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Abstract

Educational Institutions data constitute the basis for several important analyses

on the educational systems; however they often contain not negligible shares of

missing values, for several reasons. We consider in this work the relevant case of

the European Tertiary Education Register (ETER), describing the Educational

Institutions of Europe. The presence of missing values prevents the full exploita-

tion of this database, since several types of analyses that could be performed are

currently impracticable. The imputation of artificial data, reconstructed with

the aim of being statistically equivalent to the (unknown) missing data, would

allow to overcome these problems. A main complication in the imputation of

this type of data is given by the correlations that exist among all the variables.

We propose several imputation techniques designed to deal with the different

types of missing values appearing in these interconnected data. We use these

techniques to impute the database. Moreover, we evaluate the accuracy of the

proposed approach by artificially introducing missing data, by imputing them,

and by comparing imputed and original values. Results show that the infor-

mation reconstruction does not introduce statistically significant changes in the

data and that the imputed values are close enough to the original values.
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1. Introduction

Organizations providing higher level education, such as traditional universities,

universities of applied sciences, polytechnics, community colleges, liberal arts

colleges, etc. are collectively called Higher Education Institutions (HEIs). The

data describing each individual HEI (for instance number of students, number of5

graduates, etc.) are called HEI microdata. Their availability is essential to sup-

port an empirical-oriented and robust policy making in the dynamic landscape

of educational systems[7]. A pioneer research project called Aquameth [15] was

the first attempt to gather microdata about European HEIs. Since this first

experience, the presence of missing or noisy data and the lack of comparability10

among data appeared to be the most critical obstacles to an appropriate usage

of the collected data [8]. After the Aquameth project, a large scale study called

EUMIDA was commissioned by the European Union from 2009 to 2011, and

showed the feasibility of a European-level data collection on individual HEIs

[7]. Since then, it has been underlined the need to build a register of Higher15

Education Institutions in Europe.

At present, the European Tertiary Education Register (ETER) is a database

collecting information on European HEIs, concerning their basic characteris-

tics and geographical position, number of students, graduates, doctorates, staff,

fields of education, income, expenditure and research activities. The main fea-20

ture of ETER is providing data at the level of individual institutions, being

therefore complementary to the educational statistics at the country and re-

gional level provided by EUROSTAT. ETER is a European Commission ini-

tiative, and constitutes an Erasmus+ project fully financed by the European

Commission. This project is managed by the Joint Research Centre and by the25

Directorate General for Education and Culture of the European Commission,

in cooperation with EUROSTAT and the National Statistical Authorities of
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the participating Countries. ETER covers EU-28 countries (Austria, Belgium,

Bulgaria, Croatia, Republic of Cyprus, Czech Republic, Denmark, Estonia, Fin-

land, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Lux-30

embourg, Malta, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia,

Spain, Sweden and United Kingdom), as well as Albania, Iceland, Liechtenstein,

Montenegro, Norway, Serbia, Switzerland, Turkey and the Republic of North

Macedonia. At the time of writing, data have been collected from the year 2011

(academic year 2011/2012) until 2016 or, occasionally, 2017.35

The data are gathered through the National Statistical Authorities of the

different Countries, and not directly by the project consortium. Notwithstand-

ing the considerable effort in the data collection, the current ETER database

includes many scattered missing values in the variables and this creates prob-

lems for the usage of those variables. In particular, it clearly does not allow40

the micro analysis of the institutions containing the missing values, and also

prevents the macro analysis (at the aggregate level) of many categories of in-

stitutions, whenever they include the incomplete ones. Thus, the main goal of

this work is to propose a methodology to reconstruct those missing values for

the key variables of the institutions.45

Imputation techniques have been studied in many fields to tackle the widespread

problem of missing data, see e.g. [13, 24, 29]. Consequently, many approaches

to the problem have been proposed, based on several different techniques, in-

cluding: k-nearest neighbors [28] or other forms of proximity search [33], fuzzy

clustering [26, 30], bagging algorithms [1], ensemble of neural networks [17], au-50

toencoders neural networks [20], denoising autoencoders [25], other deep neural

networks [23], Bayesian networks [21, 36], integer linear programming [9], pat-

tern sequence forecasting [6], use of a knowledge base [27], similarity rules [31],

each of which possibly combined or hybridized with additional techniques. Ex-

isting methods to deal with missing data can be organized according to different55

perspectives. For example, one may discriminate on the basis of the source of

the imputed information, which can be: (a) the other variables of the same unit

under imputation, taking advantage of some existing relations among the vari-
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ables; (b) other units similar to the treated one, which are often called donors;

(c) other sources, external to the dataset under imputation, but storing the60

same information, e.g. statistical ledgers. Donors are generally complete units

[19, 32], though even incomplete ones could be used if necessary [37], and their

use often requires the solution of optimization problems [4]. Another discrimi-

nation sometimes adopted is between statistical methods and machine learning

approaches [33].65

Currently, there is no evidence of a single “best” imputation method. Rather,

it appears that the performance of each method depends in large measure on the

dataset characteristics, as also suggested in [35]. The imputation of missing data

in time series is a particularly difficult task [22], and many general techniques

are not able to satisfactory deal with this case. And the subcase of multivariate70

time series stays at the core of the most challenging tasks, as observed in [3, 21].

Educational data have important peculiarities. To begin with, they con-

tain multivariate time series (number of students, number of graduates, etc.).

Furthermore, it can be observed that almost all data of an institution are in-

terconnected. The number of graduates is not independent from the number of75

students, the expenditure is not independent from the staff, just to make some

easy examples. Thus, the imputation becomes particularly difficult: imputed

values must belong to time series and each of them may impact on the situation

of the whole institution. Therefore, imputation techniques for this type of data

should be specifically designed. An approach to improve the data quality for80

the same ETER dataset, not dealing with missing data and so complementing

the present work, has been developed in [16].

The proposed imputation methodology combines an interdisciplinary set

of tools coming from information management, machine learning and statis-

tics with an investigation of the relations existing among the variables and of85

the types of of missing patterns actually contained in the data. The proposed

methodology works at the formal level, with a data driven approach, i.e., learn-

ing from the data many aspects of the imputation techniques. Therefore, it

could also be used to impute datasets with educational data from other origins,
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or even datasets with different meaning but sharing the features of time series90

and interconnection among the variables. We validate our approach by compar-

ing the statistical features of the data before and after imputation. Moreover,

we evaluate its reconstruction accuracy by means of the following experiments:

(1) we take a set of complete records and artificially introduce in them missing

values; (2) we use the proposed imputation techniques to impute those missing95

values; (3) we compare the imputed values with the original known values, and

we study the occurrence of significant differences.

The work is organized as follows. Section 2 explains the variables and the

different types of missing values that appear in the current version of ETER.

Sections 3 and 4 introduce the proposed imputation techniques, distinguishing100

between those based on functions of the available values of the same institution

and those based on other institutions (donors). Section 5 shows the results of

the application of the proposed methodology to reconstruct the selected ETER

variables. Section 6 describes the tests of accuracy carried out to further evalu-

ate the performance of the proposed methodology. Section 7 draws conclusions.105

2. Distribution of the Missing Values

ETER database is composed of 3208 units, each representing a single European

HEI over a number of years. Each institution Ij contains a number of values

sjvk, where v ∈ V is the index of the variable (e.g., students), k ∈ T that of the

year (e.g., 2011) and j ∈ J that of the institution (e.g., Sapienza University).110

The target of our imputation is constituted of the following 8 variables:

• Total number of students enrolled (called in ETER “Total Students En-

rolled at ISCED 5-7”)

• Total number of graduates (in ETER “Tot. Stud. Grad. at ISCED 5-7”)

• Total number of PhD students (in ETER “Tot. Stud. Enr. at ISCED 8”)115

• Total number of PhD graduates (in ETER “Tot. Stud. Gr. at ISCED 8”)
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• Total academic staff (researchers and professors, measured in ETER either

in “Full Time Equivalent - FTE” or in “Head Count - HC”).

• Total non-academic staff (technical and administrative staff, measured in

ETER either in “Full Time Equivalent - FTE” or in “Head Count - HC”).120

• Total current expenditure (measured in ETER in Euro).

• Total current revenues (measured in ETER in Euro).

These variables are selected because they are very relevant in many types of

analyses. Moreover they are the main descriptors of the size of an institution.

The importance of size in the characterization of the HEIs, and its connection

to their overall performance, is well known in the specialized literature, see e.g.

[14]. Each of the above variables takes a value for each year of the time horizon,

which at present goes from 2011 to 2016 for the majority of the institutions

(even if some may have less years, or some may have also 2017). To lighten

the notation, when there is no ambiguity, we will denote the values of the time

series for one generic variable v simply with v1, v2, . . . , vt (without reference to

the index j of the institution), and the set of years indices of the time series

simply with {1, 2, . . . , t} = T . For example, the values of Total graduates for

the years 2011-2016 in an institution called“AAA”, which in full notation are

{vAAA
graduates2011, v

AAA
graduates2012, . . . , v

AAA
graduates2016},

may be simply denoted by {grad1, grad2, grad3, grad4, grad5, grad6}.

A specificity of these data, with respect to other imputation cases, is given by

the relations connecting all the above values. Indeed, the different values of each125

single time series are obviously related. For example, the number of students

enrolled in 2011 is necessarily related to the number of students enrolled in

2012, in 2013, and so on, and in most of the cases the time series exhibits a

trend, in the sense that, if some values are for instance increasing, it can be

expected that the next value will be likely still increasing. However, trend may130

also change direction during the time series. Moreover, all the above variables
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are positively correlated. For example, the number of graduates is generally a

certain proportion of the number of students, because they were indeed students

in the previous year; the staff tends to increase or decrease in some measure with

the number students, and so do the expenditures and the revenues.135

We will denote the missing value with “t”. We are interested in distinguish-

ing the following types of missing values:

• Isolated Internal Missing: this type of missing occurs when vi = t for

2 ≤ i ≤ t− 1 and both vi−1 6= t and vi+1 6= t.

• Isolated Extreme Missing: this type of missing occurs when vi = t for140

i = 1 or i = t and respectively v2 6= t or vt−1 6= t.

• Missing Sequence of length L: this type of missing occurs when vi = . . . =

vi+L = t for i ≤ t − L with t − L ≥ 1 and vi+L+1 6= t (the missing

sequence does not cover the whole time series).

• Full Sequence Missing: this type of missing occurs when v1 = . . . = vt = t145

(the missing sequence covers the whole time series).

The current situation of missing values is reported in Table 1. More details

on the types of missing data are in Tables 2-6 in Sect. 5. Note that the most

common type of missing values are those contained in the full sequence missing.

3. Imputation based on the Available Values of the Sequence150

This Section describes a category of imputation techniques based on functions of

the available values in the sequence under imputation (i.e., the values which are

not missing), starting with the very simple approaches based on average and

linear regression that will be used as building blocks for the proposed Trend

Smoothing technique. We also discuss, for each imputation technique, the type155

of missing for which it should be used.
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Table 1: Missing values in current ETER database.

Institutions % on the total Total number

without missing of institutions of missing

in that variable in that variable

Total Students Enrolled 2206 69% 3075

Total Graduates 1963 61% 3891

Total PhD Students 891 28% 10349

Total PhD Graduates 844 26% 10741

Total Academic staff FTE 1629 51% 7915

Total Academic staff HC 1595 50% 7284

Total Non-academic staff FTE 1455 45% 8807

Total Non-academic staff HC 1341 42% 9145

Total Expenditure 987 31% 10041

Total Revenues 1021 32% 10252

3.1. Imputation based on Weighted Average

Very intuitive imputation techniques are based on averages of the values

already available in the sequence. This approach relies on the assumption that

the values in the time series are related, and not independent [18]. In general,

there exist several mathematical types of averages. In our case, it appears

reasonable to assume that, generally speaking, the closer the data are on the

time scale, the most related their values are. Therefore, we propose to impute

a value vi for an isolated internal missing by using a weighted arithmetic mean

of the surrounding values which are available, as follows.

vi =
∑

h ∈ T ,

h 6= i

whvh, with
∑

h ∈ T ,

h 6= i

wh = 1

The weights wh should progressively decrease with the time distance between

h and the instant i under imputation. We define yearly decrement d a positive

value < 1 such that

wh = dwh+1 ∀h = 1, . . . , i− 1

wh+1 = dwh ∀h = i+ 1, . . . , t.
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For instance, if d = 0.5, i = 4 and we denote the value of w3 by α, we have

w1 = 1/2 w2 = 1/4 α, w2 = 1/2 α, w3 = α, w5 = α, w6 = 1/2 α, and so on.

However, this condition alone is not enough to find the wh. Thus, we propose

to determine their values by using the following data-driven approach: for each

value vi of each institution j, with i ∈ {T \ 1}, we compute the variation δij

with respect to the preceding value vi−1 as follows:

δij =
(vi − vi−1)

vi−1
.

The set of these variations can now be studied to find its average value δ̄ by

using the arithmetic mean, and two extreme values e1, e2 such that they contain

90% of the values of the variations. Then, we search for the yearly decrement d

that better fits the average variation δ̄. By defining the set D of of the indices

of the institutions containing isolated missing values, and by assuming, with

a slight abuse of notation, that i always represents the index of that missing

value, this is obtained by solving the following optimization problem,

min
d∈(0,1)

(
∑
j∈D

(vji (d)− δ̄vji−1)2 +
∑
∀i,j

(vji+1 − δ̄v
j
i (d))2),

where each (vji (d)− δ̄vji−1) represents the difference between the imputed value160

vji (d), for which the dependence on d is made explicit, and the value δ̄vji−1,

which is the value obtainable for vji when assuming the average variation δ̄ from

the preceding value vji−1, and each (vji+1 − δ̄vji (d)) represents the difference

between the following value vji+1 and the value δ̄vji (d) obtainable for vji+1 from

the imputed value vji (d) when assuming again the average variation δ̄. Note165

that vji−1 and vji+1 could be such that the average variation δ̄ cannot hold for

vji (d), however the minimization of the above squared sums aims at providing

the value of d that better shares the differences.

The described Weighted Average Imputation appears feasible to impute iso-

lated missing values, in particular when they are internal. It can be adapted to170

the external case, by considering only one side of the former case, however it

may fail to capture the data trend when there is a distinct increase or decrease

of the values over the years. In any case, the Weighted Average approach could
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be used as a building block to develop more sophisticated imputation techniques

for missing sequences.175

3.2. Imputation based on Linear Regression

Another basic technique that can be used to reconstruct values in a time

series is linear regression. The missing value vi is approximated with the value

given by the straight line interpolating the available values vh, with h ∈ T, h 6= i.

This approach relies on the assumption that the values in the time series are180

not only related but also subject to a temporal evolution, which often exhibits a

trend. See [18] for further discussion of the field of application of this approach.

This approach does not need to compute weights or other parameters. It appears

feasible to impute isolated missing values, in particular extreme ones, because

it is able to capture the data trend.185

However, when there is a sharp increase or decrease in the available values,

it may predict negative values, which are clearly infeasible. For example, if

we have the following sequence t, 100, 250, 410, 550, 690, the Linear Regression

Imputation would provide -44 for the value of the first period. Clearly, negative

values are not acceptable, and even replacing them with 0 would not be a good190

solution. In similar cases, we propose to smoothen the trend by computing a

value v1 ∈ (0, v2). In particular, v1 can be computed with the exponentiation

operation as (v2)c, with c ∈ (0, 1). For instance, using c = 0.5 gives the square

root, which in the example above would produce v1 =
√

100 = 10, which is a

more reasonable value.195

To select the value of the exponent c, we propose to use again a data-driven

approach. When focusing on the case of initial isolated missing, we define the set

E of the institutions which would have a negative initial value v1 if approximated

with linear regression, and we compute a new average variation δ̄E limited to

the institutions in E. Now, we search for the value of c that better fits this new

average variation δ̄E by solving the following optimization problem,

min
c∈(0,1)

∑
j∈E

(vj2 − δ̄E vj1(c))2,
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where each (vj2− δ̄E vj1(c)) represents the difference between the available value

vj2 and the value δ̄E vj1(c), which is the value obtainable for vj2 when assuming

vj1(c) = (vj2)c and the average variation δ̄E .

Specularly, when focusing on the case of final isolated missing, we define the

set F of the institutions which would have a negative final value vt if approx-

imated with linear regression, and we compute another average variation δ̄F

limited to the institutions in F . In this case, we search for the value of c that

better fits this new average variation δ̄F by solving the following optimization

problem,

min
c∈(0,1)

∑
j∈F

(vjt − δ̄F vjt−1(c))2,

where each (vjt (c)−δ̄F v
j
t−1) represents the difference between the imputed value

vjt (c) and the value δ̄F vjt−1, which is the value obtainable for vjt when assuming200

vjt (c) = (vjt−1)c and the average variation δ̄F .

The described Linear Regression Imputation, possibly integrating the de-

scribed exponentiation technique, appears feasible to impute isolated missing

values, in particular when they are extreme. Moreover, similarly to the ap-

proach described in the previous Section, it can be used as a building block to205

develop more sophisticated imputation techniques for missing sequences.

3.3. Trend Smoothing Imputation

To be able to capture a trend in the series, but at the same time to be not

excessively (mis)lead by it, we propose to combine the two simple approaches

described above by means of the following technique. By denoting with WAi

the value given for instant i by the weighted average approach, and by LRi

the value given for instant i by the linear regression approach, the actual value

imputed for vi would be obtained as a combination of the two, as follows.

vi =
a2

a2 + 1
WAi +

1

a2 + 1
LRi

Note that the value LRi is intended to be already smoothened by means of

the exponentiation operation explained above. Coefficient a should give more
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importance to the contribution of the linear regression when the slope of the

interpolating straight line is nearly flat, and more importance to the contribution

of the weighted average when the same slope is too vertical. This transition

from one extreme to the other should be without discontinuities. Therefore, by

denoting with m the angular coefficient of the interpolating straight line, with

T ′ ⊂ T the set of the available values, and with s a constant value usually set

at 2, we use

a =
s|m|

min
τ∈T ′
{vτ}

.

In other words, we follow the trend given by the available values when it is rea-

sonably increasing or decreasing; we progressively consider the trend less reliable

when the available values make it too steep. The absolute value of the angular210

coefficient is divided by the smaller available value in order to “normalize” it,

because an increase for example from 1000 to 1500 is more reasonable than an

increase from 1 to 501, which will produce the same value of m.

The technique proposed in this Section is called Trend Smoothing Imputa-

tion, since it does follow the trend, however it progressively smoothen it when215

needed, without discontinuities. This technique appears feasible for isolated

missing, but also for missing sequence of length L ≤ t−2. In particular, we will

use it for this last case in our experiments. The case of missing sequences of

length t− 1 actually contain only one non-missing value, hence no trend exists.

Hence, these cases are better assimilated to the cases of full sequence missing.220

Finally, in the case of interconnected variables, for example number of stu-

dents and number of graduates, we may compute an average ratio between the

values available year by year for that couple of variables, and impose that the

imputed values remains “not too far” from that ratio. This request can be

practically implemented according to the peculiarities of the specific case.225

4. Imputation Techniques based on Donors

The techniques described in the previous Sections basically rely on some type

of prolongation of the values available in the sequence. When the full sequence
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of values is missing, or even when there is only one available value and the rest

of the sequence is missing, those techniques are clearly inapplicable. However,230

unfortunately, the case of full sequence missing is the most common type of

missing. Note, indeed, that a full sequence missing generally corresponds to 6

missing values with the current time horizon.

Therefore, it is important to deal with such type of missing, even if this

happens to be the most difficult case. Thus, we need to recur to a different235

imputation technique, which is also well established in the field [29]. This tech-

nique is called donor imputation, and is based on the search for a complete (and

correct) record (i.e., institution) being as similar as possible to the incomplete

records under imputation. Similarity is judged by defining a distance function

among records, and thus minimum distance corresponds to maximum similarity.240

When this complete record at minimum distance is found, it is used as a donor:

the missing values of the incomplete record are replaced by the corresponding

values of the complete records. The incomplete record under imputation is also

called the recipient. A possible variant is to search for a small set of records

at minimum distance (e.g., 3) and not just one, and then select the donor ran-245

domly among them For this reason, this technique is sometimes called k-nearest

neighbor imputation. Of course, this approach is easily applied when the set

of possible donors is large enough to have donors in the vicinity of each incom-

plete record that must be treated. A recognized statistical advantage of the

donor imputation with respect to other imputation techniques is that it does250

not create artificial and possibly unlikely values; rather, it takes values already

appearing in the dataset, and they are selected with higher probability whenever

they are more frequent, see also [9]. Hence, donor imputation tends to preserve

the data properties and their frequency distributions without hypotesis on the

distribution of the data, which may be questionable [17].255

The similarity criterion is fundamental and must be defined on the specific

case. In the case of educational institutions, we identify a number of variables

under which institutions should be considered similar. They are essentially

variables describing the size, the type and the geographical location of the in-
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stitution. For each of these variables, a difference in the values may give a260

certain contribution to the total distance or directly lead to the exclusion of the

record as possible donor. In the specific case of the ETER database, containing

European institutions, we set up the following distance calculation scheme.

1. Variable: “Institution Category standardized”, whose value can be 1 =

University, 2 = University of Applied Science, 0= Other. For this variable265

we accept only donors from the same category.

2. Variable: “Distance education institution”, which tells whether the insti-

tution is essentially telematic or traditional. The difference in this variable

gives a contribution to the distance denoted by p1, which should be set at

a value corresponding to a strong penalization.270

3. Variable: “Institution Category”, which reports the category of the in-

stitution with more granularity than the former “Institution Category

standardized”. The difference in this variable gives again a contribution

to the distance of p1.

4. Variables: “Total Current expenditure”, “Total Current revenues”, “Total

academic staff” (which can be measured either in Full Time Equivalent or

in Headcount). These variables basically describe the size of the institu-

tion. For these numerical variables, each difference between two values v′

and v′′ gives a contribution to the distance computed as follows

p1
|v′ − v′′|

max{v′, v′′}
.

In other words, the contribution is between p1 and 0, depending on the275

absolute difference between the two values normalized by dividing it by

the largest value. Hence, the maximum contribution to the total distance

given by these three variables is 3p1. Size indicators are very important

for the selection of a donor; unfortunately these variables are often missing

in the ETER database, so their use is limited in practice.280

5. Variable: “Country”, reporting the country of the institution. We define

similarity according to geographical areas reported below.
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• Area 1: Belgium, Liechten., Luxembourg, Netherlands, Switzerland.

• Area 2: Austria, Germany.

• Area 3: Greece, Italy, Portugal, Spain.285

• Area 4: Czech Republic, Slovakia, Estonia, Lithuania, Latvia, Hun-

gary, Poland.

• Area 5: Albania, Bulgaria, Croatia, North Macedonia, Romania, Ser-

bia, Slovenia, Montenegro.

• Area 6: Finland, Norway, Denmark, Iceland, Sweden.290

• Area 7: Ireland, Malta, United Kingdom.

• Area 8: France.

• Area 9: Cyprus, Turkey.

The same country gives a contribution of 0 to the distance. Different

countries in the same area gives a contribution to the distance denoted by295

p2, which should be set at a value providing a light penalization. Different

areas give a contribution to the distance of p1 (strong penalization).

6. Variable: “Legal status”, reporting whether the institution is public or

private. Difference in this variable gives a contribution of p2 to distance.

Unfortunately, in the case of ETER, the number of possible donors is not large300

enough to guarantee the presence of suitable donors for each HEI. In particular,

some types of institutions or some Countries have very few complete institutions.

And even exploiting also the incomplete institutions, used as sets of partial

donors for the same recipient, the problem remains unsolved. Hence, to avoid

using donors too different from the recipient, which will produce unacceptable305

data, we need to impose filters on acceptable donors, i.e., criteria to recognize

and exclude unacceptable donors. For this reason, for some of the incomplete

HEIs it is not possible to obtain donors, and so they remain not imputed.

A first filter for donors is implemented by comparing the average values

of donor and recipient on a number of size-related variables, such as: Total310

Current Expenditures; Total Current Revenues; Total Students Enrolled; Total
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Graduates; Total Academic Staff. When the two corresponding average values

of donor and recipient are both available, and their difference is larger than a

threshold (e.g., 30%), the donor is considered not acceptable. This filter also

uses values of the variable under imputation that may possibly be available in315

the recipient (e.g., recipient has only 1 value and the rest of the sequence is

missing), again by comparing the average values of donor and recipient.

Moreover, some HEIs may be not suitable to donate because, even if they

are complete, their values are too uncommon, and it is not advisable to replicate

them. We select some of them by computing, for each institution, the ratios320

between all pairs of variables (e.g., graduates/student, PhD students/ graduates,

expenditure/students, etc.) and by excluding those having extreme values of

ratios (e.g., top and bottom 2%). Some other are selected by computing the

volatility of the sequences, and by excluding those having too volatile values

(e.g., top 2%).325

Another technique which we introduce to deal with the relative scarcity of

donors is scaling. When the recipient has a missing sequence containing one

non-missing value, for instance v2, and the sequence of the donor’s values is

(w1, w2, . . . , wt), we learn from v2 and w2 a size ratio r = v2/w2 between the

two institutions, and scale the donor’s values by making the recipient sequence330

become (rw1, v2, rw3, . . . , rwt). On the other hand, when the recipient has a

full sequence missing, scaling can be done by using another recipient’s variable

strongly related to the variable under imputation. For example, if the recipient

has values (s1, s2, . . . , st) for students and all missing for graduates, and the

donor has (t1, t2, . . . , tt) for students and (g1, g2, . . . , gt) for graduates, we learn335

the sequence of size ratios (r1 = s1/t1, r2 = s2/t2, . . . , rt = st/tt), and scale the

donor’s values by making the recipient graduates become (r1g1, r2g2, . . . , rtgt).

This allows the imputation of values suitable for the recipient’s size even if that

differs from the donor’s size.

Furthermore, similarly to case of Trend Smoothing imputation, for the cou-340

ples of variables which are practically linked, such as number of students and

number of graduates, we use the trend of the variable available in the recipient
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to improve the selection of the donor. For example, if we are imputing the

whole sequence of number of students and the number of graduates is available

in the recipient and is increasing, we accept only donors with increasing num-345

ber of graduates, or, if that is missing in the donor, with increasing number of

students. On the other hand, when the recipient misses both the sequences of

number of students and number of graduates, the imputations of both variables

should either be done by the same donor or by two partial donors with sequences

compatible for size, ratio and trend. Finally, we set a limit on the number of350

times an institution can be used as donor, to avoid any risk of replicating the

same values too often.

5. Results on the Real Missing Values of ETER database

We report in this section the result of the imputation of all the ETER missing

values. Therefore, the original values (i.e., those lost due to the missing) are not355

available for a direct check. While the techniques described in sections 3.1, 3.2,

3.3 always provide a value, the donor imputation described in Section 3.4 may

leave unimputed institutions when no acceptable donor is available for them.

More specifically, Tables 2 - 6 describe the types of missing appearing in the

database before and after the imputation operations, respectively for: Total360

Students and Total Graduates; Total PhD Students and Total PhD Graduates;

Total Academic staff FTE and HC; Total Non-academic staff FTE and HC;

Total Expenditure and Total Revenues. All the implementation codes of our

methodology are available in [2].

As observable, the percentage or institutions without missing goes from be-365

ing often lower than 50% before imputation to being generally over 90% after

imputation. The non imputed cases are all due to the unavailability of accept-

able donors for some institutions; they may be short sequences because those

institutions often contain less than 6 years in their time horizon. Clearly, they

could be imputed by further relaxing the filters used on the donors, however370

the quality of the imputed values would worsen. Thus, we prefer to pursue this
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compromise between coverage and quality of the imputation. The results of our

methodology on ETER database are available in [12].

Since the original values are not available, the quality of the imputation can-

not be evaluated by matching original and imputed values. Hence, we evaluate375

it by comparing, for the dataset before imputation and after imputation:

• the frequency distribution of each variable;

• the ratios between selected couple of variables. This type of measure is

particularly informative for interconnected variables.

We do this by using the so called violin plots juxtaposing the frequency dis-380

tributions of the variables in Figures 1-10, and the box plots juxtaposing the

statistical description of the ratios in figures 11-13. We consider informative

the following ratios: Graduates / Students; PhD Graduates / PhD Students,

Expenditure / Revenues, Expenditure / All Students, Revenues / All Students;

Academic Staff FTE / All Students; Academic Staff HC / All Students; Non-385

academic Staff FTE / All Students; Non-academic Staff HC / All Students.

With “All Students” we denote the sum of Students and PhD Students; this

quantity have been introduced to evaluate fairly the institutions focused on

producing PhD, for which a ratio over Students would be misleading.

Note that we chose to compare the ratios of the data before imputation to390

those of the imputed data only (and not to those of all data after imputation),

because, with the second choice, possible differences would be too “diluted” to

be evident. Note, moreover, that the missing values are not equally distributed

over the institutions, but sometimes more concentrated on small institutions,

especially for expenditure and revenues. Thus, when the small institutions are395

imputed, small values would appear more frequently in the distribution, and

this behavior is correct. On the contrary, imputing the small institutions with

values similar to those of the larger institutions would not be correct. Therefore,

the “ideal” imputation does not necessarily correspond to the exact replication

of the data distribution in the left side of the violin plots.400
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Table 2: Missing values before and after the imputation for the variables Total Students and

Total Graduates.

Variable Total Students Total Graduates

Before or after imputation Before After Before After

Institutions without missing 2206 3153 1963 3108

% on the total 69% 98% 61% 97%

One isolated internal missing 98 0 157 0

One isolated extreme missing 68 14 259 29

Missing sequence of length 2 392 12 256 17

Missing sequence of length 3 212 3 339 6

Missing sequence of length 4 7 0 22 3

Missing sequence of length 5 37 26 44 27

Missing sequence of length 6 152 1 196 15

Missing sequence of length 7 52 0 66 6

Total number of missing 3075 183 3891 360

Table 3: Missing values before and after the imputation for the variables Total PhD Students

and Total PhD Graduates.

Variable Total PhD Students Total PhD Graduates

Before or after imputation Before After Before After

Institutions without missing 891 2977 844 2980

% on the total 28% 93% 26% 93%

One isolated internal missing 86 41 121 44

One isolated extreme missing 118 55 114 51

Missing sequence of length 2 386 26 376 24

Missing sequence of length 3 333 24 151 24

Missing sequence of length 4 78 1 260 0

Missing sequence of length 5 117 28 119 28

Missing sequence of length 6 1014 5 1028 5

Missing sequence of length 7 199 54 214 54

Total number of missing 10349 772 10741 763

From these analyses, we can observe that: 1) the imputation increased con-

siderably the coverage of the database; some missing are still present due to
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Table 4: Missing values before and after the imputation for the variable Total Academic staff

FTE and HC.

Variable Academic staff FTE Academic staff HC

Before or after imputation Before After Before After

Institutions without missing 1629 2921 1595 2977

% on the total 51% 91% 50% 93%

One isolated internal missing 59 17 66 1

One isolated extreme missing 61 81 93 64

Missing sequence of length 2 204 64 387 55

Missing sequence of length 3 119 8 318 19

Missing sequence of length 4 48 6 80 4

Missing sequence of length 5 155 34 102 33

Missing sequence of length 6 650 58 529 58

Missing sequence of length 7 309 21 199 6

Total number of missing 7915 939 7284 803

Table 5: Missing values before and after the imputation for the variable Total Non-academic

staff FTE and HC.

Variable Non-acad. staff FTE Non-acad. staff HC

Before or after imputation Before After Before After

Institutions without missing 1455 2886 1341 2815

% on the total 45% 90% 42% 88%

One isolated internal missing 59 1 105 1

One isolated extreme missing 66 103 122 122

Missing sequence of length 2 241 71 244 71

Missing sequence of length 3 125 11 93 17

Missing sequence of length 4 62 8 67 10

Missing sequence of length 5 88 13 102 16

Missing sequence of length 6 829 95 870 134

Missing sequence of length 7 309 23 309 26

Total number of missing 8807 1107 9145 1422

relative scarcity of donors, however the usability has greatly improved; 2) the

distributions of the data have been generally preserved, however in some cases,

20



Table 6: Missing values before and after the imputation for the variables Total Expenditure

and Total Revenues.

Variable Total Expenditure Total Revenues

Before or after imputation Before After Before After

Institutions without missing 987 3003 1021 3001

% on the total 31% 94% 32% 94%

One isolated internal missing 81 0 103 0

One isolated extreme missing 450 36 359 36

Missing sequence of length 2 429 64 222 63

Missing sequence of length 3 287 15 248 13

Missing sequence of length 4 83 6 88 7

Missing sequence of length 5 75 11 106 13

Missing sequence of length 6 945 71 1051 72

Missing sequence of length 7 202 7 202 7

Total number of missing 10041 763 10252 775

Figure 1: Violin plot comparing the distributions before and after imputation for Students.

mainly Expenditure and Revenues (Fig. 9 and 10), the number of small values405

correctly increased, because the missing were localized mainly on small institu-

tions; 3) the ratios of the imputed data show that they maintain very well the

relations between the interconnected variables, so the data quality appears very

satisfactory.
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Figure 2: Violin plot comparing the distributions before and after imputation for Graduates.

Figure 3: Violin plot of the distrib. before and after imputation for PhD Students.

Figure 4: Violin plot of the distrib. before and after imputation for PhD Graduates.

22



Figure 5: Violin plot of the distrib. before and after imputation for Academic Staff FTE.

Figure 6: Violin plot of the distrib. before and after imputation for Academic Staff HC.

Figure 7: Violin plot of the distrib. before and after imputation for Non-academic Staff FTE.
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Figure 8: Violin plot of the distrib. before and after imputation for Non-academic Staff HC.

Figure 9: Violin plot of the distrib. before and after imputation for Total Expenditure.

Figure 10: Violin plot of the distrib. before and after imputation for Total Revenues.
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Figure 11: Box plot comparing the ratios reported near to each plot of the data before

imputation to those of imputed data only. All Students means Students + PhD Students.

Figure 12: Box plot comparing the ratios reported near to each plot of the data before

imputation to those of imputed data only. All Students means Students + PhD Students.

6. Performance and Accuracy Evaluation410

To evaluate the accuracy of the proposed methodology, we set up the follow-

ing experiments using 4 particularly relevant variables: Total Students, Total

Graduates, Total Academic Staff FTE, Total Expenditure.

1. We identify a dataset composed by the institutions having all the values for

the variable in analysis, and artificially introduce in this variable random415

missing values according to perturbation schemes described below.

2. For each type of such missing values, we impute the values using the
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Figure 13: Box plot comparing the ratios reported near to each plot of the data before

imputation to those of imputed data only.

technique developed for that type of missing among the proposed ones.

3. We compare the imputed values with the original values, which in these

experiments are known, and we study the occurrence of significant differ-420

ences.

6.1. Perturbation Scheme

We use the following perturbation scheme. For each single variable of the 4

in analysis, we perturb the dataset in 3 alternative manners. We introduce in a

first case isolated missing values, in a second case missing sequences of length L,425

and in a third case full (or almost full) sequences missing, as explained below.

• Perturbation 1. Each record is perturbed with one isolated missing

value randomly located over the time horizon T .

• Perturbation 2. Each record is perturbed with one missing sequence

randomly located over the horizon T . The length of the sequence is 2430

with probability 0.5, 3 with probability 0.35, and 4 with probability 0.15.

• Perturbation 3. The dataset is randomly partitioned in two, taking care

of keeping, in each partition, representatives of all countries and types

of Institutions. This is obtained by splitting each country and type of
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institution independently. Then, one partition is perturbed, and the other435

partition is used as set of possible donors. Hence, the set of possible donors

does not include any of the Institutions that undergo perturbation. The

perturbation introduces full sequence missing with probability 0.5, and

missing sequence of length 5 (i.e., only 1 value is available in the time

horizon) randomly located over the time horizon T with probability 0.5.440

Therefore, in the first two tests, every record is perturbed and will undergo

imputation, while in the third test this happens for half of the records. Note

that such a situation is quite worse than the standard situation in real databases.

Therefore, the results on the occurrences of significant differences can be seen

as a worst-case bound over the results of a real application.445

For the first perturbation case, we apply the Weighted Average imputation

technique described in Section 3.1 to the internal isolated missing values, and

Linear Regression imputation, integrated with the exponentiation technique de-

scribed in Section 3.2, to the external isolated missing values. Results on this

case are reported in Table 7 and Fig. 14. For the second perturbation case,450

we apply the Trend Smoothing imputation described in Section 3.3, and results

are reported in Table 8 and Fig. 15. For the third perturbation case, we apply

Donor Imputation with the distance function and filter admissible donors as

described in Section 4. Distance parameters p1 and p2 are set respectively at

3 and 1. Note that, in this experiment, each institutions received a donor, so455

no missing values remains after the imputation. Results for this third case are

reported in Table 9 and Fig. 16.

6.2. Evaluation of the Reconstruction Accuracy

This Section aims at evaluating the accuracy in the reconstruction of the

imputed values, i.e., how similar to the original value is the imputed value.

For each imputed value vi of each institution j, with i ∈ T , we compute the

difference ηij with respect to the original value v?i :

ηij =
(vi − v?i )

v?i
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An “ideal” imputation would provide very “small” values for ηij , with 0 being

the limit. However, 0 is not a realistic target, and we need a scale to determine460

which values are actually “small”. To do so, we use again a data-driven measure

and we consider the two extreme values e1 and e2, defining a so called Interval of

Moderate Variations (IMV ), containing 90% of the values of the variations δij ,

as explained in Section 3.1 . Now, we study the frequency of the imputations

whose corresponding ηij lay within or outside the IMV = [e1, e2]. We define465

“significant” a difference for which ηij 6∈ [e1, e2]. Moreover, to consider also a

data-independent measure, we study the frequency of the imputations whose

corresponding ηij lay within or outside a Fixed Interval (FI) defined as FI =

[−10%, 10%], which is more restrictive than the previous interval in the analyzed

cases. The outcome of these analyses is in Tables 7-9.470

As a general observation, we note that the imputed values lay quite near

to the original ones in the majority of the cases, both in data-driven and in

absolute measurements. Since the range of possible value is very wide, this is a

very positive result.

Moreover, even when the imputed values are not so near, we hypothesize that475

the positive and negative errors should statistically compensate each other. To

test this hypothesis, we consider “global” descriptors of the data, providing

in Fig. 14, 15, 16 the box plots for: (1) the original data suppressed by the

perturbation; and (2) the new data imputed by our methodology. Note that

this is a very selective analysis, aimed at magnifying possible differences in the480

data values, and it is possible only in this case, because we actually know the

original data suppressed in the perturbation. As observable, our hypothesis

appears to be confirmed, since the imputed data appear statistically equivalent

to the suppressed data to a considerable extent.

7. Conclusions485

Data describing the situation of Educational Institutions are currently used for

a wide variety of analyses, even to support important economic and political
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Table 7: Analysis of the values imputed to deal with Perturbation 1.

Total students Total graduates Total acad. staff T. Expenditure

IMV [ -18.93, 29.13 ] [ -30.76 , 53.28] [ -17.65 , 22.72] [ -10.28 , 21.24]

Imputations laying in IMV 97.56% 96.48% 95.93% 90.24%

FI [-10%, 10%] [-10%, 10%] [-10%, 10%] [-10%, 10%]

Imputations laying in FI 88.35% 73.18% 89.70% 83.19%

Table 8: Analysis of the values imputed to deal with Perturbation 2.

Total students Total graduates Total acad. staff T. Expenditure

IMV [ -18.93, 29.13 ] [ -30.76 , 53.28] [ -17.65 , 22.72] [ -10.28 , 21.24]

Imputations laying in IMV 95.18% 93.74% 93.64% 81.12%

FI [-10%, 10%] [-10%, 10%] [-10%, 10%] [-10%, 10%]

Imputations laying in FI 79.69% 60.31% 80.62% 73.34%

Table 9: Analysis of the values imputed to deal with Perturbation 3.

Total students Total graduates Total acad. staff T. Expenditure

IMV [ -18.93, 29.13 ] [ -30.76 , 53.28] [ -17.65 , 22.72] [ -10.28 , 21.24]

Imputations laying in IMV 52.85% 64.88% 49.78% 43.64%

FI [-10%, 10%] [-10%, 10%] [-10%, 10%] [-10%, 10%]

Imputations laying in FI 31.94% 24.66% 33.75% 34.43%

Figure 14: Box plot of the data removed by Perturbation 1 and the data imputed by the

procedure.
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Figure 15: Box plot of the data removed by Perturbation 2 and the data imputed by the

procedure.

Figure 16: Box plot of the data removed by Perturbation 3 and the data imputed by the

procedure.

decisions. However, similar data often contain non negligible shares of miss-

ing values, also due to the structure of the gathering process, and this may

invalidate the above operations. The missing information should therefore be490

optimally reconstructed, by imputing data as similar as possible to the unknown

original ones. This is a very difficult task. We develop imputation techniques for

the reconstruction of partial numerical sequences based on the combination of

weighted average and linear regression, and techniques for the reconstruction of

full numerical sequences based on the use of donors. We search for data-driven495

optimal solutions in the sense that we aim at maximizing the conservation of the

global data features. Experiments on real-world data containing real missing

30



values confirm that the imputation process is practically feasible and very use-

ful. Experiments on real-world data artificially perturbed by inserting several

types of missing values show that the reconstructed data are satisfactory similar500

to the original data.

One additional important advantage of the proposed procedure is that it

works at the formal level, with a data driven approach. Hence, it could be

adapted to impute different datasets containing educational data from other

origins, or even datasets with different meaning but sharing the feature of in-505

terconnection among the variables. Future work includes the integration in the

proposed methodology with the web scraping techniques described in [5, 11] by

using the Universities’ websites, or with the Logic-based techniques described

in [10] to extract data-supported logic descriptions of the Institutions.
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