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Abstract: Children’s development and health may be affected by toxic heavy metal exposure or
suboptimal essential element intake. This study aimed to provide updated information regarding
the concentrations of 41 elements in children’s hair (aged under 18) living in a rural area of the
Benishangul-Gumuz region, Ethiopia. The highest average levels (as a geometric mean) for toxic
heavy metals were obtained for Al (1 mg kg−1), Pb (3.1 mg kg−1), and Ni (1.2 mg kg−1), while
the lowest concentrations among the essential elements were found for Co (0.32 mg kg−1), Mo
(0.07 mg kg−1), Se (0.19 mg kg−1), and V (0.8 mg kg−1). Hair analysis was combined with a survey
to evaluate relationships and variations among subgroups and potential metal exposure predictors.
Females showed significantly higher concentrations for most hair elements, excluding Zn, than males,
and the 6–11 years age group reported the highest levels for Be, Ce, Co, Fe, La, Li, Mo, and Na. The
main predictors of exposure to toxic elements were fish consumption for Hg and drinking water for
Ba, Be, Cs, Li, Ni, Tl, and U. The data from this study can be used to develop prevention strategies for
children’s health and protection in developing countries.
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1. Introduction

Elements present in the environment can come from natural (such as volcanic activity and
forest fires) or anthropogenic (such as industrial, agricultural, and domestic) sources [1–5]. Factors
that influence human exposure and, consequently, the presence of possible toxic effects are mainly
dietary habits (i.e., fish, meat, cereals, vegetables, and water consumption) and outdoor and indoor
air quality [6–13]. In particular, toxic heavy metals have no dietary value in humans [12,13]. More
specifically, As, Hg, Pb, and Cd have been classified as the most dangerous elements affecting health [14].
As and Cd are classified as carcinogens (Group I), and Pb is ranked as a probable carcinogen (Group
IIA) in humans by the International Agency for Research in Cancer (IARC) [15]. Instead, Hg, in organic
[as methylmercury (MeHg)] or inorganic form, is classified by the IARC as a probable carcinogen in
humans (Group IIB) or not classifiable as carcinogenic (Group III), respectively [15]. Instead, essential
elements (such as Ca, Co, Cu, Fe, K, Mg, Mn, Mo, Na, P, Se, V, and Zn) are fundamental for the growth
and health of children and perform several important functions in the human body, including bone
formation, regulation of body fluids, and participation in the vital processes of cells [16,17]. However,
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these elements can also become harmful to human health if taken in excess from food or abnormal
exposure [7,18,19]. Children exposed to environmental contaminants are more susceptible than adults,
mainly due to their immature organs and differences in exposure [20,21]. Nutritional aspects (children
eat more food and drink more water per unit of body weight than adults), rapid growth, active time
spent outdoors, and specific behaviors (such as the tendency to place items in their mouths and
contact with the ground) increase the risk of exposure in children [22]. In this regard, it is important to
underline that exposure to low doses of trace metals can cause neurobehavioral and cognitive changes
in children, even below concentrations considered safe for most people [23]. Human biomonitoring
studies allow us to evaluate human exposure to elements through the measurement of chemicals
in body fluids and tissues, such as blood [24–27], plasma [28,29], serum [30,31], breast milk [32,33],
urine [34,35], saliva [36], lung fluids [37,38], nails [27,39], and also hair [40–44]. The latter has several
advantages over other biological matrices. Among these, the first concerns the hair’s ability to bind
various elements due to thiolic groups’ presence in their structure [45]. Elements can be accumulated
in the hair at higher concentrations and for longer than other biomarker media such as urine and
blood [46–51]. Hair grows at a rate of ~1 cm/month; therefore, the chronological exposure to elements
can be traced from the segmental hair analysis over a defined period (at least 180 days) depending
on the selected hair length [52]. The hair’s ability to sequentially accumulate chemicals in its inner
structure, together with the opportunity to conduct retrospective analyses, means that hair analysis
can be used for screening and confirmation purposes in various application contexts, such as forensic
and clinical [53]. Another advantage when using hair compared to other biological matrices is that the
sampling is painless and non-invasive and does not require experienced personnel [46,47]. Finally,
the hair samples can be transported and stored at room temperature, and small specimen sizes are
required for analysis [41,46,47]. Despite these advantages, hair analysis presents a few limitations,
such as a lack of reference concentration ranges or difficulties in interpreting the results due to the
presence of potential confounding factors like gender, age, hair color, dietary habits, living site, and
lifestyle [54,55]. Hair results are a useful screening tool for exposure assessment, investigation of the
development and state of nutrition, and possible pathological processes [55–57]. Furthermore, total
Hg in hair can be used to assess exposure to MeHg because more than 80% of the total Hg analyzed in
hair is present in organic form as MeHg [47,58,59].

This study aimed to assess the levels of essential and toxic heavy metals in the hair of children
living in the Benishangul-Gumuz region, a Developing Regional State of North-Western Ethiopia. The
influence of several factors in the variability of element concentrations in children’s hair (age, sex,
body mass index, passive smoking, and eating habits) was also studied. To our knowledge, this is the
first study in which essential and toxic elements are determined in the hair of Ethiopian children. We
compared our results with other biomonitoring studies on children in the literature and studied the
main predictors of exposure.

2. Materials and Methods

2.1. Design and Study Population

A cross-sectional study was conducted between November and December 2019 in Bameza, a rural
area of the Benishangul-Gumuz region along the Blue Nile river in north-western Ethiopia (Africa)
(Figure 1). Bameza is approximately 150 km from Benishangul-Gumuz’s capital, Asosa, and 500 km
from Ethiopia’s capital, Addis Ababa. The study area landscape is undulating and covered by a
thick savannah and forest (Supplementary Materials Figure S1). Due to a lack of communications
infrastructure and transportation, the possibilities to travel within the Benishangul-Gumuz region are
often scarce [60], and access to food and health services is inadequate [61]. Moreover, inadequate access
to safe drinking water (mainly for microbiological quality), poor sanitation, low educational level,
widespread poverty, and the highest risk of under-five mortality characterize the Benishangul-Gumuz
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region [62–67]. Improperly protected water collection and storage containers contribute to low drinking
water quality [62].Int. J. Environ. Res. Public Health 2020, 17, x 3 of 22 
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north-western Ethiopia, Africa).

The hair samples (n = 81) were taken from children aged under 18 (40 boys, 49.4%; 41 girls, 50.6%)
whose hair had not been colored or treated. The study population’s characteristics were collected using
individual anonymous questionnaires with specific information on age, gender, weight, height, passive
smoking, and dietary habits (water, meat, fish, vegetables, fruit, legumes, cereals consumption). The
variables studied are shown in Table 1. Food consumption frequency by food groups was converted
into quantitative intakes (g month−1 or mL month−1), according to other authors [57,58,68]. Monthly
intake of individual foods was estimated according to the following formula:

FI = W or V × IFr (1)

where FI is the food intake (g month−1 or mL month−1), W = weight (g) or V = volume (mL) of the
portion size, and IFr = intake frequency (number of portions) per month.

This research was a non-interventional/observational study based on the definitions of the
European Directive 2001/20/EC for which the approval of an Ethics Committee was not requested [69];
it was conducted according to the Helsinki Declaration (1964) and its later amendments and followed
the International Code of Ethics for Occupational Health Professionals [70]. Collected information was
used on aggregate health data of the children, with no possibility of individual identification. Before
collecting the questionnaire information and the children’s hair samples, all parents were informed
about the study’s aim and gave their consent. Children’s hair sampling was performed at least with
the presence of one of the parents.
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Table 1. Characteristics of the studied population and food consumption.

Variable a N b N% c Median (min–max)

Studied population characteristics 81 - -

Gender 81 100 -
Male 40 49.4 -

Female 41 50.6 -
Height (cm) 79 97.5 127 (60–181)
Weight (kg) 80 98.8 22 (4–60)

Body mass index (kg m−2) 79 97.5 15.0 (9.5–26)
Underweight (<18.5) 71 87.7 -

Normal weight (18.5–24.9) 7 8.6 -
Overweight/obesity (>25) 1 1.2 -

Age (years) 81 100 9 (4 months–18 years)
< 5 years 24 29.6 -

6–11 years 33 40.8 -
12–18 years 24 29.6 -

Passive smoking 77 95.1 -
Yes 14 17.3 -
No 63 77.8 -

Food consumption (g month−1 or mL month−1)

Water or breast milk 81 100
Bottled and/or treated water of the Blue Nile river 40 49.4 28,000 (14,000–84,000)

The water of the Blue Nile river 33 40.7 28,000 (14,000–56,000)
Breast milk 8 9.9 30,800 (28,000–42,000)

Meat (bovine, goat, chicken) 80 98.8 -
Yes 68 84.0 800 (100–2000)
No 12 14.8 -

Fish 80 98.8 -
Yes 47 58.0 800 (400–2000)
No 33 40.7 -

Fish (caught in the Blue Nile river) 43 53.1 400 (400–2000)
Canned (tuna, salmon) and caught fish in the Blue Nile river 4 4.9 600 (400–800)

Cereals (wheat, rice, oats, teff) 67 82.7 -
Yes 61 75.3 4480 (1120–4480)
No 6 7.4

Vegetables and fruit (orange, banana, mango, papaya) 80 98.8 -
Yes 63 77.8 1200 (100–4800)
No 17 21

a N = data number. b N% = data number percentage. c Median (min–max) = median (minimum–maximum range).

2.2. Sample Collection

To avoid external contamination, hair samples (~0.05 g; ~1 cm long) were collected from the nape
using stainless steel scissors and disposable vinyl gloves, as previously described [71,72]. Then, hair
samples were stored in polyethylene bags until analysis at room temperature.

We also measured elements in the following drinking water: the Blue Nile river and the Blue Nile
river’s treated water. The water samples were collected at the same time as the hair samples in plastic
urine collection cups, which were stored at −20 ◦C until analysis.

2.3. Chemical Analysis

2.3.1. Hair Samples

Forty-one elements were analyzed, including essential of Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na,
P, Se, V, and Zn, and potentially toxic of Al, As, B, Ba, Be, Cd, Cs, Hg, Li, Ni, Pb, Sb, Sn, Tl, and U (see
Table 1). Chemical analysis was performed in the Chemistry Laboratory of Sapienza University of
Rome (Italy). Except for Hg, element concentrations in the hair were evaluated using an inductively
coupled plasma mass spectrometer (ICP-MS; 820-MS Bruker, Bremen, Germany) equipped with a
collision-reaction interface (CRI) and glass nebulizer (0.4 mL min−1). The data were collected according
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to a previously reported method [71]. Mercury was analyzed using a cold vapor generation atomic
fluorescence spectrometer (CV-AFS; AFS 8220 Titan, FullTech Instruments, Rome, Italy), as described
previously [72,73]. The ICP-MS analysis mode, measured isotopes, and internal standards are shown
in Supplementary Materials Table S1, while the preparation of both calibration and internal standards
is described in Supplementary Materials Section 1.

Hair samples were digested using an analytical procedure described previously [71,73]. Briefly,
0.02 g hair samples were transferred into polypropylene tubes, mixed with 0.5 mL 67% HNO3

(super-pure, Carlo Erba Reagents, Milan, Italy) and 0.25 mL 30% H2O2 (super-pure, Merck KGaA,
Darmstadt, Germany), and heated in a water bath system (WB12, Argo Lab Modena, Italy) for 20 min
at 95 ◦C. The digest was left to cool down, and the contents of the tubes were diluted to 10 mL
with deionized water (resistivity, ≤18.3 MΩ cm), filtered (0.45 µm pore size, GVS Filter Technology,
Indianapolis, IN, USA), and analyzed by ICP-MS and, after further dilution in the ratio 1:1 with 6%
HCl (assay >36%; Promochem, LGC Standards GmbH, Wesel, Germany), by CV-AFS. Each sample
was analyzed in duplicate. Blanks were treated as samples for the subtraction of the background signal
from the reagents.

The detection limits (DLs) established for each element ranged between 0.00002 (U) and 30 (K)
mg kg−1. Inter-day precision [relative standard deviation (RSD), %] calculated through different days
was below 13%, trueness bias ranged between −4 and 9%, and recoveries ranged between 90 and 110%
for all the elements except for Cr (65%), and Fe (79%) [71,73].

2.3.2. Water Samples

Drinking water sampling and analyses were carried out following the Italian reference analytical
methods [74,75]. Briefly, a volume of 250 mL (three replicates) of both treated and untreated water of
the Blue Nile river was collected using a sterile polyethylene container with a screw cap. Each sample
had an indelible identification label to identify it uniquely. Sampling was carried out where households
obtained their drinking water. In particular, if there were more possibilities of access to the same water
source (different access points to the Blue Nile river or different taps of the same treated water), a
single sampling point was considered (Supplementary Materials Figures S2 and S3). After sampling,
all water samples were transported to the laboratory using thermal bags and then filtered, acidified
to 2% (v/v) HNO3 (pH < 2), and stored at a temperature in the range 1–10 ◦C up to instrumental
analysis. All water analyses were completed within one week after fieldwork. The water samples
were analyzed diluted in a 1:10 and 1:100 ratio with 2% (v/v) HNO3 and without dilution. Blanks and
calibration standards were also made in 2% (v/v) HNO3. Internal standards (45Sc, 89Y, 103Rh, 115In,
232Th) were added to all samples, blanks, and calibration standards for ICP-MS analysis. To verify
the accuracy, certified reference material (SRM 1643e trace elements in water; National Institute of
Standards and Technology, NIST; Gaithersburg) was analyzed. The percent relative standard deviation
for the repeatability did not exceed the 10% limit, and trueness bias percentages in the range −5 to 10%
for all the studied elements were found.

2.4. Statistical Analysis

The statistical analysis was performed using SPSS version 25.0 for Windows (SPSS Inc., Chicago,
IL, USA). Levels below DL were replaced by DL/2 [76]. Elements with a concentration <DL in more
than 20% of the samples were excluded from the statistical calculation.

The most important descriptors such as arithmetic (AM) and geometric mean (GM), minimum
and maximum levels, and the 25th, 50th, 75th, and 95th percentile were calculated to perform the
descriptive statistical analysis.

The Shapiro–Wilk test and the Levene test were used to evaluate the normality and equal
variances hypotheses, respectively [77]. All element concentrations were not normally distributed, so
non-parametric methods such as the Mann–Whitney test and the Kruskal–Wallis test were used to
compare element levels according to variable categories [78].
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The relationship between the hair elements’ concentrations and the factors considered was studied
using the Spearman correlation test. For a value of p ≤ 0.05, a statistically significant relationship
was considered.

A multiple linear regression model (backward method) was used to evaluate the influence of the
study factors (gender, age, BMI, passive smoking, and water, meat, fish, fruit and vegetables, and
cereals consumption) on the level of elements in children’s hair. In each model, the natural log-element
concentration was included as a dependent variable. The p value used as a criterion for the entry
and stay of the variables was 0.05 and 0.1, respectively. The 95% confidence intervals were calculated
for the model coefficients to evaluate the sample’s statistical estimates [79,80]. The effect of potential
outliers was checked using residual graphs.

3. Results and Discussion

3.1. Element Levels in Children’s Hair

Descriptive statistics of element levels are given in Table 2.

Table 2. Element levels (mg kg−1) in the hair of children living in the Benishangul-Gumuz region in
Ethiopia (n = 81).

Element a DL %
<DL

b GM c AM d SD e Min
Percentile f Max

25th 50th 75th 95th

Al 7 × 10−2 40.7 1 25 44 <DL <DL 6 42 127 233
As 2 × 10−2 35.8 0.04 0.08 0.10 <DL <DL 0.04 0.09 0.26 0.65
B 2 × 100 79 <DL <DL - <DL <DL <DL <DL 4.6 29.2

Ba 5 × 10−1 1.2 11 18 18 <DL 7 14 20 59 74
Be 2 × 10−4 9.9 0.008 0.027 0.041 <DL 0.004 0.012 0.027 0.149 0.181
Bi 2 × 10−4 44.4 0.001 0.013 0.063 <DL <DL 0.001 0.007 0.035 0.551
Ca 1 × 10+1 2.5 1480 2630 3000 <DL 916 1610 2810 8960 17,300
Cd 1 × 10−4 1.2 0.10 0.18 0.26 <DL 0.06 0.10 0.21 0.75 1.58
Ce 6 × 10−4 0 1.0 2.1 2.7 0.03 0.5 1.2 2.2 8.7 13.4
Co 1 × 10−3 0 0.32 0.60 0.80 0.02 0.16 0.32 0.57 3.09 3.58
Cr 6 × 10−3 1.2 0.6 1.1 1.5 <DL 0.3 0.5 1.1 4.9 6.5
Cs 4 × 10−4 1.2 0.013 0.027 0.035 <DL 0.007 0.015 0.027 0.112 0.156
Cu 1 × 10−2 0 11.5 12.3 5.1 4.9 8.9 11.2 13.5 25.3 32.7
Fe 7 × 10−2 0 243 585 890 11 96 250 585 2980 4000
Ga 7 × 10−4 0 0.07 0.16 0.23 0.01 0.03 0.08 0.15 0.84 1.07
Hg 4 × 10−3 0 0.056 0.085 0.089 0.012 0.026 0.053 0.111 0.273 0.483
K 3 × 10+1 2.5 1060 1900 1700 <DL 513 1410 3100 5420 6690
La 2 × 10−4 0 0.6 1.1 1.4 0.01 0.3 0.6 1.1 4.7 7.3
Li 4 × 10−3 0 0.19 0.32 0.33 0.02 0.09 0.2 0.38 1.16 1.6

Mg 3 × 100 0 277 394 400 30 168 272 429 1409 2320
Mn 1 × 10−2 0 27 44 41 1 14 36 55 161 184
Mo 2 × 10−3 7.4 0.07 0.16 0.22 <DL 0.04 0.12 0.19 0.53 1.53
Na 4 × 100 0 1780 2850 2900 160 819 1970 3780 9070 15,000
Nb 1 × 10−4 65.4 0.001 0.08 0.19 <DL <DL <DL 0.02 0.64 0.88
Ni 3 × 10−3 0 1.2 1.8 1.8 0.2 0.7 1.1 2.0 6.6 8.8
P 3 × 100 2.5 98 129 100 <DL 79 97 147 406 611

Pb 5 × 10−3 0 3.1 4.8 5.5 0.3 1.7 3.0 5.4 15.5 32.8
Rb 2 × 10−3 0 1.3 2.0 1.8 0.1 0.7 1.6 2.8 5.6 8.6
Sb 8 × 10−4 6.2 0.07 0.23 0.99 <DL 0.05 0.10 0.15 0.36 8.85
Se 5 × 10−2 4.9 0.19 0.23 0.13 <DL 0.15 0.20 0.28 0.58 0.67
Si 5 × 100 23.5 65 167 150 <DL 10 156 258 466 499
Sn 3 × 10−4 1.2 0.23 0.35 0.35 <DL 0.13 0.26 0.42 0.98 2.38
Sr 3 × 10−2 0 19 25 19 2 11 22 33 66 99
Te 2 × 10−3 66.7 <DL <DL - <DL <DL <DL <DL 0.0078 0.0148
Ti 2 × 10−2 0 14 31 49 2 6 12 31 171 253
Tl 5 × 10−5 0 0.0054 0.0068 0.0053 0.0007 0.0035 0.0054 0.0076 0.0217 0.0262
U 2 × 10−5 0 0.029 0.046 0.045 0.002 0.014 0.031 0.057 0.165 0.204
V 4 × 10−3 1.2 0.8 1.8 2.7 <DL 0.3 0.8 1.5 10.2 12.0
W 8 × 10−4 86.4 0.0006 0.0019 0.0061 <DL <DL <DL <DL 0.0129 0.0462
Zn 2 × 10−1 2.5 86 117 70 <DL 77 100 152 245 451
Zr 7 × 10−4 0 0.39 0.89 1.31 0.01 0.16 0.37 0.99 4.59 6.29

a DL = detection limit. b GM = geometric mean. c AM = arithmetic mean. d SD = standard deviation.
e Min = minimum value. f Max = maximum value.
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Elements with concentrations lower than the DL in more than 20% of the hair samples were
excluded from the statistical analysis [Al (40.7%), As (35.8%), B (79.0%), Bi (44.4%), Nb (65.4%), Si
(23.5%), Te (66.7%), and W (86.4%)]. The highest concentrations were found for the essential elements
with Ca, Fe, K, Mg, and Na having a GM higher than 100 mg kg−1, followed by P and Zn, which
exhibited values of 98 and 86 mg kg−1, respectively. Average concentrations (as GM) above 1 mg kg−1

were found, in order of abundance, for Si > Mn > Sr > Ti > Cu > Ba > Pb > Rb > B, and Ni, while
element concentrations ≤ 1 mg kg−1 were detected for all other elements with decreasing contents in
the following order: Ce > V > Cr > La > Zr > Co > Sn > Li > Se > Cd > Ga > Sb > Mo > Hg > As > U >

Cs > Be > Tl > Te > Bi > Nb > W.
The possible exposure sources to the toxic elements analyzed may be several, such as contaminated

food, water, and soil pollution, especially by the abuse or misuse of chemicals in agriculture, indoor
and outdoor air pollution from inefficient solid fuel combustion (wood, animal dung, charcoal, crop
wastes, and coal) and burning of waste, residues of manufacturing industrial products, mining, and
oil refining [81–83]. As, Cd, Hg, and Pb are known to be of health concern in Africa, including in
Ethiopia [81]. Figures 2–5 show a comparison of the mean levels found in this study for the priority
and most toxic trace elements (As, Cd, Hg, and Pb, respectively) with those of other biomonitoring
studies in children.
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Regarding As (Figure 2), the average level (GM: 0.04 mg kg−1) was similar or lower than those
reported in other populations of Bangladesh [median (5–95th percentile): 0.53 (0.14–2.9) mg kg−1] [84],
Greece (GM: 0.020–0.036 mg kg−1) [85], Russia in Moscow [median (25–75th percentile): 0.021] [86], and
in both exposed and unexposed populations (median: 0.02 and 0.03 mg kg−1, respectively) [87]. Water,
food, air, and soil can be possible exposure sources to As from both natural geochemical processes
(erosion) or anthropogenic pollution (arsenical insecticides, improper waste and sewage disposal,
combustion of fossil fuels) [81]. For Cd (Figure 3), higher levels were obtained (GM: 0.1 mg kg−1)
compared with data reported in children from all the reported studies, excluding those from Russia, in
both exposed and unexposed populations (median: 0.11–0.12 mg kg−1) [87]. Exposure to Hg can occur
mainly by the ingestion of contaminated fish (organic Hg, such as methylmercury) and small-scale
artisanal gold mining (elemental Hg) [81]. Furthermore, gold extraction is routinely carried out near
water sources, contaminating the environment and drinking water. The overall Hg concentrations
ranged from 0.012 to 0.483 mg kg−1 with a GM of 0.056 mg kg−1, which were the lowest compared with
all data reported by other authors (Figure 4) [22,57,85–93]. All the Hg hair data were also below the
health-based values proposed (0.58, 1.0, and 2.3 mg kg−1) [59]. However, the Pb levels (GM: 3.1 mg kg−1;
Figure 5) were the highest compared with all data reported in other studies [22,55,84–87,94]. Hair can
be used as a suitable biomarker of Pb exposure [95,96]. The reduction or removal of Pb from gasoline
has produced a significant decline in pediatric morbidity. Llorente Ballesteros et al. [94] highlighted
that the Pb content reduction in petrol was seen in environmental levels and, therefore, in human
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hair. However, children and adults continue to be exposed to Pb in Africa [81]. Here, most of the Pb
in the environment comes from human activities such as waste combustion, mining, indiscriminate
dumping, and even the use of Pb-based paints [81].

Some essential element average levels (Ca, Co, Cu, Mg, Mo, P, Se, V, and Zn) found in our study
fell within the range of values usually reported for other children populations in Spain [94], Italy [55,97],
and Russia [87]. However, the GM of children’s hair Fe (243 mg kg−1), Mn (27 mg kg−1), and Na
(1780 mg kg−1) obtained in our study was around one order of magnitude higher than that found in
other studies worldwide [55,87,94,97].

3.2. Factor and Correlation Analysis

The population characteristics are shown in Table 1. A total number of 81 children’s hair samples
were collected, with a similar proportion of boys (51.1%) and girls (48.9%). Overall, 40.8% of children
were aged 6–11 years and 29.6% were both <5 and 12–18-year-old. Of all children, 87.7% were
underweight (BMI < 18.5).

3.2.1. Gender and Age

The data obtained (Table 3, Supplementary Materials Table S2–S4, and Figure 6) show that both
gender and age affect the levels of toxic elements in children.
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Table 3. Gender influence on element levels (mg kg−1) in children’s hair.

Element
Males Females d p Value

a GM b Min c Max a GM b Min c Max

Al 2 <DL 233 1 <DL 167 -
As 0.04 <DL 0.65 0.04 <DL 0.32 -
B <DL <DL 5.1 1.4 <DL 29.2 -

Ba 8 <DL 74 15 1 73 ns
Be 0.004 <DL 0.065 0.019 0.001 0.181 ***
Bi <0.0014 <DL 0.076 0.002 <DL 0.551 -
Ca 1080 <DL 7570 2110 284 17,300 ns
Cd 0.06 <DL 0.34 0.16 0.03 1.58 ***
Ce 0.6 0.03 6.2 1.8 0.2 13.4 ***
Co 0.20 0.02 1.38 0.52 0.1 3.58 ***
Cr 0.5 <DL 6.5 0.8 0.1 6.1 ns
Cs 0.008 <DL 0.085 0.021 <DL 0.156 **
Cu 10.8 5.2 25.8 12.2 4.9 32.7 ns
Fe 149 11 1620 419 29 4000 **
Ga 0.05 0.005 0.48 0.12 0.01 1.07 **
Hg 0.056 0.013 0.367 0.058 0.012 0.483 ns
K 639 <DL 4420 1750 178 6690 ***
La 0.3 0.01 3.3 1.0 0.1 7.3 ***
Li 0.14 0.02 1.43 0.28 0.02 1.60 **

Mg 207 44 746 391 114 2320 ***
Mn 18 1 71 45 3 184 ***
Mo 0.05 <DL 0.68 0.12 <DL 1.53 ***
Na 1290 160 10,200 2500 247 15,000 **
Nb <0.0013 <DL 0.17 0.003 <DL 0.88 -
Ni 1.0 0.2 8.8 1.5 0.3 6.9 *
p 76 2 239 126 21 611 *

Pb 2.5 0.3 32.8 4.1 0.9 26.6 *
Rb 0.9 0.1 4.5 1.9 0.3 8.6 **
Sb 0.05 <DL 8.85 0.10 0.01 0.49 ns
Se 0.19 <DL 0.59 0.19 <DL 0.67 ns
Si 45 <DL 499 100 <DL 484 -
Sn 0.18 <DL 2.38 0.30 0.04 1.01 *
Sr 15 3 44 24 5 99 *
Te <DL <DL 0.0077 <DL <DL 0.0148 -
Ti 10 2 76 22 2 253 **
Tl 0.0046 0.0018 0.0126 0.0065 <0.0017 0.0262 **
U 0.020 0.002 0.165 0.043 0.006 0.204 **
V 0.5 <DL 4.1 1.4 0.2 12.0 ***
W <DL <DL 0.0128 <DL <DL 0.0462 -
Zn 96 <DL 451 78 <DL 251 *
Zr 0.24 0.01 1.90 0.66 0.02 6.29 **

a GM = geometric mean. b Min = minimum value. c Max = maximum value. d Mann–Whitney test: ns = not
significant at p > 0.05; and significant at p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***). Elements with a detection
frequency percentage >detection limit (DL) lower than 80% were excluded from the statistical calculation: Al, As, B,
Bi, Nb, Si, Te, and W.

Gender-related differences were found for all elements excluding Ba, Ca, Cr, Cu, Hg, Sb, and Se,
with higher concentrations found especially in females (Table 3). Element concentrations in the hair of
females and males were particularly different for Be (five times higher in females than males) and for
Cd, Ce, Co, Cs, Fe, Ga, K, La, V, and Zr (three times higher in females than in males). Only Zn was
higher in male children than females. The current literature also reports gender-related hair element
concentration differences [22,55,94,98–102]. However, gender is often not adequately considered in the
interpretation of hair analysis results [55]. Various factors (such as bodily growth, physiology, sexual
hormones, and lifestyle) can affect boys’ and girls’ responses to exposure to chemicals in different
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ways [103]. Due to differences in kinetics, mode of action, or susceptibility, some toxic trace elements
may affect the health of males and females differently [55]. In accordance with other authors [101,104],
our results indicate that females may be exposed to toxic metals more than males. The results presented
by Sanna et al. [96] suggest that hair is a reliable biomarker for determining population exposure
levels to Pb pollution, and they indicate, in agreement with our study, that females tend to accumulate
Pb in the hair more than males. The higher concentration of Sr and U in hair samples from females
was also reported by other authors [101,105,106]. The high Sr, Pb, and U content in female hair can
be considered a common gender characteristic due to the bone’s possible release during the growth
period, which generally occurs earlier and faster than in boys [101,107,108].

In the puberty period, adolescents need a high amount of Zn to maintain their skeletal growth, and
this demand is generally more prevalent in girls [109]. Our results are in agreement with a previous
study by De Prisco et al. [110] that showed a higher Zn content in boys’ hair (244 ± 153 mg kg−1)
than in that of girls (189 ± 34 mg kg−1). However, our data contrast with the results of several
studies [50,55,85,96,97,111–114] that found that female hair contains more Zn than males. The lower
content of Zn in female hair compared to male hair may be related to the higher presence of Cd in
females. Cd can replace Zn in many metal-enzymes, and Zn deficiency may also be a symptom of Cd
toxicity [81]. Human exposure to Cd in Africa is thought to be mainly due to tobacco smoking and
the consumption of contaminated vegetables and crops [81]. High levels of Cd contamination were
reported in lettuce grown by irrigation using water from the Akaki River in Ethiopia [115].

In accordance with other authors [55,85,102,116], also Ni, considered a carcinogen [117] and
responsible for the most common type of allergy [16], was found in higher concentrations in the hair of
females than males. However, our results are in contrast with the data obtained by Barbieri et al. [113]
and Peña-Fernández et al. [50], who showed that the hair of males contained more Ni than females
(females = 0.23 ± 4.89 mg kg−1 vs. males = 0.3 ± 6.5 mg kg−1; and females = 0.38 ± 0.34 mg kg−1 vs.
males = 0.58 ± 0.34 mg kg−1, respectively).

The age distribution of the elements is shown in Supplementary Materials Table S2 and Figure 6.
Concentrations of most elements (Be, Ce, Co, Fe, La, Li, Mo, and Na) in the 6–11 years age group were
the highest and were significantly higher than those in the <5 years group. Element concentrations are
reported according to gender and age group in Supplementary Materials Tables S3 and S4. Results
showed significant differences in the hair of males with Be, Ce, Fe, La, and Ti levels in the age group
of 6–11 years and Be, Mo, and U levels in the age group 12–18 years higher than those in the age
group <5 years. A significant difference was observed for females with Na and Sb levels in the
age group <5 years lower than those in the age group 6–11 and 12–18 years, and the age group
6–11 years, respectively.

The increase in the element concentrations in children’s hair during the first years of childhood
could be due to this group’s physiological characteristics. Children drink more water, eat more food,
and breathe more air per unit weight than adults and have higher absorption rates [94]. These findings
are also in accordance with the study by Kordas et al. [118], who demonstrated that older age in
children is associated with a lower risk of element exposure. A decrease in hair element content with
age may be due to increased excretion of chemicals for organ development and maturation [86,119].

3.2.2. Passive Smoking

The hair of children with non-smoking parents contained higher Cu concentrations than that
with smoking parents (cigarettes number ranging from 5 to 20), as shown in Supplementary Materials
Table S5. Environmental tobacco smoke also appears to affect K and Na content, but not significantly.
Other authors have observed higher levels of essential elements in the hair of non-smokers than in
smokers [120,121]. This topic is very interesting and, in the future, it should be studied in-depth,
perhaps considering a greater number of samples.
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3.2.3. Other Characteristics and Dietary Habits of the Study Population

Table 4 shows the element levels in the analyzed drinking water. Both the Blue Nile river’s treated
and untreated water show a low content of major and trace elements. However, the concentrations of
many elements (Ba, Be, Ca, Ce, Co, Cr, Cs, Fe, Ga, Hg, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Rb, Sr, Ti, Tl, U,
V, and Zr) in the hair of children who drink water from the Blue Nile river are significantly higher.
These results require more in-depth analysis and highlight the need for monitoring the water quality
of the Blue Nile river with periodic sampling.

Table 4. Element concentrations in drinking water (µg L−1) and in children’s hair (mg kg−1) according
to water consumption.

Element
a DL in
Water

Drinking Water Children Hair

Treated Water Blue Nile River
Water

Bottled and/or Treated
Water Blue Nile River g P

b AM c SD b AM c SD d GM e Min f Max d GM e Min f Max

Al 0.1 0.26 0.09 0.7 2.0 3 <DL 233 0.4 <DL 70 -
As 0.1 0.12 0.07 0.24 0.01 0.03 <DL 0.65 0.06 <DL 0.32 -
B 4 9.17 0.13 11.5 0.1 <DL <DL <DL 1.6 <DL 29.2 -

Ba 0.7 18.5 0.7 11.8 0.7 7 <DL 23 24 7 74 ***
Be 0.008 <DL <DL 0.004 <DL 0.035 0.026 <DL 0.181 ***
Bi 0.009 <DL <DL 0.001 <DL 0.551 0.001 <DL 0.039 -
Ca 23 20,300 900 20,800 1500 878 <DL 3280 2760 580 17,300 ***
Cd 0.001 0.0374 0.0001 0.0061 0.0048 0.12 <DL 1.58 0.09 0.01 0.56 ns
Ce 0.004 0.011 0.002 0.11 0.12 0.6 0.03 3.4 2.3 0.3 12.9 ***
Co 0.007 0.097 0.003 0.11 0.03 0.20 0.02 0.81 0.69 0.14 3.58 ***
Cr 0.006 0.044 0.002 0.124 0.025 0.4 <DL 6.5 1.0 0.1 5.2 ***
Cs 0.0005 0.0185 0.0011 0.0026 0.0011 0.007 <DL 0.061 0.031 0.005 0.150 ***
Cu 0.02 1.23 0.08 1.61 0.08 12.9 6.5 32.7 10.3 4.9 16.0 -
Fe 2 <DL 34 42 129 11 578 630 59 4000 ***
Ga 0.0003 0.0010 0.0009 0.022 0.025 0.04 0.01 0.20 0.17 0.02 1.07 ***
Hg 0.003 0.0530 0.0057 0.0475 0.0035 0.043 0.012 0.367 0.089 0.018 0.483 ***
K 20 2070 11 1860 110 742 <DL 5400 1770 155 6690 **
La 0.0006 0.0022 0.0001 0.045 0.052 0.3 0.01 1.9 1.2 0.1 6.6 ***
Li 0.005 1.43 0.01 0.0769 0.0029 0.15 0.02 0.60 0.33 0.05 1.60 ***

Mg 0.5 5811 61 6210 176 201 44 746 451 140 2320 ***
Mn 0.07 9.6 0.7 1.5 2.0 19 2 81 52 12 184 ***
Mo 0.2 0.644 0.006 0.688 0.015 0.05 <DL 0.89 0.15 <DL 1.53 ***
Na 2 7760 37 7750 181 1810 160 15,000 2180 180 10,200 ns
Nb 0.01 <DL 0.024 0.020 0.0002 <DL 0.04 0.01 <DL 0.88 -
Ni 0.04 0.93 0.36 0.728 0.067 0.9 0.2 4.2 1.8 0.2 8.8 **
P 2 38 4 82 16 72 <DL 407 139 28 611 ***

Pb 0.001 0.065 0.021 0.039 0.012 3.8 0.5 32.8 2.5 0.3 9.1 **
Rb 0.001 1.79 0.01 0.985 0.003 1.0 0.1 4.5 2.1 0.4 8.6 **
Sb 0.003 0.0281 0.0028 0.0219 0.0062 0.05 <DL 0.62 0.09 <DL 0.49 ns
Se 0.06 0.072 0.042 0.0899 0.0040 0.18 <DL 0.59 0.19 0.06 0.58 ns
Si 33 2660 13 6140 376 38 <DL 333 197 <DL 499 -
Sn 0.006 0.0133 0.0066 0.0146 0.0032 0.28 <DL 2.38 0.18 0.04 0.95 **
Sr 0.05 131 2 121 2 14 3 44 30 7 99 ***
Te 0.02 0.0041 0.0055 0.0045 0.0047 0.0012 <DL 0.0148 0.0016 0.0008 0.0092 -
Ti 0.01 0.879 0.005 2.2 2.1 8 2 31 33 4 253 ***
Tl 0.0002 0.00880 0.00042 0.00515 0.00078 0.0043 0.0007 0.0216 0.0074 0.0023 0.0262 ***
U 0.0006 0.010 0.004 0.079 0.014 0.020 0.002 0.165 0.051 0.010 0.204 ***
V 0.04 1.04 0.05 2.40 0.20 0.4 <DL 1.4 2.0 0.3 12.0 ***
W 0.06 <DL <DL 0.0005 <DL 0.0462 <DL <DL 0.0210 -
Zn 0.07 2.68 0.52 0.29 0.25 95 <DL 451 71 10 202 ***
Zr 0.004 <DL 0.111 0.093 0.21 0.01 2.03 0.97 0.08 6.29 ***

a DL = detection limit. b AM = arithmetic mean. c SD = standard deviation. d GM = geometric mean.
e Min = minimum value. f Max = maximum value. g Mann–Whitney test: ns = not significant at p > 0.05; and
significant at p < 0.01 (**) and p < 0.001 (***). Elements with a detection frequency percentage >DL lower than 80%
were excluded from the statistical calculation: Al, As, B, Bi, Nb, Si, Te, and W.
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The relation between independent variables (height, weight, BMI, and food consumption) and
quantitative dependent variables (element concentrations) was also studied (Table 5). Considering
the sociodemographic characteristics, a significant strong positive relationship (p < 0.01) with height,
weight, and BMI was found in Cu [Spearman coefficient (r): 0.300, 0.327, and 0.397, respectively] and
only with BMI in Sn (r: 0.315).

Table 5. Correlations between the levels of the elements in the hair and the characteristics of children.

a

Element

Sociodemographic
Characteristics Food Consumption (g Month−1 or mL Month−1)

Height
(cm)

Wight
(kg)

b BMI
(kg m−2)

Breast
Milk Meat Fish Cereals Fruit and

Vegetables

B −0.091 −0.132 −0.241 * 0.094 −0.181 0.134 0.067 −0.128
Ba 0.131 0.072 −0.282 * −0.073 −0.119 0.320 ** 0.129 −0.200
Be 0.180 0.106 −0.291 * −0.132 −0.049 0.199 0.228 −0.076
Ca −0.003 −0.077 −0.317 ** 0.120 −0.215 0.108 −0.083 −0.242 *
Cd 0.206 0.197 0.178 −0.207 0.116 −0.167 0.108 0.158
Ce 0.141 0.083 −0.265 * −0.094 −0.070 0.241 * 0.263 * −0.199
Co 0.083 0.021 −0.280 * −0.116 −0.058 0.229 * 0.231 −0.242 *
Cr −0.019 −0.055 −0.240 * 0.053 −0.132 0.193 −0.028 −0.110
Cs 0.138 0.074 −0.276 * −0.016 −0.154 0.194 0.183 −0.174
Cu 0.300 ** 0.327 ** 0.393 ** −0.149 0.086 −0.250 * 0.313 * 0.160
Fe 0.100 0.034 −0.334 ** −0.064 −0.119 0.224 0.250 −0.251 *
Ga 0.089 0.031 −0.299 ** −0.074 −0.120 0.222 0.228 −0.224
Hg −0.008 0.018 −0.125 −0.169 0.128 0.427 ** 0.009 −0.129
K 0.146 0.119 −0.083 −0.034 −0.112 0.109 0.315 * −0.160
La 0.140 0.084 −0.242 * −0.086 −0.093 0.239 ** 0.250 −0.198
Li 0.138 0.107 −0.219 −0.086 −0.084 0.090 0.233 −0.170

Mg 0.149 0.087 −0.204 −0.027 −0.098 0.156 0.208 −0.151
Mn 0.089 0.029 −0.261 * −0.081 −0.044 0.139 0.184 −0.218
Mo 0.213 0.164 −0.189 −0.159 −0.029 0.213 0.278 * −0.081
Na 0.274 * 0.279 * 0.072 −0.218 0.109 −0.008 0.470 ** −0.032
Ni 0.024 −0.012 −0.187 −0.067 0.040 0.013 0.110 −0.055
P 0.091 0.016 −0.293 * −0.068 −0.071 0.214 0.182 −0.109

Pb −0.042 −0.023 0.159 −0.085 0.066 −0.258 ** 0.002 0.175
Rb 0.116 0.095 −0.111 −0.013 −0.130 0.112 0.257 * −0.164
Sb −0.190 −0.236 * −0.118 0.227 * −0.179 −0.051 −0.282 ** −0.148
Se −0.199 −0.134 0.027 0.152 −0.001 −0.127 −0.222 −0.173
Sn −0.002 0.038 0.315 ** −0.088 0.154 −0.194 −0.146 0.217
Sr 0.121 0.072 −0.220 0.022 −0.113 0.185 0.098 −0.254 *
Ti 0.046 0.004 −0.301 ** −0.062 −0.107 0.266 ** 0.230 −0.268 *
Tl 0.059 0.039 −0.228 * 0.004 −0.050 0.184 0.210 −0.129
U 0.133 0.113 −0.133 −0.037 −0.145 0.202 0.236 −0.244 *
V 0.077 0.019 −0.326 ** −0.120 −0.042 0.237 * 0.238 −0.219

Zn 0.074 0.062 0.205 −0.003 0.142 −0.342 ** −0.134 0.201
Zr −0.012 −0.046 −0.268 * −0.096 0.005 0.242 ** 0.129 −0.214
a Elements (Al, As, B, Bi, Nb, Si, Te, and W) with a detection frequency percentage > detection limit lower than
80% were excluded from the statistical calculation. Rho Spearman correlation test is significant for p < 0.05 (*) and
p < 0.01 (**). b BMI = body mass index.

A strong negative correlation was found between BMI and the following elements: Ca, Fe, Ga, P,
Ti, and V. We analyzed the relationship between element levels and food group consumption, and
we found a significant positive correlation (p < 0.01) between Ba and Hg levels and fish consumption
(r: 0.320, and 0.427, respectively), and between Na content and cereals consumption (r: 0.470). A
significant strong negative relationship (p < 0.01) with fish consumption was found in Zn (r: −0.342).
No significant correlation with meat consumption was shown for all elements. It is known that fish is
the major source of exposure to organic Hg [122]. The correlation between exposure to Hg and fish
consumption is widely reported in the literature [57–59] and confirmed in the present study. Consistent



Int. J. Environ. Res. Public Health 2020, 17, 8652 14 of 22

with the results of the Spearman correlation test previously discussed, the children who consumed fish
showed significant higher levels of Hg (GM = 0.078 mg kg−1, p < 0.001) and Ba (GM = 14 mg kg−1,
p < 0.01) and lower content of Zn (GM = 76 mg kg−1, p < 0.01) than the other children (GM = 0.034, 7,
and 105 mg kg−1 for Hg, Ba, and Zn, respectively) (Supplementary Materials Table S6).

3.3. Predictors of Exposure

A multiple linear regression analysis was used to study the predictors of children’s exposure to
both toxic and essential trace elements (Table 6 and Supplementary Materials Table S7).

Table 6. Results of the backward multiple linear regression model analysis for some toxic elements.

Elements Factors a B b SE c β p Value
95% d CI for B

R2 Adjusted
R2Lower

Bound
Upper
Bound

Ba Constant 2.85 0.302 <0.001 2.24 3.46 0.501 0.479
Fruit and vegetables −0.925 0.294 −0.334 0.003 −1.52 −0.333

Drinking water 1.07 0.194 0.583 <0.001 0.676 1.46
Be Constant −3.34 0.430 <0.001 −4.21 −2.47 0.587 0.545

Gender −0.683 0.235 −0.299 0.006 −1.16 −0.207
Fish −0.726 0.323 −0.292 0.030 −1.38 −0.073

Fruit and vegetables −1.05 0.353 −0.318 0.005 −1.77 −0.340
Drinking water 1.68 0.287 0.738 <0.001 1.10 2.26

Cd Constant −1.63 0.194 <0.001 −2.02 −1.24 0.233 0.199
Gender −0.581 0.227 −0.337 0.014 −1.04 −0.124

Cs Constant −3.74 0.411 <0.001 −4.57 −2.91 0.435 0.396
Fruit and vegetables −0.851 0.377 −0.261 0.029 −1.61 −0.091

Drinking water 1.14 0.252 0.523 <0.001 0.632 1.65
Hg Constant −2.61 0.338 <0.001 −3.289 −1.929 0.339 0.295

Age −0.362 0.151 −0.293 0.021 −0.667 −0.057
Fish 0.873 0.253 0.423 0.001 0.363 1.38

Li Constant −1.18 0.294 <0.001 −1.77 −0.584 0.339 0.295
Gender −0.518 0.236 −0.270 0.033 −0.993 −0.043

Drinking water 0.577 0.248 0.300 0.025 0.077 1.08
Ni Constant 0.947 0.375 0.015 0.192 1.70 0.252 0.202

Fruit and vegetables −0.797 0.325 −0.326 0.018 −1.45 −0.142
Drinking water 0.757 0.250 0.473 0.004 0.254 1.26

Sn Constant −0.992 0.199 <0.001 −1.39 −0.591 0.314 0.267
Drinking water −0.757 0.261 −0.442 0.006 −1.28 −0.230

Tl Constant −5.44 0.297 <0.001 −6.04 −4.84 0.345 0.301
Fruit and vegetables −0.660 0.243 −0.341 0.009 −1.15 −0.171

Drinking water 0.446 0.157 0.351 0.007 0.129 0.763
U Constant −3.24 0.283 <0.001 −3.81 −2.67 0.412 0.373

Gender −0.478 0.227 −0.243 0.041 −0.936 −0.020
Drinking water 0.761 0.239 0.387 0.003 0.279 1.24

a B = non-standardized regression coefficients. b SE = standard error. c β = standardized regression coefficients.
d CI = confidence interval. No variables included in the models were processed for Al, As, B, Bi, Nb, Pb, Sb, Si, Te,
and W.

Gender, age, BMI, passive smoking, drinking water, fish consumption, and fruit and vegetable
consumption were significant predictors of exposure to several study population elements. The main
predictor of Hg exposure in children’s hair was fish consumption (Table 6). The potential effect of age
on Hg exposure is disputed, as several studies showed an increase in hair Hg with age [58,93,123,124],
while many others did not observe any influence [125]. Consistent with the results of the Kruskal–Wallis
test (Supplementary Materials Tables S2 and S3, and Figure 6), age is also a significant predictor of Mo
and Na.

Drinking water appears to be the major exposure predictor of some toxic elements such as Ba,
Be, Cs, Li, Ni, Tl, and U (Table 6) and essential and trace elements Ca, Ce, Co, Cr, Fe, Ga, La, Mg, Mn,
Mo, P, Rb, Sr, Ti, V, and Zr (Supplementary Materials Table S7). Additional food and environmental
monitoring are needed to determine the different exposure sources among children, causing differences
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in hair elements’ concentrations. The data currently available on the elements found in drinking water
do not justify these differences. According to the results of the Mann–Whitney analysis discussed
above, gender is a significant predictor of Be, Cd, Li, and U levels (Table 6) and Ca, Ce, Co, Fe, Ga, K,
La, Mn, Mo, NA, P, Rb, Sr, Ti, V, Zn, and Zr (Supplementary Materials Table S7).

3.4. Study Limitations

This study has some limitations. First of all, the group’s size was small (81 children), and the
present study is a cross-sectional study; therefore, it does not allow an evaluation over time.

4. Conclusions

Children represent a population that is particularly vulnerable to the developmental and neurotoxic
effects of toxic elements and should be given special attention in biomonitoring programs.

We want to highlight the highest Pb concentrations in the hair of Ethiopian children studied
compared to other literature data. A more in-depth study of this relevant finding is needed, combining
different types of environmental monitoring and more extensive biomonitoring programs. The data
obtained confirm gender and age as important key factors that must be taken into account in interpreting
the hair analysis. The gender-based variations suggest that females are likely at greater risk for toxic
element exposure than males. Dietary habits affect the elemental composition of hair in children. In
particular, the hair of children who consumed fish and drank Blue Nile water contained higher Hg
levels and other toxic elements (Ba, Be, Cs, Hg, Li, Ni, Tl, and U), respectively.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/17/22/8652/s1,
Table S1: Isotopes, analysis mode, and internal standards, Table S2. Element concentrations in children’s hair by
age group, Table S3: Element levels (mg kg−1) in male hair according to age, Table S4. Element levels (mg kg−1) in
male hair according to age, Table S5: Element levels (mg kg−1) in children’s hair according to passive smoking,
Table S6: Influence of fish consumption on element levels (mg kg−1) in children’s hair, Table S7: Results of the
backward multiple linear regression model analysis for major and trace elements, Figure S1: Landscapes of the
studied area (Bameza in the Benishangul-Gumuz region along the Blue Nile in north-western Ethiopia, Africa),
Figure S2: Sampling site of the Blue Nile river water (Bameza, Ethiopia), Figure S3: Sampling site of the treated
water of the Blue Nile river (Bameza, Ethiopia).
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