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sets coinciding with m distributions of probability inside of a linear space. They
generate a distribution of probability of a multivariate risky asset of order m.
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by n incompatible and exhaustive elementary events. We suppose that it turns
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prove that two any risky assets of them are conversely α-orthogonal, so their co-
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that the principal components are basic risky assets of an m-dimensional lin-
ear manifold. We consider a Bayesian adjustment of differences between prior
distributions to posterior distributions existing with respect to a probabilistic
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1. Introduction

A risky asset is a random quantity for an investor because he does not know
the true value of it. The true value of a random quantity is unique. If an
investor calls it random then it is unknown for him. He is therefore in doubt
between at least two possible values ([18]). We suppose that a risky asset
is characterized by n possible and distinct monetary values. We consider a
finite partition of n incompatible and exhaustive events connected with a risky
asset ([7]). They are elementary events. They are points in the space of random
quantities, where it is a linear space provided with a quadratic metric. We think
of probability as being a mass. It can freely be distributed without altering its
geometric support and the measure that appears more natural in the context
represented by a linear space. We observe that different distributions of mass
are different measures but the notion of measure has no a special status unlike
what happens when we refer to measure theory. When we speak about mass
as a measure we mean that it can be moved in whatever way we like. When
we speak about mass as a measure we do not mean something fixed. Having
said that, we consider m risky assets. We suppose that it always turns out to
be n > m without loss of generality. We say that m risky assets are logically
independent, so there are no circumstances in which the knowledge of some
of them can modify the uncertainty concerning the others. This means that
there are nm possible values for a multivariate risky asset of order m. They
coincide with the Cartesian product of the sets of possible values for every
risky asset which is the component of a multivariate risky asset of order m.
Let Xi be a generic risky asset. We write Im = {1, . . . ,m}, so it turns out to
be i ∈ Im. The generic and possible value of Xi is denoted by Xβi

, where we
have βi ∈ In = {1, . . . , n}. It follows that if Eβ1 ... βm

is a generic event of a
finite partition of nm elementary events then we consider an ordered m-tuple
of corresponding values denoted by (Xβ1

,Xβ2
, . . . ,Xβm

). A multivariate risky
asset of order m is therefore denoted by

X{m} = {(Xβ1
,Xβ2

, . . . ,Xβm
); pβ1 ... βm

| (β1, β2, . . . , βm) ∈ I(m)
n }, (1)

where we have coherently
n∑

β1...βm=1

pβ1...βm
= 1. (2)

In particular, if we deal with a bivariate risky asset then we write

n∑

βrβs=1

pβrβs
= 1,∀(r, s) ∈ I(2)m . (3)



A REINTERPRETATION OF PRINCIPAL COMPONENT... 711

If the generic and possible value of a bivariate risky asset is denoted by rXβ

then it is also possible to write

n∑

βγ=1

rspβγ = 1, ∀(r, s) ∈ I(2)m (4)

instead of (3). We will study mathematical aspects on which a portfolio choice
of a risk-averse investor is based ([16]). We will consider a portfolio whose
structure is given by m risky assets considered together with a free-risk asset.

2. Risky assets viewed as elements of a linear manifold

Let En be a linear space over R and let nB
⊥
e = {eβ ;β ∈ In} be an orthonormal

basis of it. We say that En is provided with a Euclidean metric because we are
able to consider a metric tensor with respect to nB

⊥
e . It belongs to En ⊗ En.

We therefore write

egβγ = 〈eβ, eγ〉 = δβγ , (5)

where δβγ is the Kronecker delta. We have written the generic component of a
tensor of order 2. All components of it are scalars. They give origin to an n×n

identity matrix expressed by








1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1







. (6)

The possible and distinct values of a risky asset are the contravariant compo-
nents of an n-dimensional vector of En with respect to nB

⊥
e . We write

xi = x
β
i eβ ∈ En (7)

by using the Einstein notation. We consider m risky assets, so we write

xi = x
β
i eβ, ∀i ∈ Im. (8)

Since it turns out to be n > m we are also able to suppose that all vectors of
(8) are linearly independent. Having said that, we observe that

I [x]m = {xi; i ∈ Im} (9)
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represents a basis of an m-dimensional linear manifold embedded in En. It
is denoted by xV

m. All linear combinations of the basis vectors contained in
(9) give origin to the elements of xV

m. We consider all their translations with
respect to an n-dimensional vector of En. It coincides with the zero vector of
En. We therefore write

x = xixi ∈ xV
m, ∀xi ∈ R, (10)

where we have i = 1, . . . ,m. We define a risky asset denoted byXi = {x1i , x2i , . . .,
xni }, i = 1, . . . ,m: we observe that x1i is the return on Xi if Ei1 occurs with
probability pi1, x

2
i is the return on Xi if Ei2 occurs with probability pi2, . . . , x

n
i

is the return on Xi if Ein occurs with probability pin. We note that x1i is the
wealth that Xi yields if Ei1 occurs with probability pi1, x

2
i is the wealth that

Xi yields if Ei2 occurs with probability pi2, . . . , x
n
i is the wealth that Xi yields

if Ein occurs with probability pin. It follows that xi, i = 1, . . . ,m, represents
a vector of En having all its contravariant components equal to the expected
return on Xi, i = 1, . . . ,m. It is denoted by P(Xi), so we write

xi =








x1i = P(Xi)
x2i = P(Xi)

...
xni = P(Xi)








, (11)

where we have i = 1, . . . ,m. We write

xi = x
β
i eβ, ∀i ∈ Im. (12)

We observe that every xi, i = 1, . . . ,m, represents an n-dimensional vector of
En with respect to which it is possible to consider all translations of all linear
combinations of the basis vectors of xV

m contained in (9). This means that
we deal with m linear manifolds, where each of them is denoted by

xi
V m. It is

then possible to obtain the m-dimensional linear manifold denoted by
d
V m
(0). It

is expressed by

dV
m
(0) = xV

m ⊖ xV
m. (13)

It is nothing but the direct difference of all linear manifolds denoted by
x1
V m,

. . . ,
xm

V m. We deal with m summands, where each of them is a difference.
The subtrahend of the first difference is always x1, . . . , the subtrahend of the
m-th difference is always xm. We note that the minuends of the first difference

coincide with all linear combinations of x1 ∈ I
[x]
m , . . . , the minuends of the m-

th difference coincide with all linear combinations of xm ∈ I
[x]
m . In particular,
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every vector denoted by di ∈ d
V m
(0) represents all deviations of the possible and

distinct values of Xi from its expected return denoted by xi, i = 1, . . . ,m ([24]).
Every vector denoted by di ∈ d

V m
(0) therefore represents a basic risky asset. We

consequently write

(0)I
[d]
m = {xi − xi; i ∈ Im} = {di; i ∈ Im}. (14)

We observe that (14) represents a basis of
d
V m
(0). It is also possible to denote

it by mB
d
. All linear combinations of the basic risky assets contained in (14)

generate
d
V m
(0). We consider all their translations with respect to the zero vector

of En, so we write

d = didi ∈ dV
m
(0), ∀di ∈ R, (15)

where we have i = 1, . . . ,m. We lastly denote by D{m} a multivariate risky
asset of order m whose components are m risky assets. The first component
of D{m} is a risky asset whose possible and distinct values coincide with all
deviations of X1 from x1, . . . , the m-th component of D{m} is a risky asset
whose possible and distinct values coincide with all deviations of Xm from xm

([12]). We consequently say that D{m} is defined with respect to X{m}.

3. A multivariate risky asset and its association probabilities

Let yh be a vector representing a risky asset of D{m} whose possible and distinct
values are obtained by means of a change of origin of the starting values ([11]).
We write

yh = yihdi ∈ dV
m
(0). (16)

We say that {yih} is a set of m contravariant components of yh with respect
to mB

d
. Only one contravariant component of yh is equal to 1. All other

contravariant components of yh are equal to 0. Since
d
V m
(0) is embedded in En

it is possible to write the same vector with respect to nB
⊥
e . We obtain

yh = yihx
β
i eβ ∈ En, (17)

where {yihx
β
i } is a set of n contravariant components of yh with respect to

nB
⊥
e . It is evident that {xβi } contains all possible and distinct values of a risky

asset of D{m} with respect to nB
⊥
e . These values are evidently deviations from

a mean value ([8]). It is evident that {yih} and {yihx
β
i } are not association

probabilities. If we deal with a multivariate risky asset of order m then we
have to take association probabilities into account. A multivariate risky asset
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of order m is then characterized by an affine tensor of order m identifying
association probabilities. A basis of

m times
︷ ︸︸ ︷

En ⊗ En ⊗ . . . ⊗En

is therefore denoted by Bnm = {eβ1
⊗ . . .⊗ eβm

}, so we obtain

p1...m = 1...mpβ1...βmeβ1
⊗ . . . ⊗ eβm

, (18)

where (18) is the generic component of an affine tensor of order m representing
association probabilities whose sum is equal to 1 on the whole partition ([2]).
We have to note a very important point: yh ∈ En is nothing but a tensor of
order 1. If we suppose that all contravariant components of an n-dimensional
vector of En denoted by φ are equal to 1 with respect to nB

⊥
e then it is possible

to construct an affine tensor of order m− 1 expressed by

φ
β1...βm

βi
=

m∏

j=1
j 6=i

φβj . (19)

We construct (19) with respect to φ. Having said that, the following pair of
expressions {

Y
β1...βm

h = yihx
βi

i φ
β1...βm

βi

1...mpβ1...βm

(20)

allows us of representing all deviations concerning all risky assets of a multi-
variate risky asset of order m together with their association probabilities. We
note that the tensor product between a tensor whose order is equal to 1 and a
tensor whose order is equal to m − 1 is equal to a tensor whose order is equal
to 1 +m − 1 = m. We evidently represent the generic component of an affine
tensor of order m identifying association probabilities by means of covariant
indices. This is because we will be able to obtain summary statistics about
distribution of probability under consideration in this way.

4. A symmetric tensor obtained by using association probabilities

If we deal with two risky assets jointly considered then we need to take the
tensor product of two linear spaces into account. Let En ⊗ En be a linear
space of affine tensors of order 2 and let Bn2 = {eβ ⊗ eγ} be a basis of it. We
consider an ordered pair of risky assets denoted by (di,dj), where every risky
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asset of it belongs to
d
V m
(0). The affine tensor of order 2 representing association

probabilities is expressed by

pij = ijp
βγeβ ⊗ eγ , (21)

where ijp
βγ is the generic component of it. It is a scalar. It is an association

probability. Having said that, we write

d;αgij = d
gij = 〈di,dj〉α = d

β
i d

γ
j ijpβγ (22)

with respect to mB
d
. We say that (22) represents a tensor of order 2 called

α-metric tensor with respect to an m-dimensional linear manifold denoted by

d
V m
(0). It is a symmetric tensor obtained by using association probabilities.

Its components are symmetric. If it turns out to be m > 2 then different
comparisons between two risky assets of mB

d
are possible. It is essential to

note that only pairwise comparisons are possible. This is because we consider a
quadratic metric. An m×m symmetric matrix is then generated by all possible
pairwise comparisons. The number of its distinct elements coincides with

Cr
m,2 =

1

2
m(m+ 1), (23)

where every its element is a component of
d
gij . In particular, it is possible to

derive from (22) the notion of α-norm, so we write

dgii = ‖di‖2α = d
β
i d

β
i ipβ. (24)

In general, we obtain the following m×m symmetric matrix








d
g11 d

g12 . . .
d
g1m

d
g21 d

g22 . . .
d
g2m

...
...

. . .
...

d
gm1 d

gm2 . . .
d
gmm







. (25)

The Schwarz α-generalized inequality can be considered in order to complete
the α-metric structure of

d
V m
(0). It is given by
∣
∣
dgij

∣
∣ ≤ √

d
gii

√

d
gjj. (26)

We observe that (5) and (22) are two tensors of order 2. The former is defined
with respect to an orthonormal basis of En without considering association
probabilities, while the latter is defined with respect to an ordered pair of basic
risky assets of

d
V m
(0). We note that an affine tensor of order 2 representing
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association probabilities always corresponds to such a pair of risky assets of

d
V m
(0). Such a tensor must be used in order to obtain (22). It follows that (5)

and (22) are conceptually different for this reason. In this context we think
of probability as being a non-negative and finitely additive function taking
the value 1 on the whole space. On the other hand, there exist situations
with respect to which a systematic set-theoretic interpretation of events is not
conceptually satisfactory. A single event is then a proposition identified with
a real number ([9]). It is unequivocally stated. It will be true or false at the
right time ([4]).

5. Eigenvectors connected with a symmetric tensor obtained by

using association probabilities and their representation

Let
d
gij be an α-metric tensor connected with

d
V m
(0) whose components identify

(25). We suppose that all entries of (25) outside of its main diagonal are equal
to zero. We suppose that all its main diagonal entries are different. We have
therefore m different values characterizing the main diagonal entries of (25),
where (25) is evidently an m×m diagonal matrix. We say that

d
gij identifies

an eigenequation. The number of its distinct eigenvalues is overall equal to
m. In other words, given a basis of

d
V m
(0) consisting of m risky assets of

d
V m
(0)

identifying m marginal distributions of probability, we suppose the following
thing: each time we jointly consider two different risky assets of a basis of

d
V m
(0)

we observe that the property of α-orthogonality is satisfied ([22]). This means
that the covariance of these two risky assets is equal to 0. We then speak
about pairwise non-correlation. Having said that, let mB⊥

e = {ei; i ∈ Im} and

mB⊥
e( ) = {e(j); (j) ∈ Im} be two distinct orthonormal bases with respect to

d
V m
(0). We therefore write

〈ei, ej〉 = δij (27)

as well as
〈
e(i), e(j)

〉
= δ(i) (j). (28)

If the set of the contravariant components of ei with respect to mB⊥
e( ) is denoted

by {A(j)
i ; (j) ∈ Im} then we write

ei = A
(j)
i e(j), (29)

where we have i = 1, . . . ,m. We evidently consider m linear combinations

identifying a non-singular matrix denoted by A = {A(j)
i ; (j) ∈ Im, i ∈ Im}. We
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are also able to write

e(k) = Ai
(k)ei, (30)

where we have (k) = 1, . . . ,m. We obtain A−1 = {Ai
(k); i ∈ Im, (k) ∈ Im}. This

means that it turns out to be

A
(j)
i Ai

(k) = δ
(j)
(k) (31)

as well as

A
(j)
i Ah

(j) = δhi . (32)

Let v(k) be an eigenvector of the α-metric tensor whose components identify
(25). It is then associated with the eigenvalue denoted by

d
λ(k) ([21]). Hence,

v(k) is expressed by

v(k) = vi(k)ei (33)

with respect to mB⊥
e . Let vk be an eigenvector of the α-metric tensor whose

components identify (25). It is then associated with the eigenvalue denoted by

d
λk. Hence, vk is expressed by

vk = v
(j)
k e(j) (34)

with respect to mB⊥
e( ). We observe that {

d
λ(k); (k) ∈ Im} as well as {

d
λk; k ∈

Im} are two different enumerations identifying the same eigenvalues. The same
eigenvalues are contained in both sets. We are not able to pass from a set to
another one because we deal with different enumerations. If v(k) and vk are
normalized, with (k) = 1, . . . ,m as well as k = 1, . . . ,m, then it turns out to be

〈
v(k),v(h)

〉
= δ(k) (h) (35)

and

〈vk,vh〉 = δkh. (36)

All these eigenvectors are therefore orthonormal. They identify an orthogonal
matrix ([14]). We lastly state what it was our intention of showing in this sec-
tion: all eigenvectors associated with

d
gij are pairwise α-orthogonal. Since they

are associated with
d
gij we indirectly refer to the property of α-orthogonality

when we say this thing.
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6. The projection of a linear manifold onto another one and its

reason

Any evaluation of probability referred to an event always depends on the vari-
able group of circumstances assumed to be relevant to its occurrence ([10]).
Such circumstances are known at the time. In general, they vary from mo-
ment to moment. This means that any evaluation of probability referred to
an event can vary according to the state of knowledge of an investor. It can
continuously be enriched by the flow of different information. It can also be
enriched by results that are learnt or observed in a gradual way in relation to
more or less similar situations and cases ([3]). We therefore consider

d′V
m
(0) for

all these reasons. It is an m-dimensional linear manifold embedded in En. It is
then a translation of an m-dimensional linear subspace of En coinciding with
it when one considers a translation with respect to the zero vector of En. It
is generated by m vectors, where each of them represents ordered deviations
from a mean value subjectively determined by an investor ([5]). They are then
linearly independent. They identify m risky assets which are the components
of a multivariate risky asset of order m denoted by D′

{m}. They identify m

marginal probability distributions which are different from the starting ones.
We note that all linear combinations of these m basic risky assets generate
risky assets which are related. They belong to

d′V
m
(0). This is because they

are geometrically represented by n-dimensional vectors belonging to the same
m-dimensional linear subspace of En. If we consider two any risky assets of
them together with their association probabilities then we observe that they
are α-orthogonal, so their covariance is equal to 0. Given D{m}, we suppose
that every risky asset belonging to D{m} is associated with every risky asset
belonging to D′

{m}. This means that we consider two multivariate risky assets

of order m denoted by D{m} and D′
{m} as well as a set of m2 bivariate risky

assets whose generic element is denoted by (Di,D
′
j). We also consider the α-

orthogonal projection of
d′V

m
(0) onto

d
V m
(0). It is denoted by

d̂
V m
(0). All vectors

belonging to
d
V m
(0) represent the starting risky assets. All vectors belonging to

d̂
V m
(0) express a logical and formal hypothesis with respect to a given structure

of the distributions of probability identifying all risky assets under considera-
tion. It is a probabilistic and economic hypothesis. The condition of invariance
of the covariance of two risky assets expresses it. Having said that, let d′

j be

an element of
d′V

m
(0). Let d̂j be the corresponding element of

d̂
V m
(0), where we

have j = 1, . . . ,m. We say that it turns out to be

d∗
j = d′

j − d̂j , ∀j ∈ Im. (37)
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It is therefore possible to construct
d̂
V m
(0) by solving the following system of m

linear equations for every value of j ∈ Im. It is given by

〈
d∗
j ,di

〉

α = 0, ∀i ∈ Im. (38)

We consider m systems expressed by (38). It is evident that we are also able
to write

〈
d′
j,di

〉

α −
〈

d̂j ,di

〉

α = 0, ∀i ∈ Im. (39)

We note that (39) tells us that the covariance of two risky assets is invariant.
We consider their joint distribution in order to say this thing. We observe that
it is possible to write

d̂j = dhjdh, (40)

where we have d̂j ∈
d̂
V m
(0), j = 1, . . . ,m. We note that it turns out to be

dh ∈ mB
d
. We put (40) in (39) as well as we remind how the α-metric tensor

concerning
d
V m
(0) has been defined. Hence, we write

〈
d′
j ,di

〉

α − dhj dghi =
〈
d′
j ,di

〉

α − dji = 0. (41)

It follows that we obtain

dji =
〈
d′
j ,di

〉

α. (42)

We say that the covariant components of d̂j with respect to mB
d
are expressed

by (42). Since the subtrahend of (39) is given by

〈

d̂j,di

〉

α = dhj 〈dh,di〉 α = dhj dghi = dji, (43)

we note that the covariant components of d′
j and d̂j with respect to mB

d
are

obtained in the same way. Having said that, we have to establish the con-
travariant components of d̂j in order to complete the α-orthogonal projection
of

d′V
m
(0) onto d

V m
(0). We therefore write

dhj dghi dg
ki = dji dg

ki, (44)

so we obtain

dkj = dji dg
ki, (45)
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where the contravariant components of the α-metric tensor under consideration
denoted by

d
gki are given by









1

d
g
11

0 . . . 0

0 1

d
g
22

. . . 0

...
...

. . .
...

0 0 . . . 1

d
gmm









. (46)

We have to note a very important point: we have observed that m linear com-
binations of the basic risky assets of

d
V m
(0) give origin to m risky assets of

d̂
V m
(0)

represented by m vectors belonging to
d̂
V m
(0) according to (40). Their contravari-

ant components coincide with the coefficients of these m linear combinations.
Given such components, it is then possible to obtain the covariant components
of the risky assets of

d̂
V m
(0) by using the covariant components of

d
gij expressed

by (25). Given the covariant components of the risky assets belonging to
d̂
V m
(0),

it is conversely possible to obtain their contravariant components by using the
contravariant components of

d
gij expressed by (46).

7. A choice of an appropriate basis of a linear manifold: a definition

of principal components

Let {
d
λ(k); (k) ∈ Im} be the set containing all eigenvalues of the α-metric tensor

which has been constructed with respect to
d
V m
(0). We have supposed that

they are all distinct. Let {v(k); (k) ∈ Im} be the corresponding set containing
all normalized eigenvectors. They are pairwise α-orthogonal because we have
supposed that all eigenvalues are distinct. Given D{m}, we have to note a very
important point: we say that the principal components with respect to D{m}

and denoted by w(h), (h) = 1, . . . ,m, are all linear combinations of vectors,
where each of them represents a basic risky asset of D{m}, whose coefficients
are the components of a normalized eigenvector ([15]). We therefore write

w(h) = vi(h)di, ∀(h) ∈ Im. (47)

We have to note another very important point: all principal components repre-
sent a basis of

d
V m
(0). In other words, all principal components represent basic

risky assets. We currently denote such a basis by mBwd
. Every risky asset

belonging to
d
V m
(0) can therefore be expressed as a linear combination of the

basic risky assets belonging to mBwd
. In particular, we then write

di = v
(h)
i w(h), ∀i ∈ Im. (48)
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Having said that, we consider the following eigenequation

(

dgkh − λ(k) δkh
)
vk(k) = 0. (49)

From (49) it follows

dgkh v
k
(k) = λ(k) δkh v

k
(k). (50)

If we use the contravariant components of vh in both sides of (50) then we
obtain

vk(k) v
h
(h) dgkh = λ(k) v

k
(k) v

h
(h) δkh. (51)

On the other hand, it is also possible to write

dgkh = v
(j)
k v

(i)
h

〈
w(j),w(i)

〉

α (52)

after considering (48). We observe that it turns out to be

vk(k) v
h
(h) δkh = δ(k)(h), (53)

so it is possible to obtain
〈
w(k),w(h)

〉

α = λ(k) δ(k)(h). (54)

We have obtained (54) after putting (52) in (51). If (k) and (h) vary in Im then
we note that (54) identifies an α-metric tensor with respect to a basis of

d
V m
(0)

whose elements are the principal components concerning D{m}. We therefore
write

wg(k)(h) =
〈
w(k),w(h)

〉

α = λ(k) δ(k)(h). (55)

The generic covariant component of a diagonal tensor is expressed by (55). We
have then shown that mBwd

is an α-orthogonal basis of
d
V m
(0). Its elements are

pairwise α-orthogonal. Also, every eigenvalue corresponding to the normalized
eigenvector whose components are contained in (47) coincides with the α-norm
of a principal component belonging to mBwd

([23]). Since it is possible to write









wg(1)(1) wg(1)(2) . . . wg(1)(m)

wg(2)(1) wg(2)(2) . . . wg(2)(m)
...

...
. . .

...

wg(m)(1) wg(m)(2) . . . wg(m)(m)









, (56)

we denote by wa
(k)(h) the cofactor of wa(k)(h), where both wa

(k)(h) and wa(k)(h)
are contained in (56). Also, we denote by wg the determinant of (56). The
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generic contravariant component of the α-metric tensor under consideration is
therefore given by

wg
(k)(h) = wa

(k)(h)

wg
. (57)

If we write
1

λ(k)
= λ(k),

then it is possible to obtain

wg
(k)(h) = λ(k) δ(k)(h). (58)

By putting together (55) and (58) we are lastly able to write

wg(k)(h) wg
(k)(h) = λ(k) δ(k)(h) λ

(k) δ(k)(h) = λ(k) λ
(j) δ

(j)
(k). (59)

We have obtained a mixed and α-metric tensor whose generic component can

be denoted by wg
(j)
(k). It follows that it turns out to be wg

(k)
(k) = m because we

consider a product of matrices by means of which we obtain an m×m identity
matrix of which we compute its trace.

8. The projection of a linear manifold onto another one obtained

when we choose a particular basis of it

We have said that if we project
d′V

m
(0) onto d

V m
(0) then we obtain anm-dimensional

linear manifold embedded in En denoted by
d̂
V m
(0). We observe that mBwd

is a
basis of it. This means that it is possible to write

d̂j = d
(i)
j w(i), ∀j ∈ Im. (60)

We remind (41). The following condition

〈
d′
j ,w(k)

〉

α − d
(h)
j wg(h)(k) =

〈
d′
j ,w(k)

〉

α − dj(k) = 0 (61)

therefore allows us of computing the covariant components of d̂j ∈
d̂
V m
(0) with

respect to mBwd
. Given (61), it turns out to be

dj(k) =
〈
d′
j ,w(k)

〉

α. (62)

We take (58) into account, so we write

dj(k) wg
(h)(k) = dj(k) λ

(h) δ(h)(k) = dj(h) λ
(h). (63)
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We observe that the h index in the third side of (63) is a free index unlike the
k index in the second side of it. The contravariant components of d̂j ∈

d̂
V m
(0)

with respect to mBwd
are then expressed by

dj(h) λ
(h) =

〈

d′
j ,w(h)

〉

α

λ(h)
= d

(h)
j . (64)

We lastly observe that the covariant components of d̂j and d′
j with respect to

mBwd
are obtained in the same way. This means that it is possible to write

dj(k) =
〈

d̂j ,w(k)

〉

α. (65)

9. A proportionality existing between risky assets: a particular case

We have said that every risky asset subjected to a change of origin coincides
with an n-dimensional vector of En representing a marginal distribution of
probability ([6]). Such a vector is an ordered set of real numbers. If we consider
m risky assets then we deal with m ordered sets of real numbers because every
risky asset is an ordered set of real numbers. We say that two ordered sets of
two non-zero real numbers denoted by {d1A, d2A} and {d1B , d2B} are proportional
if it is possible to write

d1A : d1B = d2A : d2B . (66)

This means that there exists a constant of proportionality denoted by h such
that we have

d1A
d1B

=
d2A
d2B

= h. (67)

In general, given two ordered sets of n real numbers denoted by {d1A, d2A, . . . , dnA}
and {d1B , d2B , . . . , dnB}, we say that they are proportional if it is possible to write










d1A = hd1B

d2A = hd2B
...

dnA = hdnB










. (68)
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It follows that we are also able to write









d1A − d1B = (h− 1)d1B

d2A − d2B = (h− 1)d2B
...

dnA − dnB = (h− 1)dnB










. (69)

Given the direct difference between {d1A, d2A, . . . , dnA} and a homothetic trans-
formation of {d1B , d2B , . . . , dnB}, if we say that such a difference is proportional
to a third set of n real numbers denoted by {d1C , d2C , . . . , dnC} then it is possible
to write 








d1A − x d1B = y d1C

d2A − x d2B = y d2C
...

dnA − x dnB = y dnC










. (70)

We note that y is an average constant of proportionality. We suppose that all
equalities expressed by (70) do not hold. We consequently establish a proba-
bilistic and economic criterion by means of which it is possible to construct an
ordered set of n real numbers whose elements are given by {d1C′ , d

2
C′ , . . . , d

n
C′}.

We realize that {d1C′ , d
2
C′ , . . . , d

n
C′} must have got pre-established characteristics

with respect to {d1C , d2C , . . . , dnC}. We observe that the following equalities










d1A − x d1B = y d1C′

d2A − x d2B = y d2C′

...

dnA − x dnB = y dnC′










(71)

must then be satisfied. We lastly observe that what we will say in the next
section makes more functional what we have said in this one.

10. The condition of invariance of the covariance of two risky assets:

a particular case

We have considered the α-orthogonal projection of
d′V

m
(0) onto d

V m
(0). We have

denoted it by
d̂
V m
(0). All risky assets belonging to

d̂
V m
(0) are then nothing but
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units of measurement with respect to which an investor is able to measure and
characterize all risky assets belonging to

d
V m
(0). To fix ideas, we suppose that it

turns out to be m = 2. We therefore write

d∗
1 = d′

1 − d̂1 (72)

and

d∗
2 = d′

2 − d̂2. (73)

It follows that we have to consider two systems of two linear equations in order
to construct

d̂
V m
(0). We have







〈d∗
1,d1〉 α = 0

〈d∗
1,d2〉 α = 0

(74)

as well as 





〈d∗
2,d1〉 α = 0

〈d∗
2,d2〉 α = 0

. (75)

If we consider (72) and (73) then we are also able to write







〈d′
1,d1〉 α =

〈

d̂1,d1

〉

α

〈d′
1,d2〉 α =

〈

d̂1,d2

〉

α

(76)

as well as 





〈d′
2,d1〉 α =

〈

d̂2,d1

〉

α

〈d′
2,d2〉 α =

〈

d̂2,d2

〉

α

. (77)

Having said that, given two basic risky assets of
d
V m
(0) denoted by d1 and d2,

it is possible to consider

d1 − xd2 = y d̂1 (78)

and
d1 − x′d2 = y′d̂2, (79)

where d̂1 and d̂2 are two basic risky assets of
d̂
V m
(0). We note that y and y′ are

average constants of proportionality because they are referred to probability
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distributions, while x and x′ are coefficients of adjustment. They adjust the
difference of d1 and d2 to distributions that should exist with respect to a prob-
abilistic and economic hypothesis identifying the invariance of the covariance
of two risky assets. We deal with a Bayesian adjustment because d1 and d2 are
two prior distributions, while d̂1 and d̂2 are two posterior distributions charac-
terizing a specific hypothesis ([1]). We then observe that a distance between two
prior distributions is proportional to a posterior distribution characterizing the
right-hand side of (78). A distance between two prior distributions is similarly
proportional to a posterior distribution appearing in the right-hand side of (79)
([13]). We note that d̂1 in (78) and d̂2 in (79) are obtained by means of linear
combinations of d1 and d2. It is then possible to refer to (40). The condition
of invariance of the covariance of two risky assets expressed by (76) and (77)
is equal to the condition according to which d∗

1 = d′
1 − d̂1 and d∗

2 = d′
2 − d̂2

are orthogonal to the plane established by d1 and d2. We speak about plane
because we deal with two risky assets of which we compute their covariance.
It is indeed possible to show that two risky assets coinciding with two random
quantities identify a geometric shape in 2 dimensions. It is a parallelogram with
two pairs of parallel sides, where every risky asset coinciding with a random
quantity is a side of it. Such a parallelogram recognizes a bivariate risky asset
coinciding with a bivariate random quantity. We observe that d̂1 coincides with
the orthogonal projection of d̂1 onto d′

1 given by

projd′
1
(d̂1) =

d′
1 · d̂1

‖d′
1‖2

d′
1 (80)

as well as d̂2 coincides with the orthogonal projection of d̂2 onto d′
2 expressed

by

projd′
2
(d̂2) =

d′
2 · d̂2

‖d′
2‖2

d′
2. (81)

On the other hand, d′
1 coincides with the orthogonal projection of d′

1 onto d̂1

as well as d′
2 coincides with the orthogonal projection of d′

2 onto d̂2.

11. Mean-variance utility

Given a portfolio having two different types of asset, one of them is not a risky
asset but it is a risk-free asset ([19]). It always pays a given amount of money
regardless of what happens. We then say that its return is a positive constant,
while its standard deviation is equal to 0 because there is not riskiness. The
other asset is a set of m risky assets. They give origin to a multivariate risky
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asset of order m. The mean-variance model assumes that the utility of a distri-
bution of probability can be expressed as a function of the mean and variance
of it ([17]). It is appropriate to make the natural assumption that a higher ex-
pected return on wealth is good when all other things do not change. A higher
variance is conversely bad. This evidently means that the natural assumption
of aversion to risk holds. We then suppose that there exists an inverse linear
relationship between these two different types of asset ([20]). It is possible to
assume that an investor’s preferences depend only on the mean and variance
of the distribution of probability of his wealth. It is then possible to consider
indifference curves illustrating an investor’s preferences for return and risk. If
he is a risk-averse investor then a higher expected return on wealth makes him
better off as well as a higher standard deviation makes him worse off. Riskiness
represented by the variance of the distribution of probability of his wealth is a
bad, so the indifference curves characterizing his utility function must have a
positive slope ([25]). We are able to describe the distribution of probability of
a multivariate risky asset of order m by using a few parameters. We are there-
fore interested in summarizing the distribution of probability of a multivariate
risky asset of order m. This is because the utility function characterizing the
mean-variance model must be defined over those parameters concerning such a
distribution. An investor’s preferences can therefore be described by considering
just a few summary statistics about probability distribution of a multivariate
risky asset of order m. On the other hand, we have shown that it is possible to
decompose it in a linear space provided with a Euclidean metric. Having said
that, we write

P(X1 X2 · · · Xm) = P(X1)P(X2) · · · P(Xm), (82)

where P denotes the expected return on wealth. It coincides with a coherent
prevision of a random quantity, where we evidently consider both a multivariate
random quantity of order m and m random quantities. We also write

σ2
X1+X2+...+Xm

= σ2
X1

+ σ2
X2

+ . . .+ σ2
Xm

(83)

in order to obtain the variance of the probability distribution of a multivariate
risky asset of order m. We observe that it also turns out to be

σ2
X1+X2+...+Xm

= dg11 + dg22 + . . . + dgmm (84)

as well as

σX1+X2+...+Xm
=

√
d
g11 +

√
d
g22 + . . .+

√
d
gmm, (85)

where we evidently consider the sum of elements on the main diagonal of (25) as
well as the sum of their square roots. At the optimal choice of mean return and
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standard deviation of return of the probability distribution of a multivariate
risky asset of order m we observe that the slope of the indifference curve must
be equal to the slope of the budget line. Such a line measures the cost of
obtaining a larger expected return in terms of the increased standard deviation
of the return. Its vertical intercept coincides with the return of the risk-free
asset under consideration.

12. Some final remarks

It is possible to show that the notion of direction of an appropriate vector
belonging to a linear space over R has a probabilistic and economic meaning.
Particular equations of proportionality are used in order to show this thing. It
is consequently possible to compute the coefficients connected with these par-
ticular equations of proportionality. It is also possible to prove a theorem of
α-orthogonality that tells us that all basic risky assets belonging to

d̂
V m
(0) co-

incide with the principal components. It is possible to show that the principal
components have a probabilistic and economic meaning when they derive from
particular equations of proportionality. It is possible to use a different approach
to what we have shown in this paper. It is therefore possible to use Grassmann
coordinates of linear manifolds. They coincide with the components of an anti-
symmetric tensor whose order is equal to the dimension of the linear manifold
under consideration. It is possible that all possible values of a multivariate risky
asset of order m coincide with the components of an antisymmetric tensor of
order m.

13. Conclusions

We have analyzed m risky assets coinciding with m marginal distributions of
probability inside of a linear space. They generate a distribution of probability
of a multivariate risky asset of order m. We have decomposed such a distri-
bution inside of a linear space. We have shown that an m-dimensional linear
manifold is generated by m basic risky assets. Given m basic risky assets, we
have proved that all risky assets contained in an m-dimensional linear manifold
are geometrically related. We have proved that two any risky assets of them
are conversely α-orthogonal, so their covariance is equal to 0. We have reinter-
preted principal component analysis by showing that the principal components
are basic risky assets of an m-dimensional linear manifold. We have considered
a Bayesian adjustment of differences between prior distributions to posterior
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distributions existing with respect to a probabilistic and economic hypothesis
identifying the invariance of the covariance of two risky assets.
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