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Abstract
Given a two-dimensional mapping U whose components solve a divergence structure ellip-
tic equation,we give necessary and sufficient conditions on the boundary so that U is a 
global diffeomorphism.
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1 Introduction

Let B = {(x, y) ∈ ℝ
2 ∶ x2 + y2 < 1} denote the unit disk. We denote by � = �(x) , x ∈ B , 

a possibly non-symmetric matrix having measurable entries and satisfying the ellipticity 
conditions

for a given constant K ≥ 1.
Given a diffeomorphism Φ = (�1,�2) from the unit circle �B onto a simple closed curve 

𝛾 ⊆ ℝ
2 , we denote by D the bounded domain such that �D = � . With no loss of generality, 

we may assume that Φ is orientation preserving.
Let us consider the mapping U = (u1, u2) ∈ W1,2(B;ℝ2) ∩ C(B;ℝ2) whose components 

are the solutions to the following Dirichlet problems

(1.1)
�(x)� ⋅ � ≥ K−1|�|2, for every � ∈ ℝ

2 , x ∈ B,

�−1(x)� ⋅ � ≥ K−1|�|2, for every � ∈ ℝ
2 , x ∈ B,
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Loosely speaking, the question that we intend to address here is:
Under which conditions can we assure that U is an invertible mapping between B and D 

(or B and D)?
The classical starting point for this issue is the celebrated Radó–Kneser–Choquet Theorem 

[13, 14, 18, 20] which asserts that assuming � = I , the identity matrix, (that is: u1, u2 are har-
monic) if D is convex then U is a homeomorphism. Generalizations to equations with variable 
coefficients have been obtained in [3 9] and to certain nonlinear systems in [8, 10, 16]. Coun-
terxamples [4, 13] show that if D is not convex then the invertibility of U may fail, see also [7] 
for a counterexample when � is variable.

In [4], the present authors investigated, in the case of harmonic mappings, which additional 
conditions are needed for invertibility in the case of a possibly non-convex target D. In par-
ticular, in [4, Theorem 1.3] it is proven that, assuming � = I , U is a diffeomorphism if and 
only if detDU > 0 everywhere on �B . An improvement to this result, still in the harmonic 
case, is due to Kalaj [17].

Here we intend to treat the case of equations with variable coefficients. The main result in 
this note is the following:

Theorem 1.1 Assume that the entries of � satisfy �ij ∈ C�(B) for some � ∈ (0, 1) and for 
every i, j = 1, 2 . Assume, in addition, that U ∈ C1(B;ℝ2).

The mapping U is a diffeomorphism of B onto D if and only if

It is evident that, if U is a diffeomorphism on B , then detDU ≠ 0 on �B . Thus, from now 
on, we shall focus on the reverse implication only.

New tools are required for this extension from the purely harmonic case. First we make 
use of an index calculus on the gradient of solutions of elliptic equations in two variables, 
first developed by R. Magnanini and the first named author [1]. A novel adaptation is how-
ever needed, because the theory in [1] requires Lipschitz continuity of the coefficients �ij . 
An approximation argument is then introduced to pass to the case �ij ∈ C�(B) , see Sect. 3. 
Furthermore, we make use of a recently obtained variant, Theorem 3.2, to the celebrated H. 
Lewy’s Theorem [19], which was proven by the present authors in [6, Theorem 1.1].

The plan of the paper is as follows.
In Sect.  2, we begin by proving Theorem  2.1, that is, a version of Theorem  1.1 which 

requires stronger regularity on � and on Φ.
Section 3 contains the completion of the proof of Theorem 1.1; let us mention that, as an 

intermediate step, we also prove Theorem 3.4, which treats the case when the Dirichlet data Φ 
is merely a homeomorphism, extending to the case of variable coefficients the result proved in 
[4, Theorem 1.7] for the case of � = I.

In the final Sect. 4, we sketch the arguments for an improvement, Theorem 4.2 to Theo-
rem 1.1, in analogy with [4, Theorem 5.2].

(1.2)
{

div(�∇ui) = 0, inB,

ui = �i, on �B , i = 1, 2 .

(1.3)detDU > 0 everywhere on 𝜕B.
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2  A smoother case

Theorem 2.1 In addition to the hypotheses of Theorem 1.1, let us assume that the entries 
of � satisfy �ij ∈ C0,1(B)and that Φ = (�1,�2) ∈ C1,�(�B,ℝ2) for some � ∈ (0, 1). If

then the mapping U is a diffeomorphism of B onto D.

We observe that, assuming that �ij are Lipschitz continuous in B , it is a straightforward 
matter to rewrite equation

in the form

where b = (b1, b2) is in L∞ and A is a uniformly elliptic symmetric matrix in the sense of 
(1.1), with Lipschitz entries, and it satisfies detA = 1 everywhere.

The calculation is as follows. Denote

where (⋅)T denotes the transposition. Writing the equation in weak form and using smooth 
test functions, we obtain

next we pose � =
√
det�̂ and A =

1

�
�̂ and we compute

hence bj = 1

𝛾
𝜕xi (𝛾𝛿ij + �̌�ij).

We recall that local weak solutions u to (2.2) are indeed C1,� ; their critical points are 
isolated and have finite integral multiplicity. This theory has been developed in [1]. As 
a consequence of such a theory, we can state the following auxiliary result. Let us start 
with some notation.

We denote

where u1, u2 are the components of the mapping U appearing in Theorem  1.1. Next we 
define

Note that, in view of (1.3), M� is finite for all �.

Proposition 2.2 Under the assumptions of Theorem 2.1, we have

(2.1)detDU > 0 everywhere on 𝜕B ,

div(�∇u) = 0

(2.2)div(A∇u) + b ⋅ ∇u = 0 ,

�𝜎 =
1

2
(𝜎 + 𝜎T ) , �̌� =

1

2
(𝜎 − 𝜎T ) ,

0 = div(𝜎∇u) = div(�𝜎∇u) + 𝜕xi �̌�ij𝜕xju ,

0 = 𝛾div(A∇u) + 𝜕xi (𝛾𝛿ij + �̌�ij)𝜕xju ,

(2.3)u� = cos � u1 + sin � u2 , � ∈ ℝ ,

(2.4)M� = number of critical points of u� in B, counted with their multiplicities .
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moreover M� = M is constant with respect to �.

Here �z denotes the usual complex derivative, where it is understood z = x1 + ix2.

Proof Formula (2.5) is a manifestation of the argument principle. A proof, with some 
changes in notation, can be found in [1, Proof of Theorem  2.1]. Also, a special case of 
Theorem 2.1 in [1] tells us that if � is a C1 unitary vector field on �B such that ∇u𝛼 ⋅ 𝜉 > 0 
everywhere on �B ; then, we have

Let us denote

where the matrix J represents the counterclockwise 90◦ rotation

, and we compute

which is positive for all � ∈ (0,�) . Hence M� is constant for all � ∈ (0,�) ; by continuity 
the same is true for all � ∈ [0,�] . The proof is complete, by noticing that u�+� = −u� .  
 ◻

Our next goal being to prove that M = M� = 0 , we return to the equation in pure diver-
gence form. Denoting u = u� for any fixed � , we have that equation

holds in B. It is well-known that there exists v ∈ W1,2(B) , called the stream function of u 
such that

where, again, the matrix J denotes the counterclockwise 90◦ rotation (2.8), see, for instance, 
[2]. Denoting

it is well-known that f solves the Beltrami type equation

where the so-called complex dilatations �, � are given by

(2.5)M� =
1

2� ∫�B

d arg(�zu�) ,

(2.6)M� =
1

2� ∫�B

d arg(�) .

(2.7)� =
1

|∇u1|J∇u1 .

(2.8)J =

(
0 − 1

1 0

)
,

∇u� ⋅ � =
sin �

|∇u1|∇u2 ⋅ J∇u1 =
sin �

|∇u1| detDU

div(�∇u) = 0

(2.9)∇v = J�∇u ,

(2.10)f = u + iv ,

(2.11)fz̄ = 𝜇fz + 𝜈fz in B ,
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and satisfy the following ellipticity condition

where the constant k only depends on K, see [5, Proposition 1.8] and the notation TrA is 
used for the trace of a square matrix A.

Furthermore, it is also well-known, Bers and Nirenberg [11], Bojarski [12], that a 
W1,2 solution to (2.11) fulfills the so-called Stoilow representation

where F is holomorphic and � is a quasiconformal homeomorphism, which can be chosen 
to map B into itself. Moreover, � solves the Beltrami equation

where �̃  is defined almost everywhere by

Note that, under the present assumptions, �, � are Lipschitz continuous in B and f is in 
C1,�(B,ℂ).

From now on, for simplicity, we denote by B� be the disk of radius 𝜌 > 0 concentric 
to B.

In view of (1.3), there exists 0 < 𝜌 < 1 such that �zf ≠ 0 on B ⧵ B� . As a consequence, 
�̃  is C� on B ⧵ B� , and the following Lemma holds.

Lemma 2.3 Under the assumptions of Theorem 2.1, there exists 0 < 𝜌 < 1 such that the 
mapping �, appearing in (2.14), belongs to C1,�, for some 0 < 𝛼 < 1, when restricted to 
B ⧵ B�.

Proof For � sufficiently close to 1, we may represent � = exp (�) in the annulus B ⧵ B� . 
Also, for every determination of � , we have

Now, posing w = ℜe(�) = log |�| , it is well-known that we have

where �̃ is given by

(2.12)� =
�22−�11−i(�12+�21)

1+Tr �+det �
, � =

1−det �+i(�12−�21)

1+Tr �+det �
,

(2.13)|𝜇| + |𝜈| ≤ k < 1,

(2.14)f = F◦� ,

(2.15)𝜒z̄ = �𝜇𝜒z in B,

�̃ = � +
fz

fz
� ,

(2.16)𝜔z̄ = �𝜇𝜔z .

div(�̃∇w) = 0, in B ⧵ B�

(2.17)�̃ =

⎛⎜⎜⎜⎜⎝

�1 − �̃�2
1 − ��̃�2 −

2ℑm(�̃)

1 − ��̃�2

−
2ℑm(�̃)

1 − ��̃�2
�1 + �̃�2
1 − ��̃�2

⎞⎟⎟⎟⎟⎠
,
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and satisfies uniform ellipticity conditions of the form (1.1), see, for instance, [5]. Moreo-
ver, �̃ has Hölder continuous entries in B ⧵ B� . Now, since, trivially, w = 0 on �B , then, by 
standard regularity at the boundary, w is C1,� near �B . Such a regularity extends to � and 
then to � , because (2.16) can be rewritten as ∇ℑm(�) = J�̃∇w .   ◻

Next we recall the following classical notion, see for instance [22].

Definition 2.4 Given a closed curve � , parametrized by Φ ∈ C1([0, 2�];ℝ2) and such that

we define the winding number of � as the following integer

Proposition 2.5 Under the previously stated assumptions

with M as in Proposition 2.2.

Proof With no loss of generality, we may assume �(1) = 1.
We have that for every � ∈ ℝ,

where

hence � is a strictly increasing function from [0, 2�] into itself, with C1,� regularity. 
Consequently

For the second integral, we trivially have

whereas, by the argument principle, the integral

equals the number of zeroes of F′ when counted with their multiplicities, which coincides 
with the number of critical points of u, again counted with their multiplicities, that is, M. 
This is a consequence of the notions of geometrical critical points and geometric index 
introduced in [2, Definition  2.4], which in the present circumstances, coincide with the 
usual concepts of critical points and multiplicity, respectively.  ◻

dΦ

d�
≠ 0, for every � ∈ [0, 2�],

WN(�) =
1

2� ∫
2�

0

d arg
(
dΦ

d�

)
.

WN(f (�B)) = M + 1 ,

f (ei�) = F(ei�(�))

ei�(�) = �(ei�)

1

2� ∫
2�

0

d arg

(
df (ei�)

d�

)
=

1

2� ∫
2�

0

d arg
(
F�(ei�(�))

)
+

1

2� ∫
2�

0

d arg
(
ei�(�)��(�)

)
.

1

2� ∫
2�

0

d arg
(
ei�(�)��(�)

)
= 1 ,

1

2� ∫
2�

0

d arg
(
F�(ei�(�))

)
=

1

2� ∫�B

d arg
(
F�(z)

)
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Next we compute:

Proposition 2.6 
Proof We may fix � = 0 , that is, u = u1 , and let v1 be its stream function. For every 
t ∈ [0, 1] let us consider Ut = (u1, (1 − t)v1 + tu2) . Trivially

We compute

consequently

never vanishes. By homotopic invariance of the winding number, [22, Theorem 1], the the-
sis follows.   ◻

Proof of Theorem 2.1 Combining Propositions 2.2, 2.5 and 2.6 we deduce that, for all � , 
∇u� nowhere vanishes. Hence detDU > 0 everywhere in B . Hence it is a local diffeomor-
phism which is one-to-one on the boundary, by the Monodromy Theorem, see for instance 
[21, p.175]; the thesis follows.   ◻

3  Proof of Theorem 1.1

We start by removing the hypothesis of Lipschitz continuity on � and obtain an intermedi-
ate weaker result.

Lemma 3.1 In addition to the hypotheses of Theorem  1.1, let us assume 
Φ = (�1,�2) ∈ C1,�(�B,ℝ2), for some � ∈ (0, 1). Then U is locally a homeomorphism in 
B.

Proof Let �� be a family of C∞ mollifications of � , which satisfy ellipticity and Hölder 
regularity uniformly with respect to � . Let U� be the solution to

By regularity theory, U� ∈ C1,�(B,ℝ2) uniformly with respect to � ; hence, by the Ascoli–
Arzelà Theorem, U�n

→ U in C1(B,ℝ2) for some sequence �n → 0 . Therefore, for n large 
enough

thus, by Theorem  2.1, U�n
 is a diffeomorphism of B onto D . In particular, the number 

(M�n
)� , associated to U�n

 according to definition (2.4), equals zero for all � and for n large 
enough. In view of the stability of the geometric index, established in [2, Proposition 2.6], 

WN(f (�B)) = WN(Φ(�B)) = 1.

U0 ≈ u1 + iv1 = f ,U1 = U .

detDUt = (1 − t)𝜎∇u ⋅ ∇u + t detDU > 0 , on 𝜕B , for every t ∈ [0, 1] ,

�t(�) =
d

d�
Ut(e

i�) , for every t ∈ [0, 1] , � ∈ [0, 2�] .

(3.1)
{

div(��∇u
i
�
) = 0, inB,

ui
�
= �i, on �B , i = 1, 2 .

detDU𝜀n
> 0 everywhere on 𝜕B
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we have that u� = cos � u1 + sin � u2 has no (geometrical) critical point in B for any � . We 
may invoke now [3, Theorem 3] to obtain that U is locally a homeomorphism in B.   ◻

We now recall a variant to the celebrated H. Lewy’s Theorem [19], recently obtained 
in [6, Theorem 1.1]. Here Ω ⊂ ℝ

2 is any open set.

Theorem 3.2 Assume that the entries of � satisfy �ij ∈ C�
loc
(Ω) for some � ∈ (0, 1) and for 

every i, j = 1, 2. Let U = (u1, u2) ∈ W
1,2

loc
(Ω,ℝ2) be such that

weakly in Ω. If U is locally a homeomorphism, then it is, locally, a diffeomorphism, that is

Before introducing the next Theorem, we recall the following definition.

Definition 3.3 Given P ∈ B , a mapping U ∈ C(B;ℝ2) is a local homeomorphism at P if 
there exists a neighborhood G of P such that U is one-to-one on G ∩ B.

Theorem 3.4 Let Φ ∶ 𝜕B → 𝛾 ⊂ ℝ
2 be a homeomorphism onto a simple closed curve �

. Let D be the bounded domain such that �D = �. Let U ∈ W
1,2

loc
(B;ℝ2) ∩ C(B;ℝ2) be the 

solution to (1.2). Assume that the entries of � satisfy �ij ∈ C�
loc
(B) for some � ∈ (0, 1) and 

for every i, j = 1, 2. If, for every P ∈ �B, the mapping U is a local homeomorphism at P, 
then it is a homeomorphism of B onto D and it is a diffeomorphism of B onto D .

We first need the following Lemma. Let us recall that B� denotes the disk of radius 
𝜌 > 0 concentric to B.

Lemma 3.5 Assume Φ ∶ 𝜕B → 𝛾 ⊂ ℝ
2 is a homeomorphism onto a simple closed curve �

. Let U ∈ W
1,2

loc
(B;ℝ2) ∩ C(B;ℝ2) be the solution to (1.2). Assume that the entries of � sat-

isfy �ij ∈ C�
loc
(B) for some � ∈ (0, 1) and for every i, j = 1, 2. If, in addition, for every 

P ∈ �B the mapping U is a local homeomorphism near P, then there exists � ∈ (0, 1) such 
that U is a diffeomorphism of B ⧵ B� onto U

(
B ⧵ B�

)
.

Proof For every P ∈ �B let

the function s(P) is positive valued and lower semicontinuous; hence, by the compactness 
of �B , there exists 𝛿 > 0 such that s(P) > 2𝛿 for all P ∈ �B . Again by compactness, there 
exist finitely many points P1,… ,PK ∈ �B such that

and U is one-to-one on B2�(Pk) ∩ B for every k. Note that there exists �0 ∈ (0, 1) such that

(3.2)div(�∇ui) = 0 , i = 1, 2,

(3.3)detDU ≠ 0 for every x ∈ Ω .

s(P) = sup
{
s > 0|U is a homeomorphism in Bs(P) ∩ B

}
,

𝜕B ⊂

K⋃
k=1

B𝛿(Pk),
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Let P,  Q be two distinct points in B ⧵ B�0
 . If |P − Q| < 𝛿 , then there exists k = 1,… ,K 

such that P,Q ∈ B2�(Pk) and, hence, U(P) ≠ U(Q) . Assume now |P − Q| ≥ � . Let

We have |P − P�| < 1 − 𝜌, |Q − Q�| < 1 − 𝜌, and thus

Choosing �1 , 𝜌0 ≤ 𝜌1 < 1 such that (1 − 𝜌1) <
𝛿

4
 , we have |P� − Q�| > 𝛿

2
. Now we use the 

fact that P′ and Q′ belong to �B and Φ is one-to-one to deduce that there exists c > 0 such 
that

Recall that U is uniformly continuous on B . Denoting by � its modulus of continuity, we 
have

Choosing � , 𝜌1 ≤ 𝜌 < 1 , such that 1 − 𝜌 < 𝜔−1
(
c

4

)
 we obtain

which implies the injectivity of U in B ⧵ B� . Consequently, by Theorem 3.2, detDU ≠ 0 in 
B ⧵ B� and the thesis follows.   ◻

Proof of Theorem 3.4 In view of the already quoted Monodromy Theorem, it suffices to 
show that detDU ≠ 0 everywhere in B.

For every r ∈ (0, 1) , let us write Φr ∶ �Br → ℝ
2 to denote the application given by

It is obvious, by interior regularity of U, that Φr belongs to C1,� . On the other hand, 
by Lemma  3.5, there exists � ∈ (0, 1) such that for every r ∈ (�, 1) the mapping 
Φr ∶ 𝜕Br → 𝛾r ⊂ ℝ

2 is a diffeomorphism of �Br onto a simple closed curve �r . Now, when 
restricted to Br , U solves (1.2) with Φ replaced by Φr , and B by Br . Then, up to a rescaling 
of coordinates, Lemma 3.1 is applicable, and we obtain, in combination with Theorem 3.2,

Finally, by Lemma 3.5 we have detDU ≠ 0 in B ⧵ B�(0) so that detDU ≠ 0 everywhere in 
B.   ◻

We now conclude the proof of the main Theorem 1.1.

B ⧵ B𝜌0
⊂

K⋃
k=1

B𝛿(Pk).

P� =
P

|P| , Q� =
Q

|Q| .

|P� − Q�| > |P − Q| − 2(1 − 𝜌) ≥ 𝛿 − 2(1 − 𝜌).

|Φ(P�) − Φ(Q�)| ≥ c.

|U(P) − U(Q)| ≥ |U(P�) − U(Q�)| − 2�(1 − �)

= |Φ(P�) − Φ(Q�)| − 2�(1 − �) ≥ c − 2�(1 − �).

|U(P) − U(Q)| ≥ c

2
> 0,

Φr = U|�Br
.

detDU ≠ 0, everywhere inBr.
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Proof of  Theorem  1.1 Having assumed detDU > 0 on �B , by continuity, one can find 
0 < 𝜌 < 1 , sufficiently close to 1 such that detDU > 0 on B ⧵ B� . By Theorem 3.4, we have 
that U is a global homeomorphism and that detDU > 0 in B. Consequently, detDU > 0 on 
all of B and the thesis follows.   ◻

4  An improvement

Finally, we prove a variation of Theorem 1.1. First, we recall the following:

Definition 4.1 Given a Jordan domain D, let us denote by co(D) its convex hull. We 
define the convex part of �D as the closed set �c = �D ∩ �(co(D)) . Consequently, we define 
the non-convex part of �D as the open subset �nc = �D ⧵ �(co(D)).

Theorem 4.2 Under the assumptions of Theorem 1.1, if

where �nc is the set introduced in Definition 4.1 above, then the mapping U is a diffeomor-
phism of B onto D.

It is worth noticing that, if D is convex, then the condition (4.1) is void, which agrees 
with the known adaptations [3, 9] of the well-known Radó–Kneser–Choquet [18] to equa-
tion (1.2).

Proof The proof follows the same line of [4, Theorem 5.2], the only change is that the clas-
sical Zaremba–Hopf Lemma for harmonic functions must be replaced by its appropriate 
adaptation to divergence structure equations with Hölder coefficients, which is due to Finn 
and Gilbarg [15]. We omit the details.   ◻
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