vs 2016, the lowering of ORG corresponds to 
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a lower content of CAR, but a higher content of ZEA was detected as if ZEA showed higher 

stability towards other carotenoid components. The ZEA (3.11-3.49) and the CAR contents 

(4.27-5.23 mg/g dry weight) of all the series were comparable. Therefore, according to the 

obtained data, the domestic homogenization (D method), although supplying a lower ORG 

yield, accounts for a higher ZEA content. The best yields were achieved in samples deriving 

from harvesting 1 (2015) and 4 (2016), corresponding to the commercial stage maturity of 

the collected fruits, also if the harvesting dates do not correspond strictly (July 6th vs July 26th). 

The highest ZEA content, obtained by D procedure, ranged between 4.5 and 5.5 mg/g of dry 

matter, and over-lapped in the two different selected varieties P and W and in the two 

considered harvesting dates (1: 2015 and 4: 2016). 

 

 
Figure 5. Example chromatograms (W1D and W3D) of carotenoid content and comparison 
among mean contents found for the Series P (Polonia), W (Wild), D (domestic), U 
(Ultraturrax®), harvested in 2015, and harvested in 2016. 

 

2.3.4 Color analysis 

Color plays a fundamental role in consumer choices. It is associated with quality and 

genuineness and could be correlated with the presence of a characteristic chemical profile 
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(pigments). The possibility to analyze food matrices as turbid juices, jellies, or homogenates, 

without any destructive treatment, represents a further advantage aimed to clarify what 

could alter the pigment content. The CIELAB data, obtained by the colorimetric analyses of 

the twenty Goji samples (P1D-P5D, P1U-P5U, W1D-W5D, and W1U-W5U) were reported in 

Table 2, and the resulting reflectance profile curves were shown in Table 2. The luminance L* 

ranges between a minimum of 35.65 and a maximum of 44.44. The redness a* values range 

between 16.81 and 30.54. The yellowness b* ranges between 14.71 and 29.16 with relevant 

differences. Results account for a comparable contribution to the color of the two parameters 

a* and b*. The “Wild” variety showed the lowest and the highest values (W5D: L* 35.65, a* 

16.81, b* 14.71; W1U: L* 44.44, a* 30.54, b* 28.95). Samples W1U, W2U, and W3U, all 

coming from the 2015 season, reached the highest intensity of orange color. Therefore, data 

did not show differences between the two varieties, but rather among the different 

harvesting dates and between the two different homogenization techniques, thus confirming 

the workup's preeminent role in preserving pigments and/or allowing a complete extraction 

from tissues. The above reported HPLC data also confirm this. Higher data for L* (53), a* (30), 

and b* (40) were assessed directly on fresh Goji berries, without homogenization treatment78. 

The same values lowered down to 32, 12, and 5, respectively, after drying at 70 °C. In some 

reports79–81, a correlation was found between HPLC or other quantitative analysis and color 

analysis of different food matrices. Several factors, such as fruit ripening, climatic conditions, 

varieties, and workup, could profoundly influence the pigment composition and, 

consequently, the color parameters, but only a few data have been published investigating 

carotenoids containing matrices such as wheat79, orange juices80, and corn82. In a study 

conducted by Humphries et al.79, the results show a positive correlation between b* and 

lutein content in the analyzed wheat samples. The comparison between HPLC and 

colorimetric analysis made by Kljak et al.82 on Zea mays showed that b* is directly correlated 

with lutein, β-cryptoxanthin, and β-carotene, whereas the pale orange colored zeaxanthin 

greatly influences a*. Globally, the carotenoids increase determined a color intensification 

that provided a correlated increment of C* and L* decrement. The high values of a* found in 

our samples suggested that a significant contribution was due to the color nuance by the 

zeaxanthin dipalmitate structure. Together with the other carotenoids, its content could be 

responsible for the total color appearance, as depicted by the data analysis. 
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Figure 6. Reflectance curves of the Goji berries homogenized samples. Wavelength vs 
Reflectance percentage (Panel A) and Wavelength vs Standardized Reflectance 
percentage (Panel B).  

 

2.3.5 Data correlation analysis 

Three subsets of data types were available for the twenty data points (P1D-P5D, P1U-P5U, 

W1D-W5D, and W1U-W5U) herein listed: the first was derived from colorimetric experiments 

(L*, a*, b* C*, hab), the second from quantitative analyses (ZEA, CAR and ORG amounts), and 

the third from spectroscopic experiments. Pearson correlation coefficients (r) were calculated 

among ZEA or CAR and every colorimetric feature to seek for correlations among either ZEA 

or CAR content and colorimetric parameters. The only acceptable results, aside from the 

expected correlation among CAR and ZEA amounts (0.76), was an indirect correlation among 

hab and ZEA (-0.61). Reflectance values were recorded between 400 and 700 nm. Acceptable 

r coefficients, ranging between 0.5 and 0.6, were obtained for data collected at 400-480 nm 

with the maximum at 430 nm. For all the analyzed samples in this range, the reflectance 

percentages seemed quite similar when plotted independently (Figure 6A). In contrast, a new 

profile was obtained by scaling the reflectance values (Figure 6B), highlighting some 

reflectance differences that could account for the found direct correlations. 
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2.3.6 Predictive linear model 

A common approach to the analysis of a sample of data is to seek linear correlations between 

the variables that describe the sample and the dependent property of the sample itself (i.e., 

the concentration). Predictive linear models were built employing the Scikit-learn library72. 

Colorimetric features were normalized to zero mean and unit variance by subtracting the 

mean from each feature and by dividing the values of each feature by its standard deviation: 

 

 𝑥′ =
(𝑥 − 𝑥̅)

𝜎
 (10) 

 

where x’ is the standardized feature vector, x is the original feature vector, x ̄is the mean, and 

σ the standard deviation. Due to the lack of satisfactory univariate linear regression models, 

a multivariate linear regression approach was adopted. A heuristic strategy to select the best 

features combination was set up. Simulated annealing83 features elimination (SAFE) algorithm 

in conjunction with Robust Linear Regression84 and Leave-One-Out (LOO) cross-validation was 

implemented in the Python programming language. The SAFE approach led to the optimized 

final models with 10 and 9 selected features for ZEA and CAR contents as dependent variables, 

respectively (Figure 7). 
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Figure 7. Experimental vs Recalculated/Predicted Concentrations of ZEA (Panels A, B) and 
CAR (Panels C, D). Plots were generated employing Seaborn Python library and Regression 
Coefficients of the ZAR model (Panel E) and CAR model (Panel F). Horizontal dashed lines 
correspond to the average of the coefficient’s absolute values. 

 

The robust regression predictive models were built using the Huber loss function (Huber 

Regressor), as implemented in scikit-learn. Models robustness and chance correlation 

absence were assessed through Leave One Out cross-validation and Y-scrambling procedures. 
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The resulting final models were endowed with good statistical coefficients (r2, RMSE, q2, 

RMSELOO), and the Y-scrambling procedure showed the absence of chance correlation (Table 

3). Equations (11) and (12) define a sort of calibration curves that enable the direct quantity 

pre-diction of ZEA or CAR, respectively. Among the two models, the one for ZEA is slightly 

more precise (r2 = 0.931) and more accurate (RMSE = 0.359) than CAR one. Both models are 

robust (see q2 values in Table 3) and reliable as in the Y-scrambling validation, the mean r2
Y-S 

and q2
Y-S values are lower than the corresponding unscrambled models. 

 
𝑦𝑧𝑒𝑎 = 𝛽0 + 𝛽1 ∗ 𝑥′

ℎ + 𝛽2 ∗ 𝑥′
400 + 𝛽3 ∗ 𝑥′

410 + 𝛽4 ∗ 𝑥′
490 + 𝛽5 ∗ 𝑥′

520

+ 𝛽6 ∗ 𝑥′
530 + 𝛽7 ∗ 𝑥′

600 + 𝛽8 ∗ 𝑥′
610 + 𝛽9 ∗ 𝑥′

660 + 𝛽10

∗ 𝑥′
690 

(11) 

 

 
𝑦𝑐𝑎𝑟 = 𝛽0 + 𝛽1 ∗ 𝑥′

410 + 𝛽2 ∗ 𝑥′
500 + 𝛽3 ∗ 𝑥′

520 + 𝛽4 ∗ 𝑥′
530 + 𝛽5 ∗ 𝑥′

540

+ 𝛽6 ∗ 𝑥′
580 + 𝛽7 ∗ 𝑥′

680 + 𝛽8 ∗ 𝑥′
690 + 𝛽9 ∗ 𝑥′

700 
(12) 

 

The regression models’ coefficients of (11) and (12) directly measure the features’ relative 

importance, as they were fitted using standardized parameters. Therefore, independent 

variables (features) with larger absolute values significantly affect the dependent variables 

(ZEA and CAR). The average absolute values (AAV) of coefficients in Table 3 were calculated 

to be 8.17 and 11.63 for ZEA and CAR models, respectively. Standardized reflectance 

wavelength percentages at 600, 660, and 690 nm for ZEA model (equation (11) and 520, 530, 

540, and 680 nm for CAR model (equation (12) displayed absolute coefficients higher than 

the respective AAV suggesting that ZEA is more sensible to reflectance measured in the 

narrow wavelength range (600-690 nm) differently from CAR which is described by a broader 

range (520-680 nm). These data indicate that it is possible to estimate ZEA content in CAR 

directly using equations (11) and (12). 
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Table 3. ZEA and CAR regression settings (estimator and optimized parameters) and statistical 

coefficients r2a, RMSEb, q2c, and RMSELOO
d. Below are also listed the selected features, and their 

regression coefficients and intercepts for the simulated anneal optimized ZEA and CAR models. 

 ZEA CAR 

Algorithm HRe HR 

epsilonf 1.5 1.4 

alphag 0.001 0.001 

r2 0.931 0.836 

RMSE 0.295 0.510 

q2
LOO 0.897 0.770 

RMSELOO 0.359 0.603 

r2
Y-S

h 0.453 0.371 

q2
Y-S

i -1.814 -1.616 

Selected features and regression coefficients 

# Name 𝒙k 𝝈l Coefficient Name 𝒙k 𝝈l Coefficient 

β0 intercept   3.29 intercept   4.66 

β1 h 41.90 2.50 5.38 410 5.14 0.14 1.57 

β2 400 5.23 0.15 -4.05 500 5.46 0.12 -3.80 

β3 410 5.14 0.14 7.47 520 5.65 0.14 14.58 

β4 490 5.35 0.12 -4.16 530 5.95 0.19 -25.53 
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β5 520 5.65 0.14 6.53 540 6.55 0.38 18.79 

β6 530 5.95 0.19 -7.12 580 15.57 2.53 -3.47 

β7 600 21.00 3.22 -10.14 680 28.08 3.72 18.76 

β8 610 22.82 3.38 2.35 690 28.38 3.76 -9.18 

β9 660 27.21 3.63 20.55 700 28.66 3.82 -8.97 

β10 690 28.38 3.76 -13.93     

a: squared correlation or determination coefficient 

b: root mean squared error of estimation 

c: cross-validated squared correlation coefficient 

d: cross-validated root mean squared error of prediction 

e: Huber Regressor 

f: epsilon is the parameter that controls the number of samples classified as an outlier 

g: alpha is the regularization parameter 

h: r2 mean value from Y-scrambling model validation 

i: q2 mean value from Y-scrambling model validation 

k:𝑥̅ mean of the feature vector 

l: 𝜎 standard deviation of the feature vector 

 

2.4 Conclusions 

Two different Goji berry selections, cultivated in Italy, were submitted to an analytical 

evaluation that accounts for other homogenization techniques and different maturation 

stages. A new, rapid, cheap, and simple workup was developed and presented for the first 

time, as a one-step procedure for the extraction and purification of carotenoid bioactive 

components. The extraction method herein reported allowed to obtain a high amount of ZEA 

(about 5.5 mg/g dry weight of the analyzed Goji berries). Its pharmacological activity in the 

prevention of the ADM could endorse GBs as a suitable matrix in functional food or food 

supplement preparations. The quantitative HPLC-DAD analysis of the overall carotenoid 
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content and the most representative xanthophyll zeaxanthin dipalmitate agreed with the 

colorimetric CIELAB analysis performed on the homogenized samples. Results allowed to 

highlight differences between the two cultivars and the harvesting periods and, even more 

noticeable, between the two applied homogenization techniques. Data obtained from the 

compared simulating domestic mixer and industrial Ultraturrax® high-speed homogenization 

underlines that this passage plays a predominant role in the preservation and subsequent 

extraction of the colored and bioactive components, so that the colorimetric analysis can 

show different characteristics. Thus, it is relevant both for the consumer choices, primarily 

based on food color and for industrial evaluations on the nutritional value of eventual food-

derived products. Linear correlations between CAR or ZEA amounts with colorimetric 

parameters were defined and statistically validated. The encouraging results indicate that 

quick and economic colorimetric analysis, directly performed on homogenized samples, could 

enable the ZEA and CAR quantity prediction for commercial purposes. Further experiments 

are in due course to experimentally validate the models. 
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3 Antimicrobial and antibiofilm activity and machine learning 

classification analysis of essential oils from different Mediterranean 

Plants against Pseudomonas aeruginosa 

 

 

3.1 Introduction 

The extraordinary ability of bacteria to colonize new environments is undoubtedly related to 

biofilm formation. Biofilm lifestyle is associated with a high tolerance to exogenous stress: 

consequently, the treatment of biofilms with antibiotics or other biocides is usually ineffective 

at eradicating them. Biofilm formation is inevitably a significant problem in many fields, 

ranging from the food industry to medicine. In medical settings, biofilms are the cause of 

persistent infections implicated in 80% or more of all microbial cases, releasing harmful toxins 

and even obstructing indwelling catheters85. Bacteria of clinical relevance, such as 

Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii, among 

others, proliferate on medical devices and form biofilms which provide them with up to 1000 

times more effective resistance and tolerance to antibiotics in comparison with their 

planktonic forms86. 

P. aeruginosa is a common Gram-negative bacillus, able to adapt and survive in unfavorable 

environmental conditions, including minimal nutritional sources. It can cause disease in plants 

and animals, as well as humans. P. aeruginosa is a multidrug-resistant pathogen recognized 

for ubiquity, intrinsically advanced antibiotic resistance mechanisms, and association with 

serious illnesses, especially hospital-acquired infections, such as ventilator-associated 

pneumonia (VAP)85 and various sepsis syndromes87. Severe infections caused by P. aeruginosa 

often occur during existing diseases or conditions, most notably cystic fibrosis and traumatic 

burns. In spite of the progress of antimicrobial therapies, infections by P. aeruginosa can still 

cause a mortality percentage range between 18% and 61% of cases88,89. The significant impact 

of P. aeruginosa infection is mainly due to its capability to form biofilm90. 

Once firmly established, the biofilm can be very difficult to eradicate as the bacteria are 

embedded in a self-produced polymeric substance, providing low susceptibility to 
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conventional antimicrobial agents91 and host defense cells of the immunologic system and 

resulting in chronic infections92. 

Considering these assumptions, the interest in the development of new approaches for the 

prevention of bacterial adhesion and biofilm formation has increased. Therefore, the 

development of anti-biofilm strategies is of significant interest and currently constitutes an 

important field of investigation in which non-biocidal molecules are highly valuable to avoid 

the rapid appearance of escape mutants93. Thus, the rationale of this study was to search for 

new antimicrobials that have the power to inhibit virulence instead of bacterial growth; such 

a choice may impose a weaker selective pressure for the development of antibiotic resistance 

to current antibiotics. 

Compounds of natural origin still provide a high number of interesting structures, even in this 

era of combinatorial chemistry. Essential oils (EOs) represent a group of antimicrobial agents, 

which are complex mixtures of volatile secondary metabolites94,95. Essential oils (Eos) show 

antimicrobial and antifungal properties and are also largely used in various cultures for 

therapeutic and health purposes. The wide use of EOs applies to aromatherapy, household 

cleaning products, personal beauty care, and natural medical treatments. Furthermore, EOs 

may synergically enhance the antimicrobial potencies of some drugs96,97. Several EOs and 

phytochemicals have been reported to inhibit biofilm formation by bacteria and fungi40,41, 

and their effects on P. aeruginosa have been studied98,99. Taking into account the same plant 

variety, EO composition can differ according to geographical region, seasonality, and 

extraction methodology35–37. 

This study reports chemical composition, antibacterial and anti-biofilm activity against P. 

aeruginosa of 89 different EOs obtained from 3 other plants harvested in different seasons 

and conditions: Calamintha nepeta (L.) Savi subsp. glandulosa (Req.) Ball (CG)35, Foeniculum 

vulgare Miller (FV)37, and Ridolfia segetum Moris (RS). Furthermore, quantitative activity-

composition relationships (QCAR) were developed through machine learning classification 

approaches to discover the chemical components mainly responsible for the anti-biofilm 

activity. 
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3.2 Material and Methods 

3.2.1 Plants 

Fresh aerial parts of CG35, FV37, and RS were collected in a wild area about 15 km from 

Tarquinia city (Province of Viterbo, Italy), in the archaeological zone near the Etruscan temple 

Ara della Regina (42°15′31.8″ N, 11°48′08.7″ E). The material was collected in summer and 

early autumn periods of the year 2015 and monitored for four (CG) and three (FV) months, 

from July to October, thus covering pre-, during-, and post-flowering periods. Regarding RS, 

this is an annual summer plant, completing its life cycle within June/July. Hence, this species 

has been monitored in different extraction times, not periods of harvesting. CG oils were 

obtained directly from fresh plant material, while FV and RS were air-dried in a shady place 

for 20 days. Voucher specimens have been deposited in the Department of Drug Chemistry 

and Technology at Sapienza University of Rome, Italy. Taxonomic identification of the chosen 

species was conducted according to the official European flora and the National Italian one 

3.2.2 Essential Oils Extraction 

Essential oils have been isolated, as previously reported, by direct steam distillation using a 

62 L steel distillation apparatus (Albrigi Luigi E0131, Verona, Italy)35,36,100. Briefly, plant 

materials (about 1.5 kg) were subjected to fractioned steam distillation36, collecting EOs at six 

interval times of 1, 2, 3, 6, 12, and 24 hours. In the case of RS a seventh fraction was collected 

after 30 hours. 

At each fraction, the oil/water double phase was extracted three times, with 20 mL of diethyl 

ether. The organic layers were dried over anhydrous sodium sulfate (Na2SO4), filtered, and 

deprived of the solvent in vacuo to furnish the final EOs, which were stored in the freezer in 

tightly closed dark vials until further analysis. 

Besides, to simulate parallel continuous EO extraction for 2, 3, 6, 12, 24, and 30 hours, 

mixtures were prepared by adding different amounts of diethyl ether to each oil fraction, up 

to 10 mL in total (e.g., 7 mL of diethyl ether to 3 mL of the oil). The desired oily mixes were 

obtained by combining 1 mL of each ether-oil solution and then letting ether evaporate. 
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3.2.3 CG-MS Analysis 

The gas chromatographic/mass spectrometric (GC/MS) EOs analyses were carried out with a 

GC-MS and GC-FID similarly as previously described35,100. 

 

3.2.4 Bacterial Strains and Culture Conditions 

P. aeruginosa PaO1 was grown in Brain Heart Infusion broth (BHI, Oxoid, Basingstoke, UK). 

Planktonic cultures were grown in flasks under vigorous agitation (180 rpm) at 37 °C while 

biofilm formation was assessed in a static condition at 37 °C in 96-well plates for 18 hours. 

 

3.2.5 Determination of Minimal Inhibitory Concentration (MIC) 

MIC was performed according to the guidelines of Clinical Laboratory Standards Institute 

(CLSI). Each EO was added directly from mother stock, and solutions were prepared by two-

fold serial dilutions. Mother stock solutions were obtained by solubilizing each EO in DMSO 

at a final concentration of 1 g/mL. A total of 10 concentrations were used within the 25-0.045 

mg/mL range. Experiments were performed in quadruplicate. The MIC was determined as the 

lowest concentration at which the observable bacterial growth was inhibited. No inhibition 

of the bacterial growth was highlighted at tested concentrations. 

 

3.2.6 Static Biofilm Assay 

Biofilm formation of P. aeruginosa PaO1 was evaluated in the presence of each EO. 

Quantification of in vitro biofilm production was based on previously reported 

methodology93. Briefly, the wells of a sterile 96-well flat-bottomed polystyrene plate were 

filled with 100 µL of the appropriate medium. A measure of 1/100 dilution of overnight 

bacterial cultures was added into each well (about 0.5 OD 600 nm). As a control, the first row 

contained bacteria grown in 100 μL of BHI (untreated bacteria). 

Furthermore, BHI broth was added to the remaining wells starting from the third row. In the 

second row, we added BHI supplemented with each EO at a concentration of 25 mg/mL. 

Samples were serially diluted (1:2 dilutions) starting from this lane. The plates were incubated 

aerobically for 18 hours at 37 °C. 
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Biofilm formation was measured using crystal violet staining. After treatment, planktonic cells 

were gently removed; each well was washed three times with double-distilled water and 

patted dry with a piece of paper towel in an inverted position. Each well was stained with 

0.1% crystal violet and incubated for 15 minutes at room temperature, rinsed twice with 

double-distilled water, and thoroughly dried to quantify biofilm formation. The dye bound to 

adherent cells was solubilized with 20% (v/v) glacial acetic acid and 80% (v/v) ethanol. After 

30 minutes of incubation at room temperature, OD590 was measured to quantify the 

biofilm's total biomass formed in each well. Each data point is composed of four independent 

experiments, each performed at least in triplicate. 

 

3.2.7 Statistical Analysis of Biological Evaluation 

Data reported were statistically validated using Student’s t-test comparing mean absorbance 

of treated and untreated samples. The significance of differences between mean absorbance 

values was calculated using a two-tailed Student’s t-test. A p-value of <0.05 was considered 

significant. 

3.2.8 Machine Learning 

3.2.8.1 General methods 

Binary classification models development and validation were carried out by an in-house 

python script based on the scikit-learn machine learning library72. First, the data were 

imported and pre-processed to obtain the independent data matrix consisting of 89 rows 

(essential oil samples) and 54 columns (chemical components). Two dependent target vectors 

containing 89 biofilm formation percentage observations at 48 μg/mL and 3.125 mg/mL were 

defined. 

Principal Component Analysis (PCA)20 was used to check for linear data separability, while 

Gradient Boosting (GB)9 for non-linear classification. Cross-validation was used to search for 

the optimal inhibition percentage cut-off value in order to define active and inactive samples. 

The optimal cut-off values were used to obtain the final classification model. Hyper-

parameter optimization was finally achieved through a systematic grid search of the number 

of stages to perform (number of trees), maximum depth of individual tree which limits the 
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number of nodes in the tree (max depth), minimum number of samples required to be at a 

leaf node (min sample leaf), and the number of features to consider (Table 4). 

 

Table 4. GB parameters used in the grid search for optimal hyper-parameterization 

N estimators 100 250 500 750 1000 1250 1500 1750 

Max depth 3 4 5 6 7 8 9 10 

Min samples leaf 1 3 5 7 9 11 13 15 

Max features 0.7 0.6 0.5 0.4 0.3 0.2 log2a sqrtb 

a sqrt: max features = √(nfeatures) 

 b log2: max features = 𝑙𝑜𝑔2(𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) 

 

The final classification model was numerically and graphically evaluated by accuracy (ACC), 

Matthews correlation coefficient (MCC), receiver operating characteristic (ROC) (Figure 8), 

and precision-recall (PR) (Figure 9) curves. Finally, the importance of EOs chemical 

components was evaluated individually through the “feature importance” and “partial 

dependence” plots9. Partial dependence plots may be viewed as a graphical representation 

of linear regression model coefficients that extends to arbitrary model types, addressing a 

significant component of the model. 
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Figure 8. ROC curve for the GB classification model obtained for biofilm inhibition measured at 
48.8 μg/ml. 

 

 
Figure 9. Precision-Recall curve for the GB classification model obtained for biofilm inhibition 
measured at 48.8 μg/ml. 
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3.2.8.2 Validation 

Validation of the classification model was carried out by leave-one-out cross-validation and 

taking into account the accuracy (ACC), the precision or positive predictive value (PPV), the 

recall or sensitivity or true positive rate (TPR), specificity or true negative rate (TNR), receiver 

operating characteristic (ROC) curve, and the Matthews correlation coefficient (MCC)101. 

 

3.3 Results 

3.3.1 EO Extraction 

The fractioned extraction process applied to three different plant species, two of them being 

also monitored in terms of different harvesting periods, showing great differences in EO 

yields36. In the case of CG, usually, the major parts of EOs were extracted in the first 3 or 6 

hours35. The great impact of the harvesting period is particularly evident in the case of FVEOs, 

and a significant increase, of up to five times, in essential oil amount was noticed in October 

when the plant was fruiting37. Annual RS gave a very unusual yield curve with the first 

maximum after the first hour of extraction and the second one between the third and sixth 

hours of the extraction process. Relative yield percentages of EOs (calculated per weight of 

fresh/dried plant material) and total yields over time are given in Table 5 and  

Table 6. 

Table 5. Relative yields % of essential oils over time 

Plant species 
h 1 1 2 3 6 12 24 

m 2  

CG 

Jul. 0.300 0.350 0.360 0.366 0.370 0.373 

Aug. 0.300 0.360 0.400 0.420 0.426 0.432 

Sep. 0.190 0.250 0.300 0.360 0.376 0.381 

Oct. 0.180 0.260 0.290 0.320 0.328 0.328 

FV 

Aug. 0.070 0.110 0.140 0.180 0.196 0.213 

Sep. 0.090 0.140 0.170 0.200 0.218 0.240 

Oct. 0.360 0.640 0.830 1.090 1.210 1.250 

RS na 0.200 0.300 0.440 0.640 0.740 0.800 

1 Extraction hour, 2 Month of harvesting, na - not applicable. 
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Table 6. EO Yield % calculated on the dried (FV and RS) or fresh (CG) plant material. 

Plant species 
h 1 1 2 3 6 12 24 

m 2  

CG 

Jul. 0.300 0.050 0.010 0.006 0.004 0.003 

Aug. 0.300 0.060 0.040 0.020 0.006 0.006 

Sep. 0.190 0.060 0.050 0.060 0.016 0.005 

Oct. 0.180 0.080 0.030 0.030 0.008 0.0004 

FV 

Aug. 0.070 0.040 0.030 0.040 0.016 0.017 

Sep. 0.090 0.050 0.030 0.030 0.018 0.022 

Oct. 0.360 0.280 0.190 0.260 0.120 0.040 

RS na 0.200 0.100 0.140 0.200 0.100 0.060 

1 Extraction hour, 2 Month of harvesting, na - not applicable. 

 

 

3.3.2 GC-MS Analysis of EOs 

Obtained CGEOs, FVEOs, and RSEOs were analyzed in terms of chemical composition35,37. The 

extraction method applied gave fractions that differ significantly in their chemical 

composition characterized by 89 samples with a total of 54 chemical constituents differently 

distributed (Table 7 and Table 8). For each EO, the main characterizing compounds are usually 

present in every fraction, variations in their amount are particularly abundant in the first three 

fractions (up to 3 hours of extraction process) with a very low percentage, or even absent, in 

the last three (after 12 or 24 hours). Furthermore, some compounds appear only with the 

development of the extraction process, being significantly present only in the last fractions. 

Concerning the harvesting period, essential oil chemical profiles were found to be heavily 

influenced by this factor. Details for CG and FV (Table 7) have already been reported35,37, while 

chemical data for RS are reported in table Table 8. 
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Table 7. Chemical composition (%) of the most active FVEO samples. 

# 1 Name 
Sample2 

A1h A3h A6h A12h AM1 AM2 AM3 AM4 S1h OM1 OM4 

1 α‐pinene ‐ 2.9 4.9 1.1 1.0 7.0 3.9 3.3 1.9 4.3 19.6 

2 β‐pinene ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ 3.3 1.4 

3 β‐terpinene ‐ ‐ ‐ ‐ ‐ 0.4 0.9 0.6 ‐ ‐ ‐ 

4 β‐myrcene 1.6 1.4 1.5 0.8 0.2 0.4 1.0 1.1 1.4 3.0 2.0 

5 α‐phellandrene 18.3 6.1 20.5 3.9 0.4 0.7 1.0 10.5 13.0 2.7 7.7 

6 d‐limonene 7.5 7.0 8.2 3.7 1.8 3.4 6.8 6.0 12.4 1.0 4.4 

7 β‐phellandrene 6.6 4.1 4.6 2.2 1.2 2.2 5.0 4.4 6.8 1.1 1.6 

8 γ‐terpinene 1.1 1.1 2.6 0.8 0.1 0.2 1.0 1.1 1.5 3.9 1.6 

9 o‐cymene 35.5 25.2 19.1 14.0 16.0 23.5 35.3 28.7 52.5 1.5 2.9 

10 terpinolene ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ 0.1 0.5 

11 fenchone 2.4 1.3 0.4 0.2 4.8 2.6 2.0 1.7 ‐ 4.8 8.8 

12 dehydro‐p‐cymene 0.2 0.5 0.6 1.8 ‐ ‐ ‐ ‐ ‐ ‐ ‐ 

13 isomenthone 0.5 1.1 1.0 2.2 ‐ ‐ ‐ ‐ ‐ ‐ ‐ 

15 pulegone 2.3 4.4 0.3 9.3 4.5 2.2 2.8 3.7 0.4 ‐ ‐ 

16 estragole 18.5 14.5 6.1 1.7 22.5 14.8 14.6 13.2 ‐ 70.6 47.1 

17 p‐ment‐en‐2‐one ‐ 3.4 3.5 9.7 3.8 1.1 2.0 2.7 0.6 ‐ ‐ 

18 phellandral ‐ 1.1 2.3 4.1 1.4 1.6 1.1 1.3 0.2 ‐ ‐ 

20 cis‐sabinol 4.7 8.6 6.3 9.5 7.8 5.6 6.1 6.5 2.2 ‐ ‐ 

21 p‐cymen‐8‐ol ‐ 3.0 1.7 3.5 5.2 2.0 1.8 1.8 0.8 ‐ 1.1 

22 2,3‐pinanediol ‐ ‐ ‐ ‐ 7.8 3.3 2.8 5.7 1.3 ‐ ‐ 

26 thymol ‐ 5.9 9.1 14.7 4.8 6.7 3.7 4.6 1.2 ‐ ‐ 

27 myristicin ‐ ‐ 2.2 5.6 1.6 0.8 1.0 ‐ 2.7 1.2 1.1 

28 piperitenone oxide ‐ ‐ 2.5 5.8 4.9 19.5 4.0 ‐ ‐ 0.7 ‐ 

Unidentified compounds 0.8 8.4 2.6 5.4 10.2 2.0 3.2 3.1 1.1 1.8 0.2 

1 # indicates the compound identification number; 

2samples names were given by merging the month first letter and extraction time as reported in Table 5 or by 

merging the first letter of the month, the letter M (mixture) and serial number of the mix. 
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Table 8. Chemical composition (%) of the most active RSEO samples. 

# 1 Name 
Sample 2 

1h 3h 12h 30h 

1 α‐pinene 3.9 3.6 1.2 ‐ 

2 β‐pinene 4.6 3.4 1.5 0.1 

3 β‐myrcene 0.9 1.2 0.4 ‐ 

4 α‐phellandrene ‐ ‐ 5.4 0.6 

5 d‐limonene 7.4 6.7 1.2 0.3 

6 β‐terpinene 3.0 4.9 1.8 0.3 

7 β‐ocimene 0.5 1.3 0.8 0.2 

8 o‐cymene 40.1 3.8 7.4 4.2 

9 terpinolene ‐ 2.1 1.6 ‐ 

11 borneol ‐ 3.3 3.0 3.0 

12 pulegone ‐ ‐ 0.8 2.6 

13 citral ‐ 1.0 ‐ ‐ 

14 cryptone ‐ 2.5 ‐ ‐ 

15 p-menth‐1‐en‐2‐one ‐ 2.2 2.1 9.7 

17 cis‐sabinol ‐ 5.8 4.3 12.9 

18 p‐cymen‐8‐ol 9.2 13.4 3.0 6.4 

19 piperitenone oxide 6.5 3.6 1.0 1.9 

21 2,3‐pinanediol 9.6 1.8 2.1 ‐ 

23 myristicin ‐ ‐ 3.2 1.7 

24 apiol 6.5 21.1 59.2 56,1 

Unidentified compounds 7.8 18.3 0.0 0.0 

1 # indicates the compound identification number; 

2samples names indicate the extraction time, as reported in Table 5. 
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3.3.3 Qualitative Analysis of EOs Effect on Biofilm Formation of P. aeruginosa 

In order to exclude if selected EOs contained molecules affecting bacterial viability, the 89 

EOs were also analyzed for antimicrobial activity. In vitro EOs bacteriostatic and bactericidal 

activities were evaluated on P. aeruginosa by broth microdilution methods. An appropriate 

dilution (106 cfu/mL were used as reported by National Committee for Clinical Laboratory 

Standards NCCLS, 2004) of the bacterial culture of P. aeruginosa in the exponential phase was 

used. No antimicrobial activity on P. aeruginosa strains was highlighted for all tested EOs 

(maximal concentration tested 25 mg/mL). The anti-biofilm effects of EOs from different 

plants above described were examined on P. aeruginosa PAO1. Firstly, we selected some 

representative EOs samples (two for RS, three for CG, and FV) to evaluate the anti-biofilm 

efficacy at different concentrations starting from 25 mg/mL using scalar dilutions (Table 9). 

Table 9. Effect of EOs at different concentrations (scalar concentrations starting from 25 mg/mL) on 

biofilm formation of P. aeruginosa PaO1. Data are reported as the percentage of residual biofilm 

after the treatment in comparison with the untreated one. Each data point is composed of four 

independent experiments, each performed at least in triplicate. 

EO (mg/mL) R3 R12 CJM3 CAM4 CSM2 FS1 FSM5 FOM4 

25 55.11 50.62 36.71 59.48 28.23 30.84 47.38 28.31 

12.5 41.41 45.18 37.10 54.56 41.36 38.83 49.12 25.48 

6.25 37.77 57.44 34.64 55.82 37.79 30.16 49.51 25.01 

3.125 42.25 57.42 40.09 71.80 40.48 38.40 54.16 25.62 

1.55 48.49 65.06 38.80 69.33 44.34 44.93 90.16 30.44 

0.78 47.81 64.60 50.05 67.19 51.65 38.67 78.74 37.15 

0.39 49.49 61.97 54.87 72.45 42.97 84.39 76.10 39.34 

0.18 57.39 66.48 53.90 69.42 49.18 60.02 80.81 32.54 

0.09 60.37 61.83 48.00 72.80 43.08 59.75 78.51 38.32 

0.0488 70.65 59.05 52.99 83.24 50.26 42.44 88.71 38.28 

0.0244 45.12 63.91 41.65 73.93 34.01 47.96 59.63 39.47 

0.0122 64.81 66.11 46.59 73.19 40.02 57.26 75.63 38.29 

0.0061 65.40 59.87 50.14 82.00 37.86 27.50 143.53 37.34 

0.00305 63.06 78.37 45.22 69.05 35.44 38.70 117.45 39.75 

0.00152 60.94 70.11 44.76 79.77 40.72 44.94 104.92 47.53 

0.00076 61.95 65.18 40.29 73.17 37.14 37.13 112.35 53.00 

0.0003814 61.13 62.05 49.74 76.76 47.15 42.07 113.75 37.23 

0.0001907 56.98 65.80 48.48 83.21 49.49 36.59 90.67 57.15 

0.00009535 72.29 65.27 45.52 71.44 52.18 39.25 79.33 46.41 

0.000047675 64.71 74.79 44.19 91.78 46.23 43.30 99.52 68.74 
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The obtained preliminary data were analyzed in terms of biofilm reduction and 

reproducibility, which led to selecting two concentrations as the most representatives (3.125 

mg/mL and 0.0488 mg/mL). The first concentration was in the range of milligrams. The second 

one was in the range of micrograms. The percentages of residual biofilm after treatment at 

these two concentrations (3.125 mg/mL and 0.0488 mg/mL) for all 89 essential oils are 

reported in Figure 10. It is worth noticing that each EO had a specific effect on biofilm 

formation, thus depending on its characteristic and unique composition, which was previously 

quali-quantitatively analyzed chemically. Furthermore, the majority of tested EOs had an 

inhibitory effect on P. aeruginosa PaO1 biofilm formation. Arbitrarily, three biofilm inhibition 

levels were considered for clustering the EOs potencies qualitatively: potent biofilm inhibition 

in the range 0–40% of residual biofilm, mild inhibition in the range 40-80%, and no biofilm 

inhibition over 80% of residual biofilm, respectively. 

In some cases, an increase in biofilm formation was highlighted after the treatment. As 

reported in Figure 10A, almost all EOs samples derived from FV showed to be able to inhibit 

biofilm formation of P. aeruginosa PaO1. The only exception was the FO1 sample. A marked 

effect dose-dependent was observable (i.e., FA2, FSM5, FO3, FO6, and FOM4, where the anti-

biofilm effect was proportional to the concentration of EO used). In Figure 10B, the effects of 

EOs from CG on PaO1 biofilm formation are reported. Differently from FV data, several CGEOs 

samples showed increasing biofilm production directly proportional to the concentration 

used. Among all assayed EOs, some of them, such as CO2, produced an inhibitory effect on 

the biofilm at higher concentrations and increased it at lower concentrations. Instead, other 

EOs can strongly inhibit biofilm formation already at very low concentrations (reduction of 

biofilm higher than 50%). Regarding the results obtained with extracts derived from RS, all of 

them inhibited biofilm. In most cases, the reduction is proportional to the concentration of 

EO used (R1, R3, R6, R24, R30, RM2, RM3, and RM4). Conversely, EOs named R2, R12, RM5, 

and RM6 did not show an anti-biofilm effect correlated to the concentration used. Only in the 

case of RM1, there is an opposite relationship between the concentration used and the anti-

biofilm effect (Figure 10C). 
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A 

 

B 

 

C 

 
Figure 10. Effect of EOs from Foeniculum vulgare Miller (FV) (A), Calamintha nepeta (L.) Savi subsp. 
glandulosa (Req.) Ball (CG) (B), and Ridolfia segetum Moris (RS) (C) on biofilm formation of P. aeruginosa 
PaO1. Data are reported as percentage of residual biofilm after the treatment in comparison with the 
untreated one. Each data point is composed of four independent experiments each performed at least in 
triplicate. 
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Table 10 summarizes the results of the anti-biofilm activity of EOs grouped in four different 

classes corresponding to their capability to impair biofilm formation. This classification was 

based on results reported in Figure 10 obtained with a higher concentration of EOs (3.125 

mg/mL). In particular, a substantial biofilm reduction was judged if the residual biofilm was in 

the range 0-40%, medium reduction if the residual biofilm was in the range 40-80%, and no 

reduction for residual biofilm higher than 80%. In such cases, an enhancer effect on biofilm 

formation was evidenced after the treatment with EOs. This latter was observable only for 

such EOs obtained from CG. 

 

Table 10. An arbitrary classification of 89 EOs samples in 4 different classes depending on 
their capability to impair biofilm formation. 

Strong reduction 
(< 40% residual biofilm) 

Medium reduction 
(40-80% residual biofilm) 

No reduction 
(80 - 100% residual 

biofilm) 

Enhancer effect 
(>100% residual 

biofilm) 

FV CG RS  FV CG RS  FV CG RS FV CG RS 

FA1 COM2  FA2 CJM3 R1 FO1 CA6 RM1  CA1  

FA3   FA24 CJM4 R2  CJ3 RM3  CA2  

FA6   FAM5 CO1 R3  CJM1 RM4  CA3  

FA12   FS2 CO2 R6  CJM5   CAM1  

FAM1   FS3 CO3 R12  COM1   CAM3  

FAM2   FS6 CO6 R24  COM3   CJ1  

FAM3   FS12 CO12 R30  COM5   CJ2  

FAM4   FS24 CO24 RM2  CS2   CJM2  

FS1   FSM2 CS1 RM5  CS3   COM4  

FOM1   FSM3 CS12 RM6  CSM1   CS6  

FOM4   FSM4 CS24       CSM3  

   FSM5 CSM2      
 CSM5   

   FO2 CSM4      
   

   FO3 CA12           

   FO6 CA24           

   FO12 CAM2         

   FO24 CAM4         

   FOM2 CAM5         

   FOM3 CJ6      
   

   FOM5 CJ12     
   

     CJ24      
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3.3.4 Application of Machine Learning Algorithms 

Initial application of linear models by the PCA formalism revealed the lack of linear 

dependence between biofilm production inhibition and chemical composition as no 

acceptable classification model was obtained using biofilm production percentages observed 

at either 0.0488 or 3.125 mg/mL. Indeed, a visual inspection of the scores plot of the first two 

principal components (PCs), accounting for more than 75% of data variance, revealed the 

presence of at least three clusters (Figure 11). 

 

  

A B 

Figure 11. PCA first 2 PCs graphical plots. The core plot (A) indicates the presence of at least three 

clusters (circled in (A)). The loading plots (B) highlights that estragole, o-cymene, and pulegone could 

be the most important chemical constituents among all the tested EOs. 

 

Concurrently, from Figure 11, PCA identified the three plants' derived essential oils, although 

it was impossible to obtain a clear separation between Ridolfia and Foeniculum EOs. PCA-

related loading plots indicated that estragole, o-cymene, and pulegone chemical components 

were the most important chemical constituents among all the tested EOs. Furthermore, the 

scores plot (Figure 11A) highlighted the lack of any linear classification among the 89 EOs as 

the three clusters cannot be associated with any level of biofilm production percentage. 

Linear classification models using algorithms such as logistic regression (LR) and linear support 

vector machines7 did not lead to satisfying classifiers. Therefore, non-linear algorithms like 



49 
 

Random Forest (RF)8, non-linear Support Vector Machine (SVM)102, and Gradient Boosting 

(GB)9 were applied. 

Among the used algorithms, GB led to the most robust binary classification model. To this 

aim, at first, the optimal biofilm production percentage for the binary classification was 

investigated by systematically increasing it from a starting 40 to 80% and monitoring the 

accuracy by leave-one-out cross-validation. The best GB classification model was obtained at 

50% and 46% for the 48.8 µg/mL and 3.125 mg/mL concentrations, respectively (Figure 12). 

Therefore, EOs characterized by more than 50% (or 46%) of biofilm production were classified 

as inactive. Those with lower values were considered active. 

 

  

A B 

Figure 12. Analysis of best cutoff values for the GB classification models at 48.8 μg/ml (A) and at 

3.125 mg/ml (B). 

 

The two models were characterized by good statistical values (Table 11). In particular, greater 

robustness was obtained for the classification model defined at 48.8 µg/mL oil concentration 

as highlighted from ACC, MCV, precision-recall AUC, and ROC AUC higher values (Figure 8 and 

Figure 9). 
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Table 11. Cross-validation scores for the binary GB classification models a. 

Statistical Parameter At 48.8 μg/mL At 3.125 mg/mL 

ACC CV 0.90 0.72 

MCC CV 0.64 0.51 

Precision–Recall AUC 0.84 0.72 

ROC AUC 0.80 0.68 
a final optimized models were obtained with the following settings: max depth = 3, max features = 0.9, min 

samples_leaf = 16, n estimators = 500. 

 

3.4 Discussion 

This study aimed to address the potential of selected EOs to prevent and treat biofilm 

produced by P. aeruginosa. This microorganism is widespread and is a frequent foodborne 

pathogen. Although P. aeruginosa is an opportunistic pathogen and rarely causes disease in 

healthy persons, it is a notorious nosocomial pathogen, posing a high risk to 

immunosuppressed individuals and other highly vulnerable populations patients103. P. 

aeruginosa can cause pneumonia, catheter-associated and urinary tract infections, and sepsis 

in wounded patients, sometimes resulting in chronic severe infections and health 

complications. The ability of P. aeruginosa to form biofilm renders it refractory to the action 

of antibiotics and disinfectants and able to survive in unfavorable conditions for a long time. 

Based on these considerations, it is evident the importance of having new strategies to impair 

biofilm formation by P. aeruginosa. 

 

3.4.1 Chemical Quantitative Composition-Activity Relationships 

Significant to moderate biofilm reducing activity was observed for several CGEO samples 

against P. aeruginosa PaO1 strain. Analyzing data showed in Figure 10, the extraction 

process's duration seems to influence the activity on this strain, since in every month (except 

October), the last fractions (12 and 24 hours) were found to be more effective. The observed 

efficacy of these last fractions could be potentially associated with the increase of 

chrysanthenone. Some FVEO samples from the August harvest demonstrated remarkably 

high biofilm inhibition of this strain, in some samples, even more than 80%. With few 

exceptions, September samples did not show any significant reduction, while several FVEOs 
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obtained from fruiting material (FOM1 and FOM4) showed significant ability to impair biofilm 

formation, even in the relatively low concentration. 

Further data analysis (Figure 11) suggests the potential influence of different chemical profiles 

on oil’s efficacy. Namely, October samples differ from the ones obtained during the pre-

fruiting phenological stage, having estragole as the principal constituent. The presence of this 

phenylpropene in these samples may be the main reason for biofilm inhibition. On the other 

side, the higher susceptibility of P. aeruginosa strain to the oils obtained from August 

harvesting may be influenced by some other components characteristic of the EOs obtained 

in that period that possibly exerts some additive effect in the expression of overall activity (α-

phellandrene, β-phellandrene, or thymol). 

P. aeruginosa PaO1 was sensitive only to specific RSEO fractions (Figure 10C). However, taking 

into account the chemical analysis of the samples, a positive correlation cannot be established 

between the content of o-cymene and apiol, the main characterizing compounds, and the 

inhibition of biofilm formation. Probably some minor components may influence biofilm 

inhibition. 

In such cases in the presence of EOs obtained by CG, an enhancer effect on biofilm formation 

was observed. This second effect is an exciting result and supports the theory that plants 

produce molecules that regulate biofilm formation in different environments: a fascinating 

example of inter-kingdom regulation. The regulatory pathways of the sessile phenotype could 

be related to the competitive dynamics of habitats. Identifying the molecules responsible for 

these mechanisms could be attractive in opening new perspectives for the control of bacterial 

biofilm formation. It is worth noting that the EOs that we used represent a complex pool of 

chemical cues that could be characterized by different capabilities to either impair or promote 

biofilm formation. 

 

3.4.2 Gradient Boosting Binary Classification Model 

The most robust classification model defined at 48.8 µg/mL oil concentration was analyzed 

through partial dependence (Figure 13) and feature importance (Figure 14) plots9 
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Figure 13. Partial Dependence plot obtained for the GB classification models at 48.8 μg/ml for the 
EOs’ chemical components 
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Feature importance plot highlights each chemical constituent's absolute importance, while 

partial dependence plots built for the most important components give direct univariate 

relationships with the biofilm inhibitory activity, giving direct information on positive or 

negative effects.  

 
Figure 14. Feature importance plot obtained for the GB classification models at 48.8 µg/mL. 

 

From Figure 14, considering a threshold of 5%, six compounds, namely estragole, methol and 

phellandral, d-limonene, pulegone, and chrysanthenone, can be considered as those most 

influencing biofilm productions, being estragole and phellandral the most significant. The 

partial dependence plots were investigated for all compounds (Figure 13) to ascertain 

whether components correlate positively or negatively with biofilm inhibition. The partial 

dependence plots for the above six compounds (Figure 15) directly indicate estragole and 

phellandral as those most critical for biofilm inhibition.  
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Figure 15. Partial Dependence plot obtained for the Gradient Boosting (GB) classification models 
at 48.8 µg/ml for the most important chemical components.  

 

Whereas d-limonene, pulegone, and chrysanthenone were inversely associated with biofilm 

inhibition and were likely responsible for biofilm production enhancement observed. A 

different scenario can be interpreted for menthol; at a low percentage, it correlates with a 

negative effect on biofilm inhibition that disappears as it is increased above 16%. 
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3.5 Conclusions 

This study demonstrated that the biofilm growth of P. aeruginosa PAO1 is influenced by the 

presence of EOs extracted from three different Mediterranean plants harvested in different 

seasons. These results suggest that the kind of biofilm modulation depends on EO chemical 

composition, although the fractions were obtained from the same plant. Remarkably, a 

significant influence on the modulation of biofilm production is related to the harvesting 

period. Furthermore, in some cases, the same EOs seem to exert opposite influences 

(stimulation or inhibition of biofilm growth) depending on sample dilution. This is related to 

the concentration of specific chemical compounds, as highlighted by the classification models. 

The biofilm change in growth, in the presence of the essential oils, is possibly due to a 

modulation of the phenotype that switches from biofilm to planktonic since the action is not 

related to a bacteriostatic/bactericidal activity on P. aeruginosa. The latter could be explained 

with the presence in EOs of small molecules, likely acting as quorum sensing inhibitors. In any 

case, moderation on conclusion has to be undertaken since interactive and synergistic effects 

among the EO chemical components, including minor ones, can affect biological potency. The 

application of an ad hoc developed python-based machine learning protocol led to the 

definition of a classification model able to discriminate essential oils in active and inactive at 

a cut-off value of 50% of biofilm formation using a concentration of 48.8 µg/mL. Investigation 

of the most critical components through feature importance and partial dependence plots 

seems to indicate estragole and phellandral as the chemical components mostly related to 

biofilm inhibition, while d-limonene, pulegone, and chrysanthenone seem to be related to 

biofilm production. As validated by five performance metrics, the classification model is an 

example showing machine learning as a tool to investigate complex chemical mixtures, and 

possibly in future experiments. It could enable scientists to understand the mechanism by 

which EOs act. Based on these results, further experiments are on due course to investigate 

EOs rich in the above five chemical components to validate the classification model. As this 

research's primary goal was focused on the evaluation of antimicrobial and antibiofilm 

potencies and a vast number of different essential oils, no investigation was undertaken on 

EO effects on mature biofilms and their eradication. The data from this study, enriched by 

further experiments carried out with other EOs and bacterial species, could enable the 

identification of blends of EOs specifically designed to obtain products with strong anti-
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biofilm efficacy applicable in many fields airborne decontamination, products for 

dermatological and respiratory tract infections. 
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4 Machine Learning Analyses on Data including Essential Oil Chemical 

Composition and In Vitro Experimental Antibiofilm Activities against 

Staphylococcus Species 

 

 

4.1 Introduction 

A biofilm is a microbially derived sessile community characterized by cells irreversibly 

attached to a substrate or interface or each other, embedded in a self-produced matrix of 

extracellular polymeric substances, which exhibits an altered phenotype concerning growth, 

gene expression, and protein production104. Biofilm resistance to antimicrobials105 is a 

complex phenomenon, driven not only by genetic mutation-induced resistance but also via 

increased microbial cell density that supports resistance through horizontal gene transfer 

across cells106. Indeed, other mechanisms are involved, such as (i) low penetration of 

antimicrobial agents due to the barrier function exerted by the biofilm matrix, (ii) presence of 

cells exhibiting a high multidrug tolerance, (iii) reduced susceptibility to antibiotics as a 

consequence of stress adaptive responses or changes in the chemical biofilm 

microenvironment107. The strategies adopted to treat these challenging infections are rapidly 

changing due to the increasing understanding of biofilm structure and functions. Nonetheless, 

the prevention of biofilm formation and the treatment of existing biofilms is currently a 

complex challenge; therefore, the discovery of new multi-targeted or combinatorial therapies 

is increasingly urgent108. Therefore, the development of anti-biofilm agents is considered of 

significant interest and represents an important strategy since non-biocidal molecules to 

avoid the rapid appearance of resistant mutants are highly valuable. Staphylococci are 

prevalent causes of biofilm-associated infections among bacteria109. In particular, 

Staphylococcus aureus (S. aureus) is an opportunistic pathogen that can cause severe diseases 

in humans, ranging from skin and soft tissue infections to invasive infections of the 

bloodstream, heart, lungs, and other organs110. In 2013, Nicholson et al. reported that 30% of 

the U.S. population was colonized by S. aureus, while 1.5% was found to be a carrier of 

methicillin-resistant S. aureus (MRSA), a major cause of healthcare-related infections 

responsible for a significant proportion of nosocomial infections worldwide. Recently in the 
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U.S., deaths from MRSA infections have exceeded those from many other infectious diseases, 

including HIV/AIDS111. Staphylococcus epidermidis (S. epidermidis), conventionally considered 

a commensal of human skin, can cause significant problems when breaching the epithelial 

barrier, especially during biofilm-associated infection of indwelling medical devices112,113. 

Most diseases caused by S. epidermidis exhibit a chronic profile and occur as device-related 

infections (such as an intravascular catheter or prosthetic joint infections) and/or their 

complications113. 

Given the above scenario, the scientific community seeks new agents endowed with anti-

biofilm capabilities to fight S. aureus and S. epidermidis infections. Recently, several reports 

indicated in vitro efficacy of non-biocidal essential oils (EOs) as a promising treatment to 

reduce bacterial biofilm production and prevent the inducing of drug resistance42. In different 

applications, EOs have been found of some efficacy in reducing biofilm production of either 

S. aureus standard strains or MRSA114–119. In other reports, EOs and some of their purified 

chemical components have also been proved to inhibit S. epidermidis biofilm production120–

122. 

Machine learning (ML) has been proved as a tool able to profoundly investigate the 

modulatory role of EOs’ chemical components on Pseudomonas aeruginosa biofilm 

production43,123–125. In particular, 89 EOs extracted in different periods and times of 

extractions from three different plants were analyzed: 13 EOs (RSEOs) from Ridolfia segetum 

Moris (RS); 32 EOs (FVEOs) from Foeniculum vulgare Miller (FV) and 44 EOs (CGEOs) from 

Calamintha nepeta (L.) Savi subsp. glandulosa (Req.) Ball, (CG)43. In line with that study and 

to investigate EOs’ ability also to reduce bacterial biofilm production in other bacteria, herein 

is reported an extensive study of the 89 EOs samples as potential antibacterial and anti-

biofilm agents against S. aureus ATCC 6538P, S. aureus ATCC 25923, S. epidermidis RP62A and 

S. epidermidis O-47. To this purpose, ML algorithms were applied to the EOs’ chemical 

compositions and the determined associated anti-biofilm potencies, to shed light on those 

components likely mainly responsible for either positive or negative modulation of biofilm 

production. 
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4.2 Materials and Methods 

4.2.1 Essential oil and Chemical Composition Analysis 

Essential oils and their chemical compositions were available from previously reported 

studies35,37,43. Essential oils were obtained by direct fractionated steam distillation and 

analyzed by gas chromatographic/mass spectrometric (GC/MS) protocol36,100. 

 

4.2.2 Bacterial Strains and Culture Conditions 

Bacterial strains used in this work (Table 12) were grown in Brain Heart Infusion broth (BHI, 

Oxoid, UK). Biofilm formation was assessed in static conditions. Planktonic cultures were 

grown in flasks under vigorous agitation (180 rpm) at 37 °C. In particular, S. aureus ATCC 

6538P (6538P) and S. aureus ATCC 25923 (25923) are reference strains for antimicrobial 

testing; S. epidermidis RP62A (RP62A) is a reference strain isolated from an infected catheter, 

while S. epidermidis O-47 (O-47) is a clinical isolate intense biofilm producer strain 

characterized by a genomic mutation in agr locus126. 

 

Table 12. Details of the used bacterial strains. 

Strain Name Type Isolation 

S. aureus 6538P 6538P clinical isolate ATCC collection 

S. aureus 25923 25923 clinical isolate ATCC collection 

S. epidermidis RP62A RP62A infected catheter isolated strain ATCC collection 

S. epidermidis O-47 O-47 septic arthritis clinical isolate Heilmann et al., 1996 

 

 

4.2.3 Determination of Minimal Inhibitory Concentration (MIC) 

The MIC was determined as the lowest concentration at which the observable bacterial 

growth was inhibited. MICs were determined according to the guidelines of Clinical 

Laboratory Standards Institute127 (CLSI). Each EO was added directly from mother stock, and 

two-fold serial dilutions prepared solutions. Mother stock solutions were obtained by 

solubilizing each EO in DMSO at a final concentration of 1 g/mL. Appropriate dilution (106 

cfu/mL) of bacterial culture in the exponential phase was used. Ten concentrations were used 

within the 25-0.045 mg/mL range. Experiments were performed in quadruplicate. 



62 
 

 

4.2.4 Biofilm Production Assay 

The quantification of biofilm production was based on microtiter plate biofilm assay (MTP): a 

suitable dilution of bacterial culture in the exponential growth phase was added into wells of 

a sterile 96-well flat-bottomed polystyrene plate in the absence and in the presence of each 

EO. Quantification of in vitro biofilm production was based on previously reported 

methodology93. The wells of a sterile 96-well flat-bottomed polystyrene plate were filled with 

100 µL of the appropriate medium. 1/100 dilution of overnight bacterial cultures were added 

into each well (about 0.5 OD 600nm). As a control, the first row contained bacteria grown in 

100 μL of BHI (untreated bacteria). In the second row was added BHI supplemented with each 

EO at concentrations of 3.125 mg/mL and 0.0488 mg/mL, respectively. The plates were 

incubated aerobically for 18 hours at 37 °C. Biofilm formation was measured using crystal 

violet staining. After treatment, planktonic cells were gently removed; each well was washed 

three times with double-distilled water and patted dry with a piece of paper towel in an 

inverted position. Each well was stained with 0.1% crystal violet and incubated for 15 minutes 

at room temperature, rinsed twice with double-distilled water, and thoroughly dried to 

quantify biofilm formation. The dye bound to adherent cells was solubilized with 20% (v/v) 

glacial acetic acid and 80% (v/v) ethanol. After 30 min of incubation at room temperature, 

OD590 was measured to quantify the biofilm's total biomass formed in each well. Each data 

point is composed of 4 independent experiments, each performed at least in 3-replicates. EOs 

altering biofilm formation of selected strains were then tested, as reported below. Briefly, the 

wells of a sterile 96-well flat-bottomed polystyrene plate were filled with 100 µL of the 

appropriate medium. 1/100 dilution of overnight bacterial cultures were added into each well 

(about 0.5 OD 600nm). The first row contained bacteria grown in 100 μL of BHI (untreated 

bacteria) as a control. 

Furthermore, BHI broth was added to the remaining wells starting from the third row. In the 

second row was added BHI supplemented with each EO at a concentration of 0.0488 mg/mL. 

Samples were diluted serially (1:2 dilutions) starting from this lane. The plates were incubated 

aerobically for 18 hours at 37 °C. Biofilm formation was measured using crystal violet staining, 

as previously reported. 
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4.2.5 Statistical Analysis of Biological Evaluation 

Data reported were statistically validated using Student’s t-test comparing mean absorbance 

of treated and untreated samples. The significance of differences between mean absorbance 

values was calculated using a two-tailed Student’s t-test. A p-value of <0.05 was considered 

significant. 

 

4.2.6 Machine Learning Binary Classification 

4.2.6.1 General Methods 

All calculations were performed using the Python (version 3.6, https://www.python.org/) 

programming language128 by executing in-house code in the Jupyter Notebook platform 

(version 5.7)129. The datasets were imported and loaded into a Pandas70,71 data frame and 

pre-processed to obtain four independent data matrices consisting of 89 rows (essential oil 

samples) and 54 columns (chemical components). Two dependent target vectors containing 

89 biofilm production percentage observations at 48 μg/mL and 3.125 mg/mL were defined. 

Machine learning algorithms used in this study were implemented using the sklearn library72 

(version 0.20). Unsupervised dimensionality reduction was performed with Principal 

component analysis20 (PCA), while L2 regularized logistic regression was used for the 

supervised learning analysis. The scores and loadings relatives to the first two principal 

components (PCs) were graphically inspected on plots generated using the matplotlib69 

library (version 3.0). Thirty principal components were extracted for each dataset to build the 

classification models. Cross-validation was used to search for the optimal 

inhibition/activation percentage cut-off values in order to define active and inactive samples. 

The optimal cut-off values were used to obtain the hyper-parameters optimized classification 

models. Hyper-parameters optimization was achieved through a Bayesian optimization15 of 

the number of PCs to be used as features and the regularization parameter of the L2-Logistic 

Regression (inverse of regularization strength in the sklearn implementation). For each 

dependent target vector, two types of models were built: one to define EOs' ability to inhibit 

biofilm production and another to describe biofilm production enhancement. Percentage 

ranges of 60-80% and 120-140% biofilm productions were chosen for inhibition and activation 

models, respectively. Finally, the most appropriate cut-offs for binary classification of biofilm 



64 
 

inhibitors/not-inhibitors or biofilm enhancers/not-enhancers EOs were determined from a 

supervised learning analysis. 

The binary classification models were numerically and graphically evaluated by accuracy 

(ACC), Matthews correlation coefficient (MCC), receiver operating characteristic (ROC), and 

precision-recall (PR) curves. Finally, EOs chemical components' importance was evaluated 

individually through the feature importance and partial dependence plots9 as implemented 

in the Skater python library130,131. Feature importance is a generic term for the degree to 

which a predictive model relies on a particular feature. Skater feature importance 

implementation is based on an information-theoretic criterion, measuring the entropy in the 

change of predictions, given a perturbation of a given feature. 

 

4.2.6.2 Classification Models’ Validation 

Validation of each classification model was carried out by leave-one-out cross-validation and 

taking into account the accuracy (ACC), the precision or positive predictive value (PPV), the 

recall or sensitivity or true positive rate (TPR), specificity or true negative rate (TNR), receiver 

operating characteristic (ROC) curve and the Matthews correlation coefficient101 (MCC) Y-

scrambling12,132 was ultimately applied to check any lack of chance correlation and assess 

coefficients robustness. 

 

 

4.3 Results 

4.3.1 Antimicrobials Activity of EOs 

Some FVEOs and CGEOs samples showed MICs at the highest used concentration (Table 13 

and Table 14). No antimicrobial activity on staphylococci was recorded for any of the RSEOs, 

except for the R30 sample that showed a MIC value of 25 mg/mL (Table 15). Only seven out 

of 89 EOs displayed MIC values of 6.25 mg/mL against the two S. aureus strains (Table 13, 

Table 14, and Table 15). As a control, MIC was also evaluated for ofloxacin, a conventional 

antibiotic belonging to the fluoroquinolone family. 
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Table 13. MIC determined for CGEOs on Staphylococcus spp strains. EOID indicates sample names. 

Sample names are the same as previously reported43. Ofloxacin MIC is also reported as a positive 

reference drug. All data are expressed in mg/mL. 

EOID S. aureus 6538P S. aureus 25923 S. epidermidis RP62A S. epidermidis O-47 

CJ1 >25 >25 >25 >25 

CJ2 >25 >25 50 >25 

CJ3 25 25 >25 >25 

CJ6 25 25 >25 >25 

CJ12 25 >25 >25 >25 

CJ24 >25 >25 >25 >25 

CJM1 12.5 25 >25 >25 

CJM2 >25 >25 >25 >25 

CJM3 12.5 25 25-12.5 25-12.5 

CJM4 12.5 25 25 >25 

CJM5 >25 >25 >25 >25 

CA1 >25 >25 >25 >25 

CA2 >25 >25 >25 >25 

CA3 25 >25 >25 >25 

CA6 25-12.5 >25 25 25 

CA12 12.5 12.5 12.5 >25 

CA24 12.5 12.5 >25 >25 

CAM1 >25 >25 >25 >25 

CAM2 12.5-6.25 12.5-6.25 12.5 12.5 

CAM3 >25 >25 >25 >25 

CAM4 6.25 6.25 12.5 12.5 

CAM5 >25 >25 >25 >25 

CS1 >25 >25 >25 >25 

CS2 >25 >25 >25 >25 

CS3 >25 >25 >25 >25 

CS6 >25 >25 >25 >25 

CS12 12.5-6.25 12.5 12.5 12.5 

CS24 6.25 12.5-6.25 >25 12.5 

CSM1 >25 >25 >25 >25 

CSM2 12.5 12.5 12.5 12.5 

CSM3 >25 >25 >25 >25 

CSM4 12.5-6.25 12.5-6.25 12.5 12.5 

CSM5 >25 >25 >25 >25 
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Table 13. MIC determined for CGEOs on Staphylococcus spp strains. EOID indicates sample names. 

Sample names are the same as previously reported43. Ofloxacin MIC is also reported as a positive 

reference drug. All data are expressed in mg/mL. 

EOID S. aureus 6538P S. aureus 25923 S. epidermidis RP62A S. epidermidis O-47 

CO1 >25 >25 >25 >25 

CO2 >25 >25 >25 >25 

CO3 25-12.5 25 25 25 

CO6 25-12.5 25-12.5 25-12.5 25-12.5 

CO12 12.5 12.5 12.5 12.5 

CO24 >25 >25 >25 >25 

COM1 25 25 25-12.5 25-12.5 

COM2 25-12.5 25-12.5 25-12.5 25-12.5 

COM3 25 25 25-12.5 25-12.5 

COM4 12.5 25 25 25 

COM5 >25 >25 >25 >25 

Ofloxacin 0.0002-0.0004 0.0004-0.0008 0.0002-0.0004 0.0002-0.0004 

 

 

Table 14.  MIC determined for FVEOs samples on Staphylococcus spp strains. EOID indicates sample 

names. Sample names are the same as previously reported43. Ofloxacin MIC is also reported as a 

positive reference drug. All data are expressed in mg/mL. 

EOID S. aureus 6538P S. aureus 25923 S. epidermidis RP62A S. epidermidis O-47 

FA1 >25 >25 >25 >25 

FA2 25-12.5 25-12.5 >25 >25 

FA3 >25 >25 >25 >25 

FA6 >25 >25 >25 >25 

FA12 >25 >25 >25 >25 

FA24 12.5-6.25 >25 >25 >25 

FAM1 >25 >25 >25 >25 

FAM2 >25 >25 >25 >25 

FAM3 >25 >25 >25 >25 

FAM4 >25 >25 >25 >25 

FAM5 >25 >25 >25 25 

FS1 >25 >25 >25 >25 

FS2 >25 >25 >25 >25 

FS3 >25 >25 >25 >25 
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Table 14.  MIC determined for FVEOs samples on Staphylococcus spp strains. EOID indicates sample 

names. Sample names are the same as previously reported43. Ofloxacin MIC is also reported as a 

positive reference drug. All data are expressed in mg/mL. 

EOID S. aureus 6538P S. aureus 25923 S. epidermidis RP62A S. epidermidis O-47 

FS6 >25 >25 >25 >25 

FS12 >25 >25 >25 >25 

FS24 >25 >25 >25 >25 

FSM1 >25 >25 >25 >25 

FSM2 >25 >25 >25 >25 

FSM3 12.5-6.25 >25 >25 >25 

FSM4 >25 >25 >25 >25 

FSM5 25-12.5 12.5 >25 >25 

FO1 25 25 >25 >25 

FO2 >25 >25 >25 >25 

FO3 25 25 >25 >25 

FO6 25 25 >25 >25 

FO12 >25 >25 >25 >25 

FO24 >25 >25 >25 >25 

FOM1 >25 >25 >25 >25 

FOM2 >25 >25 >25 >25 

FOM3 25-12.5 12.5 >25 >25 

FOM4 >25 >25 >25 >25 

FOM5 >25 >25 >25 >25 

Ofloxacin 0.0002-0.0004 0.0004-0.0008 0.0002-0.0004 0.0002-0.0004 
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Table 15. MIC determined for RSEOs samples on Staphylococcus spp strains. EOID indicates sample 

names. Sample names are the same as previously reported43. Ofloxacin MIC is also reported as a 

positive reference drug. All data are expressed in mg/mL. 

EOID S. aureus 6538P S. aureus 25923 S. epidermidis RP62A S. epidermidis O-47 

R1 >25 >25 >25 >25 

R2 >25 >25 >25 >25 

R3 >25 >25 >25 >25 

R6 >25 >25 >25 >25 

R12 >25 >25 >25 >25 

R24 25 >25 >25 >25 

R30 25 25 25 25 

RM1 >25 >25 >25 >25 

RM2 >25 >25 >25 >25 

RM3 >25 >25 >25 >25 

RM4 >25 >25 >25 >25 

RM5 >25 >25 >25 >25 

RM6 >25 >25 >25 >25 

Ofloxacin 0.0002-0.0004 0.0004-0.0008 0.0002-0.0004 0.0002-0.0004 

 

 

4.3.2 Biofilm Production Modulation by EOs at Selected Fixed Concentrations 

Preliminarily, the same representative EOs (2 RSEOs, 3 CGEOs, and 3 FVEOs) among the 

reported 89 used on P. aeruginosa43 were selected to evaluate the anti-biofilm potency at 

different concentrations starting from 25 mg/mL, using scalar dilutions. 

The obtained preliminary data analyzed in terms of biofilm production modulation and 

reproducibility led to the selection of two representatives concentrations (3.125 mg/mL and 

0.0488 mg/mL). The first concentration was in the range of milligrams, while the second one 

was in the range of micrograms. All 89 EOs were then tested at the two selected 

concentrations, and the biofilm production was measured relative to untreated bacteria 

(Figure 16, Figure 17, and Figure 18). 
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Figure 16. Percentages of biofilm production after treatment at two concentrations (3.125 mg/mL 
and 0.0488 mg/mL) for RSEOs against the four strains S. aureus 6538P (A) and 25923 (B), S. 
epidermidis RP62A (C) and O-47 (D, respectively). In the ordinate axis are reported the percentage 
of bacterial biofilm production. Data are reported as percentage of residual biofilm after the 
treatment in comparison with the untreated one. Each data point is composed of 4 independent 
experiments each performed with at least three replicates. 
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Figure 17. Percentages of biofilm production after treatment at two concentrations (3.125 mg/mL 
and 0.0488 mg/mL) for FVEOs against the four strains S. aureus 6538P (A) and 25923 (B), S. 
epidermidis RP62A (C) and O-47 (D, respectively). In the ordinate axis are is reported the percentage 
of bacterial biofilm production. Data are reported as the percentage of residual biofilm after the 
treatment in comparison with the untreated one. Each data point is composed of 4 independent 
experiments, each performed with at least three replicates. 
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Figure 18. Percentages of biofilm production after treatment at two concentrations (3.125 mg/mL 
and 0.0488 mg/mL) for CGEOs against the four strains S. aureus 6538P (A) and 25923 (B), S. 
epidermidis RP62A (C) and O-47 (D), respectively). In the ordinate axis are is reported the 
percentage of bacterial biofilm production. The abscissa axis is centered at 100% biofilm production. 
Data are reported as the percentage of residual biofilm after the treatment in comparison with the 
untreated one. Each data point is composed of 4 independent experiments, each performed with 
at least three replicates. 

 

At either selected concentration, EOs modulated the biofilm production with unpredictable 

results for each strain. These results anticipated that many EOs might act mainly as biofilm 

inhibitors in the case of RP62A and O-47 strains, while for 6538P and 25923, EOs can either 
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induce no effect or stimulate biofilm production (Table 16). In Table 16, the number of EOs 

able to inhibit (<100%, <80%, and <50%, respectively) or stimulate (≥100%, ≥120%, ≥150%, 

and ≥200%, respectively) biofilm formation is reported. It is worthy to note that on S. 

epidermidis strains, about 30 EOs inhibited more than 50% of biofilm growth even at the 

lowest concentration, while almost none of them showed activity on S. aureus strains. 

 

Table 16. Data analysis of biofilm production modulation by EOs at the two selected concentrations 
as reported in Figure 16, Figure 17 and Figure 18. 

Conc. 
μg/mL 

S. spp 
Strains 

Biofilm 
Production % 

Number EOs Samples at Biofilm Production % 

MIN MAX <50% <80% <100% ≥100% ≥120% ≥150% ≥200% 

3125 

6538P 50.98 523.83 0 10 31 58 38 22 9 

25923 26.92 697.45 1 4 16 73 47 14 9 

RP62A 13.04 209.69 26 42 71 18 8 1 1 

O-47 27.12 289.88 24 35 61 28 14 4 4 

48.8 

6538P 62.80 459.46 0 5 20 69 37 17 7 

25923 37.91 501.01 3 34 67 22 10 7 3 

RP62A 11.79 202.57 29 48 74 15 6 2 1 

O-47 0.44 306.60 31 48 74 15 7 4 2 

 

 

4.3.3 Quantitative Analysis of Selected EOs against Different Strains of S. epidermidis 

Representative EOs selected among those able to reduce more than 70% of biofilm formation 

were further analyzed to evaluate a dose-dependent effect against S. epidermidis RP62A and 

O-47 (Figure 19, Figure 20, and Figure 21). The inhibition by RSEOs was confirmed at lower 

concentrations on both strains despite their different biofilm matrix composition, and the 

inhibition of biofilm formation was clearly not dose-dependent (Figure 19). Analogous results 

were obtained with FVEOs samples (Figure 20). Differently, CGEOs revealed a dose-

dependent biofilm inhibition being more pronounced on the strongest biofilm producer S. 

epidermidis O-47 than on S. epidermidis RP62A (Figure 21). 
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Figure 19. Antibiofilm effect of selected RSEOs on RP62A and on O-47 strains. In the ordinate axis 
is reported the percentage of bacterial biofilm production. Data are reported as percentage of 
residual biofilm after the treatment in comparison with the untreated one. Each data point is 
composed of 4 independent experiments each performed with at least in three replicates. 

 

 

 

Figure 20. Antibiofilm effect of selected FVEOs on RP62A and on O-47 strains. In the ordinate axis 
is reported the percentage of bacterial biofilm production. Data are reported as the percentage of 
residual biofilm after the treatment in comparison with the untreated one. Each data point is 
composed of 4 independent experiments, each performed with at least three replicates. 
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Figure 21. Antibiofilm effect of selected CGEOs on RP62A and on O-47 strains. In the ordinate axis 
is reported the percentage of bacterial biofilm production. Data are reported as the percentage of 
residual biofilm after the treatment in comparison with the untreated one. Each data point is 
composed of 4 independent experiments, each performed with at least three replicates. 

 

 

4.3.4 Application of Machine Learning Algorithms 

4.3.5 PCA Analysis of Datasets 

Extraction of the first 3 PCs afforded to a cumulative explained variance of almost 90% 

(PC1:61.18%; PC1 + PC2: 75.02%; PC1 + PC2 + PC3: 82.92%). The first two principal 

components indicate at least three clusters (Figure 22) and correctly identified the three 

plants derived EOs, although no definite separation between RSEOs and FVEOs was 

observable. PCA related loading plots indicated estragole, o-cymene, and pulegone as the 

chemical components mainly related to high PCs values (Figure 22). 
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A B 

Figure 22. Graphical plot of the PCA’s first two principal components. The scores plot (panel A) 

indicates at least three clusters (circled in panel A). The loadings plot (panel B) highlights that 

estragole, o-cymene, and pulegone could be the most important chemical constituents among all 

the tested EOs. 

 

 

4.3.6 Binary Classification Models 

4.3.6.1 General Results 

Analogously as in ML application to Pseudomonas aeruginosa (PA), direct application of linear 

classification methods using algorithms such as Logistic Regression (LR) and Linear Support 

Vector Machines7 (SVM) did not lead to satisfying classifiers (data not shown). At the same 

time, non-linear algorithms like random forest8 (RF), non-linear support vector machine102 

(SVM), and gradient boosting9 (GB) also led to insufficiently robust models (data not shown). 

Therefore, a mixed approach was used and taking the idea from the principal component 

regression (PCR) as an evolution of multiple linear regression (MLR) a number of PCs were 

used in place of the original variables (EOs chemical component percentages) as input for the 

sklearn LR implementation (PCLR). The PCLR was run on the PA dataset as an initial test, 

leading to highly overlapping results with those obtained with the GB application (data not 

shown). Nevertheless, as biofilm production assay profiled EOs as either inhibitors or 

activators (Table 16) accordingly, classification models were tentatively built for all four 

strains considering either biofilm production inhibition or activation for biofilm percentages 

observed at the two above introduced concentration levels of 48.8 μg/mL and 3.125 mg/mL. 

To this aim, initially, the optimal biofilm production percentage cutoff for the binary 
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classification was explored by systematically either decreasing it from a starting 80% to 60% 

or increasing from 120% to 140% for the inhibition or activation models, respectively, being 

the ranges arbitrarily chosen on the basis of Table 16 filled data. The models’ accuracy was 

monitored by the MCC value obtained by leave-one-out cross-validation. Following this 

protocol, for the inhibition models, EOs samples characterized by higher values than the best 

performing cutoff of biofilm production percentage were classified as inactive, while those 

with lower values were considered active. On the contrary, regarding the biofilm production 

enhancer models, EOs samples characterized by higher percentages than the cutoff value 

were classified as active, while those with lower values were considered non-active. 

Regarding the 6538P inhibition training set, the very low active/inactive ratio at biofilm 

inhibition below 80% prevented any optimization. Therefore, the grid search analysis to the 

starting sixteen training sets (four strains by two series of models by two concentrations) 

afforded to seven optimized models for either concentration (Table 17). Inspection of 

optimized models on both hyperparameters and cutoff values revealed for 25923/inhibition, 

RP62A/activation, and O-47/activation sets composed of high unbalanced ratios of actives 

over non-actives and were hence not further analyzed. Comparing developed models for the 

two used EOs concentrations revealed 3.125 mg/mL level to lead to more reliable and robust 

models (Table 18). Based on the above preliminary data, subsequent results and analyses 

were only carried out on RP62A/inhibition, O-47/inhibition, 6538P/activation, and 

259237/activation models derived for biofilm modulation recorded at 3.125 mg/mL. This is in 

full agreement with the fact that EOs samples acted prevalently as a reducer of biofilm 

production for RP62A and O-47 strains, while for 6538P and 25923, the biofilm production 

was mainly enhanced (Table 16). 
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Table 17. Characteristics of the grid search optimized models. 

Assayed Conc. 

(μg/mL) 

Models’ 

Parameters 

Biofilm Inhibition Models Biofilm Activation Models 

RP62A O-47 25923 RP62A O-47 6538P 25923 

3125 

PCs 1 5 19 22 9 12 9 25 

Actives 2 31 30 4 6 4 27 20 

Non-actives 3 58 59 85 83 85 62 69 

cutoff 62 62 63 126 133 139 139 

48.8 

PCs 1 8 9 24 15 8 9 20 

Actives 2 32 30 3 7 4 30 45 

Non-actives 3 57 59 86 82 85 59 44 

Cutoff4 63 63 62 124 138 133 121 

1: number of principal components used in the model; 

2: number of EOs as inhibitors or enhancers of bacterial biofilm production; 

3: number of EOs as non-inhibitors or not-enhancers of biofilm production; 

4: optimal values of bacterial biofilm production percentage for binary classification as inhibitors/non-
inhibitors or enhancers/not-enhancers of bacterial biofilm production; 
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Table 18. Fitted and cross-validated Accuracy, MCC, Precision-Recall and ROC-AUC coefficients for 

the RP62A/inhibition, O-47/inhibition, 6538P/activation and 259237/activation optimized models 

at 3.125 mg/mL and 0.0488 µg/mL. 

Validation 

Assayed 

Conc. 

(μg/mL) 

Coefficient 

Biofilm Inhibition 

Models 

Biofilm Activation 

Models 

RP62A O-47 6538P 25923 

Fitting 

3125 

Accuracy 0.721 0.771 0.832 0.906 

MCC 0.455 0.590 0.667 0.826 

Precision-Recall 0.657 0.682 0.772 0.956 

ROC-AUC 0.742 0.753 0.824 0.961 

48.8 

Accuracy 0.722 0.780 0.806 0.763 

MCC 0.452 0.604 0.632 0.533 

Precision-Recall 0.659 0.681 0.757 0.824 

ROC-AUC 0.735 0.752 0.815 0.834 

Cross 

Validation 

3125 

AccuracyCV 0.687 0.738 0.805 0.784 

MCCCV 0.392 0.517 0.613 0.568 

Precision-

RecallCV 
0.584 0.589 0.698 0.782 

ROC-AUCCV 0.683 0.659 0.743 0.845 

48.8 

AccuracyCV 0.663 0.721 0.722 0.606 

MCCCV 0.335 0.474 0.450 0.214 

Precision-

RecallCV 
0.577 0.591 0.668 0.533 

ROC-AUCCV 0.666 0.660 0.753 0.599 

 

 

Lack of chance correlation was checked to assess either models’ fitness and robustness. Y-

scrambling procedure whose 100 runs of the cross-validated scrambled set led to average, 

standard deviation, maximum and minimum values for AccuracyY-S, MCCY-S, Precision-RecallY-

S, and ROC-AUCY-S coefficients always lower than non-cross-validated and cross-validated 

ones, therefore assessing the validity of all final models (Table 19). 

 



79 
 

Table 19. Chance correlation control by Y-scrambling procedure results. Mean, standard deviation 

(St Dev), maximum (max) and minimum (min) values for AccuracyY-S, MCCY-S, Precision-RecallY-S, and 

ROC-AUCY-S ROC-AUC coefficients for cross-validated 100 runs. Values refer to RP62A/inhibition, O-

47/inhibition, 6538P/activation and 259237/activation optimized models at 3.125 mg/mL. 

Type of Model Strain Coefficient Mean St Dev Max Min 

B
io

fi
lm

 In
h

ib
it

io
n

 M
o

d
el

s 

RP62A 

AccuracyY-S 0.500 0.079 0.644 0.219 

MCCY-S 0.000 0.159 0.290 −0.567 

Precision-RecallY-S 0.496 0.063 0.643 0.353 

ROC-AUCY-S 0.459 0.094 0.627 0.198 

O-47 

AccuracyY-S 0.494 0.081 0.665 0.286 

MCCY-S −0.011 0.164 0.342 −0.429 

Precision-RecallY-S 0.506 0.068 0.668 0.377 

ROC-AUCY-S 0.474 0.089 0.645 0.241 

B
io

fi
lm

 A
ct

iv
at

io
n

 M
o

d
el

s 

6538P 

AccuracyY-S 0.492 0.082 0.637 0.249 

MCCY-S −0.017 0.169 0.275 −0.522 

Precision-RecallY-S 0.507 0.071 0.661 0.347 

ROC-AUCY-S 0.470 0.100 0.644 0.166 

25923 

AccuracyY-S 0.508 0.083 0.680 0.292 

MCCY-S 0.013 0.170 0.361 −0.433 

Precision-RecallY-S 0.524 0.071 0.746 0.355 

ROC-AUCY-S 0.490 0.102 0.675 0.179 

 

 

4.3.6.2 Binary Classification Model for 6538P Biofilm Production Activation 

The 6538P/activation/3.125mg/mL optimized derived model was maximum at a cutoff of 

133%, using 9 PCs, characterized by a 27:62 (0.44) proportion between actives and non-

actives and high values of Accuracy (0.832), MCC (0.667), Precision-Recall (0.772) and ROC-

AUC (0.824) coefficients which persisted to be quite good in cross-validation (AccuracyCV = 

0.805, MCCCV = 0.613, Precision-RecallCV = 0.698 and ROC-AUCCV = 0.743) (Table 18 and Table 

19). Feature importance and partial dependence pointed out compounds 3-octanol, d-

limonene and pulegone as more important for biofilm production enhancement modulation 

(Figure 22, Figure 23, Figure 24 and Table 20). 
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Figure 23. Feature importance plot for the 6538P/activation model defined at 3.125 mg/mL. 
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Figure 24. 3-octanol (A), d-limonene (B) and pulegone (C) partial dependence plots for the 
activation model on 6538P biofilm production. 

 

 

4.3.6.3 Binary Classification Model for RP62A biofilm production inhibition 

The grid search on the EOs’ chemical composition and their associated RP62A biofilm 

production inhibitory potencies at 3.125 mg/mL identified 62% biofilm residual production as 

the best cutoff value with only 5 PCs and actives over non-actives ratio of 31:58 (0.53). The 

final classification model was found characterized by Accuracy, MCC, Precision-Recall, and 

ROC-AUC values of 0.721, 0.455, 0.657, and 0.742, respectively (Table 18). Cross-validation 

associated coefficients AccuracyCV, MCCCV, Precision-RecallCV and ROC-AUCCV were 0.687, 

0.392, 0.584 and 0.683, respectively. Inspection of the model associated EOs’ chemical 
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components importance, the Skater algorithm indicated 3-octanol, phellandral, thymol, and 

d-limonene as those mostly influencing biofilm production inhibition (Figure 25, Table 19, and 

Table 20), whose positive control was highlighted through partial dependence plots which 

describe the marginal impact of a feature on model prediction (Figure 26). 

 

 

Figure 25.  Feature importance plot for the RP62A/inhibition model defined at 3.125 mg/mL. 
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Figure 26. 3-octanol (A), phellandral (B), thymol (C), and d-limonene (D) partial dependence plots 
for the inhibition model on RP62A biofilm. 

 

 

 

4.3.6.4 Binary Classification Model for O-47 Biofilm Production Inhibition 

The O-47/inhibition/3.125mg/mL optimized derived model was also obtained at cutoff of 

62%, but with 19 PCs and a 0.51 actives:non-actives ratio (30:59) leading to 0.771, 0.590, 

0.682 and 0.753 values for the Accuracy, MCC, Precision-Recall and ROC-AUC coefficients, 

respectively. Model robustness was assessed by AccuracyCV, MCCCV, Precision-RecallCV and 

ROC-AUCCV values of 0.738, 0.517, 0.589 and 0.659, correspondingly (Table 18). The Y-

scrambling application did not reveal the presence of any chance correlation (Table 19). 

Inspection of feature importance and partial dependence pointed out as more significant for 



84 
 

biofilm production inhibition the compounds 3-octanol, o-cymene, d-limonene, and β-

phellandrene (Figure 28, Figure 28, and Table 20). 

 
Figure 27. Feature importance plot for the O-47/inhibition model defined at 3.125 mg/mL. 

  



85 
 

  

A B 

  

C D 

Figure 28. 3-octanol (A), o-cymene (B), d-limonene (C), and beta-phellandrene (D) partial 

dependence plots for the inhibition model on O-47 biofilm. 
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4.3.6.5 Binary Classification Model for 25923 Biofilm Production Activation 

The 25923/activation/3.125mg/mL optimized derived model was determined at cutoff of 

121%, using 25 PCs, characterized by a 20:69 (0.29) proportion between actives and non-

actives. The non cross-validated model was characterized by Accuracy, MCC, Precision-Recall 

and ROC-AUC coefficients of 0.906, 0.826, 0.956 and 0.961, respectively. Model robustness 

by cross-validation was characterized by high values of AccuracyCV = 0.763, MCCCV = 0.533, 

Precision-RecallCV = 0.824 and ROC-AUCCV = 0.834 (Table 18 and Table 19). Feature 

importance and partial dependence pointed out compounds menthone, menthol, β-linalool, 

β-cymene, chrysanthenone, 3-octanol as more important for biofilm production 

enhancement modulation (Figure 29 and Table 20). 

 
Figure 29. Feature importance plot for the 25923/activation model is defined at 3.125 mg/mL. 
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Table 20. Feature importances for each chemical component as derived by the SKATER algorithm 

for the RP62A/inhibition, O-47/inhibition, 6538P/activation, and 259237/activation optimized 

models at 3.125 mg/mL. Background of more important chemical components for inhibition are 

colored in darker green, while in the darker red background are highlighted components associated 

with higher biofilm production enhancement. 

Chemical Component 
Biofilm Inhibition Models Biofilm Inhibition Models 

RP62A O-47 6538P 25923 

2-Hydroxypiperitenone 0.23 0.32 0.38 0.44 

2,3-Pinanediol 1.33 4.07 1.47 1.05 

3-Methylcyclohexanone 0.16 0.45 1.09 1.62 

3-Octanol 6.47 7.16 10.80 4.44 

4-Terpineol 1.99 1.81 3.65 3.57 

α-Phellandrene 0.61 0.30 3.02 0.67 

α-Pinene 2.71 2.98 1.00 0.21 

α-Terpineol 2.40 3.32 2.81 2.22 

Apiol 0.17 0.78 0.83 0.97 

β-Cymene 1.46 1.35 2.42 6.37 

β-Linalool 1.40 1.08 0.93 7.08 

β-Myrcene 0.72 0.05 0.95 0.67 

β-Ocimene 0.56 1.75 0.78 0.06 

β-Phellandrene 1.62 5.42 3.30 0.69 

β-Pinene 1.31 1.15 0.34 2.12 

β-Terpinene 0.17 0.63 0.97 0.15 

Borneol 0.07 0.25 0.45 0.56 

Carvacrol 0.38 0.38 0.34 0.26 

Caryophyllene 1.35 1.67 2.78 4.36 

Caryophyllene oxide 0.13 1.23 0.32 3.25 

Chrysanthenone 3.87 3.58 2.68 4.79 



88 
 

Table 20. Feature importances for each chemical component as derived by the SKATER algorithm 

for the RP62A/inhibition, O-47/inhibition, 6538P/activation, and 259237/activation optimized 

models at 3.125 mg/mL. Background of more important chemical components for inhibition are 

colored in darker green, while in the darker red background are highlighted components associated 

with higher biofilm production enhancement. 

Chemical Component 
Biofilm Inhibition Models Biofilm Inhibition Models 

RP62A O-47 6538P 25923 

Cinerolone 1.14 0.40 0.64 1.45 

cis-β-Terpineol 0.55 0.55 0.88 1.85 

cis-Sabinol 4.60 3.40 4.36 0.17 

Citral 0.12 0.39 0.65 0.99 

Cryptone 0.15 1.63 0.09 0.27 

d-Limonene 5.66 6.29 9.22 1.56 

delta-Cadinene 1.62 0.90 0.40 1.17 

Estragole 3.87 3.21 0.04 2.49 

Fenchone 3.66 3.08 0.06 1.54 

-Terpinene 0.19 1.14 1.51 1.97 

Germacrene D 0.82 0.65 0.65 0.14 

Isocaryophyllene 0.86 0.58 0.84 0.07 

Isomenthone 1.53 0.26 0.71 1.77 

Isopiperitenone 2.80 2.38 1.61 2.42 

Isopulegone 0.01 0.63 4.89 0.85 

Limonene 1.64 4.02 2.62 0.67 

Menthol 2.17 1.30 1.38 7.16 

Menthone 3.00 3.07 3.81 7.51 

Methyl isopulegone 0.27 0.14 0.27 0.13 

Myristicin 4.16 2.48 0.16 0.59 

o-Cymene 2.64 6.40 3.44 1.62 
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Table 20. Feature importances for each chemical component as derived by the SKATER algorithm 

for the RP62A/inhibition, O-47/inhibition, 6538P/activation, and 259237/activation optimized 

models at 3.125 mg/mL. Background of more important chemical components for inhibition are 

colored in darker green, while in the darker red background are highlighted components associated 

with higher biofilm production enhancement. 

Chemical Component 
Biofilm Inhibition Models Biofilm Inhibition Models 

RP62A O-47 6538P 25923 

p-Cymen-8-ol 0.90 1.76 0.89 0.96 

p-Cymene 2.99 0.02 0.39 1.14 

p-Menth-1(7)-en-2-one 5.06 0.89 1.51 0.91 

p-Menthene 0.43 0.33 0.26 0.35 

Phellandral 6.15 3.97 1.40 2.08 

Piperitenone 0.21 0.03 2.86 4.95 

Piperitenone oxide 2.32 0.46 1.68 0.36 

Pulegone 4.06 4.10 9.12 4.18 

Sabinene 0.61 0.62 0.91 0.62 

Terpinolene 0.55 1.90 1.07 1.84 

Thymol 5.73 2.94 0.08 0.31 

trans-p-Mentha-2,8-dienol 0.43 0.33 0.26 0.35 

 

4.4 Discussion and Conclusions 

4.4.1 EOs Biofilm Bioactivity General Consideration 

From the results reported above, it could be observed that each EO had a specific effect on 

biofilm formation, likely depending on its characteristics and unique chemical composition. 

In particular, for S. aureus strains 6538P and 25923, the EOs mainly exhibited an enhancement 

of biofilm production. Stimulation of bacterial biofilm production by EOs is not surprising as 

it was previously observed, even by isolated chemical components133–135. On the other hand, 

and more common136,137, for S. epidermidis strains RP62A and O-47, an overall inhibition 

effect on biofilm production was observed by in vitro EOs treatment. Nevertheless, cinnamon 
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EO was reported to stimulate biofilm production on some Staphylococcus epidermidis 

strains138. 

 

4.4.2 Bioactivity of RSEOs 

The majority of tested RSEO samples did not show inhibitory effects on S. aureus 6538P 

biofilm formation (a partial inhibitory effect was observed only for R6 essential oil at 3.125 

mg/mL, panel A of Figure 16). On the contrary, some RSEO samples (R6, R12, R24, RM4, and 

RM6) were shown to enhance biofilm formation by up to 140% at 0.0488 mg/mL. Differently, 

several RSEO samples showed a good inhibitory effect on S. epidermids RP62A biofilm 

production. In particular, 4 out of 13 EOs (R6, R24, RM4, and RM6) were able to potently 

inhibit biofilm formation with a rate of about 80% at either used concentrations (panel B of 

Figure 16). Thus, these EOs were selected for further analyses using each EO's scalar 

concentration, starting from 0.0488 mg/mL. An attempt to determine a direct dose-

dependent effect was not effective (Figure 19). 

On O-47 biofilm modulation (panel C of Figure 16), most RSEOs had a slight inhibition effect 

of up to 40% (60% residual of biofilm production) at 0.0488 mg/mL. On the contrary, at the 

higher concentration, RSEOs enhanced biofilm production by up to 130% for most samples. 

Only RM6 showed a remarkable biofilm production up to 160% at 3.125 mg/mL. For strain 

25923, a profile similar to that of RP62A was observed (panel D of Figure 16). Therefore, no 

further investigation was pursued on the R6, R24, RM4, and RM6 samples despite the high 

inhibitory biofilm potency with residual biofilm production ranging 20-30%. 

 

4.4.3 Bioactivity of FVEOs 

Among all tested EOs, those from FV comprise among the most active samples able to inhibit 

biofilm production (Figure 17). In particular, only mild effects (positive or negative modulation 

of biofilm production) were observed on 6538P strain (panel A of Figure 17) with a few 

exceptions at both selected concentrations, including FA24, FS2, FO3, and FO6 that increased 

biofilm production by about 40–60%, and FOM1 that inhibited biofilm production by about 

50% at 3.125 mg/mL. On the contrary, some FVEOs proved to be potent antibiofilm agents on 

S. epidermids RP62A (panel B of Figure 17). In particular, 5 out 33 FVEOs (FO1, FO3, FO6, FO24, 
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and FOM3) inhibited biofilm formation with a rate of about 80% (panel B of Figure 17) and 

were selected for further analyses using a scalar concentration of each EO starting from 

0.0488 mg/mL. Similarly, as for the selected potent RSEOs, no direct dose-dependent effect 

was determined (Figure 20). Interestingly, on O-47 biofilm modulation, most FVEOs showed 

a bioactivity profile almost overlapping that for RP62A with FO1, FO3, FO6, FO24, and FOM3 

samples able to reduce biofilm formation of about 50-70% (panel C of Figure 17). While on 

both S. epidermidis strains RP62A and O-47, FVEOs displayed some peculiar samples with 

interesting biofilm inhibitory potencies in the case of 25923 strain FVEOs displayed an overall 

bioactivity profile similar to that for RSEOs against O-47 (compare panel C of Figure 16 with 

panel D of Figure 17). 

 

4.4.4 Bioactivity of CGEOs 

EOs from CG are the most modulating biofilm producers either in positive (activators) or in 

negative (inhibitors). In particular, in the case of strain 6538P, all samples at either 

concentration can be classified as neutral or biofilm promoters (panel A of Figure 18) with a 

strong inclination to increase biofilm production by up to 500% (CAM1). Other strong biofilm 

inducers (percentages over 300%) are CAM3, CAM5, CS1, CS3, CS6, and CS24 samples. Many 

other CGEOs, although to a lesser extent, induced a doubling or even tripling of biofilm 

production. On the contrary, most of CGEOs displayed an inhibition by over 50% of biofilm 

production by RP62A (panel B of Figure 18). Many CGEO samples were further investigated, 

and for 6 of them (CO2, CO6, COM5, CS2, CS6, and CSM5), a definite dose-dependent relation 

was observed (Figure 21). Regarding biofilm modulation for O-47 CGEOs, in this case, 

presented, at either tested concentrations, a mixed scenario in which some samples induced 

an enhanced biofilm production up to 250-350% (CAM5, CS1, CS3, CS6, CSM1, and CSM3) and 

15 different samples showed high inhibition potencies (percentages of residual biofilm lower 

than 40–50%). 

 

4.4.5 Machine Learning Classification Models 

Application of the PCA coupled with logistic regression led to the formulation of 4 robust 

models that were characterized by good Accuracy, MCC, Precision-Recall, and ROC-AUC 

values (Table 19). Model agnostic feature importance and partial dependence plots were 



92 
 

used to find the marginal effect that each EO chemical component has on the predicted 

outcome of the binary classification models built on the 3.125 mg/mL response variables. 

Feature importance is a measure of the prediction error of the model after the feature’s 

values are permuted and highlights the absolute importance of each chemical constituent, 

while partial dependence plots show whether the relationship between the bioactivity and 

the chemical component is linear, monotonous, or more complex. 

 

4.4.6 Biofilm Activation ML Model on 6538P 

Inspection of feature importance for model derived on 6538P biofilm percentage production, 

and EOs’ chemical compositions revealed 3-octanol, d-limonene, and pulegone as the 

chemical components more associated with bacterial biofilm production (Figure 23 and Table 

20). Further investigation of their partial dependence plots (Figure 24) indicated those three 

chemicals as all positively correlated with biofilm enhancement. 

 

4.4.7 Biofilm Activation ML Model on 25923 

Similarly, as for 6538P, also for the 25923 strain, an ML model was built to correlate biofilm 

production enhancement with EOs’ chemical composition. Again, analysis of feature 

importance was found as more important menthone, menthol, β-linalool, β-cymene, 

chrysanthenone, 3-octanol (Figure 29). Differently, as found for 6538P, the main component 

was not all positively associated with biofilm enhancement production. Feature importance 

and partial dependence pointed out compounds menthone, menthol, β-linalool, β-cymene, 

chrysanthenone, 3-octanol as more critical for biofilm production enhancement modulation 

(Figure 29 and Table 20). 

 

4.4.8 Biofilm Inhibition ML Model on RP62A 

Unlike the previous model, feature importance associated with the EOs biofilm inhibition 

production on RP62A strain highlighted 3-octanol, phellandral, thymol, and d-limonene as 

chemical compounds important on modulating biofilm reduction (Figure 25, Table 19, and 

Table 20). Partial dependence plots for 3-octanol, phellandral, thymol, d-limonene associated 

the four components as all positively able to inhibit biofilm production (Figure 26). 
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4.4.9 Biofilm Inhibition ML Model on O-47 

Regarding the ML model derived on the biofilm inhibition capability of EOs, the compounds 

more responsible for biofilm production modulation were found to be 3-octanol, o-cymene, 

d-limonene, and β-phellandrene (Figure 28 and Table 20). Differently from the above RP62A 

analogous inhibition model, only 3-octanol and d-limonene were found positively associated 

with EOs’ inhibitory ability by partial dependence plots (Figure 28).  On the contrary, o-

cymene and β-phellandrene were associated with negative action on the inhibition. This could 

be speculated as a sort of anti-synergic effect that could balance EOs’ potencies. 

 

4.4.10 General Consideration on ML Models 

According to the four classification models, two compounds, namely 3-octanol and d-

limonene, can be considered as those that most influence biofilm production (Table 20). In 

particular, d-limonene positively correlated either in inhibiting or enhancing biofilm 

production in three out of the four models while has a negative modulation on the ML model 

built on the biofilm enhancement of EOs’ on 25923 strain. These data indicate some 

controversial mechanisms associated with d-limonene. It could be speculated that being this 

compound a highly apolar monoterpene, its role could not be indirectly associated to biofilm 

modulation by altering the bacterial wall139 allowing other compounds, likely oxygenated 

ones, to enter the cell acting in altering some biochemical mechanism that could end in 

stimulation or inhibition of biofilm production. Nevertheless, on this topic, the data available 

in the literature is controversial: Natcha and Caoili140 reported that d-limonene is effective in 

inhibiting the growth of S. epidermidis RP62A when combined with the antibiotic rifampicin, 

likely due to d-limonene interference with biofilm formation. The effect of d-limonene in 

inhibiting bacterial biofilm formation was also proved against species of the genus 

Streptococcus141 for which minimal biofilm inhibitory concentration (MBIC) of 400 μg/mL was 

determined. In a very recent study, d-limonene was also reported as a biofilm inhibitor, 

although less efficient than an EO containing d-limonene142. On the contrary, Kerekes et al. 

assayed a series of EOs and a list of chemical components against food-related micro-

organisms and found d-limonene was almost deprived of any ability to inhibit biofilm 

production. In a study from Espina et al., d-limonene at 2000 μL/L was reported to reduce 

biofilm mass production in S. aureus USA300 by 90% after 8 hours of incubation, but increase 
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it by 30% after 40 h of incubation143. EOs containing d-limonene and the isolated component 

were found to stimulate biofilm production on Listeria monocytogenes and antibiotic-

resistant Enterococcus faecalis strains133–135. A similar profile and speculation on 3-octanol 

could also be deduced. 3-Octanol is a molecule resembling normal octanol, a compound 

commonly used to evaluate compound membrane permeability and lipophilicity by 

determining the logP parameter often used in ADME and QSAR studies. No data are available 

on the influence of 3-octanol on biofilm production, except for a single report in which the 8-

carbon molecules 1-octen-3-ol, 3-octanol and 3-octanone specifically induced conidiation in 

Trichoderma species colonies placed in the dark144. Pulegone, γ-terpinene, and piperitenone, 

could be the main components responsible for the modulation of EOs’ augmented biofilm 

production for strains 6538P and 25923, based on the ML elaboration and considering the 

possible cell wall permeation role of both d-limonene and 3-octanol on these strains. In the 

case RP62A and O-47 phellandral, thymol, o-cymene, and β-phellandrene are mainly 

responsible for positively (phellandral and thymol) or negatively (o-cymene and β-

phellandrene) modulating EOs’ biofilm inhibition. Unfortunately, no specific data are 

available on these isolated components, and the herein discussion, although based on robust 

ML calculation are not experimentally based. It is worthy to note that the four bacterial strains 

tested here produced biofilms with different characteristics. First 6538P and 25923 belong to 

S. aureus species, while RP62A and O47 belong to S. epidermidis species. 25923 is classified 

as a strong biofilm producer, and 6538P is a medium/strong biofilm producer according to 

Cafiso and coworkers145. Proteins are the major component in the biofilm matrix of 6538P, 

while in 25923, the polysaccharides have a predominant role. As regards the S. epidermidis 

strains, they are both strong biofilm makers and produce a biofilm mainly composed of 

polysaccharides. Moreover, O-47 is a naturally occurring agr mutant126. As previously 

reported146, agr-negative genotype enhanced biofilm formation on polymer surfaces by an 

increased expression of the surface protein AtlE, a bifunctional adhesin/autolysin abundant 

in the cell wall of S. epidermidis. The amount of AtlE present in cell envelop one of the 

reported differences between RP62A and O-47146. The overexpression of AtlE could induce 

significant changes in the hydrophobicity of the bacterial surface147; this effect could explain 

the different actions of EOs on these two strains. 
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Furthermore, the classification models were developed on the same EOs tested on P. 

aeruginosa biofilm production. In that case, investigation of the most important components 

through feature importance and partial dependence plots indicated estragole and phellandral 

as the chemical components mostly related to biofilm inhibition of P. aeruginosa. 

Concurrently, d-limonene, pulegone, and chrysanthenone seem to be related to its biofilm 

production. Although the use of feature importance and partial dependence plots shed some 

light on some EOs’ components' possible role, little is yet known on the role of the whole EOs 

mixture synergisms and anti-synergisms. Further studies on isolated EOs’ chemical 

components and their simple mixture are currently under evaluation to develop more refined 

ML models able to disclose more details on the EOs’ mechanism of action.  
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5 Essential oils against bacterial isolates from cystic fibrosis patients 

using antimicrobial and unsupervised machine learning approaches 

 

 

5.1 Introduction 

Cystic fibrosis (CF) is one of the most common lethal genetic disorders in the Caucasian 

population. It is inherited as an autosomal recessive disease and affects 70.000 persons 

worldwide (Cystic Fibrosis Foundation, CFF). The defective gene, identified in 1989, is the 

Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) that is carried by 4% of persons 

(among Caucasians). Since CFTR encodes for a chloride channel of the epithelial cell surface, 

CF patients manifest a variety of multi-organ problems due to the alteration of sodium and 

chloride secretion across cell membranes and the subsequent luminal dehydration148. The 

impairment of mucociliary clearance, which should remove all microbes entering the airways, 

leads to the production of thick and dehydrated mucus in the CF lung, which promotes the 

airway chronic bacterial colonization149. 

The microbiology of the CF respiratory tract is peculiar. In the early stage of life, it is 

characterized by the prevalence of the Gram-positive bacterium Staphylococcus aureus (S. 

aureus). Overall, in 2017 more than half of the affected individuals had at least one culture 

positive for methicillin-sensitive S. aureus (MSSA). The highest prevalence of methicillin-

resistant S. aureus (MRSA) occurs in individuals between the ages of 10 and 30, while MSSA 

reaches the peak among patients younger than 10 (Cystic Fibrosis Foundation. 2017. Patient 

Registry Annual Data Report https://www.cff.org/Research/Researcher-Resources/Patient-

Registry/2017-Patient-Registry-Annual-Data-Report.pdf). 

In early adolescence, CF patients’ lung becomes chronically infected with Gram-negative non-

fermenting bacteria. Among these, Pseudomonas aeruginosa (P. aeruginosa) is the most 

relevant and recurring, so that 30% of CF children and up to 80% of CF adults (25 years old 

and older) have lungs chronically colonized by this pathogen150. P. aeruginosa isolated from 

respiratory secretions demonstrates great phenotypic diversity and develops genetic 

mutations over time to adapt and survive in the complex environment of the CF airway151. P. 

aeruginosa mucoid phenotype, defined by the exopolysaccharide alginate overproduction 
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within the lungs of CF patients, is a hallmark of chronic infection and predictive of poor 

prognosis. Indeed, mucoid P. aeruginosa has also been associated with failure of eradication 

and, compared to non-mucoid counterpart, exhibits enhanced resistance to multiple 

antibiotics and host immune effectors152. 

CF patients' life expectancy has consistently grown, reaching a median life of 40 years due to 

current treatments. CF patients born in 2010 are expected to live up to 50 years of age153, 

assuming a positive trend of clinical care improvements at the actual rate. 

The intensive use of antimicrobial drugs to fight lung infections inevitably leads to the onset 

of antibiotic-resistant bacterial strains. New antimicrobial compounds should be identified to 

overcome antibiotic resistance during the treatment of CF lung infections. 

Recent investigation has disclosed a few small molecules, such as peptides or mannosides, 

showing promising efficacy in preventing and treating both bacterial and fungal biofilm 

infections in vivo108. Nevertheless, small molecules are known to select more and more 

resistant strains due to their mechanism of action based on specific binding to a primary 

target154. Interestingly, in recent literature, some reports on the use of naturally derived 

compounds showed in vitro the potentiality to inhibit the development of CF associated 

infections43,44,93,155. In particular essential oils seemed to be the most promising agents among 

tested natural compounds43,44. This study reports an extensive study on 61 essential oils (EOs) 

against a panel of 40 bacterial strains isolated from CF patients (see Table 21). 
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Table 21. Classification of bacterial strains based on their biofilm formation ability. For S. aureus, 

results were analyzed according to Cafiso et al.145; for P. aeruginosa, classification was based on 

Perez et al.156. NP: non biofilm producer. *Reference strains. 

Bacterial strains Biofilm producer Bacterial strains Biofilm producer 

6538P* STRONG PAO1* STRONG 

25923* STRONG PA14* STRONG 

1S WEAK 21P STRONG 

2S MODERATE 22P NP 

3S WEAK 23P MODERATE 

4S WEAK 24P NP 

5S WEAK 25P WEAK 

6S WEAK 26P NP 

7S MODERATE 27P NP 

8S WEAK 28P NP 

9S WEAK 29P NP 

10S MODERATE 30P WEAK 

11S WEAK 31P MODERATE 

12S WEAK 32P WEAK 

13S WEAK 33P NP 

14S WEAK 34P WEAK 

15S MODERATE 35P WEAK 

16S WEAK 36P WEAK 

17S MODERATE 37P STRONG 

18S WEAK 38P MODERATE 

19S WEAK 39P WEAK 

20S MODERATE 40P WEAK 

 

The workflow in Figure 30 was followed to reduce in vitro procedure and render the 

investigation as convergent as possible. Unsupervised machine learning algorithms and 

techniques, as implemented in python language128, were first applied to pick-up fewer 

representative strains (RS) among the panel of 40. To this aim, several categorical descriptors 

were collected and used to cluster the CF isolated strains. The clusters’ centroids indicated 

the RS to be investigated for their susceptibility to a list of commercial EOs at fixed doses. 

Three EOs showed a great efficacy to reduce the microorganisms' growth and were therefore 

promptly assayed against all the available clinical isolates. The three EOs confirmed the initial 

assumption demonstrating their ability to inhibit bacterial growth. Gas chromatography, 

coupled with mass spectrometry (GC/MS), was then performed on the three EOs to 

investigate the likely chemical components mainly responsible for the antibacterial activity. 
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Figure 30. The workflow of the herein investigation. 

 

 

5.2 Material and Methods 

5.2.1 Ethics approval and informed consent 

The approval for this research was granted by the Ethics Committee of Children’s Hospital and 

Institute Research Bambino Gesù in Rome, Italy (No 1437_OPBG_2017 of July 2017), and it 

was performed according to the principles of the Helsinki Declaration. Informed consent was 

obtained from all individual participants and all parents/legal guardians included in the study. 

 

5.2.2 Clinical isolates from CF patients 

In this study were used 40 bacterial strains (20 S. aureus, 20 P. aeruginosa) obtained from 

respiratory specimens of 30 CF patients (13 males, 17 females; average age 20.5) in follow-up 

at Pediatric Hospital Bambino Gesù (OPBG) of Rome, Italy. In particular, 27 bacterial strains 

were isolated from sputum, 11 from hypopharyngeal suction, and two from throat swabs 

(Table 22 and Table 23). As reference strains were used: S. aureus ATCC 6538P (6538P) and 

S. aureus ATCC 25923 (25923), commonly recognized as a reference strain for antimicrobial 

testing; P. aeruginosa PAO1 (PAO1) and P. aeruginosa PA14 respectively recognized as 

moderately and highly virulent157. 
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Table 22. The 20 Staphylococcus aureus clinical isolates and their characterization by several 

properties.  

ID pt ID SAM Date Str Ph QUIN B ER CLI LIN RCLI CF CPA GEN 

1 1S ESP 10/11/2006 MRSA SCV R S Nt R S N Cp  J 

2 2S ESP 11/22/2007 MRSA SCV R S Nt R S N Ca X N 

3 3S ESP 1/15/2009 MRSA SCV S S Nt S S N  X E 

4 4S AT 2/20/2009 MRSA — S S Nt S S P   A 

5 5S ESP 11/13/2009 MRSA — R S Nt R S N Sp  C 

6 6S AT 1/10/2011 MRSA — R S Nt R S P   K 

7 7S ESP 4/4/2011 MRSA — R S Nt R S N Ca X D 

8 8S AT 7/22/2013 MRSA — R S Nt S S N   I 

9 9S ESP 1/15/2014 MRSA — S S Nt R S P Ca X C 

10 10S AT 1/29/2015 MRSA — S S Nt R S N Ca/Cd/Pb  G 

11 11S AT 6/15/2017 MSSA — S S R R S P   C 

12 12S AT 6/15/2017 MSSA — S S R R S P   U 

13 13S AT 5/23/2017 MSSA — I S I I S N Sa  B 

14 14S AT 5/25/2017 MSSA — S S S S S N   C 

15 15S AT 5/24/2017 MSSA — S S R S S N  X C 

16 16S AT 5/26/2017 MSSA — S S R R S N   H 

17 17S AT 5/25/2017 MSSA — S S R R S N Af  M 

18 18S ESP 5/24/2017 MSSA — S S R R S P Ca X C 

19 19S ESP 6/15/2017 MSSA — S S R R S P  X L 

20 20S ESP 5/19/2017 MSSA — R S R R S P  X F 

ID pt: patient identification; ID: strain code; SAM:Sample; Date: Date of the collection; Str:Strain; Ph: 

phenotype; QUIN: quinolones; B: Trimethoprim/Sulfamethoxazole; ER: Erythromycin; CLI: Clindamycin; LIN: 

linezolid; RCLI: Inducible Clindamycin resistance; CF: Fungal Co-infection; CPA: P. aeruginosa co-infection; GEN: 

pts genotype; Esp: sputum; AT: hypopharyngeal suction; MRSA: Methicillin Resistant S. aureus; MSSA: 

Methicillin Sensitive S. aureus; SCV: Small colony variant; R: Resistant;S: Susceptible; I: Intermediate; N: 

Negative; Nt: nontested; Af: Aspergillus fumigatus; Ca: Candida albicans; Cp: Candida parapsilosis; Sp: 

Scedosporium prolificans; Cd: Candida dubliniensis; Pb: Pseudoallescheria boydii; Sa: Scedosporium 

apiospermum. X: denotes positive for this feature; -: denotes typical phenotype. See Table 26 showing the 

correlation between letter code, CFTR gene mutation of the patient, and bacterial strain isolated from the 

same patient. 
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Table 23.  The 20 Pseudomonas aeruginosa clinical isolates and their characterization by several 

properties. 
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Table 23.  The 20 Pseudomonas aeruginosa clinical isolates and their characterization by several 

properties. 
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Table 23.  The 20 Pseudomonas aeruginosa clinical isolates and their characterization by several 

properties. 
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ID pt: patient identification;ID: strain code;SAM: Sample; Date: Date of collection; Str: Strain; Ph: Phenotype; CAR: 

Carbapenems; MP: Meropenem; IP: Imipenem; PTC: Piperacillin/tazobactam; AM: Aminoglycosides; QUIN: Quinolones; 

CI: Ciprofloxacin; LE: Levofloxacin; MB: Monobactam; CEF: Cephalosporins; COL: Colistin; 1 St: P. aeruginosa first isolate; 

E: P. aeruginosa early isolate; L: P. aeruginosa late isolate; CF: Fungal co-infection; CSA: S. aureus co-infection; Gen: pts 

genotype; BP: Biofilm Producer; Esp:sputum; AT: hypopharyngeal suction; TF: throat swabs; PA: P. aeruginosa; PA MDR: 

P. aeruginosa multi-drug resistant; PA MBL+: P. aeruginosa Metallo-Beta-Lactamases producing; s: small colony 

phenotype; w- wrinkled colony surface; m: mucoid colony; i: irregular colony edges; sm: smooth phenotype; R: Resistant; 

S: Susceptible; I: Intermediate; CA: Candida albicans; CL: Candida lusitaniae; X: denotes positive for the feature. See See 

Table 26 showing the correlation between letter code, CFTR gene mutation of the patient and bacterial strain isolated 

from the same patient. 

 

Patients were treated according to current standards of care158 with at least four 

microbiological controls per year. Informed consent was obtained from all subjects aged 18 

years and older and from parents of all subjects under 18 years of age before enrolment. 

Microbiological cultures have been performed according to approved Guidelines, using 

selective media, manual and automatic systems (API20NE, Vitek2, MALDI-TOF mass 

spectrometry) for isolates identification and 16S rRNA sequencing to assess ambiguous 

identifications. The strains were selected from a local bacteria collection, including about 

10.000 CF bacterial isolates. The species S. aureus and P. aeruginosa have been chosen for 

their clinical relevance in CF disease's natural history since they are related to a worst 

prognostic impact compared to other pathogens whose role is still under discussion. 

In order to represent the complexity of the CF lung microbiota population attending OPBG 

Center, a selection of specific strains with different phenotypic and biochemical features has 

been performed. The strains’ characteristics are described in (Table 22 and Table 23). 

 

5.2.3 Qualitative description of the clinical isolates 

Twenty S. aureus strains with a different susceptibility profile, belonging to 20 CF patients, 

were selected: 10 Methicillin-Sensitive (MSSA) and 10 Methicillin-Resistant (MRSA). Among 

the MRSA strains, three S. aureus with phenotypic “small colony variants” (SCVs) have been 

chosen, characterized by the slow growth of small, unpigmented, non-hemolytic colonies. 
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Antimicrobial susceptibility profiles of MSSA and MRSA isolates were defined by automatic 

system Vitek2 (Biomerieux, France) or manual system E-test (Liofilchem, Italy). In particular, 

susceptibility to quinolones (ciprofloxacin, levofloxacin), trimethoprim/sulfamethoxazole, 

erythromycin, clindamycin, linezolid was assessed, according to EUCAST (www. EUCAST.org) 

criteria. Moreover, the clindamycin-inducing resistance test (40% positive test) was 

performed to classify S. aureus isolates that could develop acquired resistance to 

erythromycin or other macrolides during therapy with this antibiotic (Table 22)159. 

Twenty P. aeruginosa isolates belonging to 11 CF patients were also selected (Table 23). The 

selected strains had been categorized as first, early, and late isolates. In particular, seven 

strains have been associated with the first acquisition of P. aeruginosa (first strains), two 

strains have been isolated one year after the first acquisition (early strains), and 11 strains 

have been isolated at least five years after the onset of chronic colonization (late strains). 

Moreover, different phenotypes (mucoid, wrinkle surface, irregular edges, or smooth) and 

strains with different antibiotic susceptibility patterns, e.g., P. aeruginosa producing Metallo-

Beta-Lactamases (MBL)160 or P. aeruginosa multi-drug resistant (MDR), have been selected. 

According to EUCAST criteria, susceptibility testing to carbapenems (imipenem, meropenem), 

piperacillin/tazobactam, aminoglycosides (tobramycin, amikacin), quinolones (ciprofloxacin, 

levofloxacin), monobactam (aztreonam), and cephalosporins (ceftazidime, cefepime) was 

carried out by Minimum Inhibitory Concentration (MIC) determined by E-test on Mueller 

Hinton (MH) agar plates. The colistin MIC values were evaluated by Broth Microdilution 

(ComASP Colistin Liofilchem, Italy); 35% of P. aeruginosa isolates were MDR (i.e., resistant to 

three or more classes of antimicrobials)161 (Table 24). Table 25 reports that the percentage 

of bacterial strains resulted sensitive or resistant to different classes of antibiotics here tested. 

Co-infection by bacterial (P. aeruginosa and S. aureus) and fungal agents (Aspergillus 

fumigatus, Candida albicans, Candida parapsilosis, Candida dubliniensis, Candida lusitaniae, 

Scedosporium prolificans, Scedosporium apiospermum, Pseudoallescheria boydii) was also 

evaluated for each patient (Table 22 and Table 23). Table 26 reports letters’ code 

correspondence for the strains associated genotype reported in Table 22 and Table 23. 
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Table 24. Antimicrobial activity corresponding to minimal bactericidal concentration of previously 

selected EOs on all 40 clinical isolates. 

Bacterial strains CEO BEO CCPEO Bacterial strains CEO BEO CCPEO 

ATCC6538P 1% 1% 1% PA O1 1% 1% 1% 

ATCC25923 1% 1% 1% PA 14 1% 1% 1% 

SA01 1% 1% 1% PA21 1% 1% 1% 

SA02 1% 1% 1% PA22 1% 1% 1% 

SA03 1% 1% 1% PA23 1% 1% 1% 

SA04 1% 1% 1% PA24 1% 1% 1% 

SA05 1% 1% 0.1% PA25 1% 1% 1% 

SA06 1% 1% 1% PA26 1% 1% 1% 

SA07 1% 1% 1% PA27 1% 1% 1% 

SA08 1% 1% 1% PA28 1% 1% 1% 

SA09 1% 1% 1% PA29 1% 1% 1% 

SA10 1% 1% 1% PA30 1% 1% 1% 

SA11 1% 1% 1% PA31 1% 1% 1% 

SA12 1% 1% 1% PA32 1% 1% 1% 

SA13 1% 1% 1% PA33 1% 1% 1% 

SA14 1% 1% 1% PA34 1% 1% 1% 

SA15 1% 1% 1% PA35 1% 1% 1% 

SA16 1% 1% 1% PA36 1% 1% 1% 

SA17 1% 1% 1% PA37 1% 1% 1% 

SA18 1% 1% 1% PA38 1% 1% 1% 

SA19 1% 1% 1% PA39 1% 1% 1% 

SA20 1% 1% 1% PA40 1% 1% 1% 
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Table 25. Percentage of susceptibility of S. aureus and P. aeruginosa 

Classes of antimicrobials Molecules Susceptibility according to EUCASTa 

  
S.aureus P.aeruginosa 

% S % I % R % S % I % R 

Quinolones 

 

CI 60 5 35 60 - 40 

LE 60 5 35 55 - 45 

Sulfonamides T/S 100 - - Nt 

Macrolides ER 10 10 80 Nt 

Lincosamides CLI 25 5 70 Nt 

Oxazolidinones LIN 100 - - Nt 

Carbapenems 

 

IP Nt 55 - 45 

MP Nt 60 5 35 

Penicillins + β lactamase 

inhibitors 
PTC 

Nt 

 
80 - 20 

Aminoglycosides 

 

TM Nt 50 5 45 

AK Nt 50 5 45 

Monobactams AT Nt 45 45 10 

Cephalosporins 

 

CAZ Nt 60 - 40 

PM Nt 60 - 40 

Polymyxins CO Nt 100 - - 
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Table 25. Percentage of susceptibility of S. aureus and P. aeruginosa 

S, susceptible; I, intermediate; R, resistant; CI, ciprofloxacin; LE, levofloxacin; T/S, 
trimethoprim/sulfamethoxazole; ER, erythromycin; CLI, clindamycin; LIN, linezolid; IP, imipenem; MP, 
meropenem; PTC, piperacillin-tazobactam; TM, tobramycin; AK, amikacin; AT, aztreonam; CAZ, ceftazidime; 
PM, cefepime, CO, colistin. Nt, non-tested. 
 
a EUCAST breakpoints (in milligrams per liter) for S.aureus: CI-5µg , S ≤ 1 - R > 1; LE-5µg , S ≤ 1 - R > 1;T/S -
1.25/23.75 µg , S ≤ 4 - R > 4; ER-15 µg , S ≤ 1 - R > 2; CLI-2 µg , S ≤ 0.25 - R > 0.5; LIN-10 µg , S ≤ 4 - R > 4; 
 
a EUCAST breakpoints (in milligrams per liter) for P.aeruginosa: CI-5µg , S ≤ 0.5 - R > 0.5; LE-5µg , S ≤ 1 - R > 1; 
IP-10 µg , S ≤ 4 - R > 8; MP-10 µg , S ≤ 2 - R > 8; PTC –100/10 µg, S ≤ 16 - R > 16; TM –10 µg, S ≤ 4 - R > 4; AK–
30 µg, S ≤ 8 - R > 16; AT–30 µg, S ≤ 1 - R > 16; CAZ–30 µg, S ≤ 8 - R > 8; PM–30 µg, S ≤ 8 - R > 8; CO–10 µg, S ≤ 
2 - R > 2. 
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Table 26. Table shows the correlation between letter code, CFTR gene mutation of the patient and 

bacterial strain isolated from the same patient. 

Code Genotype ID strain 

A 621+1G > T/R553X 4S 

B F508del/1717-1G- > A 13S 

C F508del/F508del 5S 

C F508del/F508del 9S 

C F508del/F508del 11S 

C F508del/F508del 14S 

C F508del/F508del 15S 

C F508del/F508del 18S 

D F508del/G1244E 7S 

E F508del/G542X 3S 

F F508del/L1077P 20S 

G F508del/R1162X 10S 

H F508del/R117L + L997F 16S 

I F508del/R585X 8S 

J F508del/W1282X 1S 

K G542X/3271 + 42A/T 6S 

L L636P/P499A 19S 

M N1303K/2184insA 17S 

N Q220X/A1006E 2S 

U None 12S 

A F508del/E193K 36P 

A F508del/E193K 37P 

B F508del/F508del 23P 

B F508del/F508del 24P 

B F508del/F508del 25P 

B F508del/F508del 30P 

B F508del/F508del 31P 

B F508del/F508del 38P 

B F508del/F508del 39P 

C F508del/G542X 40P 

D F508del/l1234V 34P 

D F508del/l1234V 35P 

E N1303K/3849 + 10kbC > T 21P 

E N1303K/3849 + 10kbC > T 22P 

F R347P/L571S 32P 

F R347P/L571S 33P 

G W1282X/2789 + 5G- > A 26P 

G W1282X/2789 + 5G- > A 27P 

U None 28P 

U None 29P 
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5.2.4 Biofilm production assay 

The quantification of biofilm production was based on microtiter plate biofilm assay (MTP), 

as reported in literature93. Briefly, the wells of a sterile 96-well flat-bottomed polystyrene 

plate were filled with 100 µL of the appropriate medium. 1/100 dilution of overnight bacterial 

cultures were added into each well (about 0.5 OD 600 nm). The plates were incubated 

aerobically for 18 hours at 37 °C. Biofilm formation was measured using crystal violet staining. 

After incubation, planktonic cells were gently removed; each well was washed three times 

with double-distilled water and patted dry with a piece of paper towel in an inverted position. 

Each well was stained with 0.1% crystal violet and incubated for 15 minutes at room 

temperature, rinsed twice with double-distilled water, and thoroughly dried to quantify 

biofilm formation. The dye bound to adherent cells was solubilized with 20% (v/v) glacial 

acetic acid and 80% (v/v) ethanol. After 30 min of incubation at room temperature, OD590 

was measured to quantify the biofilm's total biomass formed in each well. Each data point is 

composed of 4 independent experiments, each performed at least in 6-replicates. 

 

5.2.5 Statistical analysis of biological evaluation 

Data reported were statistically validated using Student’s t-test comparing mean absorbance 

of treated and untreated samples. The significance of differences between mean absorbance 

values was calculated using a two-tailed Student’s t-test. A p-value of <0.05 was considered 

significant. 

 

5.2.6 Chemical composition analysis of active selected essential oils 

EOs were purchased from Farmalabor srl (Assago, Italy) and analyzed to characterize their 

composition. Chemical analyses of EOs were performed by a Turbomass Clarus 500 GC-

MS/GC-FID from Perkin Elmer instruments (Waltham, MA, USA) equipped with a Stabilwax 

fused-silica capillary column (Restek, Bellefonte, PA, USA) (60 m × 0.25 mm, 0.25 mm film 

thickness). The operating conditions used were as follows: GC oven temperature was kept at 

40 °C for 5 min and programmed to 220 °C at a rate of 6 °C/minute and kept constant at 220 °C 

for 20 minutes. Helium was used as carrier gas (1.0 mL/min). Solvent delay 0–2 min and scan 

time 0.2 seconds. The mass range was from 30 to 350 m/z using electron-impact at 70 eV 

mode. 1 μL of each essential oil was diluted in 1 mL of methanol and 1 μL of the solution was 
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injected into the GC injector at the temperature of 280 °C. Relative percentages for 

quantification of the components were calculated by the electronic integration of the GC-FID 

peak areas. The constituents' identification was achieved by comparing the obtained mass 

spectra for each component with those reported in mass spectra Nist and Wiley libraries. 

Linear retention indices (LRI) of each compound were calculated using a mixture of aliphatic 

hydrocarbons (C8-C30, Ultrasci) injected directly into the GC injector at the same temperature 

program reported above. 

 

5.2.7 Determination of EOs minimal inhibitory concentration (MIC) 

The MIC was determined as the lowest concentration at which the observable bacterial 

growth was inhibited. MICs were determined according to the guidelines of Clinical 

Laboratory Standards Institute127 (CLSI). Each EO was solubilized by adding DMSO to generate 

a 1 g/mL mother stock solution. Appropriate dilution (106 cfu/mL) of bacterial culture in the 

exponential phase was used. The antimicrobial activity of each EO was evaluated at a 

concentration of 1 mg/mL range. Experiments were performed in quadruplicate. 

 

5.2.8 Unsupervised machine learning clusterization of clinical isolates 

The cluster analysis was implemented in the Python (version 3.6) programming language. The 

S. aureus and P. aeruginosa datasets were imported in a Jupyter-notebook129 (version 5.7), 

and the categorical variables loaded into a Pandas35 data frame were transformed into 

dummy indicator variables for the subsequent Principal Component Analysis (PCA) using the 

utilities available in the Pandas70,71 (version 0.23) library. The PCA analysis was performed 

using the scikit-learn library72 (version 0.20) to extract the first 20 principal components  

(Figure 32). The scores and loadings were graphically inspected on plots generated using the 

matplotlib library69(version 3.0) (Figure 33). The PCs were used as features for the k-means 

clusterization. Silhouette analysis162 was performed to evaluate the separation distance 

between the resulting clusters and choose an optimal value for the cluster number. The 

optimal number of clusters was identified by the maximum silhouette scores, as graphically 

reported in Figure 34. Through k-means, the centroid of each cluster was calculated, and the 

closest data point directly indicated the RS (Figure 35). 
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5.3 Results 

5.3.1 Characterization of biofilm formation of clinical bacterial strains 

Clinical bacterial strains were investigated for their ability to produce biofilm (Figure 31). 

Biofilm formation was evaluated at 37 °C in BHI for 18 hours, as described in the Materials 

and Methods section. Biofilm formation was also evaluated for four reference strains included 

in the experimental plan. Figure 31 (top panel) reports biofilm formation of bacterial strains 

belonging to S. aureus species. Clinical strains, named from 1S to 20S, were classified as 

“weak” or “moderate” biofilm producers, according to Cafiso and coworker, 2007145. Both 

reference strains for S. aureus species are strong biofilm producers. Figure 31 (bottom panel) 

reports biofilm formation of bacterial strains belonging to P. aeruginosa species. Clinical 

strains, named from 21P to 40P, were classified as: “non producer”, “weak”, “moderate” and 

“strong” biofilm producers, according to Perez and Barth, 2011156 (Table 21). 
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Figure 31. Biofilm formation of S. aureus clinical and reference strains (top panel) and P. aeruginosa 
clinical and reference strains (bottom panel). The biofilm formation was evaluated after 18 hours 
incubation in polystyrene plates at 37 °C. The data are reported as OD 590 nm after crystal violet 
staining. Each data point represents the mean ± SD of four independent samples. 

 

 

 

0

0,5

1

1,5

2

2,5

3

3,5
O

D
 5

9
0

 n
m

0

2

4

6

8

10

12

14

16

O
D

 5
9

0
 n

m



113 
 

5.3.2 Selection of representative microorganisms by machine learning 

The 40 selected strains were divided according to the main strains families into S. aureus and 

P. aeruginosa datasets and imported into a python pandas data frame. The principal 

components analysis (PCA) indicated that 90% of the variance is explained by the first 10th 

principal components (PCs) (Figure 32). Nevertheless, visual inspection of the first principal 

component (PC1) versus the second principal component (PC2) scores and loadings plots 

indicated the PCs as potential new variables to cluster the datasets (Figure 33). Application of 

the Silhouette Analysis162 coupled with the k-means clustering24 to the first two PCs indicated 

the optimal number of clusters to be 6 and 3 for the P. aeruginosa and S. aureus strains, 

respectively (Figure 34 and Figure 35). 

The nearest data point to cluster centroid was selected for each cluster, yielding to a selection 

of representative strains to be screened with the commercial EOs. Analysis of data revealed 

the six samples, precisely 22P, 25P, 26P, 27P, 37P, and 39P as the representatives for P. 

aeruginosa, whereas samples 4S, 5S, and 19S were selected for S. aureus. 

 

  

Figure 32. Explained cumulative variance versus the number of extracted PCs for the PA (left 

panel) and SA (right panel) datasets 
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Figure 33. Scores (left panels) and loadings (right panels) plots for the Pseudomonas aeruginosa 

(top panels) and the Staphylococcus aureus (bottom panels). 
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Figure 34. Average silhouette scores versus the number of clusters. The maximum indicates the 
optimal number of clusters. 

 

  
Figure 35. Score plots indicating the clustered Pseudomonas aeruginosa (left panel) and 
Staphylococcus aureus (right panel) datasets. The kmeans centroids of each cluster are also 
reported. 

 

 

5.3.3 Antimicrobial activity of EOs on P. aeruginosa and S. aureus clinical strains from cystic 

fibrosis patients 

Essential oils were tested for their ability to inhibit bacterial growth of P. aeruginosa and S. 

aureus clinical and reference strains. Analysis was performed on three representative S. 

aureus strains and six representative P. aeruginosa strains, previously selected by machine 

learning analysis. EOs were tested at a concentration of 1% v/v (). Several EOs have shown 

antimicrobial activity on many bacterial strains. It is worthy to note that the P. aeruginosa 
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reference strain PAO1 is the most resistant to the action of EOs, since only four EOs inhibited 

it. This analysis allowed to identify three EOs active against all the representative strains used, 

namely cade essential oil (22 in Table 28, CEO), birch essential oil (32 in Table 28, BEO) and 

Ceylon cinnamon peel essential oil (39 in Table 28, CCPEO). Thus, these 22, 32 and 39 EOs 

were tested on all clinical bacterial strains. Results summarized in Table 24 confirmed that 

BEO, CEO and CCPEO exerted a strong and effective bactericidal potency on all tested clinical 

strains. 

 

Table 27. Antimicrobial activity of EOs listed in Table 28 on representative clinical strains and 
reference strains of S. aureus and P. aeruginosa. 

Eos ID 6538P 25923 4S 5S 19S PaO1 PA14 22P 25P 26P 27P 37P 39P 

1 1% 1% 1%           

2              

3        1%    1%  

4 1% 1% 1% 1% 1%   1%    1%  

5              

6  1% 1% 1% 1%         

7              

8              

9 1% 1% 1% 1% 1%  1% 1% 1% 1%  1% 1% 

10              

11              

12              

13              

14 1% 1% 1% 1% 1% 1% 1%  1%  1% 1% 1% 

15              

16              

17              

18              

19              

20              
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Table 27. Antimicrobial activity of EOs listed in Table 28 on representative clinical strains and 
reference strains of S. aureus and P. aeruginosa. 

Eos ID 6538P 25923 4S 5S 19S PaO1 PA14 22P 25P 26P 27P 37P 39P 

21              

22 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 

23              

24              

25              

26              

27              

28              

29              

30              

31              

32 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 

33              

34              

35              

36              

37 1% 1% 1% 1% 1%   1%    1% 1% 

38            1%  

39 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 

40              

41              

42              

43              

44              

45              

46 1% 1% 1% 1% 1%       1% 1% 

47              

48 1% 1% 1% 1% 1%  1%      1% 

49              
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Table 27. Antimicrobial activity of EOs listed in Table 28 on representative clinical strains and 
reference strains of S. aureus and P. aeruginosa. 

Eos ID 6538P 25923 4S 5S 19S PaO1 PA14 22P 25P 26P 27P 37P 39P 

50              

51              

52    1% 1%         

53              

54 1%    1%         

55              

56              

57              

58              

59 1% 1% 1% 1% 1%       1% 1% 

60    1% 1%       1% 1% 

61 1%   1%         1% 
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Table 28. Essential oils names. 

EO ID EO Name EO ID EO Name 

1 Chamomile Morocco Essential Oil 32 Birch Essential Oil 

2 Sage Sclarea Essential Oil 33 Fennel Essential Oil 

3 Salvia Officinalis Essential Oil 34 Cedar Fruit Essential Oil 

4 Red Thyme Essential Oil 35 Lemon Essential Oil 

5 Tea Tree Oil 36 Roman Chamomile Essential Oil 

6 Melissa Oiio Essential 37 Savory Essential Oil 

7 Pinus Mugo Essential Oil 38 Rosemary Essential Oil 

8 Geranium Bourbon Essential Oil 39 Ceylon Cinnamon Peel Essential Oil 

9 Oregano Essential Oil 40 Eucaliptus Globulus Essential Oil 

10 Ylang Ylang Essential Oil 41 Sweet Orange Essential Oil 

11 Coriander Essential Oil 42 Niaouly Essential Oil 

12 Lavandula Angustifoglia Essential Oil 43 Artemisia Essential Oil 

13 Myrtle Essential Oil 44 Cajeput Essential Oil 

14 Garlic Essential Oil 45 Black Pepper Essential Oil 

15 Cardamom Essential Oil 46 White Thyme Essential Oil 

16 Mandarin Essential Oil 47 Marjoram Essential Oil 

17 Hyssop Essential Oil 48 Cloves Essential Oil 

18 Grapefruit Essential Oil 49 Cypress Essential Oil 

19 Cymbopogon Essential Oil 50 Nutmeg Natural Essential Oil 

20 Pinus Sibirica Essential Oil 51 Peppermint Essential Oil 

21 Camphor Essential Oil 52 Verbena officinalis Essential Oil 

22 Cadè Essential Oil 53 Basil Essential Oil 

23 Cedar Leaves Essential Oil 54 Cymbopogon martinii Essential Oil 

24 Ginger Essential Oil 55 Laurel Essential Oil 
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25 Cumin Essential Oil 56 Anise Essential Oil 

26 Patchouli Essential Oil 57 Incense Essential Oil 

27 Bitter Orange Essential Oil 58 Mentha Suaveolens (Sicily) Essential Oil 

28 Eucalyptus Essential Oil 59 Coridotthymus Capitatus (Sicily) Essential Oil 

29 Pinus Silvester Essential Oil 60 Thymus Vulgaris (Sicily) Essential Oil 

30 Bergamot Essential Oil 61 Origanum Hirtum (Sicily) Essential Oil 

31 Juniper Essential Oil   

 

 

5.3.4 Chemical composition analysis of active selected essential oils 

The results of GC and GC-MS analyses of the essential oils are reported in Table 29, Table 30 

and Table 31. In the BEO, 21 components were identified and the major constituents were δ-

cadinene, calamenene and creosol (22.2%, 15.2% and 12.8% respectively) (Table 29). The 

chemical composition of CCPEO was characterized by the presence of 19 compounds and by 

a high amount of cinnamaldehyde (49.4%) followed by eugenol (21.2%) (Table 30). The 

chemical composition of the CEO indicated 21 components and the most abundant were 

delta-cadinene (27.7%), calamenene (14.8%) and creosol (12.6%) (Table 31). At first glance, 

the CEO's chemical composition seems very similar to that of BEO as the main compounds 

showed comparable percentages. Among the minor components of CEO, α-selinene (2.2%), 

aromadendrene (1.1%), and gleenol (1.1%) were found, whereas isoledene (5.7%) was found 

in BEO. At a deeper analysis, the qualitative chemical profiles were compared, and a 0.62 

Tanimoto index was calculated, thus indicating that although displaying a similar 

chromatogram, the two EOs are indeed different. EOs producer was also inquired, and their 

technical staff confirmed the two oils were sharing high similarity quantitative profile in the 

main constituents. 
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Table 29. Chemical composition (%) of Birch EO. 

#1 Name RI2 RIlit3 Area % 

1 2-cyclopenten-1-one, 3-methyl 1510 1513 0.5 

2 2-cyclopenten-1-one, 2,3-dimethyl 1528 1535 0.7 

3 α-cedrene 1590 1599 9.9 

4 dihydrocurcumene 1610 * 3.5 

5 isoledene 1655 * 5.7 

6 α-muurolene 1685 1690 4.4 

7 δ-cadinene 1758 1758 22.2 

8 calamenene 1802 1804 15.2 

9 α-methylnaphtalene 1889 1891 0.9 

10 guaiacol 1895 1897 3.5 

11 isolongifolene, 4,5,9,10-dehydro- 1920 * 1.8 

12 creosol 1960 1956 12.8 

13 o-creosol 2009 2011 0.9 

14 phenol 2011 2012 1.1 

15 p-ethylguaiacol 2027 2032 5.0 

16 m-cresol 2075 2081 1.4 

17 phenol, 2,5-dimethyl 2080 2085 1.8 

18 p-propylguaiacol 2102 2103 2.1 

19 eugenol 2155 2166 0.9 

20 cadalene 2199 2200 4.6 

21 isoeugenol 2270 2268 0.9 

 Unidentified compounds   0.2 
1 Compound identification number. 
2 Retention indices measured on polar column. 
3 Retention indices from literature;  

*RIlit not available for polar column. 
+ Normal alkane RI. 
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Table 30. Chemical composition (%) of Ceylon Cinnamon EO. 

#1 Name RI2 RIlit3 Area % 

1 α-pinene 1021 1021 0.9 

2 camphene 1060 1065 0.3 

3 β-pinene 1100 1105 0.3 

4 α-phellandrene 1161 1160 0.9 

5 limonene 1200 1198 0.5 

6 β-phellandrene 1203 1204 1.4 

7 m-cymene 1260 1258 2.1 

8 α-copaene 1490 1487 0.4 

9 β-linalool 1535 1537 5.2 

10 terpinen-4-ol 1600 1603 0.3 

11 β-caryophyllene 1617 1619 4.7 

12 cinnamaldheyde, o-methoxy- 1650 * 1.0 

13 humulene 1665 1668 0.8 

14 α-terpineol 1677 1675 0.4 

15 safrole 1870 1874 0.3 

16 cinnamaldheyde 2037 2049 49.4 

17 eugenol 2170 2175 21.2 

18 eugenol acetate 2270 2277+ 0.9 

19 benzyl benzoate 2648 2652 8.6 

 Unidentified compounds   0.4 
1 Compound identification number. 
2 Retention indices measured on polar column. 
3 Retention indices from literature;  

*RIlit not available for polar column. 
+ Normal alkane RI. 
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Table 31.Chemical composition (%) of Cadè EO. 

#1 Name RI2 RIlit3 Area % 

1 2-cyclopenten-1-one, 3-methyl 1510 1513 0.7 

2 α-cedrene 1590 1599 7.9 

3 aromadendrene 1609 1610 1.1 

4 dihydrocurcumene 1690 1696 3.5 

5 α-selinene 1751 1750 2.2 

6 α-muurolene 1755 * 4.0 

7 δ-cadinene 1758 1758 27.7 

8 calamenene 1802 1832 14.8 

9 phenol, 2-methoxy- 1838 1846 4.7 

10 isolongifolene, 4,5,9,10-dehydro- 1920 * 1.7 

11 creosol 1960 1956 12.6 

12 o-creosol 2009 2011 1.0 

13 phenol 2011 2012 1.0 

14 p-ethylguaiacol 2027 2032 5.4 

15 m-cresol 2075 2081 1.5 

16 phenol, 3-methyl- 2095 2099 1.1 

17 p-propylguaiacol 2102 2103 1.9 

18 eugenol 2155 2175 0.4 

19 gleenol 2175 * 1.1 

20 cadalene 2199 2200 4.3 

21 isoeugenol 2270 2268 1.2 

 Unidentified compounds   0.2 

1 Compound identification number. 
2 Retention indices measured on polar column. 
3 Retention indices from literature;  

*RIlit not available for polar column. 
+ Normal alkane RI. 
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5.4 Discussion and Conclusions 

Long-term antibiotic administration to prevent and treat airway infections in CF patients has 

been shown to be associated with the emergence of multi-drug (MDR) antimicrobial-resistant 

microorganisms163. In particular, mecA/mecC genes acquisition in S. aureus and accumulation 

of resistance mechanisms after antibiotic exposure in P. aeruginosa, both key pathogens in 

CF lung, are a concern in this context164,165. Multidrug resistance significantly limits effective 

therapeutic options, affecting the clinical outcome and prognosis of patients. For this reason, 

the identification and development of new antibacterial agents are fundamental to improve 

the survival and quality of life of individuals with CF. Therefore the development of 

antimicrobial agents provided with novel molecular mechanisms that may control bacterial 

infectious diseases without diffusing antibacterial resistance is desirable166. Unsupervised 

Machine Learning algorithms applied to a panel of 40 strains of S. aureus and P. aeruginosa 

isolated from CF patients led to select fewer representative strains using phenotypical and 

genotypical characteristics as categorical descriptors. Therefore, the antibacterial activity of 

all tested EOs was initially assessed on nine selected bacterial strains: six representative 

strains for P. aeruginosa and three representative strains for S. aureus. The activity of all 61 

EOs was also assessed on reference strains. Antimicrobial assays led to identifying 3 EOs (CEO, 

BEO, and CCPEO) out of the tested 61, which exhibited the highest antibacterial activity on 

the previously selected bacterial strains and reference ones. The antibacterial activity of the 

three selected EOs was then extended to all strains of both species. 

Interestingly all three EOs showed the utmost antimicrobial potency on all studied strains. 

Nothing can be yet ruled out on the chemical compounds’ role. Future studies involving 

machine learning applications will be dedicated to investigating the importance of chemical 

constituent either on biofilm modulation or in antibacterial potencies—several papers aimed 

at elucidating the antimicrobial mechanism of action of EOs. For example, cinnamaldehyde, 

the primary component of cinnamon, can disrupt the transmembrane potential of P. 

aeruginosa167. 

Furthermore, EOs of different origins (lavender, lemongrass, marjoram, peppermint, tea tree 

and rosewood) show antimicrobial activity against Burkholderia cepacia complex inducing 

changes in membrane fatty acid composition, followed by membrane disruption168. Also, EO 

from Alluaudia procera was active against S. aureus ATCC25923, a multi-resistant strain169. 
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Reported data confirmed the possibility of using EOs as therapeutic strategies in multi-

resistant strains, probably due to the heterogeneous composition of the oils themselves. 

Notably, in this work, we found EOs antibacterial activity unrelated to each strain's antibiotic 

resistance profile. This observation is relevant as it suggests the EOs potential uses by topical 

administration without considering the complexity of the microbiota's drug resistance profile 

in every patient. 

In conclusion, the approach herein applied allowed to minimize the experimental steps, and 

it was possible to identify the most promising EOs based on probabilistic evaluations that 

confirmed their broad spectra of antibacterial potency with a reduced set of experiments. 

From a literature survey (www.scopus.com, accessed 2019 December 13, keywords: essential 

oil, antibacterial activity, and resistance), no evidence of resistance to EOs antibacterial 

activity has yet been reported. This is a characteristic particularly relevant for antibacterial 

candidates to be administered for a chronic disease such as CF. Indeed some papers report 

an increase of susceptibility to antibiotics after treatment with essential oils170,171. Although 

a plethora of publications did not show the development of resistance to EOs, a very recent 

publication suggested the induction of efflux pumps and multidrug resistance in P. aeruginosa 

by Cinnamaldehyde, the main component of cinnamon172. Therefore, considering the recent 

reports, much still needs to be clarified on the essential oils' effect on bacterial multi-drug 

resistance. 
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