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LQ non-Gaussian Control with I/O packet losses

Stefano Battilotti1, Filippo Cacace2, Massimiliano d’Angelo1, Alfredo Germani3, and Bruno Sinopoli4

Abstract— The paper concerns the Linear Quadratic non-
Gaussian (LQnG) sub-optimal control problem when the input
and output signals travel through an unreliable network,
namely Gilbert-Elliot channels. In particular, the input/output
packet losses are modeled by Bernoulli sequences, and we
assume that the moments of the non-Gaussian noises up to
the fourth order are known. By mean of a suitable rewriting
of the system through an intermittent output injection term,
and by considering an augmented system with the second-order
Kronecker power of the measurements, a simple solution is pro-
vided by substituting the Kalman predictor with intermittent
observations of the LQG control law with a quadratic optimal
predictor. Numerical simulations show the effectiveness of the
proposed method.

I. INTRODUCTION

Remote estimation and control of plants over unreliable
networks have been hot topics in the last decades e.g. [25],
[17], [23], [4], [22], [27], [7]. In this domain, temporary
failures are an important issue, due to power constraints,
communication delay, multi-path fading, data loss, back-
ground noise time synchronization or external attacks.

Besides, in many real engineering applications, the widely
used Gaussian assumption cannot be accepted as a realistic
statistical description of the random quantities involved, in
particular in the case of heavy-tailed distributions. Recent de-
velopments on non-Gaussian systems in control engineering
include the robust approach of [33] and [3], [5], [10] where
polynomial suboptimal solution are exploited. The Maximum
Correntropy Criterion for Kalman filtering, adopted firstly in
the paper [14], has been exploited also in many works (e.g.
[34], [21]) and in numerous applications (e.g. [20], [15],
[28]). Furthermore, non-Gaussian problems often arise in
digital communications when the noise interference includes
noise components that are essentially non-Gaussian [29],
in problems concerning fault estimation, sensor or actuator
faults [26], multiplicative noises and bilinear systems [13].
In monopulse radars, heavy tailed non-Gaussian behavior is
present in the angle tracking signals because of target glint
[8]. Also, under some conditions, Gaussian systems with
nonlinear measurements could be transformed, through a
suitable rewriting of the output map, into systems with linear
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Fig. 1. Network & System diagram.

measurements and non-Gaussian output noise [9]. In this
framework, suboptimality is something essential to design
practical computable filters and/or control laws. Monte-Carlo
methods [2], sum of Gaussian densities [1], and weighted
sigma points [19] are some of the approaches employed to
approximate the conditional distribution of the underlying
non-Gaussian process, and they generally have high compu-
tational cost.

In this paper we will focus on the Linear Quadratic non-
Gaussian (LQnG) suboptimal control problem when the input
and output signals are subjected to packet losses, modeled
as Bernoulli sequences. In this framework, the hypothesis of
perfect acknowledgment of packet drops is done (sometimes
known in the literature as the TCP-like case). Our aim is to
extend the work [31] by removing the Gaussian assumption
of the noise sequences. In order to cope with these non-
Gaussian noise sequences, an effective alternative solution
to the aforementioned methods, in the minimum variance
sense, is to look for predictors that make use of quadratic (or
generally polynomial) transformations of the measurements
in order to enhance the estimation accuracy, maintaining
simple computability and recursion. We note that the pre-
diction provided by a quadratic predictor has been exploited
in the paper [6] where Markovian input packet losses only
are considered.

We finally remark that when either no acknowledgment or
only imperfect acknowledgment occurs, then the separation
principle does not hold true, and the joint design of estimator
and controller becomes a non-convex problem, as shown
in [32]. The authors of [24] investigate the latter case.
Conversely, since we assume that a perfect acknowledgment
mechanism is available, we shall see that the separation
result, even in the non-Gaussian framework, is still valid. The
resulting quadratic optimal controller yields better perfor-
mance in terms of the standard quadratic cost function with
respect to the standard linear optimal controller, namely the



one of [31], and it is simply obtained by replacing the linear
optimal prediction provided by the Kalman predictor with
intermittent observations, with the quadratic optimal one, in
virtue of the proved separation principle.

Notation. The Kronecker product of two matrices A ∈
Rn×m and B∈Rp×q is denoted by A⊗B. The i-th Kronecker
power of A is A[i], where A[i] = A⊗A[i−1], with A[1] = A.
The vectorization (or stack) function is denoted by st{A},
and st−1{·} is its inverse function (we omit to specify the
column size when it is clear from the context). The trace of
a square matrix A is tr{A} and v = col(v1, . . . ,vn) denotes
the column vector v = [v1, . . . ,vn]

>, where v1, . . . ,vn are the
entries of the vector v. The Moore-Penrose pseudo-inverse
of a matrix A is denoted by A†. Moreover, given a vector
v ∈Rn, then v1:m, with m < n, denotes the vector of the first
m entries of v.

II. PROBLEM FORMULATION AND PRELIMINARIES

The control problem we aim to solve concerns the class
of linear, detectable and stabilizable systems driven by non-
Gaussian additive noise described by the following equa-
tions:

xk+1 = Axk +νkBuk + fk, (1)
yk = γk(Cxk +gk), (2)

with the associated cost functional

JN = E

[
x>NWNxN+

N−1

∑
k=0

x>k Wkxk +νku>k Ukuk

]
(3)

where N ∈ N is the time-horizon. For k ≥ 0, xk ∈ Rn is the
state, fk ∈Rn and gk ∈Rq are not necessarily Gaussian noise
sequences with strictly positive covariances, utk ∈ Rp is the
control signal, yk ∈ Rq is the measurement output and the
matrices A, B, C, Wk, Uk are of appropriate dimensions.
As usual, the matrices Wk, and Uk are symmetric non-
negative definite (strictly positive definite in the case of
Uk). Furthermore, we consider the case when the control
signal uk and the output signal yk travel along an unreliable
network, namely a Gilbert-Elliot channel model, which is
modeled by Bernoulli sequences. Thus, let {νk} and {γk} be
Bernoulli sequences taking values in the set {0,1}, modeling
the presence of packet losses in the actuators and missing
observations. We note that if νk = 1 (γk = 1), then the
actuators (sensors) receive the input uk (the measurement yk),
namely no failures have occurred, νk = 0 (γk = 0) otherwise.

More precisely, denoting x̄0 =E[x0], the expectation of the
initial state x0, we have the following conditions for k ≥ 0 :

(i) { fk} and {gk} are a zero mean i.i.d. sequence;
(ii) { fk}, {gk} and x0 have uncorrelated moments up to

the fourth order;
(iii) for i = 1,2,3,4 there exist finite and known vec-

tors Ψ f ,i
.
= E

[
f [i]k

]
, Ψg,i

.
= E

[
g[i]k

]
, and Ψx0,i

.
=

E
[
(x0− x̄0)

[i]
]
.

(iv) {νk} and {γk} are independent Bernoulli sequences
with P(νk = 1) = 1−P(νk = 0) = ν̄ and P(γk = 1) =
1−P(γk = 0) = γ̄;

Clearly Ψx0,1 = 0 and (i) implies Ψ f ,1 = Ψg,1 = 0. Note
that, when the sequences { fk}, {gk} and x0 are mutu-
ally independent, then assumption (ii) is satisfied. We set
Ψx0 = st−1{Ψx0,2}, Ψ f = st−1{Ψ f ,2}, Ψg = st−1{Ψg,2} the
covariance matrices of the initial state, state noise and output
noise, respectively. It is clear that in the non-Gaussian
framework, the knowledge of the first four moments of the
state and output noise sequences is weaker than assuming
the knowledge of the whole probability distributions.

Finally, we shall consider control sequences {uk}k mea-
surable with respect to the σ -Algebra Fk = σ(y`,ν`,γ` j≤
k−1). Thus, we note that the quantities νk−1, γk is available
at time k ≥ 0, which means that a reliable acknowledgment
protocol is implemented (the so-called TCP-like case [18]).
As pointed out in [16], this assumption is reasonable in
several practical applications.

In this framework, we consider the finite-horizon sub-
optimal control problem for non-Gaussian discrete-time lin-
ear systems with partial state information and Input/Output
(I/O) Bernoulli packet losses. More precisely, our aim is
to compute the control law in the class of recursively
computable quadratic output feedback which minimizes (3).

We recall the important result of [31].
Proposition 1 ([31]): For the finite-horizon LQG regu-

lator problem with I/O Bernoulli packet losses, the Fk-
measurable optimal output feedback control uk is given by

uk =−Mkx̌k|k−1, (4)

with
Mk = (Uk +B>Sk+1B)−1B>Sk+1A, (5)

where Sk is the solution of the backward Riccati equation

Sk =Wk +A>Sk+1A+

− ν̄A>Sk+1B(Uk +B>Sk+1B)−1B>Sk+1A (6)

with final conditions SN = WN, and x̌k|k−1 is the optimal
prediction of xk provided by the Kalman predictor (see [30]).

The next corollary is a straightforward consequence of the
separation principle proved by the previous theorem.

Corollary 1: For the finite-horizon LQ non-Gaussian reg-
ulator problem (1)-(2)-(3) with I/O Bernoulli packet losses,
the Fk-measurable output feedback linear optimal control
uk is given by (4).

In other words, Corollary 1 states that the control input
provided by (4) remains optimal in the class of linear
transformations of the output: a direct consequence of the
fact that, if the state and output noise sequences are non-
Gaussian, then the KF (KP) is the optimal estimator (predic-
tor) in the class of linear transformations of the output.

III. QUADRATIC FILTERING AND PREDICTION

A. Output injection

In this section we rewrite the system by mean of an output
injection term, which is crucial to ensure some important
properties of the quadratic predictor we shall see in Section



III-C. Thus, the state equation (1) is transformed using the
intermittent measurements equation (2):

xk+1 = Axk +νkBuk + fk

= Axk +νkBuk + fk +Lkyk− γkLkCxk− γkLkgk

= Ãkxk +νkBuk +Lkyk +hk, (7)

where Ãk = A− γkLkC, Lk ∈ Rn×q, and hk = fk − γkLkgk.
Moreover, by noticing that γ

p
k = γk for any p ∈ N, the

moments ψ
(i)
h,k := E

[
h[i]k |γk

]
, i = 2,3,4, can be computed as

functions of ψ
(i)
f , ψ

(i)
g and γk as follows

ψ
(2)
h,k =ψ

(2)
f + γkL[2]

k ψ
(2)
g , (8)

ψ
(3)
h,k =ψ

(3)
f − γkL[3]

k ψ
(3)
g , (9)

ψ
(4)
h,k =ψ

(4)
f + γkM4

2

(
ψ

(2)
f ⊗L[2]

k ψ
(2)
g

)
+ γkL[4]

k ψ
(4)
g , (10)

where M4
2 is the matrix coefficient of the binomial power for-

mula (see Theorem 2.2.5 of [12]). Thus, since the sequence
{γk} is known online, the moments ψ

(i)
h,k are known at each

k ≥ 0.
Furthermore, we split the state process into two sequences:

a predictable sequence {xp
k} and a stochastic sequence {xs

k}.
The predictable component xp

k satisfies

xp
k+1 = Ãkxp

k +νkBuk +Lkyk, xp
0 = x̄0, (11)

while the stochastic component xs
k is the solution of

xs
k+1 = Ãkxs

k +hk, xs
0 = x0− x̄0, (12)

and therefore ψ
(i)
xs

0
:=E

[
xs

0
[i]
]
=ψ

(i)
x0 . From (11) and (12), for

any k≥ 0, it follows xk = xp
k +xs

k. Moreover, note that at time
k≥ 0, since the quantities yk−1, γk−1, and νk−1 are available,
the predictable component xp

k is known. Subsequently, we
can define the output map of the stochastic component (12)
as

ys
k = yk− γkCxd

k = γk(Cxs
k +gk), (13)

where ys
k is an available quantity at time k ≥ 0.

Finally, we remark that the space of quadratic transfor-
mations of the output depends on the sequence {Lk} (see
[11]).

We shall see in the next section how to compute the
optimal recursive quadratic estimate, i.e. the optimal esti-
mate (in the minimum variance sense) among the quadratic
transformations of the output, in the case of intermittent
observations, and how to select the output injection gain
matrices {Lk} in order to guarantee the stability of the
algorithm and the improvement of the performance with
respect to the standard Kalman filter.

B. Optimal Recursive Quadratic Control with I/O Packet
Losses

We prove in this section that the structure of the optimal
recursive quadratic controller for the LQ non-Gaussian reg-
ulator problem with I/O packet losses remains unchanged,

namely the gain (5) with the backward Riccati equation (6).
For, we define the following vectors

Xk = col
(

xp
k ,x

s
k,x

s
k
[2]
)
, (14)

Yk = col
(

ys
k,y

s
k
[2]
)
, (15)

where xp
k and xs

k are defined in (11)–(12).

Lemma 1: The augmented state and output sequences
{Xk} and {Yk} defined in (14)–(15) obey to the following
equations

Xk+1 = AkXk +νkBuk +φh,k +Vk (16)
Yk = γk (C Xk +ϕg +Gk) , (17)

with

Ak =

A LkC 0
0 Ãk 0
0 0 Ã[2]

k

B =

B
0
0

 C =

[
0 C 0
0 0 C[2]

]
, (18)

φh,k =

 0
0

ψ
(2)
h,k

 Vk =

Lgk
hk

h(2)k

 ϕg =

[
0

ψ
(2)
g

]
Gk =

[
gk

g(2)k

]
, (19)

where

h(2)k = Ãkxs
k⊗hk +hk⊗ Ãkxs

k +h[2]k −ψ
(2)
h,k , (20)

g(2)k =Cxs
k⊗gk +gk⊗Cxs

k +g[2]k −ψ
(2)
g . (21)

Proof. By noticing that xs
k
[2] and ys

k
[2] satisfy

xs
k+1

[2] = Ã[2]
k xs

k
[2]+ψ

(2)
h,k +h(2)k ,

ys
k
[2] = γk

(
C[2]xs

k
[2]+ψ

(2)
g +g(2)k

)
,

where h(2)k and g(2)k are defined in (20)–(21), it is
straightforward to obtain (16)–(17). �

Remark 1: We note that the vector φh,k and ϕg are known
online, whilst the stochastic sequences {Vk} and {Gk} are
zero-mean, mutually correlated, white, and uncorrelated with
the initial state x0.

The following lemma provides the algorithm to compute
the recursive quadratic estimate and prediction.

Lemma 2: The recursive quadratic estimate and the recur-



sive quadratic prediction are given by the following algorithm

xp
0 = x̄0, X̂ s

0|−1 = col(Ψx0,1,Ψx0,2) (22)

P0|−1 =

[
st−1{Ψx0,2} st−1{Ψx0,3}

st−1{Ψx0,3}> st−1{Ψx0,4}−Ψx0,2Ψ>x0,2

]
x̂k|k−1 = xp

k + x̂s
k|k−1, x̂s

k|k−1 = X̂ s,1:n
k|k−1 (23)

Kk = Pk|k−1C
>(

C Pk|k−1C
>
+Ψk

)†
(24)

Pk = Pk|k−1− γkKkC Pk|k−1 (25)

X̂ s
k = X̂ s

k|k−1 + γkKk

(
Yk−C X̂ s

k|k−1−ϕg

)
(26)

x̂k = xp
k + x̂s

k, x̂s
k = X̂ s,1:n

k (27)

xp
k+1 = Ãkxp

k +νkBuk +Lyk (28)

Γk = γkϒkΨ
†
k (29)

X̂ s
k+1|k =

¯AkX̂
s

k +Γk

(
Yk−CX̂ s

k

)
+ϕh,k (30)

Pk+1|k =
( ¯Ak−ΓkC

)
Pk
( ¯Ak−ΓkC

)>
+Ξk−Γkϒk (31)

where X s
k = col(xs

k,x
s
k
[2]), ϕh = col(0,ψ(2)

h ),

¯A =

[
Ãk 0
0 Ã[2]

k

]
C =

[
C 0
0 C[2]

]
,

and the covariance matrices Ξk =E
[
HkH

>
k |γk

]
with Hk =

col
(

hk,h
(2)
k

)
, Ψk = E

[
GkG

>
k

]
and ϒk = E

[
HkG

>
k

]
.

Proof. By Lemma 1, it is possible to consider the stochastic
augmented sub-system

X s
k+1 =

¯A X s
k +ϕh,k +Hk (32)

Yk = γk
(
C X s

k +ϕg +Gk
)
. (33)

Note that the noise sequences {Hk} and {Gk} are zero-mean,
mutually correlated, white, and uncorrelated with the initial
state x0. Thus, the KF algorithm for mutually correlated
state and output noise sequences provides the optimal
estimate and prediction in the class of linear functions of
{Yk}. Moreover, it is clear that the optimal filter in the class
of linear functions of {Yk} corresponds to the optimal filter
in the class of the quadratic transformations, and the proof
is completed. �

We are now able to state the main result of this section.
Theorem 1: For the finite-horizon LQG regulator problem

with I/O Bernoulli packet losses, the Fk-measurable output
feedback quadratic optimal control uk is given by

uk =−Mkx̂k|k−1, (34)

where Mk is defined in (5) with the backward Riccati
equation (6), and x̂k|k−1 = xp

k + x̂s
k|k−1, with the recursive

quadratic prediction x̂s
k|k−1 = Π[xs

k|Q
k−1
ys ] given in Lemma

2.
Proof. Firstly, we can rewrite the cost index JN as follows

JN = E

[
X >

N WNXN+
N−1

∑
k=0

X >
k WkXk +νku>k Ukuk

]
, (35)

where Xk is the extended state vector defined in (14) and

Wk :=

Wk Wk 0
Wk Wk 0
0 0 0

 .
By Corollary 1, the LQG solution applied to the extended
system (16)–(17) with the cost index (35), yields the optimal
linear controller, namely the optimal recursive quadratic
control of the original system. In particular, by noticing that
the contribute of the known forcing term φh,k in (16) vanishes
because of its zero-block structure, by Proposition 1, the
above sub-optimal control input is given by

uk =−MkX̂k|k−1, (36)

with
Mk = (Uk +B>Sk+1B)−1B>Sk+1A ,

where Sk is the solution of the backward Riccati equation

Sk = Wk +A>Sk+1Ak+ (37)

− ν̄A >
k Sk+1B(Uk +B>Sk+1B)−1B>Sk+1Ak

with final conditions SN = WN. It is easy to see that, by
backward induction, the matrix

Sk =

Sk Sk 0
Sk Sk 0
0 0 0

 , (38)

with Sk given by (6) with its final condition, is the solutions
to (37). Thus, by equations (38), the control law (36)
simplifies in

uk =−Mk

(
X̂ 1:n

k|k−1 +X̂ s,1:n
k|k−1

)
,

where Mk is defined in (5), X̂ 1:n
k|k−1 = xp

k is known and, by

Lemma 2, X̂ s,1:n
k|k−1 = x̂s

k|k−1 is the optimal recursive quadratic
prediction provided by (23). �

C. Some remarks

The previous theorem shows that the optimal controller in
the class of quadratic transformation of the output is a linear
function of the quadratic prediction. Thus, the separation
principle continues to hold even in the non-Gaussian case
with known I/O Bernoulli packet losses, since estimation and
control can be designed separately.

In [30] an analysis of the statistical convergence properties
of the estimation error covariance shows the existence of
a critical value for the arrival rate of the observations, i.e.
λc ∈ [0,1), beyond which a transition to an unbounded mean
state error covariance occurs.
In particular, Theorem 2 of [30] shows that if λ ∈ (λc,1], then
for any initial covariance matrix P0, we have E[Pk|k−1]≤M
for some matrix M depending on P0, where Pk|k−1 is the
covariance of the prediction error of the Kalman filter given
in [30]. We note that the error dynamics ek = xk− x̌k|k−1 of
the prediction error of the filter in [30] is given by

ek+1 = (A− γkAKkC)ek + fk− γkAKkgk, (39)



where Kk is the standard Kalman filter gain.
If λ ∈ (λc,1], Theorem 2 of [30] implies that the dynamics
(39) is uniformly bounded except for a set of measure zero.
Thus, it is enough to set Lk = AKk, with Kk the Kalman
gain filter applied to (1)–(2) to let the matrix Ãk coincides
with the dynamical matrix of the prediction error (39),
which implies by similar arguments of Lemma 1 of [10] the
uniformly boundedness of a system with dynamical matrix
Ak defined in (18). Finally, by Theorem 3 of [10] we are
able to guarantee that the processes {Xk}, {Hk} and {Gk}
are second-order uniformly bounded, which is essential to
ensure that the quadratic filter (22)-(31) has a trace of the
covariance of the estimation and prediction error not greater
than the Kalman filter of [30] (see [5]).

The following proposition is a direct consequence of
Theorem 1 of [31] and the Theorem 1 of this section.

Proposition 2: For the finite-horizon LQG regulator prob-
lem with I/O Bernoulli packet losses, with the control input
(34), the cost JN is given by

JN = x̄>0 S0x̄0 + tr
{

Ψx0S0 +
N−1

∑
k=0

(
Sk+1Q+

+ ν̄A>Rk+1BMkE[P̄k|k−1]
)}

, (40)

where Mk and Sk are defined in (5)-(6), and E[P̄k|k−1] is the
expectation of the first n×n block of the matrix Pk|k−1 given
by (31), namely the covariance of the prediction error.

The sequence of matrices {Pk} is stochastic since the
matrices are nonlinear functions of the sequence γk. The
exact expected value of these matrices cannot be computed
analytically, as shown in [30]. However, it can be upper
bounded as E[P̄k|k−1]≤ P̂k|k−1, where P̂k|k−1 is the first n×n
block of the computable deterministic sequence (31) with γ̄

instead of γk.
Finally, as pointed out at the end of Section III-A, we

note that, since the space of quadratic transformation of the
output depends on L, so it is for the matrix Pk|k−1. Therefore,
a reasonable alternative static choice of the output injection
matrices, i.e. Lk = L, is the one of setting the gain L such
that it minimizes the upper bound of the cost

L̄ = arg min
λ∈σ(Ã)
|λ |≤1

tr
{N−1

∑
k=0

(
A>Rk+1BMkP̂k|k−1

)}
. (41)

We notice that, with this latter choice of L̄, we can not resort
to the stability result of [30] for the critical threshold and
further analysis would be required.

IV. SIMULATION EXAMPLE

In this section we show the effectiveness of the proposed
approach. We compare the linear optimal solution of [31]
(Corollary 1), namely the control law (4) (we call Kalman
predictor (KP) controller), with the one proposed in this
paper, i.e. the control law (34) (we call Quadratic predictor
(QP) controller). We consider an academic example where
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Fig. 2. Empirical cost of the KP controller of [31] and the proposed QP
controller.

the system in the form (1)–(2) is characterized by

A =

[
1 0.25

0.2 1

]
, B =

[
0
1

]
, C =

[
1 0

]
,

with x0 ∼N (0, I2) with I2 the identity matrix of dimension
2. Moreover, the signals are transmitted through unreliable
channels. The cost index (3) to be minimized is defined by
Wk = I2, and Uk = 1 for all k ≥ 0 and the time horizon is
N= 120. Furthermore, the system is driven by the zero-mean
i.i.d. non-Gaussian noise sequences fk = col( f1,k, f2,k) and
gk, where for any k≥ 0 we have P( f1,k = 0.05)= 1−P( f1,k =
−0.2) = 0.8, P( f2,k =−0.01) = 1−P( f2,k = 0.09) = 0.9, and
P(gk = 0.01) = 1−P(gk = 0.0025) = 0.2. Finally, the output
injection gain Lk is chosen according to (41).

Figure 2 shows the empirical cost across 100 Monte Carlo
runs of the KP controller and QP controller, i.e. the mean
of the cost x>NWNxN +∑

N−1
k=0 x>k Wkxk + ū>k Ukūk obtained for

the 100 Monte Carlo runs. The 3D plot has on the x-axis
and y-axis the values γ̄ ∈ [0.5,1] and ν̄ ∈ [0.5,1] respectively
as independent variables, and on the z-axis the value of
the empirical cost. We see that, in the case γ̄ = ν̄ = 1, the
averaged cost JKP

N of the KP controller of [31], i.e. the cost
obtained with the control law (4), is JKP

N = 6.76, whilst the
averaged cost JQP

N of the proposed QP controller, i.e. the
cost obtained with the control law (34), is JQP

N = 4.44. It
can be noticed that the function of the empirical cost in
Figure 2 is monotonically increasing when γ̄ or ν̄ decrease.
As described in Section III, the superiority of the proposed
method descends from the fact that the proposed sub-optimal
solution is optimal in the larger class of quadratic transfor-
mation output feedback controller, whilst the solution of [31]
is the optimal linear solution. Finally, Table I summarizes the
results of the empirical cost for both KP and QP Regulator
for selected values of γ̄ and ν̄ .

V. CONCLUSIONS

In this paper we propose a sub-optimal solution for the
Linear Quadratic non-Gaussian (LQnG) Regulator problem
in the presence of known input/output packet losses. We
show that an optimal controller in the class of recursive



JKP
N

JQP
N ν̄ = 1 ν̄ = 0.9 ν̄ = 0.8 ν̄ = 0.7 ν̄ = 0.6

γ̄ = 1 6.76 6.87 7.03 7.22 7.47
4.44 4.53 6.63 4.75 4.91

γ̄ = 0.9 7.17 7.29 7.48 7.69 7.98
4.61 4.69 4.80 4.92 5.10

γ̄ = 0.8 7.91 7.91 8.11 8.35 8.68
4.92 5.01 5.12 5.27 5.46

γ̄ = 0.7 8.79 8.92 9.14 9.40 9.80
5.28 5.38 5.50 5.66 5.88

γ̄ = 0.6 10.72 10.90 11.17 11.52 12.07
6.03 6.14 6.24 6.44 6.71

TABLE I
EMPIRICAL COST JKP

OF THE LINEAR OPTIMAL SOLUTION OF [31], i.e.

THE KALMAN PREDICTOR (KP) CONTROLLER, AND OF THE PROPOSED

QUADRATIC OPTIMAL SOLUTION JQP , i.e. THE QUADRATIC PREDICTOR

(QP) CONTROLLER FOR SELECTED VALUES OF γ̄ AND ν̄ .

quadratic transformation of the output is obtained as a linear
map of a quadratic prediction of the state. As a consequence,
the separation principle continue to be true even in this
case since estimation and control can be designed separately.
Numerical results validate the proposed approach that out-
performs the linear optimal solution. Further developments
can include: extension to the polynomial filtering, partial
packet losses, Semi-Markov packet losses, intermittent and/
or probabilistic acknowledgment of packet drops.
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