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Abstract

The paper addresses the problem of analysing the effect of each dif-
ferent control action on the evolution of an epidemic spread for which no
vaccine is available. It is specifically referred to the COVID-19 spread. A
new mathematical model for virus propagation is described, designed to
include all the possible actions to prevent the spread and to help in the
healing of infected people. The analysis of the effect on the population for
each different control action is performed showing where and how much
they have effects in the spread dynamics.
Keywords: Epidemic model, COVID-19, spread reduction, effect forecast

1 Introduction

As for all dynamical systems, when dealing with epidemic spreads a mathemat-
ical model is at basis of realistic interpretation of the behaviours and of reliable
forecast of the evolutions.

From the earliest contribution of [1], where the most simple but also the most
used model, known as SIR (Susceptible, Infected and Recovered individuals),
several richer and more specific models have been proposed in literature. A first
step is [2], where a SIRC model is used to describe the influenza disease, to face
the case of partial or temporarily limited immunity.

More recently, more complex models have been introduced, developed for
specific classes of infections, to better describe their propagation and to partic-
ularize the specific control actions against their spread.

Then, for the HIV/AIDS disease, case in which no effective vaccine is known
yet, the models have to classify the population into a higher number of classes

*This research was funded by Sapienza University of Rome, Grants No. 806/2019 and No.
729 009 19.
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and, due to the severity of the disease, the interventions must be reconsidered
with respect to a SIR or a SIRS [3–8].

Another relevant example is the measles disease [9–12]; in this case the
vaccination is available but the relatively high number of immuno–depressed
individuals needs additional controls and then a more specific mathematical
models to include them [13].

At present, the worldwide ongoing COVID-19 due to the SARS-CoV-2 virus
spread [14–17] presents the necessity to deal with different models. The defi-
nition of a mathematical model to describe the phenomenon [15], to estimate
its diffusivity [18, 19] and to give a realistic forecasts to prepare the most suit-
able countermeasures [20] have represented the first contributions, but mainly
referring or readapting known epidemic models. In [15],a quite rich model is pro-
posed, composed by 8 different classes: in addition to the usual susceptible (S),
exposed (E), infectious with symptoms (I) and recovered (R) compartments,
there are also the groups of pre-symptomatic infectious (A), the hospitalized
(H), the quarantined susceptible (Sq), the isolated exposed (Eq) and the iso-
lated infected (Iq) compartments and the model parameters are on the basis of
the the available data. The pandemic characteristics of the disease motivates
also analysis as in [17], where geographical movements are considered.

Regarding the support for forecasting ability of a mathematical model, in [20]
a short time forecast is provided, based on the uncertain data available and
making reference to models developed for similar cases [21–24].

Due to the unavailability of a vaccine, like for the AIDS, in the COVID-19
case a mathematical model which has to be used for control design [10, 25–29]
must include all possible lines of interventions to better distribute the efforts
and then, hopefully, increase the effects.

To this aim, in this paper, a mathematical model for SARS-CoV-2 diffusion
among the population, different from the ones previously presented, is intro-
duced; all the known preventive and active actions that can be put in place, at
an organizational and decisional level as well as from a medical point of view,
to contain the virus spread and its negative consequences are considered.

This particular attention devoted to the control possibility brings, in this
first analysis, to a characterization of the effects of each control on the sys-
tem behaviour, for each class considered, in view of the design of effective and
sustainable controls.

In Section 2 the model is introduced and illustrated, with a particular atten-
tion to the choices for the numerical values of the parameters. Section 3 contains
the illustration and the description, through numerical simulations performed
on the basis of the proposed model, of the effects of each single different control
actions.

2 The mathematical model

The mathematical model here adopted is an enrichment of a classical SEIR
model which is usually adopted to describe the dynamics of epidemic spreads
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in presence of an virus incubation phase (E) during which the individuals are
not yet infectious [30].

Making reference to the recent work [17] on the COVID-19, in this con-
tribution two new classes are added and the possible ways of intervention are
modelled in order to make available some numerical evaluations about the pos-
sible epidemic diffusion depending on the different action strategies.

In Subsection 2.1 the model is described; equilibrium conditions and stability
properties are analysed in Subsection 2.2 while the analysis and the discussion
of the effects of the controls on the dynamics is the topic of Section 3.

2.1 The mathematical model adopted

The mathematical model used is

Ṡ(t) = B − β(1− u2(t))S(t)IC(t) + bnQ(t) + cnu5(t)Q(t)

−au1(t)S(t)− dSS(t) (1)

Ė(t) = β(1− u2(t))S(t)IC(t)− au1(t)E(t)− kE(t)− dEE(t) (2)

İC(t) = kE(t)− au1(t)IC(t)− h1IC(t)− h2IC(t)− dIC IC(t) (3)

İQ(t) = h1IC(t) + h1(1− n)Q+ c(1− n)u5(t)Q(t)

− (γ + ηu3(t)) IQ(t)− dIQ(1− u4(t))IQ(t) (4)

Q̇(t) = au1(t) (S(t) + E(t) + IC(t))− bnQ(t)− h1(1− n)Q

−cu5(t)Q(t)− dQQ(t) (5)

Ṙ(t) = h2IC(t) + (γ + ηu3(t)) IQ(t)− dRR(t) (6)

where S are the susceptible people; E are the exposed individuals, infected but
not infective; IC are the infected patients without symptoms, asymptomatic
until the healing or until symptoms arise: they are infective and then responsible
of the disease spread; IQ are the diagnosed infected patients, isolated and then
not contagious: patients in this class are the ones that can receive medical
treatment both for the infection and for secondary diseases or complications; Q
are the suspected infected individuals which are temporarily isolated and tested
for positivity of the SARS-CoV-2, or simply quarantined for safeness reasons;
R are the recovered individuals, supposed to be no more infected.

As far as the model parameters is concerned, their meaning is as follows.
All the d∗ terms denote the death rates in each class. The term B denotes
the constant inflow rate of new individuals. Coefficient β is the contagion rate.
Parameters k, h1, h2 and γ denote the natural transition rates between classes:
k is referred to the evolution of the illness, defied according to the rate of
symptoms outbreak; h1 describes the fraction of IC that, after the symptoms,
moves to the class of individuals IQ, isolated or under therapies, while h2 is the
fraction of IC that, in absence of symptoms, or underestimating the gravity,
continues to infect susceptible individuals; both h1 and h2 depend also on the
time constant of the corresponding evolutions. γ is the natural rate of recovery
under medical control.
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Parameters b and c are related to the results of the tests on the suspected
cases Q, or to the time of permanence in quarantine; b is the rate of return from
the quarantine to the health susceptible people; c denotes the rate of transition
from Q to the class corresponding to the results of the test, sane with probability
n (negative response), or infected for the remaining 1 − n, defined according
to the average time required for the tests. Since the tests policy can depend
from medical or political or economical constraints, the control u5 is present
to allow the quantification of such an intervention. Actually, all the control
actions introduced try to include all possible intervention policies in presence of
a virus spread for which no vaccine is available. In details, u1, with an efficacy
coefficient a, denotes the action aiming to stimulate, or force, a test campaign
on the population with the aim at recognising infected individuals as early as
possible to isolate them and, then, reduce the contagious. Control u2 models
the quarantine/isolation indications on health population to keep it far from
the possible contagious occasions. It does not correspond to an actual isolation,
but to a reduction of the contact occasions simply reducing the interaction with
other people. It is bounded between zero and one, where u2 = 1 corresponds to
an ideal total individual isolation.

Controls u3 and u4 represent the therapy actions: the first one devoted
directly to counteract the virus by means of antiviral drugs, and the second
one to reduce the side–effects of the induced cardio–respiratory diseases, as
long as of possible previous pathologies or different complications. For u3(t) a
coefficient η is introduced to denote the effectiveness of the therapy. As far as
u4(t) is concerned, its effect is introduced as a direct contribution to reduce the
mortality rate and it is bounded between zero (no therapy) and 1 (all individuals
kept alive during the infection course).

2.2 Stability analysis

The equilibrium points are computed as the solutions of the system

B − βSeIeC + bnQe − dSSe = 0 (7)

βSeIeC − kEe − dEEe = 0 (8)

kEe − h1IeC − h2IeC − dIC IeC = 0 (9)

h1I
e
C + h1(1− n)Qe − γIeQ − dIQIeQ = 0 (10)

−bnQe − h1(1− n)Qe − dQQe = 0 (11)

h2I
e
C + γIeQ − dRRe = 0 (12)

One feasible equilibrium point P e1 is always present for any value of the
parameters and corresponds to the so called disease free condition. It is given
by

P e1 =
(
Se1 Ee1 IeC1 IeQ1 Qe1 Re1

)T
=
(
B
dS

0 0 0 0 0
)T

(13)
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The system can have a second equilibrium point

P e2 =


Se2
Ee2
IeC2

IeQ2

Qe2
Re2

 =



(k+dE)(h1+h2+dIC )

βk
(h1+h2+dIC )

k

(
kB

(k+dE)(h1+h2+dIC ) −
dS
β

)
kB

(k+dE)(h1+h2+dIC ) −
dS
β

h1

(γ+dIQ )

(
kB

(k+dE)(h1+h2+dIC ) −
dS
β

)
0(

h2(γ+dIQ )+γh1

dR(γ+dIQ )

)(
kB

(k+dE)(h1+h2+dIC ) −
dS
β

)


(14)

provided that condition

kB

(k + dE)(h1 + h2 + dIC )
− dS

β
≥ 0 (15)

is verified, equivalent to the more compact form

B − dSSe2 ≥ 0 (16)

The analysis of stability of the computed equilibrium points is an important
step to understand the level of dangerousness of the illness.

The local stability characteristics of the equilibrium points can be defined
studying the eigenvalues of the Jacobian matrix of the given dynamics evaluated
in each of the equilibrium points.

For the dynamics (1)–(6), the expression obtained for the Jacobian, com-
puted for the input equal to zero, is

J =


−βIC−dS 0 −βS 0 b 0

βIC −(k+dE) βS 0 0 0
0 k −(h1+h2+dIC ) 0 0 0

0 0 h1 −(γ+dIQ ) h1(1−n) 0

0 0 0 0 −(bn+h1(1−n)+dQ) 0
0 0 h2 γ 0 −dR

 (17)

Thanks to the matrix structure, it is possible to see that three eigenvalues,
common for any equilibrium point since independent of the state value, are
λ1 = −dR, λ2 = −(bn+ h1(1− n) + dQ) and λ3 = −(γ + dIQ), all real negative
for any parameters value. For the remaining three eigenvalues, the reduced
matrix

J̃ =

−βIC − dS 0 −βS
βIC −(k + dE) βS

0 k −(h1 + h2 + dIC )

 (18)

has to be studied. Evaluating (18) in the equilibrium point P e1 (13), it becomes

J̃(P e1 ) =

−dS 0 −βBdS
0 −(k + dE) βB

dS
0 k −(h1 + h2 + dIC )

 (19)
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for which λ4 = −dS is directly obtained while for the last two eigenvalues the
roots of the equation

λ2 + (k+ h1 + h2 + dE + dIC )λ+

(
(k + dE)(h1 + h2 + dIC )− βkB

dS

)
= 0 (20)

must be computed. By Descartes’ rule of signs, the two solutions λ5 and λ6 of
(20) have negative real part if and only if

(k + dE)(h1 + h2 + dIC )− βkB

dS
> 0 (21)

Since, from (15) and (16),

(k + dE)(h1 + h2 + dIC )− βkB

dS
= −β(B − dSSe1) (22)

it is possible to conclude that P e1 is locally asymptotically stable, P e2 is not
feasible, that is the system has only the epidemic free equilibrium point locally
asymptotically stable.

If (21) is not satisfied, and then (15) is, the second equilibrium point P e2 as
in (14) exists, while the equilibrium point P e1 becomes unstable. The stability of
P e2 can be studied evaluating the reduced Jacobian matrix (18) in such a point.
The result is

J̃(P e2 ) =

−βIeC2 − dS 0 −βSe2
βIeC2 −(k + dE) βSe2

0 k −(h1 + h2 + dIC )

 (23)

and its characteristic polynomial is

λ3 + C2λ
2 + C1λ+ C0 (24)

with

C2 =
B

Se2
+ k + dE + h1 + h2 + dIC (25)

C1 =
B

Se2
(k + dE + h1 + h2 + dIC ) (26)

C0 = Bβk − dS(k + dE)(h1 + h2 + dIC ) = βk (B − dSSe2) (27)

where

βIeC2 + dS =
B

Se2
(28)

has been used.
Making use of the Routh–Hurwitz criterion, the roots of (24) have negative

real part if and only if

C2 > 0, C1C2 − C0 > 0, C0 > 0 (29)
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Condition C2 > 0 always holds. Also the second one is verified for any choice
of parameters values, since, after some computations, one has

C1C2 − C0 = βk (B + dSS
e
2) +

(
B

Se2

)2

(k + dE + h1 + h2 + dIC )

+
B

Se2

(
(k + dE)2 + (h1 + h2 + dIC )2

)
(30)

always positive. As long as the third condition, one has

B − dSSe2 > 0 (31)

This result shows that the local stability condition for the equilibrium point P e2
coincides with its existence one. Then, it is possible to summarise such results
saying that if the values of the parameters do not satisfy condition (15), the
system admits only one equilibrium point, P e1 , locally asymptotically stable; on
the other hand, under the fulfilment of (15), also a second feasible equilibrium
point exists, P e2 , locally asymptotically stable, while the first one, P e1 , becomes
unstable. In this case, the presence of a bifurcation characterises the stability
of the system equilibria, as usually happens in epidemic spreads models [7].

2.3 The basic reproduction number

An important parameter which usually characterises an epidemic spread is the
basic reproduction number R0 [31]: it gives a numerical valuation of the in-
fectivity of the virus: a value higher than 1 characterises expansive infections,
while for a value smaller than 1, the spread autonomously decreases.

There are different approaches for the evaluation or the estimation of R0

for an epidemic spread. Starting from the mathematical model of the epidemic
spread, a relationship between R0 and the model parameters can be obtained
using the next generation matrix approach. The computation starts from the
consideration of the part of the dynamics (1)–(6) which describes the classes
directly involved in the spread of the infection, in our case E and IC ,

Ė(t) = βS(t)IC(t)− kE(t)− dEE(t) (32)

İC(t) = kE(t)− h1IC(t)− h2IC(t)− dIC IC(t) (33)

and, after reordering the expressions separating the contagious terms from the
transition as

˙(
E(t)
IC(t)

)
=

(
βS(t)IC(t)

0

)
−
(

(k + dE)E(t)
(h1 + h2 + dIC )IC(t)− kE(t)

)
= F − V (34)

the two matrices

F =
∂F

∂(E, IC)

∣∣∣∣
P e

1

=

(
0 β B

dS
0 0

)
(35)
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and

V =
∂V

∂(E, IC)

∣∣∣∣
P e

1

=

(
k + dE 0
−k h1 + h2 + dIC

)
(36)

are computed. Under these positions, R0 is given by the dominant eigenvalue
of the matrix FV −1

FV −1 =

(
β B
dS

k
(k+dE)(h1+h2+dIC ) β B

dS
1

h1+h2+dIC
0 0

)
(37)

from which

R0 =
βkB

dS(k + dE)(h1 + h2 + dIC )
(38)

If (38) is rewritten as

R0 =
B

dSSe2
=
B − dSSe2
dSSe2

+ 1 (39)

it is easy to observe that condition R0 > 1 is equivalent to B − dSSe2 > 0. This
confirms that when R0 < 1 and the epidemic does not spread, the dynamics
has only the epidemic free equilibrium condition, asymptotically stable. On the
other hand, when R0 > 1 and the epidemic spreads, the asymptotically stable
equilibrium point is the endemic one, P e2 , which is, in this case, admissible.

Such values are homogeneous with the equivalent ones present in literature
[15], [16]. The correspondence supports the correctness of the present physically
driven choice of the values.

In next Section 3 numerical evaluations of the effects of the different possible
lines of intervention, represented by the four controls ui(t), i = 1, 2, 3, 4, 5, are
reported and discussed.

3 Evaluation of the effectiveness of intervention
actions

In this Section the effects on the epidemic evolution of the five different control
actions are numerically illustrated and analysed.

For each control, a set of different values has been chosen and the consequent
time histories of the state variables are reported and discussed.

The values fixed for the parameters are in Table 1. A discussion on the
considerations followed for obtaining such values is contained in [32]. The case
of the Wuhan region has been considered for the definition of statistical data
used.

All the simulations have been performed starting from initial conditions
S(0) = 59.17 · 106, the population of the considered Region at the beginning of
the epidemic, E(0) = 4, IC(0) = 2, IQ(0) = 1, so that the results start with the
discovery of the first positive patients, Q(0) = 0 and R(0) = 0.
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Table 1: Numerical values of the model parameters: comparative table for
equivalent terms

Parameter B β k h1 h2 γ
Value 1180 2.5 · 10−8 1/7 φ/3 (1− φ)/15 1/15

Parameter a b c η n φ
Value a n/15 1/2 η 0.95 0.9

Parameter dS dE dIC dIQ dQ dR
Value 2 · 10−5 2 · 10−5 2 · 10−5 0.0057 2 · 10−5 2 · 10−5

3.1 Effects of preventive quarantine u1(t)

Figure 1: Susceptible individuals for different amplitude of control u1(t) when
5% of quarantined is infected

The effects of the control action given by u1(t) is here presented and dis-
cussed.

This input corresponds to the choice of quarantining a fraction of the popu-
lation or because suspected to be infected or for a test campaign. Since the test
campaign corresponds to the action modelled by the input u5(t), if only input
u1(t) is active, only the isolation of suspected individuals is now considered,
kept in quarantine for a safe period (15 days), or until the symptoms appear.

In this short analysis, to better put in evidence if and when this action can be
fruitful, two cases are considered: one in which the number of possible infected
people among the quarantined is low, set equal to the 5% of them, and one on
which the fraction of infected is higher, fixed to the 20%.

Simulations have been performed varying u1(t) between zero (no action)
and 10; in the Figures 1 and 2 the time history of the susceptible individuals
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Figure 2: Susceptible individuals for different amplitude of control u1(t) when
20% of quarantined is infected

Figure 3: Infected asymptomatic individuals for different amplitude of control
u1(t) when 5% of quarantined is infected
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Figure 4: Infected asymptomatic individuals for different amplitude of control
u1(t) when 20% of quarantined is infected

Figure 5: Infected diagnosed individuals for different amplitude of control u1(t)
when 5% of quarantined is infected
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Figure 6: Infected diagnosed individuals for different amplitude of control u1(t)
when 20% of quarantined is infected

Figure 7: Comparison between infected diagnosed individuals for the 5% and
20% cases of quarantined infected, when u1 = 10
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Figure 8: Comparison between quarantined individuals for the 5% and 20%
cases among them, when u1 = 10

is reported for the case of 5% and 20% of infected respectively. Clearly, the
higher is the control amplitude, the higher is the initial decrement of the class
due to the fact that a larger part is put in quarantine. However, this behaviour
holds until the number of the infected individuals which can infect, the ones
before the symptoms or totally asymptomatic, increases, as can be observed
from Figures 3 and 4. After the peak of infective persons, a higher control input
produces a lower rate of decrement in the susceptible class. The important
result arises from Figures 5 and 6 where the diagnosed infected individuals are
reported for the two considered percentages. In fact, a delay of the peak as well
as the reduction of its amplitude can be appreciated, more sensible for higher
probability of infected individuals in the quarantined group, Figure 6. This
aspect is well evidenced in Figure 7 where the case u1(t) = 10 is reported for
the two cases of 5% and 20% of infected among the quarantined persons, along
with the case of no action for reference purpose. It can be even observed a sort
of flattening in the time evolution of the diagnosed infected patients exceptional
for high rate of quarantine and high probability to have an infected individual
in the quarantined group. With this action, the number of individuals put in
quarantine, depicted in Figure 8 for the same cases as in Figure 7, presents a
significant level, more acceptable when the infection probability is higher. In
fact, for the two cases here addressed, when the percentage of infected is 5%,
the value of more than the 8% of the initial population (about 5 millions) for
more than 90 days is reached, while when 20% is considered, the maximum
value assumed is 3.5 millions and decreases at a rate of more than 16600 a day.
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Figure 9: Susceptible individuals for different values of u2(t)

Figure 10: Recovered individuals for different values of u2(t)
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Figure 11: Exposed individuals for different values of u2(t)

Figure 12: Infected asymptomatic individuals for different values of u2(t)
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Figure 13: Infected diagnosed individuals for different values of u2(t)

3.2 Effects of isolation u2(t)

This control represents an action which aims at reducing the contact rate be-
tween susceptible and infected individuals. This can be obtained by means of
a generalised quasi-isolation of the population, for example suggesting or im-
posing to people to stay at their own home as much time as possible, closing
some activities like schools, offices, factories, shops and so on, so decreasing the
possibilities of contacts.

Its effect reduces the nominal contact rate β. Thanks to the relationship be-
tween β and R0, it is possible to compute the minimum value for u2(t) to obtain
a basic reproduction number smaller than 1 once the epidemic characteristics
of the transmission, given by β is fixed. In fact, it is possible to write

R̃0 =
β(1− u2)kB

dS(k + dE)(h1 + h2 + dIC )
= R0(1− u2) (40)

where R0 is the initial reproduction number and R̃0 < R0 is the one resulting
under the action of the control. Then

u2 = 1− R̃0

R0
(41)

and the lowest value u2,min to have R̃0 ≤ 1 is given by

u2,min = 1− 1

R0
= 0.6875 (42)

In Figures 9–13 the results of simulation for different values of u2(t) ∈ [0, 0.6]
are reported. The five cases considered correspond, for what said above, to cases
of epidemic with R̃0 = R0 = 3.2 (u2 = 0), R̃0 = 0.9R0 = 2.88 (u2 = 0.1), R̃0 =
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0.8R0 = 2.56 (u2 = 0.2), R̃0 = 0.6R0 = 1.92 (u2 = 0.4) and R̃0 = 0.4R0 = 1.28
(u2 = 0.6). In fact, the curves in each figure have the same shape as epidemic
spreads with different reproduction number. Then, it can be concluded that
increasing u2(t), the spread is reduced and delayed in time, making the epidemic
more controllable. For values sufficiently high, greater than u2,min, the epidemic
dynamics changes its characteristics and the disease free equilibrium becomes
stable. It is interesting to note the correspondence of expression (42) with the
condition for herd immunity.

3.3 Effects of antiviral therapy u3(t)

Figure 14: Infected diagnosed individuals for different values of control u3(t)

This control acts on the diagnosed infected patients to reduce and contrast
the virus effects so facilitating and reducing the time for healing. Figure 14
depicts the time history of the number of such patients for the cases of u3(t) =
0, 1, 2, 3, 4. Thanks to the direct effect of such a control, the peak values are
strongly reduced and this effect reflects on the number of deaths, as can be
noted in Figure 15 where the ratio between the deaths of infected patients and
the standard deaths is plotted. This result shows that, if available, an antiviral
therapy produces highly positive effects for the infection contrast.

3.4 Effects of therapy against complications u4(t)

Like the previous one, this control produces effects on the diagnosed infected
patients but, differently from u3(t), u4(t) represents the efficacy of the therapy
for the effects induced by the virus and for the possible complications. Its
goal is to keep alive the patient during the natural development and evolutions
of the individual anti–viruses, for example with intensive care and respiratory
supports. The consequence is that it reduces the death rate, as depicted in
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Figure 15: Ratio between deaths by virus and other deaths, for different values
of control u3(t)

Figure 16: Ratio between deaths by virus and other deaths, for different values
of control u4(t)
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Figure 17: Infected diagnosed individuals for different values of control u4(t)

Figure 16, but not affect sensibly the number of isolated and treated individuals,
in Figure 17 since, differently from the case of input u3(t), this action does not
remove more quickly patients from the class but keep them there for all the
illness period. In Figure 16 it is clear the reduction of the deaths, 28 times
the normal quantities at the peak with u4(t) = 0, which becomes 6 times with
u4(t) = 0.8, decreasing almost linearly.

3.5 Effects of amount of tests u5(t)

Figure 18: Susceptible individuals S for low rate of quarantine transfer (u1(t) =
2) and low percentage of infected among them (5%)
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Figure 19: Susceptible individuals S for low rate of quarantine transfer (u1(t) =
2) and high percentage of infected among them (20%)

Figure 20: Susceptible individuals S for high rate of quarantine transfer (u1(t) =
8) and low percentage of infected among them (5%)
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Figure 21: Susceptible individuals S for high rate of quarantine transfer (u1(t) =
8) and high percentage of infected among them (20%)

Figure 22: Infective individuals IC for low rate of quarantine transfer (u1(t) = 2)
and low percentage of infected among them (5%)
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Figure 23: Infective individuals IC for low rate of quarantine transfer (u1(t) = 2)
and high percentage of infected among them (20%)

Figure 24: Infective individuals IC for high rate of quarantine transfer (u1(t) =
8) and low percentage of infected among them (5%)
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Figure 25: Infective individuals IC for high rate of quarantine transfer (u1(t) =
8) and high percentage of infected among them (20%)

Figure 26: Infected diagnosed individuals IQ for low rate of quarantine transfer
(u1(t) = 2) and low percentage of infected among them (5%)
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Figure 27: Infected diagnosed individuals IQ for low rate of quarantine transfer
(u1(t) = 2) and high percentage of infected among them (20%)

Figure 28: Infected diagnosed individuals IQ for high rate of quarantine transfer
(u1(t) = 8) and low percentage of infected among them (5%)
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Figure 29: Infected diagnosed individuals IQ for high rate of quarantine transfer
(u1(t) = 8) and high percentage of infected among them (20%)

Figure 30: Quarantined individuals Q for low rate of quarantine transfer
(u1(t) = 2) and low percentage of infected among them (5%)
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Figure 31: Quarantined individuals Q for low rate of quarantine transfer
(u1(t) = 2) and high percentage of infected among them (20%)

Figure 32: Quarantined individuals Q for high rate of quarantine transfer
(u1(t) = 8) and low percentage of infected among them (5%)
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Figure 33: Quarantined individuals Q for high rate of quarantine transfer
(u1(t) = 8) and high percentage of infected among them (20%)

The control input u5(t) represents the amount of test performed on the
population. In this model, the people to be tested are temporarily considered
as quarantined. Moving people to quarantine status can be done by means of
input u1 only. Then, in order to analyse the effect of different levels of test rate,
the input u1(t) must be set to a value different to zero. Moreover, as remarked
in subsection 3.1, the effect of putting in quarantine persons is dependent on
the hypothesised number of positive results.

These considerations motivate the choice of four cases, obtained combining
the cases of high and low value for u1(t), chosen equal to 2 and 8 respectively,
with the cases of high and low percentage of expected positive tests, the two
already considered values of 20% and 5%. For each of these four cases, the input
u5(t) is varied in the interval [0, 1].

In Figures 18–21 the effects on the susceptible class are presented. Figures
18 and 19 both refer to the case of low rate of motion to the quarantine status
(u1(t) = 2, 0.2% of susceptible people a day), the first one for a low fraction of
infected (5%, n = 0.95) and the second one for a high number (20%, n = 0.8).
Figures 20 and 21 have the same meaning but with a higher rate of transfer to
quarantine for test (u1(t) = 8).

Figures 26–29 depict the diagnosed infected while Figures 30–33 refers to
the quarantined individuals, always with the same order for u1(t) and n as for
the susceptible individuals.

Recalling that the case of u5(t) = 0 refers to a pure quarantine policy, anal-
ysed in Subsection 3.1, the most evident result is that, testing the quarantined
persons and letting the negative ones return to the susceptible class has the con-
sequence to increase the epidemic spread from the outbreak of the virus until
the peak of the infection, anticipated in time and increased in amplitude. In
fact, in this time interval, the number of susceptible persons decreases slower
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as u5(t) increases, as observable in Figures 18–21, since a high number of tests
let many negative individuals return in such a class instead of remaining in the
quarantine one longer. Even if some exposed and asymptomatic are found and
isolated, the decrement of the infective individuals is compensated by the in-
crement of the susceptible persons, in Figures 22–25, with the consequence of
having more infected patients. During this time, the number of diagnosed in-
dividuals is lower, Figures 26–29, probably because the total time of transition
from the susceptible to the diagnosed class for all the not tested individuals is
longer than from quarantine to diagnosis.

In correspondence of the peak of infected, the number of susceptible persons
presents a fast decrement, as usual in epidemics spread, but in this case the
velocity of the decrement is directly related to the number of tests. From the
point of view of the diagnosed infective patients, after the initial period with
a slow increment, the evolution follows the same behaviour as all the infected
classes, with its peak and the subsequent decrement.

The quarantined class is highly affected by the different choices, as Figures
30–33 show. In fact, it can be appreciated how much the number of tests
contributes to the class empting.

This phenomenon is related to the initial behaviour of the diagnosed indi-
viduals discussed above: empting the quarantine class corresponds to reduce
the isolation and to have, along the illness course, the asymptomatic infective
class more filled, with consequences on the velocity of the spread.

4 Conclusions

In this paper a new mathematical model for describing the spread of a virus in
absence of vaccination is used for the analysis of the effects of the considered
controls, showing their effects on the different classes of population modelled.
The model is designed to include all the possible active actions, both from the
political point of view and the medical one. A first set of inputs are devoted to
the containment of the spread thorough induced social behaviours, a second one
concerns the possible therapies that can be applied. The parameters ar fixed to
fit the behaviour of the COVID-19 in the Wuhan region at the beginning of the
infection detection. After a discussion on the influence of some parameters on
the dynamical behaviour of the virus spread, an

This analysis is a first step to help to a better forecast of the effects of possible
choices to be adopted. For example, it can help to dimension the quarantined
class and the tests to have an acceptable number of isolated individuals without
increasing too much the number of the infected ones, or to define the maximum
levels of available medical cares to dimension the isolation and the quarantine
actions, and so on.
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