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Abstract
Background  Obesity, characterized by an increased amount of adipose tissue, is a metabolic chronic alteration which has 
reached pandemic proportion. Lifestyle changes are the first line therapy for obesity and a large variety of dietary approaches 
have demonstrated efficacy in promoting weight loss and improving obesity-related metabolic alterations. Besides diet and 
physical activity, bariatric surgery might be an effective therapeutic strategy for morbid obese patients. Response to weight-
loss interventions is characterised by high inter-individual variability, which might involve epigenetic factors. microRNAs 
have critical roles in metabolic processes and their dysregulated expression has been reported in obesity.
Aim  The aim of this review is to provide a comprehensive overview of current studies evaluating changes in microRNA 
expression in obese patients undergoing lifestyle interventions or bariatric surgery.
Results  A considerable number of studies have reported a differential expression of circulating microRNAs before and 
after various dietary and bariatric surgery approaches, identifying several candidate biomarkers of response to weight loss. 
Significant changes in microRNA expression have been observed at a tissue level as well, with entirely different patterns 
between visceral and subcutaneous adipose tissue. Interestingly, relevant differences in microRNA expression have emerged 
between responders and non-responders to dietary or surgical interventions. A wide variety of dysregulated microRNA 
target pathways have also been identified, helping to understand the pathophysiological mechanisms underlying obesity and 
obesity-related metabolic diseases.
Conclusions  Although further research is needed to draw firm conclusions, there is increasing evidence about microRNAs 
as potential biomarkers for weight loss and response to intervention strategies in obesity.

Keywords  Obesity · microRNA · Weight loss · Diet · Bariatric surgery · Obesity treatment

The challenges of obesity treatment

Obesity is a common condition that has been consistently 
linked to an increased risk of developing a wide range of 
disorders, such as metabolic syndrome (MS), type 2 diabe-
tes (T2D), cardiovascular diseases (CVD), non-alcoholic 
fatty liver disease (NAFLD), musculoskeletal diseases 

and some cancers [1–4]. Over the last decades, the preva-
lence of this condition has dramatically risen, reaching 
pandemic proportions. Globally, it has been estimated that 
nearly 39% of adults are overweight and 13% are obese 
[5]. Obesity is defined as excessive fat accumulation ensu-
ing from a chronic imbalance between calorie intake and 
energy expenditure, which is linked to unhealthy diet hab-
its and physical inactivity [6]. Excess energy is stored as 
triglycerides in white adipose tissue (WAT), which com-
prises subcutaneous adipose tissue (SAT) and visceral adi-
pose tissue (VAT). Although adipocytes display similar 
functions in SAT and VAT, the latter is more markedly 
associated with abnormal metabolic profiles, directly con-
tributing to insulin resistance [7, 8]. Specifically, in vitro 
studies have reported a more consistent release of free 
fatty acids (FFA) in VAT due to a higher lipolytic activ-
ity, which is able to induce insulin resistance impairing 
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insulin signalling [9, 10]. It has been observed that VAT 
expresses several pro-inflammatory and anti-inflammatory 
mediators which are critically involved in the maintenance 
of immune metabolic homeostasis [11]. Furthermore, the 
greater number of macrophages in VAT compared to SAT 
leads to a more marked production of pro-inflammatory 
cytokines, significantly contributing to the chronic low 
grade inflammation typical of obesity and metabolic dis-
eases [12, 13].

Despite the advances in therapeutic strategies, obesity 
management remains highly challenging. Lifestyle modifi-
cation is the primary approach for weight loss and fat mass 
reduction. Indeed, dietary energy restriction and increased 
energy expenditure through physical activity are the well-
known cornerstones of obesity treatment [14]. Specifically, 
energy restriction is crucial for the weight-loss phase, while 
physical activity is essential for long-term maintenance. A 
decrease of at least 5% of the initial body weight is consid-
ered clinically significant and can be effectively achieved 
by lowering the daily caloric intake by 500 kcal [15]. Of 
note, exercise without dietary restrictions is able to achieve 
only 3–5% weight loss in patients with obesity [16]. A wide 
variety of dietary intervention patterns, such as Mediterra-
nean diet, low carbohydrate diet, low-fat diet and ketogenic 
diet (KD), which significantly differ in the proportions of 
macronutrients, have been extensively evaluated in clinical 
trials and displayed great efficacy in reducing body weight 
and in improving metabolic abnormalities in obese patients 
[17–19]. On the other hand, bariatric surgery is a highly 
effective strategy for weight loss and comorbidities improve-
ment in morbidly obese patients when life style intervention 
fails. Several surgical procedures based on restrictive or mal-
absorptive approaches are currently available. Specifically, 
laparoscopic sleeve gastrectomy (LSG) and laparoscopic 
adjustable gastric banding (LAGB) significantly restrict food 
intake, while Roux-en-Y gastric by-pass (RYGB) is mainly 
malabsorptive [20]. The most frequent complications of bar-
iatric surgery include dumping, nausea, vomiting, diarrhoea, 
infections, stenosis, bleeding, increased risk of alcohol abuse 
after surgery, and perioperative death.[21, 22].

Despite the different therapeutic options, response to 
weight-loss programmes is hallmarked by high inter-indi-
vidual variability, which might be partly explained by epi-
genetic factors [23–25]. In light of this, the development of 
novel tools based on nutrigenetic and nutrigenomic informa-
tion is of utmost importance in the development of custom-
ized approaches in obesity management [26]. Thus, great 
efforts are being made to identify valuable predictors of 
response to diet or bariatric surgery interventions. Recently 
microRNAs, a class of small non-coding RNAs that regu-
late gene expression, have gained much attention not only 
as regulators of biological processes but also as prognostic 
biomarkers in obesity management.

General aspects of microRNAs

microRNAs are small (19–25 nucleotides) non-coding sin-
gle stranded RNAs that function destabilizing or deplet-
ing target mRNAs [27]. Since their discovery in Caeno-
rhabditis elegans in 1993 they have been described in 
many other species, even viruses, and to date 2654 human 
mature microRNA sequences have been identified (miR-
base version 22.1 released in October 2018) [28–31]. Their 
dysregulation has been described in the context of many 
pathological processes, spanning from cancer to neuro-
logical and metabolic diseases. Therefore, although their 
function has not been yet completely defined, their huge 
number and wide species distribution suggest a crucial 
role in gene regulation [32, 33].

microRNAs biogenesis, secretion and function involve 
many complex molecular events, not completely under-
stood yet. microRNA genes are usually transcribed by 
RNA polymerase II and sometimes by RNA polymer-
ase III. The pri-miRNA sequence is capped at the 5′ 
and polyadenylated at the 3′ end and recognized by the 
Microprocessor complex, constituted by the Di George 
Syndrome Critical Region 8 (DGCR8) nuclear protein and 
the RNAse III Drosha. This first nuclear maturation step 
releases a precursor microRNA, called pre-miRNA. The 
protein Exportin-5 is then responsible for the translocation 
from the nucleus to the cytoplasm, where the pre-miRNA 
is cleaved by the RNAse III Dicer with the production 
of a double strand microRNA of about 22 nucleotides in 
length. After loading onto Ago2, a member of the Argo-
naute (Ago) protein family, the microRNA is included 
into the RNA-induced silencing complex (RISC), a big 
ribonucleoprotein effector complex. The binding with 
Ago2 favours the most stable strand, while the passenger 
strand is degraded to produce a mature RISC. The main 
mechanisms responsible for the target mRNA silencing are 
mRNA degradation and translational repression. Specifi-
cally, if the sequence homology between the microRNA 
and its target mRNA is complete, Ago proteins degrade 
the target mRNA. Otherwise, if the sequence homology is 
only partial, there is only translational repression [34, 35].

Although the cellular compartment is the site of micro-
RNA production and action, recent evidence demon-
strated that microRNAs can also act into the extracellular 
compartment after secretion. One of the most intriguing 
hypothesis related to their function and origin sustains that 
extracellular microRNAs are involved in cell-to-cell com-
munication. Circulating microRNAs have been detected 
in different biological fluids, such as serum, plasma and 
urine [36, 37]. To date, it has been demonstrated that 
microRNAs can be packaged into shedding vesicles and 
exosomes or coupled with high-density lipoproteins (HDL) 
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and low-density lipoproteins (LDL) or Ago proteins, and 
actively secreted by cells. In addition, microRNAs can be 
passively secreted after incorporation in apoptotic bodies 
[38].

In addition, microRNA encapsulation into extracellu-
lar vesicles is a well-structured and defined process. The 
microvesicle-packed microRNAs do not simply mirror the 
cell of origin repertoire, since some microRNAs are prefer-
entially exported or retained in cells [39].

Importantly, thanks to the circulating microRNA asso-
ciation with both protein complexes and/or to their packing 
into extracellular vesicles, microRNAs show high stability 
into the extracellular environment, rendering not only very 
stable extracellular molecules, but also capable of acting as 
diagnostic, prognostic and therapeutic biomarkers [40–42].

Moreover, microRNAs play key roles in physiological 
and pathological processes. They are important in fat cell 
formation and in the regulation of metabolic and endocrine 
functions. Indeed, the integral role of microRNAs in adi-
pose tissue is emerging from studies demonstrating that the 
inhibition of Drosha and Dicer in human mesenchymal stem 
cells (MSC) inhibited the differentiation into adipocytes, 
conversely Dicer in 3T3-L1 cells inhibited adipogenesis [43, 
44]. Other studies showed that microRNA are involved in the 
regulation of adipogenesis, acting as stimulators (i.e. miR-
21, miR-26b, miR-30, miR-103, miR-143, miR-148, miR-
181a, miR-199a, miR-378) or inhibitors (i.e. let7, miR-22, 
miR-125a, miR-224) of human adipocyte differentiation pro-
grammes [45–51]. As regards human obesity, several stud-
ies identified dysregulated microRNAs. In particular, many 
microRNAs were differentially regulated in WAT of obese 
subjects compared to lean human subjects [52–54]. Finally, 
several microRNAs are known to influence lipolytic activity 
[55–57] and adipokine production in fat cells [58, 59].

microRNAs and weight loss: evidence 
from lifestyle intervention studies

Interestingly, compelling evidence suggests that differences 
in the outcomes of dietary intervention might be related to 
epigenetic factors [25]. The role of microRNAs as biomark-
ers of weight loss after dietary and lifestyle interventions 
has been extensively investigated in a wide number of stud-
ies, exploring microRNA expression at a systemic level 
(white blood cells, serum and plasma) and in adipose tissue 
(Table 1).

microRNA expression in white blood cells

In 2013, Milagro et al., characterized microRNA expres-
sion in peripheral blood mononuclear cells (PBMC) from 

10 obese women undergoing an 8-week energy-restricted 
diet. The population was further categorized as responder 
(R, > 5% body mass loss, n = 5) and non-responder 
(NR, < 5% body mass loss, n = 5) to the intervention. At 
baseline, the study revealed a different expression of five 
microRNAs between the two groups. Specifically, in the 
NR group at baseline, miR-935 and miR-4772 were up-
regulated, whereas miR-223, miR-224 and miR-376b were 
down-regulated. Notably, miR-935, miR-4772 and miR-
376b also showed a relevant association with the magnitude 
of weight loss, being therefore valuable candidate biomark-
ers for weight loss and response to diet [60]. Subsequently, 
Marques-Rocha et al., focused on the modulation of the 
expression of nine selected inflammation-related microR-
NAs in white blood cells of 40 patients affected by MS 
after an 8-week energy-restricted Mediterranean diet. Two 
microRNAs showed a statistically significant change after 
the dietary intervention; specifically, miR-155-3p strongly 
decreased, while let-7b was significantly up-regulated. In 
addition, the authors showed that let-7b, miR-125b, miR-
130a, miR-132-3p and miR-422b were positively associated 
with the Health Eating Index (HEI) improvement, a scoring 
metric of diet quality, and miR-155-3p also with weight 
loss [61]. Another study evaluated microRNA changes in 
white blood cells obtained from patients with MS enrolled 
in the RESMENA (Metabolic Syndrome Reduction in Nav-
arra) nutritional trial, after two different energy-restricted 
dietary interventions. The enrolled subjects were classified 
as high responders (HR) and low responders (LR), when 
weight loss after 8 weeks was respectively higher or lower 
than 8%. Microarray analyses were performed to detect 
microRNA methylation (31 LR vs 16 h) and expression (14 
LR vs 10 h) before and after intervention. Six microRNAs 
(miR-1237, miR-1976, miR-642, miR-636, miR-612, miR-
193B) were identified as both hypomethylated and over-
expressed in HR. Notably, miR-612 and miR-1976 were 
the most hypomethylated and over-expressed, respectively. 
The bioinformatics analysis revealed TP53 and CD40 as 
miR-612 and miR-1976 targets, respectively. Both of them 
were modulated after the dietary intervention, comparing 
HR to LR, suggesting a role of these microRNA/gene axes 
in MS and obesity [62]. The same authors further reported 
an up-regulation of miR-548q and miR-1185-1 in HR, com-
pared to sex and gender-matched LR. In functional assay, 
miR-548q and miR-1185-1 reduced glycogen synthase 
kinase-3 B (GSK3B) gene expression, targeting its mRNA 
[63]. GSK3B is known to be involved in pro-inflammatory 
responses by promoting the expression of pro-inflammatory 
cytokines such as IL-1ß, IL-6 or TNF-α [64]. Accordingly, 
the authors reported a negative correlation between miR-
1185-1 expression and serum levels of IL-6 [63].
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Circulating microRNAs

Several studies focused on the modulation of blood circulat-
ing microRNA levels after dietary interventions, comparing 
the effects of different dietary plans, with variable propor-
tions of macronutrients.

Hess et al., evaluated the expression of selected serum 
microRNAs associated with obesity and MS in obese and 
overweight patients (n = 85), before and after a 12-week 
hypocaloric diet. The dietary intervention consisted of a 
500 kcal/day restriction and a baseline randomization to 
fibre supplements or placebo. Circulating levels of miR-
222-3p significantly increased after weight loss, while miR-
122-5p and miR-193a-5p were reduced. At baseline, the con-
centrations of miR-122-5p and miR-193a-5p were higher in 
the presence of MS and positively correlated with markers 
of insulin resistance and body composition, such as HOMA-
IR (homeostasis model assessment of insulin resistance), 
waist circumference and visceral fat mass [65]. Notably, the 
up-regulation of circulating miR-122-5p has been linked to 
NAFLD and its reduction after weight loss could therefore 
reflect an improvement in liver health [66]. As miR-122-5p 
and miR-193a-5p correlated with insulin resistance param-
eters, their reduction after intervention might mirror an 
improvement in glucose metabolism as well. MiR-222-3p 
has been previously linked to T2D and gestational diabetes 
(GDM), although its role in regulating glucose metabolism 
has yet to be elucidated [67–69]. Overall, these results sug-
gest that specific microRNA patterns of expression might 
hallmark metabolically unhealthy obesity.

Ortega et al., investigated selected plasma circulating 
microRNAs in nine obese patients following a 14-week 
energy-restricted diet. However, the study revealed no sig-
nificant associations between weight loss (17% reduction 
in body mass) and circulating microRNAs (miR-520c-3p, 
miR-15a, miR-590-5p, miR-126, miR-636, miR-625) [70].

Giardina et al., analysed plasma microRNA expression 
before and 6 months after three energy-restricted diets. Spe-
cifically, a discovery cohort of eight patients that underwent 
high-throughput screening was sub-grouped into three cat-
egories: moderate carbohydrate and low glycaemic index 
diet (LGI, n = 3), moderate carbohydrate and high glycae-
mic index diet (HGI, n = 3) and low fat and high glycaemic 
index diet (LF, n = 2). The authors identified eight differen-
tially expressed microRNAs (miR-139-3p, miR-411, miR-
432, miR-99b, miR-340, miR-423-5p, miR-361 and let-7c), 
whose significantly dysregulated levels were confirmed in a 
wider cohort of 103 patients (LGI, n = 36; HGI, n = 36; LF, 
n = 31). All these microRNAs were down-regulated in the 
LGI compared to the HGI group, with miR-361 showing the 
greatest reduction. Besides this, miR-139-3p was down-reg-
ulated both in the HGI and in the LF group compared to the 
baseline and positively correlated with both LDL-cholesterol Ta

bl
e 

1  
(c

on
tin

ue
d)

St
ud

y
Po

pu
la

tio
n

In
te

rv
en

tio
n

So
ur

ce
Re

gu
la

te
d 

m
iR

N
A

s
Ro

le
/ta

rg
et

D
on

gh
ui

 e
t a

l. 
20

19
 [7

9]
37

 o
be

se
 m

al
e 

ad
ol

es
ce

nt
s

10
 C

TR
L

6-
w

ee
k 

hy
po

ca
lo

ric
 d

ie
t a

nd
 a

er
ob

ic
 

ex
er

ci
se

Se
ru

m
m

iR
-1

26
 (↑

)
B

io
m

ar
ke

r o
f w

ei
gh

t l
os

s/
en

do
th

el
ia

l 
fu

nc
tio

n
K

ris
te

ns
en

 e
t a

l. 
20

17
 [8

0]
38

 o
be

se
15

-w
ee

k 
hy

po
ca

lo
ric

 d
ie

t a
nd

 p
hy

si
-

ca
l a

ct
iv

ity
SA

T
m

iR
-2

9a
-3

p,
 m

iR
-2

9a
-5

p 
(↑

)
m

iR
-2

0b
-5

p,
 m

iR
-4

54
-3

p 
(↓

)

G
lu

co
se

 u
pt

ak
e,

 li
pi

d 
m

et
ab

ol
is

m
, 

en
er

gy
 h

om
eo

st
as

is

G
ia

rd
in

a 
et

 a
l. 

20
18

 [8
4]

8 
ob

es
e

6-
m

on
th

 L
G

I (
n =

 3)
, H

G
I (

n =
 3)

, L
F 

(n
 =

 2)
 d

ie
t;

SA
T

LG
I d

ie
t:

m
iR

-5
51

b,
 m

iR
-2

21
, m

iR
-

37
8,

 le
t7

a 
(↓

)
H

G
I d

ie
t:

m
iR

-1
27

6,
 m

iR
-1

32
, m

iR
-

29
a 

(↓
)

LF
 d

ie
t:

m
iR

-6
61

, m
iR

-1
17

9,
 m

iR
-

13
2,

 m
iR

-2
21

, m
iR

-2
9a

, 
m

iR
-3

78
 (↓

)

A
ss

oc
ia

tio
n 

w
ith

 m
et

ab
ol

ic
 a

nd
 b

od
y 

co
m

po
si

tio
n 

pa
ra

m
et

er
s

M
S,

 m
et

ab
ol

ic
 s

yn
dr

om
e;

 P
B

M
C

, p
er

ip
he

ra
l b

lo
od

 m
on

on
uc

le
ar

 c
el

ls
; W

B
C

, w
hi

te
 b

lo
od

 c
el

ls
; G

SK
3B

, g
ly

co
ge

n 
sy

nt
ha

se
 k

in
as

e-
3 

B
; L

G
I, 

lo
w

 g
ly

ca
em

ic
 in

de
x;

 H
G

I, 
hi

gh
 g

ly
ca

em
ic

 in
de

x;
 

LF
, l

ow
 fa

t; 
C

TR
L,

 c
on

tro
l s

ub
je

ct
s;

 P
PA

R-
γ,

 p
er

ox
is

om
e 

pr
ol

ife
ra

to
r-a

ct
iv

at
ed

 re
ce

pt
or

 γ
; P

PA
R-

α,
 p

er
ox

is
om

e 
pr

ol
ife

ra
to

r-a
ct

iv
at

ed
 re

ce
pt

or
 α

; S
IR

T1
, s

irt
ui

n-
1;

 K
D

, k
et

og
en

ic
 d

ie
t; 

H
PH

, 
hi

gh
 d

ai
ry

 p
ro

te
in

 a
nd

 c
ar

bo
hy

dr
at

e;
 H

PM
C

, h
ig

h 
da

iry
 p

ro
te

in
 a

nd
 m

od
er

at
e 

ca
rb

oh
yd

ra
te

; C
O

N
, l

ow
 d

ai
ry

 p
ro

te
in

 a
nd

 h
ig

h 
ca

rb
oh

yd
ra

te
; S

A
T,

 su
bc

ut
an

eo
us

 a
di

po
se

 ti
ss

ue



	 Journal of Endocrinological Investigation

1 3

and total cholesterol. MiR-340 was down-regulated only in 
the HGI group and positively correlated with triglycerides 
changes. MiR-432 and miR-423 were down-regulated only 
in the LF group and the latter had the same correlations 
reported for miR-139-3p. Finally, let-7c correlated with all 
lipid parameters [71].

The expression of 86 circulating obesity-related microR-
NAs has been explored in obese patients, randomly assigned 
to a moderately high-protein diet (n = 38) or a low-fat diet 
(n = 40), and in normal weight controls (n = 25). Among 
the differentially expressed microRNAs, in obese subjects 
compared to controls seven microRNAs (miR-130a-3p, miR-
142-5p, miR-144-5p, miR-15a-5p, miR-22-3p, miR-221-3p 
and miR-29c-3p) were significantly associated with response 
to low-fat diet and strongly discriminated between respond-
ers and non-responders. In particular, a correlation between 
miR-22-3p expression and the entity of weight loss has been 
observed [72]. Interestingly, several regulators of fatty acid 
metabolism, such as peroxisome proliferator-activated recep-
tor α (PPAR-α) and sirtuin-1 (SIRT1), are confirmed targets 
of miR-22 [73, 74].

A global microRNA profiling has been performed in 
plasma samples obtained before and after weight loss from 
obese women undergoing a 4-week very-low-calorie diet 
and from age-matched lean women. The expression of ~ 800 
microRNAs has been evaluated (n = 8 samples each group) 
and validated in a cohort of 80 samples for each group. 21 
microRNAs were found to be significantly dysregulated in 
obese women at baseline compared to lean women, their 
predicted targets belonged to pathways involved in glucose 
metabolism, inflammation, angiogenesis and cell death. 
Interestingly, the expression of seven microRNAs (miR-
126, miR-208, miR-375, miR-376, miR-433, miR-499, miR-
642) significantly changed in obese women after weight loss 
becoming similar to lean women, suggesting that an acute 
weight loss programme might effectively reverse the marked 
dysregulation of circulating microRNAs in obese subjects 
[75].

The effects of a KD on biochemical parameters, body 
composition and plasma microRNA profile has been evalu-
ated in 36 obese subjects after 6 weeks of intervention. The 
KD is a very low carbohydrate nutritional regimen, char-
acterized by less than 30–50 g of carbohydrates per day. In 
this study a biphasic KD was carried out: in the first 3-week 
phase, carbohydrate content was lower than 30 g per day, 
while in the last three weeks it reached 120 g per day. Dur-
ing the subsequent 6-weeks of follow-up, serum samples 
were collected for a high-throughput screening analysis on 
799 microRNAs. The dietary programme improved body 
mass index (BMI), plasma insulin and triglyceride levels in 
both sexes, while the effect on microRNA expression pro-
file was dissimilar between men and women. In females, at 
the end of the KD programme, miR-148b-3p, miR-26a-5p, 

miR-30e-5p, miR-502-5p, miR-520 h, miR-548d-3p, miR-
590-5p and miR-644a were significantly different compared 
to the baseline; while in males a change in expression was 
observed for miR-30e-5p, miR-502-5p, miR-590-5p and 
miR-644a. Interestingly three microRNAs, let-7b-5p, miR-
143-3p, miR-504-5p, showed the same statistical differ-
ence between baseline and 6 weeks of KD in both sexes. 
Bioinformatics analysis revealed that the differentially 
expressed microRNA target genes were linked to cytokine 
signalling pathways, inflammation and immunity, nutrient 
metabolism, oxidative phosphorylation, PPARs functional 
regulation and insulin signalling pathways [76]. Margolis 
et al., instead focused on the modulation of selected skeletal-
muscle specific microRNAs in serum (c-myomiR: miR-1, 
miR-133a-3p, miR-133b, miR-206) and their relationship 
with protein synthesis rates. In detail, 16 elderly men (mean 
age 64 ± 2 years) were first subjected to a first 7-day period 
of eucaloric weight maintenance (WM) diet, to allow adap-
tation to the subsequent 28-day 30% energy-restricted (ER) 
diet. In the ER period, the authors showed not only an up-
regulation of the c-myomiR score, with significant increase 
of miR-133a-3p and miR-133b, but also an inverse correla-
tion between this score and the whole body protein synthesis 
rate, suggesting that ER may have a negative impact on skel-
etal-muscle regeneration, the top predicted target process 
at bioinformatics analysis. However, this study has several 
limitations, including the small number of participants, the 
lack of muscle biopsy analysis and body composition evalu-
ation, such as fat-free mass [77].

Parr et al., evaluated plasma expression of 13 selected 
microRNAs, previously shown to be modulated by energy 
restriction and with putative roles in weight loss, at baseline 
and after a 16-week diet and physical activity intervention. 
The enrolled patients (n = 111) were subjected to physical 
exercise and randomly assigned to three dietary groups with 
different macronutrient intake: high dairy protein and car-
bohydrate (HPHC), high dairy protein and moderate car-
bohydrate (HPMC), low dairy protein and high carbohy-
drate (CON). Circulating microRNAs were analysed in 40 
patients and further divided into two subgroups on the basis 
of body mass reduction: “high responders”, HiRes, ≥ 10% 
(n = 8 HPMC, n = 5 HPHC, n = 9 CON) and “low respond-
ers”, LoRes, ≤ 5% (n = 6 HPMC, n = 9 HPHC, n = 3 CON). 
In accordance with the above findings reported by Milagro 
et al., higher levels of miR-935 were observed in LoRes 
compared to HiRes at baseline and miR-140, miR-221 and 
miR-223 expression increased after 16-week weight-loss 
intervention, suggesting a putative role of these microRNAs 
as biomarkers of variability in individual response to weight-
loss interventions. Interestingly, miR-935 was the only 
microRNA already higher at baseline in the LoRes group 
whose significant difference was maintained until the end of 
the intervention period. However, an important limitation of 
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this study is related to the combination of dietary regimens 
and physical exercise that does not allow to evaluate the 
impact of the single intervention on the selected circulating 
microRNA profile [78]. The effects of exercise combined 
with dietary intervention has indeed been evaluated in other 
studies. One of them focused on the modulation of endothe-
lial function in a population of obese adolescents. This study 
was carried out on an experimental group (EG) of 37 obese 
male adolescents (12–18 years) and a control group (CG, 
n = 10) of normal weight adolescents. The intervention was 
based on a 6-week calorie restriction diet associated with 
aerobic exercise. Regression analysis indicated a positive 
correlation between changes in serum miR-126 levels and 
BMI, serum levels of endothelium-derived nitric oxide (NO) 
and endothelin-1 (ET-1), before and after dietary interven-
tion in the EG respect to CG. These data suggest that miR-
126 might be involved in the improvement of microvascular 
endothelial function measured by RHI index [79].

microRNA expression in adipose tissue

Kristensen et al., analysed microRNA expression in SAT 
derived from 19 obese patients undergoing a 15-week 
weight-loss strategy including both physical exercise and 
a hypocaloric dietary regimen. They identified nine differ-
entially expressed microRNAs after intervention, but the 
statistically significant modulation of only three of these 
microRNAs was confirmed by validation on a wider cohort 
of patients (n = 38). In detail, miR-29a-3p and miR-29a-5p 
were up-regulated, while miR-20b-5p and miR-454-3p were 
down-regulated (the latter only had a borderline down-reg-
ulation), comparing the baseline with the post-intervention 
expression. In addition, the authors identified 56 predicted 
target genes of these four validated microRNAs and noticed 
a statistically significant inverse correlation between acyl-
CoA synthetase long-chain family member 1 (ACSL1) with 
miR-454-3p; monoglyceride lipase (MGLL) and solute car-
rier family 2 member 4 (SLC2A4), which is the main respon-
sible for glucose uptake into adipocytes with miR-20b-5p; 
lipoprotein lipase (LPL) with miR-29a-3p and finally acyl-
CoA synthetase long-chain family member 4 (ACSL4) and 
signal transducer and activator of transcription 3 (STAT3) 
with both miR-454-3p and miR-20b-5p (Fig. 1). This last 
observation is interesting since these two microRNAs may 
act together in the modulation of genes, such as ACSL4 and 
STAT3, involved in energy homeostasis and metabolism 
[80]. Other studies that analysed microRNA expression in 
SAT have been conducted. In detail, He et al., examined 
possible molecular mechanisms underlying obesity through 
the integration of genetic obesity-associated loci derived 
from the largest genome-wide association study (GWAS) 
meta-analysis for BMI, gene expression and microRNA 
profiles, in adipose tissue from 200 subjects. This approach 

was further supported by the analysis of five publicly avail-
able studies comparing obese and non-obese subjects 
who underwent different dietary intervention strategies. It 
is worth noting that He et al., identified a molecular axis 
involving hypoxia/Glycerol-3-Phosphate Dehydrogenase 1 
Like (GPD1L)/miR-210 that can be linked to fat accumula-
tion and obesity. GPD1L has been recently demonstrated to 
be a regulator of HIF-1α stability and a validated target of 
miR-210, a master regulator of hypoxia. Since adipose tissue 
in patients is scarcely oxygenated, with a consequent relative 
hypoxic status, the authors hypothesized that the increase 
of HIF-1α expression and activity in high fat diet (HFD) 
models could induce an up-regulation of miR-210, with the 
subsequent reduction in GPD1L levels and a further repres-
sion of prolyl hydroxylases (PHDs) activity. All these events 
may determine the activation of a feedback loop that further 
promote HIF-1α accumulation, with subsequent worsening 
of obesity, insulin resistance and adipose tissue inflamma-
tion. Interestingly, low calorie diet was able to induce a 
relative reduction in the hypoxic state and of miR-210 lev-
els, paralleled with an increase of GPD1L levels (Fig. 1) 
[81–83]. Giardina et al. [71] instead evaluated the micro-
RNA profile in a randomly selected representative cohort 
of eight patients subjected to different dietary interventions, 
previously described. The 13 most differentially expressed 
microRNAs in SAT were further selected for validation in 
a wider cohort of 48 patients. The expression of miR-551b, 
miR-221, miR-378 and let7a was down-regulated after the 
LGI intervention. The expression of miR-1276, miR-132 
and miR-29a was down-regulated after the HGI interven-
tion, while the expression of miR-661, miR-1179, miR-132, 
miR-221, miR-29a and miR-378 was down-regulated after 
the LF intervention. Each dietary approach induced a sig-
nificant reduction in body weight, BMI, waist circumfer-
ence, fat mass, fat-free mass and HOMA-IR compared to 
the respective baseline values. Moreover, the expression of 
some microRNAs, namely miR-551b, miR-1179, miR-132, 
miR-221, miR-29a, miR-34a, miR-378, correlated positively 
with biochemical and anthropometric variables, indicating 
that weight loss and changes in body composition, rather 
than dietary composition, could be the main drivers in the 
modulation of microRNAs profile [84].

microRNAs and weight loss: evidence 
from bariatric surgery intervention studies

A wide number of studies focused on the possible relation-
ship between microRNA expression and bariatric surgery 
(Table 2), highlighting that surgically induced weight loss 
is effective in rescuing microRNA signature [85].
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microRNA expression in white blood cells

Changes in inflammatory toll-like receptor (TLR)/nuclear 
factor kB (NFkB) related microRNAs have been evaluated 
in circulating monocytes from obese subjects undergoing 
RYGB and lean controls. Microarray analysis identified 133 
differentially expressed microRNAs in circulating mono-
cytes of obese subjects (n = 9) compared with lean controls 
(n = 6). In addition, target prediction revealed that nine dys-
regulated microRNA families were associated with TLR/
NFkB pathway, among them, in a larger validation cohort 
of 14 lean controls and 21 morbidly obese patients, only the 
miR-181 family resulted to be down-regulated in monocytes 

of obese patients and its dysregulated levels were restored 
after bariatric surgery [86].

Circulating microRNAs

In the context of bariatric surgery, several studies focused on 
the expression pattern of circulating microRNAs before and 
after surgical intervention. In 2013, Ortega et al., analysed 
the differences in the microRNA expression profile before 
and after RYGB in plasma samples from six morbidly obese 
patients. The results were validated in an independent cohort 
of 22 obese patients and 14 circulating microRNAs resulted 
significantly modulated. In particular, the authors observed 
a marked reduction in miR-16-1, miR-122, miR-140-5p, 

Fig. 1   Caloric restriction and/or bariatric surgery modulation of adi-
pose tissue microRNAs. a Caloric Restriction. The increase of miR-
29a-3p after caloric restriction was paralleled with lipoprotein lipase 
(LPL) reduction, while the reduction of miR-454-3p, miR-20b-5p and 
miR-210 were paralleled with the increase of other pivotal players in 
controlling weight loss and insulin resistance. Specifically, acyl-CoA 
synthetase long-chain family member 1 (ACSL1) up-regulation was 
related with miR-454-3p down-regulation. Monoglyceride lipase 
(MGLL) and solute carrier family 2 member 4 (SLC2A4) were 

related with miR-20b-5p modulation. While acyl-CoA synthetase 
long-chain family member 4 (ACSL4) and signal transducer and acti-
vator of transcription 3 (STAT3) up-regulation was related with both 
miR-454-3p and miR-20b-5p down-regulation. The reduction of miR-
210 was coupled with Glycerol-3-Phosphate Dehydrogenase 1 Like 
(GPD1L) increase. b Bariatric surgery. The increase of miR-122 was 
linked with peroxisome proliferator-activated receptor γ (PPAR-γ), 
while miR-223-3p and miR-519d were related with glucose trans-
porter 4 (GLUT-4) and PPAR-α up-regulation, respectively
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miR-193a-5p and an up-regulation of miR-221 and miR-
199a-3p [70].

Nunez-Lopez et al., were interested in the identification 
of non-invasive biomarkers for metabolic changes resulting 

from RYGB. They recruited 22 morbidly obese subjects who 
had undergone RYGB surgery 1–3 months before. At base-
line evaluation, subjects were divided in two subgroups: 11 
subjects were subjected to a 6-month exercise-programme 

Table 2   Studies that reported changes in microRNA expression after bariatric surgery

CTRL, control subjects; RYGP, Roux-en-Y gastric by-pass; PBMC, peripheral blood mononuclear cells; T2D, type 2 diabetes; SAT, subcutane-
ous adipose tissue; VAT, visceral adipose tissue; LSG, laparoscopic sleeve gastrectomy; BMPR2, bone morphogenic protein receptor 2; FOXP, 
forkhead box protein P1; IGF1R, insulin-like growth factor receptor 1; LAGB, laparoscopic adjustable gastric banding

Study Population Intervention Source Regulated miRNAs Role/target

Hulsmans et al. 2012 
[86]

9 obese
6 CTRL

RYGB PBMC miR-181 (↑) TLR-NFkB pathway

Ortega et al. 2013 [70] 6 obese RYGB Plasma miR-16-1, miR-122, 
miR-140-5p, miR-
193a-5p (↓)

miR-221 and miR-
199a-3p (↑)

–

Nunez-Lopez et al. 
2017 [87]

22 obese RYGB Plasma miR-15a (↑)
miR-34a, miR-122 (↓)

Biomarkers of weight 
loss /glucose metabo-
lism

Atkin et al. 2018 [88] 29 T2D RYGB Plasma miR-7-5p, let-7f-5p, 
miR-15b-5p, miR-
320c, miR-205-5p, 
miR-335-5p (↑)

let-7i-5p (↓)

Inflammation, adipocyte 
proliferation, ß-cell 
function, thyroid and 
pituitary function

Hubal et al. 2017 [92] 6 obese women RYGB Plasma and serum 
adipocyte-derived 
exosomes

let-7a-5p, miR-16-5p Insulin signalling

Bae et al. 2019 [93] 16 obese
18 CTRL

LSG (n = 2) RYGB 
(n = 14)

Serum exosomes miR-424-5p Biomarker of weight loss

Macartney-Coxson 
et al. 2020 [94]

15 obese women RYGB SAT
VAT

SAT:
miR-23a-5p, miR-

27a-5p, miR-200c-3p, 
miR-223-3p, miR-
1246, miR-24-2-5p, 
miR-128, miR-421, 
miR-3178, miR-
1224-5p, miR-221, 
miR-22, miR-762 (↓)

VAT:
miR-223-3p (↓)

Inflammation, glucose 
uptake

Liao et al. 2018 [98] 20 obese
8 CTRL

LSG SAT
VAT

VAT:
miR-122 (↑)

PPAR-γ

Kurylowicz et al. 2016 
[99]

20 obese
7 CTRL

Bariatric surgery SAT miR-146b-3p, miR-
146b-5p, miR-
223-3p, miR-223-5p, 
miR-941 (↑)

BMPR2, FOXP1, IGF1R

Ortega et al. 2015 
[100]

16 obese RYGB SAT miR-155, miR-221, 
miR-130b (↓)

Inflammation

Ortega et al. 2015 
[101]

9 obese women RYGB SAT miR-19a/b, miR-
146a/b, miR-155, 
miR-193b, miR-221, 
miR-222, miR-223, 
miR-376c, miR-411 
(↓)

Glucose uptake, lipid 
metabolism, energy 
homeostasis

Nardelli et al. 2017 
[102]

3 obese
2 CTRL

LAGB SAT miR-519d, miR-
299-5p, miR-212, 
miR-671-3p (↓)

miR-370, miR-487a (↑)

PPAR-α (miR-519d)
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(EX) and the other 11 to a control health education interven-
tion (CON). Interestingly, 94 plasma microRNAs, selected 
on the basis of their relationship with metabolism, were ana-
lysed. The authors identified three patterns of circulating 
microRNA changes in the patient cohort at the end of the 
intervention. Specifically, three microRNAs were modulated 
both in the CON and in the EX group (miR-15a increased, 
while miR-34a and miR-122 decreased), suggesting that 
their modulation may indicate a general response to weight 
loss induced by RYGB surgery; three microRNAs were 
modulated only in the CON group (miR-7 and miR-106 
increased, while miR-221 decreased) and four microRNAs 
only in the EX group (miR-135b, miR-144 and miR-206 
decreased, while miR-149 increased). Interestingly, the 
10 above mentioned microRNAs significantly correlated 
with indices of HOMA-IR, β-cell function, body composi-
tion, plasma lipids and liver function. Moreover, miR-15a, 
miR-7, miR-106b and miR-135b correlated, already at the 
baseline, with insulin sensitivity (miR-15a), glucose effec-
tiveness (miR-7 and miR-106b), and acute insulin response 
to glucose (miR-135b), suggesting their role as predictive 
biomarkers of cardiometabolic changes [87].

Atkin et al., analysed plasma microRNA expression in 
obese patients (n = 29) with T2D, undergoing RYGB. Six 
microRNAs (miR-7-5p, let-7f-5p, miR-15b-5p, miR-320c, 
miR-205-5p, miR-335-5p) significantly increased, while let-
7i-5p decreased after surgery. Interestingly, a marked reduc-
tion in blood glucose and glycated haemoglobin (HbA1c) 
levels was observed after surgery in a high percentage of 
patients (more than 60%) [88]. Most of the regulated micro-
RNAs were found to be expressed in natural killer cells, 
which play critical roles in obesity-induced inflammation 
[89]. Furthermore, the same microRNAs have been shown 
to be involved in different biological processes, such as adi-
pocyte proliferation, ß-cell function, thyroid and pituitary 
function [90, 91].

Hubal et  al., explored plasma and serum adipocyte-
derived-exosomal microRNAs in six obese women before 
(T0) and 1-year (T1) after RYGB. Interestingly, 29 differ-
entially expressed microRNAs between T0 and T1 were 
significantly correlated to improvement in the HOMA-IR. 
Pathway analysis identified the Insulin Receptor Signalling 
as one of the most enriched pathways. Moreover, two of the 
above mentioned microRNAs (let-7a-5p, miR-16-5p) cor-
related not only to the Insulin Receptor Signalling, show-
ing the highest number of targets in this pathway, but also 
to branched chain amino acids (BCAAs) levels, which are 
strictly connected to insulin dysregulation. These findings 
indicate that changes in circulating adipocyte-derived exo-
somal microRNAs may be connected with post-surgery 
improvements in glucose homeostasis and insulin resist-
ance [92].

Other authors explored circulating microRNAs in serum 
exosomes obtained from obese patients (n = 16), before and 
6 months after bariatric surgery, and from healthy subjects 
(n = 18). Nine exosomal and 32 circulating microRNAs dis-
played higher and lower expression, respectively, in obese 
patients after intervention compared to baseline. Remark-
ably, among the nine up-regulated microRNAs, the levels 
of miR-424-5p before surgery positively correlated with 
weight loss after intervention [93]. Due to their high stabil-
ity, exosomal microRNAs are novel candidate biomarkers 
for several pathological conditions. Since a considerable 
number of exosomal microRNAs decreased after bariatric 
surgery, in parallel with the reduction in fat mass, it can 
be speculated that most circulating exosomal microRNAs 
derive from adipose tissue.

microRNA expression in adipose tissue

Although mounting evidence has focused on circulating 
microRNA profiling to individuate candidate biomarkers of 
response to weight loss after dietary intervention or bariatric 
surgery, a debate is still on-going on whether circulating 
microRNA dysregulation directly reflects changes at a tis-
sue or cellular level. In light of this, several studies focused 
on the differences in microRNA expression profile between 
SAT and VAT, before and after bariatric surgery.

Recently, microRNA expression has been explored in 
SAT and VAT of obese women (n = 15) collected both dur-
ing RYGB and then after 17 months, at the time of a second 
surgery for other purposes. Several microRNAs, namely 
miR-23a-5p, miR-27a-5p, miR-200c-3p, miR-223-3p, 
miR-1246, miR-24-2-5p, miR-128, miR-421, miR-3178, 
miR-1224-5p, miR-221, miR-22 and miR-762, were signifi-
cantly down-regulated after surgery in SAT, while only miR-
223-3p showed significant down-regulation in VAT [94]. 
Selected targets of miR-223-3p, which have been found to be 
over-expressed in obesity [95], have been evaluated. In both 
tissues, NLRP3 (NACHT, LRRand PYD domains-contain-
ing protein 3) and leptin (LEP) mRNAs were significantly 
down-regulated, while glucose transporter 4 (GLUT-4) 
was up-regulated after surgery. Furthermore, the GLUT-4 
mRNA positively correlated to miR-223-3p expression in 
SAT (Fig. 1) [94]. Remarkably, the NLRP3 consists of a set 
of intracellular sensors and receptors, known as inflamma-
some, recognized to act as key contributors to the chronic 
inflammatory state observed in obesity [96].

Liao et al., compared the microRNA expression pattern in 
SAT and VAT in 20 patients undergoing LSG and 8 normal 
weight subjects undergoing laparoscopic cholecystectomy. 
SAT and VAT from obese patients were characterized by 18 
differentially expressed microRNAs: 12 were significantly 
up-regulated and 6 down-regulated in VAT. Conversely, 
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these differences were less marked in non-obese subjects. 
Among the differentially expressed microRNAs, miR-122 
was the most up-regulated in VAT from both obese and non-
obese subjects in respect to SAT, and its over-expression 
was confirmed by RT-qPCR in a wider cohort of patients. 
By over-expressing this microRNA in fully differentiated 
mouse 3T3-L1 cells, the authors identified the peroxisome 
proliferator-activated receptor γ (PPAR-γ) as the most sig-
nificantly altered pathway. Moreover, the over-expression of 
miR-122 induced a significant reduction in PPAR-γ mRNA, 
while its inhibition led to a significant increase in PPAR-γ 
mRNA expression levels, suggesting that miR-122 regulates 
PPAR-γ, one of the most important players in adipocyte dif-
ferentiation (Fig. 1) [97, 98].

Kurylowicz et al., instead compared microRNA profile 
before and after bariatric surgery only in SAT. In detail, they 
analysed the microRNA profile in VAT and SAT from 10 
obese patients (O), VAT and SAT from 7 normal weight sub-
jects (N) and SAT from 10 obese patients about 2-years after 
surgery-induced weight loss (PO). By focusing on the differ-
ences in microRNA expression between SAT samples before 
and after weight loss (SAT-O vs SAT-PO), the authors iden-
tified 58 over and 3 under-expressed microRNAs in SAT-O 
compared with SAT-PO. Five of them, namely miR-146b-3p, 
miR-146b-5p, miR-223-3p, miR-223-5p and miR-941, were 
also under-expressed in SAT-N in respect to SAT-O. How-
ever, there were also differences in the microRNA expression 
pattern between SAT-PO and SAT-N samples. In particular, 
79 microRNAs were differentially expressed: 42 were under-
expressed, whereas 37 over-expressed in SAT-PO in respect 
to SAT-N, indicating that obesity may determine persistent 
miRNome changes. Finally, the authors reported that several 
targets with well-known roles in obesity, such as the bone 
morphogenic protein receptor 2 (BMPR2), the forkhead box 
protein P1 (FOXP1) and the insulin-like growth factor recep-
tor 1 (IGF1R), comprised the highest number of binding 
sites in the differentially expressed microRNAs [99].

The SAT microRNA profile of obese subjects was also 
analysed by other authors. In 2015, Ortega et al. evaluated 
the microRNA profile changes in SAT from obese subjects 
after laparoscopic RYGB. The first study enrolled 16 obese 
patients in which 15 microRNAs showed significant modifi-
cation after surgery-induced weight loss. Among them, miR-
155, miR-221 and miR-130b displayed decreased expression 
after treatment [100]. The same authors identified significant 
reduction in 11 microRNAs (miR-19a/b, miR-146a/b, miR-
155, miR-193b, miR-221, miR-222, miR-223, miR-376c, 
miR-411) in SAT samples of nine morbidly obese women 
after surgery-induced weight loss. Interestingly, three of 
them, namely miR-155, miR-221 and miR-222, were asso-
ciated with obesity-related inflammation and weight loss, 
suggesting that microRNA modulation after weight loss 
may underline improvement in patients’ inflammatory status 

[101]. Subsequently, in 2017 Nardelli et al., analysed micro-
RNA expression pattern in SAT obtained from three severely 
obese women before (T0) and three years after LAGB (T1), 
and from two lean subjects, undergoing laparoscopic chol-
ecystectomy. Specifically, at T0, 43 microRNAs resulted 
significantly up-regulated and 15 down-regulated between 
obese and lean subjects. Of the above cited microRNAs, four 
resulted down-regulated (miR-519d, miR-299-5p, miR-212, 
miR-671-3p) and two up-regulated (miR-370, miR-487a) 
also in T1 compared to T0. MiR-370, miR-487a and miR-
519d dysregulation was also confirmed by validation assays. 
Interestingly, the level of PPAR-α protein, a validated target 
of miR-519d [53], increased at T1 compared to T0, sug-
gesting that miR-519d targets PPAR-α in SAT and may be 
involved in the improvement of lipid metabolism and SAT 
function after surgery (Fig. 1) [102].

Overall, in a meta-analysis of 17 studies evaluating the 
differential expression of microRNA before and after bari-
atric surgery both in humans and in animal models, several 
microRNAs were reported to be consistently down-regulated 
(miR-93-5p, miR-106b-5p, let-7b-5p, let-7i-5p, miR-16-5p, 
miR-19b-3p, miR-92a-3p, miR-222-3p, miR-142-3p, miR-
140-5p, miR-155-5p, miR-320-3p) or up-regulated (miR-
7-5p and miR-320c), with high concordance between stud-
ies [103]. However, it is worth highlighting that marked 
differences between the selected studies have emerged (i.e. 
population, type of intervention, follow-up length, collected 
samples) and further research is therefore needed to draw 
firm conclusions.

Conclusions and future perspectives

Over the last 20 years, obesity and obesity-related disor-
ders have rapidly become a public health concern world-
wide. Recently, microRNAs have gained much attention 
as epigenetic modulators in obesity, helping understand 
the pathophysiological mechanisms underlying this condi-
tion. Several microRNAs have been found to be differen-
tially regulated in obesity and their expression was signifi-
cantly modified by different weight-loss approaches, such 
as diet, physical activity and bariatric surgery. Specifically, 
the above mentioned studies explored microRNAs expres-
sion in several compartments, such as blood cells, serum, 
plasma, adipose tissue, and the effect of a wide variety of 
currently available intervention strategies for obesity treat-
ment has been evaluated. In particular, dietary interventions 
with marked differences in macronutrient composition have 
been compared, highlighting different effects on microRNA 
expression profile. These findings suggest that weight loss 
obtained through entirely different dietary strategies might 
be mirrored by profound changes in microRNA signature. 
As regards bariatric surgery, it should be highlighted that 
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the vast majority of the available intervention studies have 
focused on the effect of the malabsorptive procedure RYGB, 
whereas data on other widely adopted surgical approaches, 
such as LSG and LAGB, are still limited. Future research is 
therefore needed to address this issue to possibly compare 
the effect of different surgical interventions on circulating 
and tissue microRNAs expression. Of note, the assessment 
of microRNA profile in adipose tissue before and after obe-
sity treatment approaches gave critical information about 
the metabolic changes occurring in response to weight loss. 
Indeed, the definition of the mechanisms through which 
microRNAs regulate adipose tissue metabolism is of utmost 
interest, as it can lead to significant improvement in obe-
sity treatment. Importantly, diverse patterns of microRNA 
expression between VAT and SAT have been observed in 
several studies, suggesting that weight loss might differently 
modify the metabolic profile of these tissues.

Furthermore, substantial differences in microRNAs 
expression have emerged between responders and non-
responders to dietary and surgical interventions. Considering 
the consistent variability in individual response to weight-
loss interventions, circulating microRNAs might be valuable 
biomarkers of efficacy, possibly helping in the differentiation 
between responders and non-responders. Remarkably, a wide 
variety of dysregulated microRNA target pathways, some of 
them crucially involved in glucose and lipid metabolism, 
energy homeostasis, inflammation, immunity, endothelial 
function, have also been identified, helping understand the 
pathophysiological mechanisms underlying obesity and 
obesity-related metabolic diseases.

It should be highlighted that some discrepancies 
emerged between studies. Nevertheless, these conflict-
ing results might be attributed to several factors, such as 
heterogeneity of the included populations, different sam-
ples collected (plasma, serum, adipose tissue), type of 
intervention adopted (diet composition, physical activity 
interference, surgical procedure), variability in the analytic 
methods for microRNA profiling. As regards the latter, in 
future studies a strong effort should be made in analys-
ing microRNAs through absolute quantification and RNA 
identification. Indeed, applying standardized techniques 
for RNA extraction and performing highly multiplexed 
single molecule counting would be a crucial advance in 
analytical methodologies.
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