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Abstract The retrieval capabilities of associative neural networks are known to be impaired by fast noise,
which endows neuron behavior with some degree of stochasticity, and by slow noise, due to interference
among stored memories; here we allow for another source of noise, referred to as “synaptic noise”, which may
stem from i. corrupted information provided during learning, ii. shortcomings occurring in the learning
stage, or iii. flaws occurring in the storing stage, and which accordingly affects the couplings among
neurons. Indeed, we prove that this kind of noise can also yield to a break-down of retrieval and, just like
the slow noise, its effect can be softened by relying on density, namely by allowing p-body interactions
among neurons.

PACS. 84.35.+i Neural networks – 02.70.Rr General statistical methods

1 Introduction

Associative memories (AM) are devices able to store and then retrieve a set of information (see e.g., [1]). Since the 70’s,
several models of AM have been introduced, among which the Hopfield neural network (HNN) probably constitutes
the best known example [2,3]. In this model one has N units, meant as stylized (on/off) neurons, able to process
information through pairwise interactions. The performance of an AM is usually measured as the ratio α between the
largest extent of information safely retrievable and the amount of neurons employed for this task; in the HNN this ratio
is order of 1. In the last decades many efforts have been spent trying to raise this ratio (see e.g., [4,5] and references
therein). For instance, in the so-called dense associative memories (DAMs) neurons are embedded on hyper-graphs in
such a way that they are allowed to interact in p-tuples and α ∼ O(Np−1). However, this model also requires more
resources as the number of connections encoding the learned information scales as Np instead of N2 as in the standard
pairwise model [6,8].

Clearly, whatever the AM model considered, limitations on α are intrinsic given that the amount of resources
(in terms of number of neurons and number of connections) available necessarily yields to bounds in the extent of
information storable. In particular, by increasing the pieces of information to be stored, the interference among them
generates a so-called slow noise which requires a relatively large number of neurons or of connections to be resolved.
Beyond this, one has also to face another kind of noise, which has been less investigated in the last years and which
is the focus of the current work.

In fact, classical AM models assume that learning and storing stages rely on exact knowledge of information
and work without flaws, whereas, in general, the information provided may be corrupted and communication among
neurons can be disturbed (see e.g., [9,10]). We refer to the noise stemming from this kind of shortcomings as synaptic
noise and, as we will explain, we envisage different ways to model it, mimicking different physical situations (i.e.,
respectively, noisy patterns, noisy learning, and noisy storing). In each case we investigate the effects of such a noise
on the retrieval capabilities of the system and on the existence of bounds on the amount of noise above which the
network can not work as an AM any longer. More precisely, our analysis is led on (hyper-)graphs with p ≥ 2 and
we highlight an interplay between slow noise, synaptic noise and network density: by increasing p one can exploit
some of the additional resources to soften the effect of slow noise and make higher load affordable, and some to soften
the effect of synaptic noise and make the system more robust. On the other hand, here, possible effects due to fast
noise (also referred to as temperature) are discarded and, since it typically makes neurons more prone to failure, our
results provide an upper bound for the system performance. Also, this particular setting allows addressing the problem
analytically via a signal-to-noise approach [2].
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In the following Sec. 2, we will frame the problem more quantitatively exploiting, as a reference model, the HNN: we
will review the signal-to-noise approach and introduce the necessary definitions. Next, in Sec. 3, we will consider the p-
neuron Hopfield model and we will find that i. when the information to be stored is provided with some mistakes (noisy
patterns), then the machine will store the defective pieces of information and retrieving the correct ones is possible as
long as mistakes are “small”; ii. when the information is provided exactly but the learning process is imperfect (noisy
learning), then retrieval is possible but the capacity α turns out to be downsized; iii. when information is provided
exactly and it is correctly learned, but communication among neurons during retrieval is faulty (noisy storing), then
retrieval is still possible but α is “moderately” reduced. These results are also successfully checked versus numerical
simulations. Finally, Sec. 4 is left for our conclusive remarks. Since calculations for the p-neuron Hopfield model are
pretty lengthy, they are not shown in details for arbitrary p, instead, we report explicit calculations for the case p = 4
in the Appendix.

2 Noise tolerance

In this section we introduce the main players of our investigations taking advantage of the HNN as a reference
framework.
The HNN is made of N neurons, each associated to a variable σi ∈ {−1,+1}, with i = 1, ..., N representing the related
status (either active or inactive), embedded in a complete graph with weighted connections. An HNN with N neurons
is able to learn pieces of information which can be encoded in binary vectors of length N , also called patterns. After
the learning of K such vectors {ξ1, ..., ξK}, with ξµ ∈ {−1,+1}N for µ = 1, ...,K, the weight for the coupling between

neuron i and j is given by the so-called Hebbian rule JHebbij = 1
N

∑K
µ=1 ξ

µ
i ξ

µ
j for any i 6= j, while self-interactions are

not allowed, i.e., Jii = 0, for any i.
In the absence of external noise and external fields, the neuronal state evolves according to the dynamic

σi(t+ 1) = sign[hi(σ(t))], (1)

where

hi(σ(t)) =

N∑
j=1

Jijσj(t) (2)

is the internal field acting on the i-th neuron. This dynamical system corresponds to a steepest descent algorithm
where

H(σ, ξ) = −
N∑
i>j

hi(σ)σi = − 1

2N

N,N∑
i,j
i 6=j

K∑
µ=1

ξµi σiσjξ
µ
j (3)

plays as a Lyapunov function or, in a statistical-mechanics setting, as the Hamiltonian of the model (see e.g., [2,3]).
The retrieval of a learned pattern ξµ, starting from a certain input state σ(t = 0), is therefore assured as long as this
initial state belongs to the attraction basin of ξµ, according to the dynamic (1), in such a way that, eventually, the
neuronal configuration will reach the stable state σ = ξµ. With these premises, the signal-to-noise analysis ascertains
the stability of the configuration corresponding to the arbitrary pattern ξµ by checking whether the inequality

hi(ξ
µ)ξµi > 0 (4)

is verified for any neuron i = 1, ..., N . Of course, this kind of analysis can be applied to an arbitrary AM model, by
suitably defining the internal field in the condition (4), as hi issues from the architecture characterizing the considered
model.
Before proceeding, a few remarks are in order.
The expression “signal-to-noise” refers to the fact that, as we will see, the l.h.s. in (4) can be split into a “signal” term
S and a “noise” term R, the latter typically stemming from interference among patterns and growing with K. Thus,
the largest amount of patterns that the system can store and retrieve corresponds to the largest value of K which
still ensures S/R & 11. Further, since we are interested in storing the largest amount of information, rather than the
largest amount of patterns, recalling the Shannon-Fano coding, the pattern entries shall be drawn according to

P (ξµi ) =
1

2
[δ(ξµi + 1) + δ(ξµi − 1)], (5)

1 With the symbol & we mean “more than or at the order of magnitude of”. Analogously, in the following, we will use the
symbol ∼ to mean “of the same order of magnitude”.
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Figure 1: RBM corresponding to faulty patterns. The machine is built over a hidden layer made of Gaussian neurons
{zµ}µ=1,...,K and a visible layer made of binary neurons {σi}i=1,...,N ; in this case a neuron zµ belonging to the hidden layer
can interact with one neuron σi belonging to the visible layer and the coupling is ηµi = ξµi + ωξ̃µi , as described by Eq. 6. Since
the machine is restricted, intra-layer interactions are not allowed. In the dual associative network the neurons interact pairwise
(p = 2) and the synaptic weight for the couple (σi, σj) is Jij =

∑
µ(ξµi +ωξ̃µi )(ξµi +ωξ̃µi ), as reported also in Eq. 7. This structure

can be straightforwardly generalized for p > 2. In this figure, seeking for clarity, only a few connections are drawn for illustrative
purposes.

for any i, µ, that is, entries are taken as i.i.d. Rademacher random variables.
Remarkably, the above mentioned Hebbian rule accounts for an “ideal” situation, where i. the dataset {ξµ}µ=1,...,P ,

ii. the learning of this dataset, and iii. the related storage are devoid of any source of noise which may lead to some
errors, while in general shortcomings may take place and we accordingly revise JHebb as explained hereafter; we stress
that, in order to see how noise can effectively affect the couplings in the HNN, we will exploit a formal analogy between
HNNs and restricted Boltzmann machines (RBMs) [9,13,14,15,16,17].

(i) Noisy patterns. The first kind of noise we look at allows for corrupted patterns, referred to as {ηµ}µ=1,...,K , and
defined as

ηµi = ξµi + ω ξ̃µi , (6)

where ξ̃µi is a standard Gaussian random variable and ω is a real parameter that tunes the noise level. The Hebbian
rule, in the case p = 2, is therefore revised as

Jij =
1

N

K∑
µ=1

ηµi η
µ
j . (7)

Since this kind of noise directly affects the information we feed the machine with, we expect strong effects and,
in fact, as we will show, even in a low-load regime (i.e., K/Np−1 → 0) and for relatively small values of ω, it
implies the breakdown of pattern recognition capability. It is intuitive to see that this kind of noise leads to such
a dramatic effect if one looks at the dual representation of the associative neural network in terms of a RBM, see
Fig. 1. In fact, the coupling (7) is reminiscent of the fact that, during the learning stage, the system is fed by noisy
patterns and therefore it learns patterns along with their noise. Notice that, for p-body interactions, the coupling
Jij turns out to be a polynomial order p in ω.

(ii) Noisy learning. The second kind of noise we look at can be thought of as due to flaws during the learning stage.
Still looking at the RBM representation, in this case the couplings between visible and hidden units are noisy2

and, again, we quantify this noise by ω times a standard Gaussian variable, see Fig. 2. Notice that, when p = 2
(as for the classical HNN), this kind of noise coincides with the previous one and, in general, it yields to a revision
in the coupling JHebbij given by additional terms up to second order in ω. This suggests that, in this case, effects
are milder with respect to the previous one. In fact, as we will see, in a low-load regime, the degree of noise ω can
grow algebraically with the system size, without breaking retrieval capabilities.

(iii) Noisy storing. The third kind of noise we look at can be thought of as due to effective shortcomings in storage as
it directly affects the coupling among neurons in the AM system as

Jij =
1

N

K∑
µ=1

(
ξµi ξ

µ
j + ωξ̃µij

)
, (8)

2 We recall that, in a learning problem, the RBM is shown a set of (binary) data vectors and it must learn to generate these
vectors with high probability. To do this, weights on the connections between visible and hidden neurons are iteratively updated
in order to reach low (possibly minima) values of a suitable cost function.
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Figure 2: RBM corresponding to shortcomings in the learning stage. The machine is built over a hidden layer made
of Gaussian neurons {zµ}µ=1,...,K and a visible layer made of binary neurons {σi}i=1,...,N ; in this case a neuron zµ belonging
to the hidden layer can interact simultaneously with two neurons (σi, σj) belonging to the visible layer and the coupling is
ξµi ξ

µ
j + ωξ̃µij , mimicking a situation where the correct patterns are learnt, yet interaction among the two layers is disturbed.

Since the machine is restricted, intra-layer interactions are not allowed. In the dual associative network the neurons interact via
4-body interactions (p = 4) and the synaptic weight for the 4-tuple (σi, σj , σk, σl) is Jijkl =

∑
µ(ξµi ξ

µ
j + ωξ̃µij)(ξ

µ
k ξ
µ
l + ωξ̃µkl), as

reported also in Eq. 18. Notice that this kind of noise is intrinsically defined only for associative networks where p is even and
that when p = 2 we recover the case depicted in Fig. 1. Also in this figure, seeking for clarity, only a few connections are drawn
for illustrative purposes.
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Figure 3: RBM corresponding to shortcomings in the storage case. The machine is built over a hidden layer made of
Gaussian neurons {zµ}µ=1,...,K and a visible layer made of binary neurons {σi}i=1,...,N ; in this case a neuron zµ belonging to
the hidden layer can interact with one neuron σi belonging to the visible layer and the coupling is ξµi , namely the patterns
are correctly learnt and communications between the two layers is devoid of flaws. Since the machine is restricted, intra-layer
interactions are not allowed. In the dual associative network the neurons interact pairwise (p = 2) and the synaptic weight for
the pair (σi, σj) is Jij =

∑
µ ξ

µ
i ξ
µ
j + ωξ̃µij , as reported also in Eq. 8. This structure can be straightforwardly generalized for

p > 2. In this figure, again, seeking for clarity, only a few connections are drawn for illustrative purposes.

where, again, ξ̃µij is a standard Gaussian random variable and ω is a real parameter that tunes the noise level. In the
RBM representation, this corresponds to a perfect learning, while defects emerge just in the associative network,
see Fig. 3. Notice that the coupling in (8) is linear in ω and it yields to relatively weak effects. In fact, we will show
that in a low-load regime, ω can grow “fast” with the system size, without breaking retrieval capabilities.
It is worth recalling that the problem of a HNN endowed with noisy couplings like in (8) has already been addressed
in the past (see e.g., [2,19,20,22,23]). In particular, Sompolinsky [19,20] showed that, in the high-load regime (i.e.,
K ∼ N), the strength of noise affecting couplings still preserving retrieval is of order one. More precisely, denoting

by δij a centered Gaussian variable with variance δ2 and setting Jsij =
∑
µ ξ

µ
i ξ

µ
j /N + δij/

√
N , he found that, as

δ is fine tuned, the system capacity α is lowered and it vanishes for δ ≈ 0.8. From this result, one can conclude
that the HNN is relatively robust to the presence of “moderate levels” of effective synaptic noise. These findings
are recovered in our investigations and suitably extended for p > 2. Notably, this kind of noise also includes, as a
special example, the diluted network, where a finite fraction of the connections are cut randomly, still retaining a
giant component [2,19,20,21].
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Before concluding we need a few more definitions. As aforementioned, we distinguish the tolerance with respect to
interference among patterns (slow noise), which grows with K, and with respect to errors during learning or storing
(synaptic noise), which grows with ω. More quantitatively, we set

K = Na, a ≥ 0 (9)

ω = N b, b ≥ 0, (10)

and we introduce

α(b) := max
a s.t. S

R.1

K

N
, (11)

β(a) := max
b s.t. S

R.1
ω. (12)

Finally, the Mattis magnetization, defined as

mµ :=
1

N

N∑
i=1

σiξ
µ
i , µ = 1, ...,K, (13)

is used to assess the retrieval of the µ-th pattern.

3 The p-neuron Hopfield model with synaptic noise

The p-neuron Hopfield model is described by the Hamiltonian

H(p)(σ, ξ) = − 1

p!Np−1

K∑
µ=1

∑
i1,...,ip

ξµi1 . . . ξ
µ
ip
σi1 . . . σip , (14)

where the sum runs over all possible p-tuples and self-interactions are excluded3. This kind of model provides an
example of dense AMs, which have been intensively studied in the last years (see e.g., [8,7,9,11]).

For even p, this model is thermodynamically equivalent to a RBM equipped with a hidden layer made of K
Gaussian neurons {zµ}µ=1,...,K and with a visible layer made of N binary neurons {σi}i=1,...,N , but now couplings in
the RBM are (1 + p/2)-wise and include one hidden neuron and p/2 visible neurons, say (zµ, σi1 , ..., σip/2), and the

related coupling in the p-neuron Hopfield model is ξµi1 ...ξ
µ
ip/2

. To see the equivalence between this RBM and the model

described by (14) we look at the RBM partition function and we perform the Gaussian integration to marginalize over
the hidden units as

Z
(p)
RBM(ξ) =

∑
σ

K∏
µ=1

∫
dzµ

e−
βz2µ
2

√
2π

e
βN

1−p
2 (

∏p/2
j=1

∑
ij
σij ξ

µ
ij
)zµ

=
∑
σ

K∏
µ=1

e
β′
p!N

1−p∏p
j=1

∑
ij
σij ξ

µ
ij , (15)

where the inverse temperature β has been properly rescaled into β′.
Let us start the study of this system in the presence of slow noise only and let us check stability of the configuration

ξ1, without loss of generality. By signal to noise analysis we write

h
(p)
i ξ1i = S +R(0),

where the signal term S includes the field contribution which tends to align the network configuration with the pattern
ξ1, while the noise term R(0) includes the remaining contributions, which tend to destroy the correlation of the neural

3 If one allows for self-interactions, the Hamiltonian could be exactly recast as H
(p)
self int.(σ, ξ) = −N/p!

∑K
µ=1m

p
µ; when

self-interactions are not allowed lower-order corrections with respect to N emerge.
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configuration and the first pattern; more precisely,

S =
1

p!Np−1

N∑
i2,...,ip

ξ1i ξ
1
i2 . . . ξ

1
ip .ξ

1
i ξ

1
i2 . . . ξ

1
ip ,

R(0) =
1

p!Np−1

K∑
µ=2

N∑
i2,...,ip

ξµi ξ
µ
i2
. . . ξµip .ξ

1
i ξ

1
i2 . . . ξ

1
ip .

Now, the signal term can be evaluated straightforwardly as S ∼ 1; as for the noise term, it contains a sum of,
approximately, Np−1K binary variables and, since pattern entries are uncorrelated, its mean value is zero and we can
assess its magnitude in terms of the square root of the variance, that is, for large N and exploiting the central limit
theorem,

R(0) ∼ 1

Np−1

√
KNp−1 =

√
K

Np−1 . (16)

Recalling that the condition for retrieval is R(0) . S, the highest load corresponds to K ∼ Np−1, namely

α(p) = Np−2, (17)

as previously proved in [8].

This result shows that increasing the number of interacting spins allows to arbitrary increase the tolerance versus
slow noise. It is then natural to question if an analogous robustness can be obtained versus synaptic noise too. In the
next subsections we address this question for the three sources of noise outlined in Sec. 2.

3.1 Noisy patterns

When the noise affects directly patterns constituting the dataset, using Eq. (6) we can write the product between the
local field and a pattern, according to Eq. 2, as

h
(p)
i ξ1i =

1

p!Np−1

K∑
µ

N∑
i2,...,ip(

ξµi + ωξ̃µi

)(
ξµi2 + ωξ̃µi2

)
. . .
(
ξµip + ωξ̃µi

)
ξ1i ξ

1
i2 . . . ξ

1
ip .

Splitting the sum into a signal S and a noise R term we obtain h
(p)
i ξ1i = S +R, with

S ∼ 1, R =

p∑
n=0

R(n).
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The quantity R(0) is the standard contribution due to slow noise given by Eq. (16), while R̃ =
∑p
n=1R

(n) derives from
the presence of synaptic noise. To simplify the following formulas we rename i as i1 and write this last contribution as

R̃ =
1

p!Np−1

K∑
µ

N∑
i2,...,ip

ξ1i1ξ
1
i2 . . . ξ

1
ipω

∑
(ix)

ξµi1 . . . ξ̃
µ
ix
. . . ξµip︸ ︷︷ ︸

R(1)

+

+ ω2
∑

(ix,iy)

ξµi1 . . . ξ̃
µ
ix
. . . ξ̃µiy . . . ξ

µ
ip︸ ︷︷ ︸

R(2)

+

+ ω3
∑

(ix,iy,iz)

ξµi1 . . . ξ̃
µ
ix
. . . ξ̃µiy . . . ξ̃

µ
iz
. . . ξµip︸ ︷︷ ︸

R(3)

+

...

+ ωpξ̃µi1 ξ̃
µ
i2
ξ̃µi3 . . . ξ̃

µ
ip︸ ︷︷ ︸

R(p)

 ,

where
∑

(ia1 ...ian )
denotes the sum over all possible permutations of n indices chosen from i1 . . . ip. Using the central

limit theorem (as explained in details for p = 4 in the Appendix A) we obtain that

R(n) ∼ ωn

Np−1

[
Np−n

(
N1/2

)n−1
+Np−(n−1)

(
N1/2

)n
+
√
KNp−1

]
.

Then, at leading order, it holds

R̃ ∼ 1

Np−1

[(
p∑

n=1

ωnNp−n
(
N1/2

)n−1)
+ ωp

√
KNp−1

]
.

Therefore, overall, the noise R = R(0) + R̃ scales as

R ∼

[
p∑

n=1

ωnN1−n
(
N1/2

)n−1]
+ ωp

√
K

Np−1 .

Recalling that S ∼ 1, we conclude that retrieval is possible provided that ω ∼ 1, independently of the number K of
stored patterns (up to K ∼ Np−1). This implies that a diverging synaptic noise (i.e., ω ∼ O(N b), b > 0) can not be
handled by the system even if the number p of spins interacting and, accordingly, the number of links, is arbitrarily
increased.

This result is checked numerically as shown in Fig. 4. In particular, we notice that, as long as ω remains finite
(or vanishing) while the size N is increased, i.e., as long as b ≤ 0, the Mattis magnetization corresponding to the
input pattern is non null and the system can retrieve. The transition between a retrieval and a non-retrieval regime
is sharper when the network size is larger. In Fig. 5 we focus on p = 2 and we set the ratio K/N < α(b = 0) ≈ 0.14,
while we perform a fine tuning by varying ω ∈ [0, 3]. As expected, even small values of ω are sufficient to break down
retrieval capabilities.

3.2 Noisy learning

Let us now consider the AM corresponding to imperfect learning as depicted in Fig. 2. This equals to say that the
noise affects the (p/2 + 1)-component tensor

ηµi1...ip/2 = ξµi1 . . . ξ
µ
ip/2

+ ωξ̃µi1...ip/2 ,
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Figure 4: Numerical simulations for the p-neuron Hopfield model endowed with noisy patterns (p > 2). We
simulated the evolution of a p-neuron Hopfield model, with p = 3 (4), p = 4 (�), and p = 5 (?), under the dynamics (1) and

using as starting state σ = ξµ, finally collecting the Mattis magnetization m
(µ)
µ (where the superscript highlights the initial

state; we also check that m
(µ)
ν ≈ 0 for ν 6= µ). Here we set K = N and ω = Nb, where b is varied in [−0.5, 0.5], and we plot

the mean magnetization 〈m〉 versus b; the mean magnetization 〈m〉 is obtained by averaging m
(µ)
µ with respect to µ and over

M = 10 realizations of the patterns η, as defined in (6), the standard deviation is represented by the errorbar. Three different
sizes are considered N = 20, N = 40, N = 80, as explained by the legend. The vertical dashed line is set at b = 0 and highlights
the threshold for retrieval, as stated in the main text.
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Figure 5: Numerical simulations for the Hopfield model with pairwise couplings (p = 2) endowed with noisy
patterns. We run numerical simulation as explained in the caption of Fig. 4 but setting p = 2 and varying ω linearly in [0, 3].
We compare two loads: K/N = 0.125 (×) and K/N = 0.04 (+). Notice that, in both cases, even small values of ω yield to a
breakdown of retrieval.

in such a way that the coupling between neurons is

Ji1,...,ip =
∑
µ

(ξµi1 . . . ξ
µ
ip/2

+ ωξ̃µi1...ip/2)

× (ξµi1+p/2 . . . ξ
µ
ip

+ ωξ̃µi1+p/2...ip) (18)

Notice that this picture is possible only for even p and constitutes a generalization of the system studied in [12]. The
product between the local field and the pattern ξ1 candidate for retrieval reads

ξ1i hi =
1

p!Np−1

K∑
µ

N∑
i2,...,ip

(
ξµi1 . . . ξ

µ
ip/2

+ ωξ̃µi1...ip/2

)
(
ξµip/2+1

. . . ξµip + ωξ̃µip/2+1...ip

)
ξ1i ξ

1
i2 . . . ξ

1
ip .

Again, we can split this quantity into a signal S and a noise R =
∑2
n=0R

(n) term, the signal and the zeroth order of
noise are, as already shown,

S ∼ 1, R(0) ∼
√

K

Np−1 .
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The first order contribution is

R(1) =
ω

p!Np−1

K∑
µ=1

N∑
i2,...,ip

(
ξµi1 . . . ξ

µ
ip/2

ξ̃µip/2+1...ip
+

ξµip/2+1
. . . ξµip ξ̃

µ
i1...ip/2

)
ξ1i ξ

1
i2 . . . ξ

1
ip ,

and, in the limit of large network size (for more details we refer to Appendix A were calculations for p = 4 are
reported),

R(1) ∼ ω

Np−1

[
Np/2

(
N1/2

)p/2−1
+Np/2−1

(
N1/2

)p/2
+
√
KNp−1

]
.

Similarly, the second order contribution is of the form

R(2) =
ω2

p!Np−1

K∑
µ=1

N∑
i2,...,ip

ξ̃µi1...ip/2 ξ̃
µ
ip/2+1...ip

ξ1i ξ
1
i2 . . . ξ

1
ip ∼

∼ ω2

Np−1

√
KNp−1.

We then deduce that the noise R scales as

R ∼ 1

Np−1

{
ω

[
Np/2

(
N1/2

)p/2−1
+Np/2−1

(
N1/2

)p/2]
+

+
√
KNp−1

(
1 + ω + ω2

)}
,

and therefore, neglecting subleading contributions, we can write

R ∼ ωN1/2−p/4 + ω2
√
KN1/2−p/2.

Setting K ∼ Na and ω ∼ N b the condition for retrieval reads

N1/2−p/4+b +N (1−p+a)/2+2b . 1.

By comparing the scaling of the two terms in the r.h.s. of the previous equation we see that the former diverges with
N if b > p/4 − 1/2, while the latter diverges if b > p/4 − (1 + a)/4. This implies that when a ≤ 1 the first term
dominates the signal-to-noise analysis and the extremal condition for retrieval reads b = (p − 2)/4. Therefore, the
tolerance versus synaptic noise is

βp(a) ∼ Np/4−1/2 for a ≤ 1.

Conversely, if a > 1, the second term prevails and consequently the extremal condition for retrieval becomes b =
(p− 1− a)/4, and the tolerance is

βp(a) ∼ Np/4−(1+a)/4 for 1 < a < p− 1.

Note that in this case the tolerance depends on a, that is, on the network load. This shows that storing and tolerance
are intimately tangled: the larger the load and the smaller the synaptic noise that can be handled. In particular, at
low load, so for a = 1, the tolerance reads

βp(1) ∼ Np/4−1/2, (19)

as corroborated numerically in Fig. 6. For p = 2 this kind of noise reduces to the case discussed in Subsec. 3.1 and
consistenly we get β2(1) ∼ 1.
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Figure 6: Numerical simulations for the p-neuron Hopfield affected by noisy learning (p > 2). We simulated the
evolution of a p-neuron Hopfield model, with p = 4 (�) and p = 6 (∗), under the dynamics (1) and using as starting state

σ = ξµ, finally collecting the Mattis magnetizations m
(µ)
µ (where the superscript highlights the initial state; we also check that

m
(µ)
ν for ν 6= µ). Here we set K = N and ω = Nb, where b is varied in, respectively, [0, 1] and in [0, 2], and we plot the mean

magnetization 〈m〉 versus b; the mean magnetization 〈m〉 is obtained by averaging m
(µ)
µ with respect to µ and over M = 10

realizations of the patterns η, as defined in (6), the standard deviation is rapresented by the errorbar. Three different sizes are
considered N = 20, N = 40, N = 80, as explained by the legend. The dashed and dotted vertical lines are set at b = 0.5 and
b = 1.0, which represent the thresholds for retrieival for, respectively, p = 4 and p = 6, according to (19).

3.3 Noisy storing

Finally, we consider noise acting directly on couplings,

Jµi1...ip =
∑
µ

ηµi1...ip , (20)

where ηµi1...ip is the (p+ 1)-component tensor

ηµi1...ip = ξµi1 . . . ξ
µ
ip

+ ωξ̃µi1...ip .

Still following the prescription coded by Eq. 2, the product between the local field hi and ξ1i is

hiξ
1
i =

1

p!Np−1

K∑
µ=1

N∑
i2...ip

(
ξµi1 . . . ξ

µ
ip

+ ωξ̃µi1...ip

)
ξ1i1 . . . ξ

1
ip

The signal scales as S ∼ 1, while the noise is composed on solely two contributions: zeroth and first order. We have
already computed the former

R(0) ∼
√

K

Np−1 ,

and, as for the latter, it holds

R(1) =
ω

p!Np−1

K∑
µ=1

N∑
i2...ip

ξ̃µi1...ipξ
1
i1 . . . ξ

1
ip ∼ ω

√
K

Np−1 .

Therefore,

R = R(0) +R(1) ∼
√

K

Np−1 (1 + ω) ∼ ω
√

K

Np−1 .

Setting, as before, K ∼ Na and ω ∼ N b the condition for retrieval becomes

N (a−p+1)/2+b ∼ 1→ b =
p− 1− a

2
.

This implies that the tolerance versus synaptic noise is

βp(a) ∼ N (p−1−a)/2 for a ≤ p− 1. (21)
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Figure 7: Numerical simulations for the p-neuron Hopfield affected by noisy storing (p > 2). We simulated the
evolution of a p-neuron Hopfield model, with p = 3 (4), p = 4 (�), and p = 5 (?), under the dynamics (1) and using as starting

state σ = ξµ, finally collecting the Mattis magnetizations m
(µ)
µ (where the subscript highlights the initial state; we also check

that m
(µ)
ν = 0 for ν 6= µ). Here we set K = N and ω = Nb, where b is varied in [0, 2], and we plot the mean magnetization

〈m〉 versus b; the mean magnetization 〈m〉 is obtained by averaging m
(µ)
µ with respect to µ and over M = 10 realizations of

the couplings J , as defined in (8), the standard deviation is represented by the errorbar. Three different sizes are considered
N = 20, N = 40, N = 80, as explained by the legend.

This is succesfully checked numerically in Fig. 7. The particular case p = 2 is considered in Fig. 8. Again, as pointed
out in the previous section, tolerance versus synaptic noise and load are intrinsically related and, for a given amount
of resources, cannot be simultaneously enhanced: an increase of the latter results in a decrease of the former.

A similar problem, for the p = 2 Hopfield model, has been studied by Sompolinsky [20,19]. In particular the
following couplings have been considered

Jsij =

(
1

N

K∑
µ=1

ξµi ξ
µ
j

)
+

δij√
N︸︷︷︸
J̃sij

.

Here δij are Gaussian variables with null mean and variance δ2, while J̃sij represents the correction to Hebbian couplings
due to noise. Focusing on the high load regime, that is K ∼ N , retrieval was found to be possible provided that δ . 0.8.
We can easily map noise defined by Eq. (8) into this notation, indeed

Jij =
1

N

K∑
µ=1

(
ξµi ξ

µ
j + ωξ̃µij

)
=

1

N

K∑
µ=1

ξµi ξ
µ
j +

ω

N

K∑
µ=1

ξ̃µij︸ ︷︷ ︸
J̃ij

.

As a consequence, in our framework the noisy contribution to couplings reads

J̃ij =
ω

N

K∑
µ=1

ξ̃µij =
ωij
√
K

N
,

where ωij are Gaussian variables with null mean and variance ω2. Considering the high load regime we then obtain

J̃ij ∼
ωij
√
N

N
=

ωij√
N
.

This shows that ωij is the counterpart of δij and, therefore, that ω plays the same role of δ. Recalling Eq. (21) and
setting p = 2 and a = 1 we conclude that retrieval is possible provided that ω . 1. This result is in perfect agreement
with Sompolinsky’s bound δ . 0.8 and also with the simulations we run.

4 Conclusions

In this work we considered dense AMs and we investigated the role of density in preventing retrieval break-down
due to noise. In particular, we allow for noise stemming from pattern interference (i.e., slow noise) and for noise
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Figure 8: Numerical simulations for the Hopfield model with pairwise couplings (p = 2) endowed with noisy
couplings. We run numerical simulation as explained in the caption of Fig. 7 but setting p = 2 and varying ω linearly in [0, 5].
We compare two loads: K/N = 0.125 (×) and K/N = 0.04 (+). Notice that, in both case, as ω is relatively large the retrieval
is lost.

stemming from uncertainties during learning or storing (i.e., synaptic noise), while fast noise is neglected. Synaptic
noise ultimately affects the synaptic couplings among neurons making up the network and we envisage different ways
to model it, mimicking different physical situations. In fact, since couplings encode for the pieces of information
previously learned, we can account for the following scenarios: i. information during learning is provided corrupted, ii.
information is supplied correctly but is imperfectly learned, iii. information is well supplied and learned but storing
is not accurate. These cases are discussed leveraging on the duality between AM and RBMs [9,13,14,15,16,17].
Investigations were led analytically (via signal-to-noise approach) and numerically (via Monte Carlo simulations)
finding that, according to the way synaptic noise is implemented, effects on retrieval can vary qualitatively. As long
as the dataset is provided correctly during learning, synaptic noise can be annihilated by increasing redundancy (i.e.,
by letting neurons interact in relatively large cliques or work in a low-load regime); this would “protect” information
content of the patterns much as like done in the error-correcting codes. On the other hand, if, during learning, the
machine was presented to corrupted pieces of information, it will learn noise as well and the correct information can
be retrieved only if the original corruption is non diverging, no matter how redundant the network is.
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A The 4-neuron Hopfield model

In this appendix we set p = 4 and we go through signal-to-noise calculations in detail.
The 4-neuron Hopfield model is described by the Hamiltonian

H(4)(σ) = − 1

4!N3

K∑
µ=1

N∑
i,j,k,l

ξµi ξ
µ
j ξ

µ
k ξ

µ
l σiσjσkσl. (22)

where the sum is meant without self-interaction. Let us start the study of this system in presence of slow noise only
and let us check stability of the configuration ξ1, without loss of generality. By signal to noise analysis we write

hiξ
1
i = S +R(0),

with

S =
1

N3

∑
j,k,l

ξ1i ξ
1
j ξ

1
kξ

1
l ξ

1
i ξ

1
j ξ

1
kξ

1
l ∼ 1,

R(0) =
1

N3

K∑
µ=2

N∑
jkl

ξµi ξ
µ
j ξ

µ
k ξ

µ
l ξ

1
i ξ

1
kξ

1
l ∼
√
KN3

N3
=

√
K

N3
,
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where asymptotic expressions are obtained exploiting the central limit theorem. Recalling that the condition for
retrieval is R(0) . S, the highest load corresponds to K ∼ N3, namely

α(4) = N2. (23)

A.1 Noisy patterns

We now turn to the case in which the network is affected by pattern noise. We begin considering a situation in which
the noise arises directly from patterns, in particular we suppose that the network stores the following vectors

ηµi = ξµi + ωξ̃µi , (24)

where ξµi are the patterns we would like to memorize, while ξ̃µi are i.i.d. Gaussian variables with null mean and unitary
variance. In order to study the stability of ξ1i we consider the local field acting on it

hiξ
1
i =

1

N3

K∑
µ=1

N∑
j,k,l

(
ξµi + ωξ̃µi

)(
ξµj + ωξ̃µj

)
(
ξµk + ωξ̃µk

)(
ξµl + ωξ̃µl

)
ξ1i ξ

1
j ξ

1
kξ

1
l .

We split this sum in signal S ad noise R =
∑4
i=0R

(i). The signal and the zeroth order of noise are straightforward

S ∼ 1,

R(0) ∼
√

K

N3
.

The first order is

R(1) =
ω

N3

K∑
µ=1

N∑
j,k,l

ξ1i ξ
1
j ξ

1
kξ

1
l

(
ξ̃µi ξ

µ
j ξ

µ
k ξ

µ
l + ξµi ξ̃

µ
j ξ

µ
k ξ

µ
l

ξµi ξ
µ
j ξ̃

µ
k ξ

µ
l + ξ̃µi ξ

µ
j ξ

µ
k ξ

µ
l

)
.

That is

R(1) =
ω

2N3

K∑
µ=1

N∑
j,k,l

ξ1i ξ
1
j ξ

1
kξ

1
l

ξ̃µi ξµj ξµk ξµl︸ ︷︷ ︸
(a)

+3 ξµi ξ̃
µ
j ξ

µ
k ξ

µ
l︸ ︷︷ ︸

(b)

.
Let us study the two terms separately

(a) =
ω

N3

N∑
j,k,l

ξ1i ξ
1
j ξ

1
kξ

1
l ξ̃

1
i ξ

1
j ξ

1
kξ

1
l +

+
ω

N3

K∑
µ=2

N∑
j,k,l

ξ1i ξ
1
j ξ

1
kξ

1
l ξ̃
µ
i ξ

µ
j ξ

µ
k ξ

µ
l =

=
ω

N3

 N∑
j,k,l

ξ1i ξ̃
1
i +

K∑
µ=2

N∑
j,k,l

ξ1i ξ
1
j ξ

1
kξ

1
l ξ̃
µ
i ξ

µ
j ξ

µ
k ξ

µ
l

,
it then follows

(a) ∼ ω

(
1 +

√
K

N3

)
.
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For what concerns the other term

(b) =
ω

N3

N∑
j,k,l

ξ1i ξ
1
j ξ

1
kξ

1
l ξ

1
i ξ̃

1
j ξ

1
kξ

1
l +

+
ω

N3

K∑
µ=2

N∑
j,k,l

ξ1i ξ
1
j ξ

1
kξ

1
l ξ
µ
i ξ̃

µ
j ξ

µ
k ξ

µ
l =

=
ω

N3

 N∑
j,k,l

ξ1j ξ̃
1
j +

K∑
µ=2

N∑
j,k,l

ξ1i ξ
1
j ξ

1
kξ

1
l ξ
µ
i ξ̃

µ
j ξ

µ
k ξ

µ
l

,
therefore

(b) ∼ ω

(
1√
N

+

√
K

N3

)
.

Combining the two terms we get

R(1) = (a) + 3(b) ∼ ω

(
1 +

1√
N

+

√
K

N3

)
.

We can now turn to the second order of pattern noise, proceeding as before it is easy to show that

R(2) =
ω2

N3

K∑
µ=1

N∑
j,k,l

ξ1i ξ
1
j ξ

1
kξ

1
l

3 ξ̃µi ξ̃
µ
j ξ

µ
k ξ

µ
l︸ ︷︷ ︸

(a)

+3 ξµi ξ̃
µ
j ξ̃

µ
k ξ

µ
l︸ ︷︷ ︸

(b)

.
The first term is

(a) =
ω2

N3

N∑
j,k,l

ξ1i ξ
1
j ξ

1
kξ

1
l ξ̃

1
i ξ̃

1
j ξ

1
kξ

1
l +

+
ω2

N3

K∑
µ=2

N∑
j,k,l

ξ1i ξ
1
j ξ

1
kξ

1
l ξ̃
µ
i ξ̃

µ
j ξ

µ
k ξ

µ
l =

=
ω2

N3

 N∑
j,k,l

ξ1i ξ̃
1
i ξ

1
j ξ̃

1
j +

K∑
µ=2

N∑
j,k,l

ξ1i ξ
1
j ξ

1
kξ

1
l ξ̃
µ
i ξ̃

µ
j ξ

µ
k ξ

µ
l

.
Consequently

(a) ∼ ω2

(
1√
N

+

√
K

N3

)
.

Analogously

(b) =
ω2

N3

N∑
j,k,l

ξ1i ξ
1
j ξ

1
kξ

1
l ξ

1
i ξ̃

1
j ξ̃

1
kξ

1
l +

+
ω2

N3

K∑
µ=2

N∑
j,k,l

ξ1i ξ
1
j ξ

1
kξ

1
l ξ
µ
i ξ̃

µ
j ξ̃

µ
k ξ

µ
l =

=
ω2

N3

 N∑
j,k,l

ξ1k ξ̃
1
kξ

1
j ξ̃

1
j +

K∑
µ=2

N∑
j,k,l

ξ1i ξ
1
j ξ

1
kξ

1
l ξ
µ
i ξ̃

µ
j ξ̃

µ
k ξ

µ
l

.
That is

(b) ∼ ω2

(
1

N
+

√
K

N3

)
.
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We then obtain

R(2) = 3(a) + 3(b) ∼ ω2

(
1√
N

+
1

N
+

√
K

N3

)
.

The third order of noise is of the form

R(3) =
ω3

N3

K∑
µ=1

N∑
j,k,l

ξ1i ξ
1
j ξ

1
kξ

1
l

3 ξ̃µi ξ̃
µ
j ξ̃

µ
k ξ

µ
l︸ ︷︷ ︸

(a)

+ ξµi ξ̃
µ
j ξ̃

µ
k ξ̃

µ
l︸ ︷︷ ︸

(b)

,
where the two terms scale as

(a) ∼ ω3

(
1

N
+

√
K

N3

)
,

(b) ∼ ω3

(√
1

N3
+

√
K

N3

)
∼
√

K

N3
.

Therefore

R(3) = 3(a) + (b) ∼ ω3

(
1

N
+

√
K

N3

)
.

Finally the fourth order is

R(4) =
ω4

N3

K∑
µ=1

N∑
j,k,l

ξ1i ξ
1
j ξ

1
kξ

1
l ξ̃
µ
i ξ̃

µ
j ξ̃

µ
k ξ̃

µ
l ,

whose scaling is simply

R(4) ∼ ω4

√
K

N3
.

Combining the four contribution we obtain the following scaling for the noise

R =

4∑
i=0

R(i) ∼ω
(

1 +
1√
N

)
+ ω2

(
1√
N

+
1

N

)
+

+ ω3 1

N
+

√
K

N3

(
1 + ω + ω2 + ω3 + ω4

)
.

Recalling that S ∼ 1 we deduce that the network can tolerate, at most, ω ∼ 1. In other words the tolerance versus
pattern noise satisfies

β(a) ∼ 1 for a ≤ 3.

A.2 Noisy learning

At second level we can consider the following form of synaptic noise

ηµij = ξµi ξ
µ
j + ωξ̃µij . (25)

The local field is defined as

hi =
1

N3

K∑
µ=1

N∑
j,k,l

ηµijη
µ
klσjσkσl,

where, even if not specified, the sum does not contain self-interaction among spins. In these terms the Hamiltonian is

H = −
N∑
i

hiσi.
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We want to study the stability of pattern ξ1i . Recalling that ηµij = ξµi ξ
µ
j + ωξ̃µij we get

hiξ
1
i =

1

N3

K∑
µ=1

N∑
j,k,l

ηµijη
µ
klξ

1
i ξ

1
j ξ

1
kξ

1
l

=
1

N3

K∑
µ=1

N∑
j,k,l

(
ξµi ξ

µ
j + ωξ̃µij

)(
ξµk ξ

µ
l + ωξ̃µkl

)
ξ1i ξ

1
j ξ

1
kξ

1
l ,

that is

hiξ
1
i =

1

N3

K∑
µ=1

N∑
j,k,l

ξ1i ξ
1
j ξ

1
kξ

1
l

(
ξµi ξ

µ
j ξ

µ
k ξ

µ
l + ωξµi ξ

µ
j ξ̃

µ
kl+

+ωξµk ξ
µ
l ξ̃

µ
ij + ω2ξ̃µij ξ̃

µ
kl

)
.

We can split this sum into a signal S and a noise R = R(0) +R(1) +R(2). The signal is

S =
1

2N3

N∑
j,k,l

ξ1i ξ
1
j ξ

1
kξ

1
l ξ

1
i ξ

1
j ξ

1
kξ

1
l ∼ 1.

The contribution to noise due to interference among patterns R(0) is

R(0) =
1

N3

k∑
µ=2

N∑
j,k,l

ξ1i ξ
1
j ξ

1
kξ

1
l ξ
µ
i ξ

µ
j ξ

µ
k ξ

µ
l ∼

√
N3K

N3
∼
√

K

N3
.

As expected, in absence of pattern noise, the network can store up to N3 vector patterns. At first order synaptic noise
contributes with R(1), whose expression is

R(1) =
ω

N3

K∑
µ=1

N∑
j,k,l

ξ1i ξ
1
j ξ

1
kξ

1
l

(
ξµi ξ

µ
j ξ̃

µ
kl + ξµk ξ

µ
l ξ̃

µ
ij

)
.

Distinguishing between µ = 1 and µ > 2 we get

R(1) =
ω

N3

N∑
j,k,l

ξ1i ξ
1
j ξ

1
kξ

1
l

(
ξ1i ξ

1
j ξ̃

1
kl + ξ1kξ

1
l ξ̃

1
ij

)
+

+
ω

N3

K∑
µ>2

N∑
j,k,l

ξ1i ξ
1
j ξ

1
kξ

1
l

(
ξµi ξ

µ
j ξ̃

µ
kl + ξµk ξ

µ
l ξ̃

µ
ij

)
=

=
ω

N3

N∑
j,k,l

(
ξ1kξ

1
l ξ̃

1
kl + ξ1i ξ

1
j ξ̃

1
ij

)
+

+
ω

N3

K∑
µ>2

N∑
j,k,l

ξ1i ξ
1
j ξ

1
kξ

1
l

(
ξµi ξ

µ
j ξ̃

µ
kl + ξµk ξ

µ
l ξ̃

µ
ij

)
.

We then obtain

R(1) ∼ ω

N3

(
N
√
N2 +N2

√
N +

√
KN3

)
∼ ω

(
1

N
+

1√
N

+

√
K

N3

)
.

Finally the second order of the pattern noise R(2) is

R(2) =
ω2

N3

K∑
µ

N∑
j,k,l

ξ1i ξ
1
j ξ

1
kξ

1
l ξ̃
µ
ij ξ̃

µ
kl ∼ ω

2

√
K

N3
.
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In conclusion the noise can be written as

R ∼ R(0) +R(1) +R(2) ∼

∼
√

K

N3

(
1 + ω + ω2

)
+ ω

(
1

N
+

1√
N

)
.

We set K ∼ Na and ω ∼ N b, in this way we obtain, at leading order

R ∼
√

K

N3
ω2 +

ω√
N
∼ N (a−3)/2+2b +N b−1/2.

Recalling that retrieval is possible provided that R . S ∼ 1 we see that there are two different regimes: if a ≤ 1 noise
is dominated by the second term and the extremal condition for retrieval reads

N b−1/2 ∼ 1→ b =
1

2
,

therefore the tolerance versus pattern noise is

β(a) ∼ N1/2 for a ≤ 1;

if a > 1, increasing the load reduces the tolerance versus pattern noise, indeed we obtain

N (a−3)/2+2b ∼ 1→ b =
3

4
− a

4
,

and then it follows
β(a) ∼ N (3−a)/4 for 1 < a < 3.

A.3 Noisy storing

Finally the less challenging noise is the one applied on 4-tensors or, analogously, on the couplings. This is of the form

ηµijkl = ξµi ξ
µ
j ξ

µ
k ξ

µ
l + ωξ̃µijkl. (26)

Again we consider the product between the local field hi and ξ1i

hiξ
1
i =

1

2N3

K∑
µ=1

N∑
j,k,l

(
ξµi ξ

µ
j ξ

µ
k ξ

µ
l + ωξ̃µijkl

)
ξ1i ξ

1
j ξ

1
kξ

1
l .

The signal, as already shown, scales as S ∼ 1, while the noise is composed of two contributions: zeroth and first order.
We have already computed the former

R(0) ∼
√

K

N3
∼
√

K

N3
.

For what concerns the first order it holds

R(1) =
ω

2N3

K∑
µ=1

N∑
j,k,l

ξ̃µijklξ
1
i ξ

1
j ξ

1
kξ

1
l ∼ ω

√
K

N3
.

Therefore

R = R(0) +R(1) ∼
√

K

N3
(1 + ω) ∼ ω

√
K

N3
.

Setting, as before, K ∼ Na and ω ∼ N b the condition for retrieval becomes

N (a−3)/2+b ∼ 1→ b =
3− a

2
,

which implies that the tolerance versus pattern noise is

β(a) ∼ N (3−a)/2 for a ≤ 3.
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