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Adaptive phase estimation through a genetic algorithm
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Quantum metrology is one of the most relevant applications of quantum information theory to quantum
technologies. Here, quantum probes are exploited to overcome classical bounds in the estimation of unknown
parameters. In this context, phase estimation, where the unknown parameter is a phase shift between two modes
of a quantum system, is a fundamental problem. In practical and realistic applications, it is necessary to devise
methods to optimally estimate an unknown phase shift by using a limited number of probes. Here we introduce
and experimentally demonstrate a machine learning-based approach for the adaptive estimation of a phase shift
in a Mach-Zehnder interferometer, tailored for optimal performances with limited resources. The employed
technique is a genetic algorithm used to devise the optimal feedback phases employed during the estimation in
an offline fashion. The results show the capability to retrieve the true value of the phase by using few photons, and
to reach the sensitivity bounds in such small probe regime. We finally investigate the robustness of the protocol
with respect to common experimental errors, showing that the protocol can be adapted to a noisy scenario.
Such approach promises to be a useful tool for more complex and general tasks where optimization of feedback
parameters is required.
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I. INTRODUCTION

A large number of physical problems can be mapped in a
phase estimation task, in which an unknown relative phase
shift has to be measured [1–3]. Notable examples are the
following: detection of gravitational waves [4], atomic clocks
[5], measurement on biological systems [6], measurements of
forces [7], lithography [8,9], imaging [10,11], spectroscopy
and frequency measurements [12,13]. In this context, the fun-
damental bounds on the achievable sensitivity are provided by
quantum mechanical laws [14–17]. More specifically, the goal
of quantum metrology is to exploit quantum probes to enhance
the achievable sensitivity with respect to classical strategies.
One of the most important physical systems employed for
phase estimation is represented by photons [17,18].

In many realistic scenarios, the number of probes that can
be exploited in the estimation process is limited. Examples
are provided by highly sensitive biological samples that can
be damaged by high fluxes of photons [6,19,20], fragile
atomic or molecular systems [21–25], or communication sce-
narios where few photons are employed [26]. In the single
parameter case, theorems guarantee the possibility to reach
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the fundamental bounds achievable by using a given probe.
However, such capability is guaranteed only in the asymptotic
regime where a large number of copies of the probe state are
employed [27]. In the limited data scenario [28,29], there is no
standard protocol to reach the ultimate bounds, while different
recipes can be adopted. Among different approaches (even
protective measurements can be exploited [30]), a powerful
tool to enhance the convergence of the estimation is provided
by adaptive schemes [17,31]. Adaptive protocols employ
additional control parameters during the estimation process,
which are in general tuned according to the acquired knowl-
edge on the system [32,33]. Different adaptive strategies have
been devised and can be grouped in two general classes,
namely, online and offline techniques. The former class refers
to protocols that calculate the optimal feedback during the
experiment at each step of the algorithm, according to some
heuristic. Notable examples of protocols lying in this category
are adaptive Bayesian techniques [32–37]. Conversely, offline
schemes are those where the rules to tune the feedback
parameters are calculated in advance before the estimation
process. In particular, those protocols lying in the offline class
are crucial for different practical scenarios. For instance, they
are necessary when the computational power available during
the estimation process is limited, or when feedback controls
are used for fast processes and the time available for an
online calculation is small. However, the space of all possible
actions for the feedback parameters to be calculated in an
offline approach can be huge, and many parameters functions
optimization in such space is a computationally expensive
task. In order to handle the complexity of this optimization,
an effective solution is provided by machine learning.
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Machine learning techniques [38,39] have been identified
as a powerful tool to enhance quantum information tasks
[40,41], including calibration of quantum sensors [42], state
reconstruction and tomography [43–46], designing and opti-
mizing experiments and measurements [47–51], even learn-
ing concepts and models [52,53], and enhancing quantum
metrology tasks [37,54–64]. In the context of phase estima-
tion, different machine learning techniques have been used
to calculate feedback actions in the offline approach. Here
the adaptive control parameters can be realized by additional
phase shifts inside the interferometers. Hence, the goal of
an offline approach is to precalculate the possible feedback
phases according to some heuristic. Notably, two machine
learning techniques have been applied for such purpose and
are particle swarm optimization (PSO) [54,55], whose effec-
tiveness has been demonstrated in a single photon experiment
[37], and differential evolution (DE) [56,57]. These are evo-
lutionary algorithms [65,66] inspired by biological dynamics,
which are able to solve optimization problems using a trial and
error approach, and thus finding global maxima. The solution
of such algorithms, applied in the context of phase estimation,
are lists of optimal feedback phases to be employed during the
process. Such lists live in a high-dimensional space and are
optimal in the sense that maximize a chosen figure of merit,
called fitness, related to the precision of the estimation. The
choice of the fitness function is performed depending on the
specific problem at hand. Another machine learning technique
inspired by natural processes is reinforcement learning. This
approach is based only on the acquired data, without using
an explicit modeling of the problem. Much like evolution-
ary algorithms, reinforcement learning is a technique also
able to optimize functions, but using rewards for positive
actions instead of maximization of fitness function. Evolu-
tionary algorithms can improve reinforcement learning and
vice versa [67]. The ability of reinforcement learning has been
demonstrated in devising quantum-error-correction strategies
through feedback based measurements [68], while coherent
control on qubits can be used for decisions by learning agents
[69]. In general, some machine learning techniques can be
more suitable than others, depending on the task. It is then
of crucial importance to find and explore different approaches
able to enhance phase estimation processes.

Here we theoretically introduce and experimentally
demonstrate a technique based on a genetic algorithm (GA)
[70]. These dynamic algorithms are inspired by natural selec-
tion and start from a set of candidate solutions which evolve in
time to find high quality ones. Genetic evolutionary strategies
have been applied for different quantum information tasks
[47,51,71]. In our case, the aim is to find optimal feedback
strategies to reach the fundamental limits in phase estimation
experiments. More specifically, the algorithm uses the survival
of the fittest strategy to evolve a population of candidate
solutions, that is, feedback phases. The genetic operators of
selection, crossover and mutation are applied, to progressively
find a better set of solutions in the search space. Finally,
given a halting condition, the best solution will, with high
probability, be the optimal one maximizing the sensitivity
of the estimation. Once the best solution is found, we em-
ploy the obtained feedback lists to experimentally perform
phase estimation in a photonic platform with a sequence of

single-photon states. By using such approach, we show that
the performed phase estimation experiments reach the ulti-
mate limit in the precision. In the experiment, such limit
is provided by the standard quantum limit (SQL) [14,27].
Showing the performance of the estimation process for dif-
ferent phase shifts, we demonstrate the effectiveness of a GA
approach as an offline protocol for quantum phase estimation.
Furthermore, we also show by means of simulations the
robustness of this approach to common sources of noise.

II. GENETIC ALGORITHM FOR ADAPTIVE PHASE
ESTIMATION

A. Adaptive phase estimation

Photonic phase estimation employs light probes in an
interferometric scheme to estimate an unknown phase shift
between two optical modes. A paradigmatic scheme for this
task is a Mach-Zehnder interferometer (MZI). Here two input
modes interfere in a first optical element. Then, the two modes
of the MZI, after acquiring a relative phase shift φ, interfere
in a second optical element. A MZI can be encoded in photon
path, where photons interfere in beamsplitters as shown in
Fig. 1(a). The same structure can be obtained in other degrees
of freedom, such as polarization, where modes are mixed via
half wave plates [Fig. 1(b)] [17]. The goal of the process is to
estimate the unknown phase shift φ by measuring the probe
states after propagation through the interferometer. When the
probes are composed of single photons, the phase-dependent
output probabilities corresponding to the two possible mea-
surement results (x = 0, 1) are cos2(φ/2) and sin2(φ/2) re-
spectively. Through the dependence of the output probabil-
ities from the unknown phase, one can extract information
on the parameter. The amount of information available is
quantified by a quantity called Fisher information, defined
as F (φ) = ∑

x P(x|φ)(∂log(P(x|φ))/∂φ)2, where P(x|φ) is
the likelihood function that corresponds to the probability to
obtain a measurement result x, given a certain value of the
phase φ. The Fisher information is related to the bound on
the variance achievable with any arbitrary unbiased estimator
by the Cramér-Rao bound (CRB) [27]: �φ2 � 1/[N F (φ)],
where N represents the number of identical independent
probes. For the case of a MZI seeded by single photons,
the Fisher information is constant for any phase φ and the
CRB reads �φ2 � 1/N , that is, the standard quantum limit
(SQL) which represents the maximum precision achievable
with classical probe states. In the limit of a large amount
of measurements, estimators such as maximum likelihood or
bayesian ones permit to saturate the SQL [27]. However, this
is no more true when the measurements and data are limited
[72]. In this regime, the Fisher information may not represent
the ultimate achievable bound, and nontrivial approaches have
to be adopted to optimize the convergence of an estimation
process to the ultimate limits. In this way, even if the Fisher
information does not depend on the unknown phase, the
convergence of the estimation process (in terms of number
of resources N necessary to saturate the bound) can be faster
around certain phases when the number of data is limited.

Hence, one of the most powerful approach for this problem
is provided by adaptive protocols [32,33]. In an adaptive
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(a) (b)

FIG. 1. Adaptive phase estimation. (a) Conceptual scheme of a Mach-Zehnder interferometer in the photon path degree of freedom. The
interferometer is composed of two cascaded beam splitters (BS) and relative phase shifts are inserted between the two paths. Single photons
are injected along an input of the interferometer in order to estimate the unknown phase shift φ. At each step k of the adaptive protocol,
the control phase shift �k is calculated by a processing unit, according to an heuristic that exploits the previous dichotomous measurement
result xk = 0, 1 at step k − 1 from detectors (D). (b) Experimental setup, corresponding to a MZI in the polarization degree of freedom able
to implement adaptive phase estimation. A spontaneous parametric down-conversion source generates pairs of photons: one photon (signal)
of each pair enters in the interferometer, while the other acts as trigger. After a polarizing beam splitter (PBS) and a first half wave plate
(HWP) rotated by 22.5◦, the signal photon is prepared in a diagonal polarization state and experiences the unknown phase shift φ between the
two polarizations H and V , inserted by the first liquid crystal LC1. The control phase shift �k at step k is applied by a second liquid crystal
LC2, which is driven by a processing unit that applies the GA-optimized feedback according to the previous measurement result xk−1. The
measurement stage is composed of a final HWP rotated by 22.5◦, a PBS and single-photon detectors (APD) at the interferometer outputs. The
result x is generated by the coincidence between the signal photon and the trigger one.

protocol for phase estimation, an additional controllable
known phase shift � can be introduced in the interferometer.
The value of � can be changed depending on the previous
measurement results, so as to tune the total phase shift inside
the interferometer near the optimal point during the estimation
process. Consider N single photons which are injected, one
by one, in one input port of a MZI. The feedback phase at
step k will be chosen according to some heuristic and to all
previous measurement results {x1, x2, . . . , xk−1}. In the case of
offline protocols, the rules to change the feedback phase � are
calculated in advance before the experiment. The list of all the
feedback actions is called a policy. Different machine learning
techniques have been exploited to calculate such policies
[54–57]. Here, we introduce a novel technique exploiting
a genetic algorithm as an offline approach to calculate the
policies for phase estimation.

B. Genetic algorithm

Genetic algorithms represent a class of evolutionary com-
putation approach inspired by Darwin’s theory of natural
selection [70]. Different search-based optimization problems
can be faced by GAs. The elements of the search space are
termed individuals and represent the possible solutions of the
optimization. The aim of the algorithm is to find the individual
which optimizes a certain figure of merit called fitness. Start-
ing from a population, which is a group of individuals, the GA
evolves it in the search space. The evolution of the population
corresponds to moving in the search space. The main principle
of the algorithm is biological evolution based on survival of
the fittest individuals. GAs are suitable for problems with
large search space, requiring no initial information about the
nature of the solutions, which is a common scenario for many
real world problems. The algorithm decision making also has

an advantage in the exploration-exploitation trade-off helping
the algorithm to avoid local extremas, and move towards a
globally optimum solution in the search space. GAs can be
used in a large variety of problems like image processing,
artificial intelligence in robotics, computer games, optimiza-
tion of parameters of other machine learning algorithms like
the weights of neural networks, and a variety of engineering
problems among others [73,74].

Each candidate solution of the optimization problem has a
defined structure (chromosome), that is composed of genes.
In some problems, the solutions are represented with binary
encoding of the genes, as arrays of 0s and 1s, but encoding
using other structures is also possible, for instance the genes
can be encoded in the elements of a vector of real values.
The goodness of each solution is quantified by the so-called
fitness score, calculated through a fitness function that is
determined by the objective function of the problem. Such
objective function is at the basis of the optimization in the
algorithm. During the evolution process, some of the initial
set of solutions are selected for reproduction and recombi-
nation, according to particular techniques, to move towards
new solutions (offspring) in the searching space. The off-
spring produced solutions for the next generation (or iteration)
undergo a process of mutation, leading to the creation of
a new generation of individuals. In particular, the genes of
the offspring solutions depend on the properties inherited
from the previous generation through crossover and random
mutation processes. The individuals with higher fitness scores
have a larger probability of being selected for the mating
process, that allows the production of new fitter individuals.
This method ensures the survival of better solutions in the
iterative evolutionary process, until the termination criteria is
reached or the search saturates in some extrema, either global
or local.
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FIG. 2. Conceptual model for the evolution employed by a genetic algorithm. The humans shown represent an individual or chromosome,
with a set of properties known as genes shown by the board they hold. The algorithm starts with the initialization of a group of random
individuals, known as population. The population then proceeds to start a cycle of application of genetic operators, namely, fitness calculation,
selection, crossover, mutation, and infection. The cycle ends depending on a halting condition and returns the best individual as output. The
fitness operation assigns a fitness score to all individuals and sorts them accordingly on that basis. The selection operator selects an individual
from the population each time it is used. The crossover operation uses the selection operation to pair up two individuals and produce offspring
from them. This reproduction is repeated till the population size is achieved. The produced offsprings then mutate randomly using the mutation
operation and the infection operation with some probability replaces one of the individuals with a randomly created new individual. Further,
during all the process the individual with highest fitness after the sorting process, shown by the king, is immune to mutation, infection and is
not replaced by the offsprings. The king may or may not change at each cycle.

In this work, we exploit a modified version of genetic
algorithm (see Fig. 2) suitable to perform optimization in
the continuous search space of real vectors representing the
policies to be employed in the phase estimation process. We
mention in detail the steps of the used GA (for pseudocode,
see algorithm 1), and report the employed parameters in
Table I.

1. Population initialization and Fitness calculation

The first step of the protocol is the initialization of a
population: a set of lists {��} of feedback phase shifts, corre-
sponding the algorithm chromosomes, is randomly generated.
This initialization can be realized also taking into account

TABLE I. Parameters employed for the GA. List of all param-
eters value for the adaptive estimation algorithm based on a GA
approach.

Parameter Value

Number of averaged phases
10000

for Fitness calculation
Population size 12
Mutation rate 0.55

0.25 for N < 25,
Infection rate

else N/100
Number of elite chromosomes 1

Tournament selection size 5

eventual prior information on where the optimal solutions
are expected to be located in the search space. In our case,
we consider a search space limiting the possible unknown
phases in the range [0, π ]. In the case of a phase estimation
experiment using N single photons, the chromosome associ-
ated to each individual is represented by a vector �� ∈ RN

of N real values. Such quantity corresponds to the policy to
be applied during the experiment. In particular, during the
optimization of the policy with N probes, the population is
initialized with the first two chromosomes taken from the
best policy for N − 1 probes, with a Gaussian shift in each
gene value having a standard deviation linearly decreasing as
SQL. Instead, the last value (N th value) in such policies is
chosen as 0. Then, the rest of the population is initialized
with completely randomly created chromosomes. This kind of
initialization ensures that information from previous optimal
policies is properly exploited during the following search
processes.

Each candidate solution is then associated to a fitness
score, which quantifies the sensitivity of the policy in the
estimation of the unknown phases. Then, it is necessary to
simulate the estimation of different unknown phases to calcu-
late the fitness. After each step in the simulation, the feedback
phase �k to be applied at kth step, is updated according to the
following logarithmic-search heuristic [54,55]:

�k = �k−1 − (−1)xk−1��k, (1)

where xk−1 ∈ {0, 1} is the dichotomous outcome of the mea-
surement at (k − 1)th step. In this approach, the estimator φest

for the unknown phase φ is provided, up to a constant phase,
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by the last value �N of the feedback phase, updated after the
last measurement result [54]. The fitness S of a policy ��, is
given by S(��) = | ∫ π

−π
p(θ |��)eıθ dθ |, where θ = φest − φ

is the error on the estimated value of the phase, and p(θ |��)
is the probability of the error θ using the policy �� in the
estimation. Such quantity is computed averaging over 105

values of unknown phases, uniformly drawn in the interval
[0, π ]. The chosen figure of merit to be minimized during the
phase estimation problem is the Holevo variance V H , that is
related to the fitness function as follows [75]:

V H = S(��)−2 − 1. (2)

2. Genetic operators

The initial population is improved through an iterative pro-
cess of genetic operations applied on the individual solutions
of the population. The fitness score assigned to the individuals
determines the best element of the population and also the
halting criteria of the optimization process. Three genetic op-
erators, namely, selection, crossover, and mutation are applied
to the population during the iteration process. In particular,
we employ the process of elitism among the individuals:
certain individuals with a very high fitness are immune to
the crossover and mutation techniques. This method ensures
the survival of the best solutions of the previous generation
into the new generation, creating a better mating pool for
the next iteration, and preserving the quality of the best
candidate solutions. Our algorithm uses a population size of
12 individuals, with a single elite solution immune to changes
during each generation.

Selection. In each consecutive iteration, an appropriate
number of pair of individuals, the parents, are selected to re-
produce and form the new generation. The parents are selected
through a method where the solutions with higher fitness have
a better chance to be extracted for the mating process. A se-
lection technique could select the two individuals with highest
fitness, but this voids the use of genetic diversity which is
the basis of evolution. This would also restrict the search for
a particular bias, which could get stuck in a local minima.
The selection technique used here is the tournament selection
method [76] (see algorithm 2). In particular, it corresponds
to running numerous tournaments among the individuals in
a randomly chosen subset of the population. The victor is
determined by the fitness value, and is selected for mating. A
large number of tournaments ensures the selection of almost
every individual in the randomly chosen subset at least once,
creating the possibility of existence of weak and strong indi-
viduals together in a given generated subset. This selection
technique also maintains the diversity in the genomes during
the crossover process by mixing the good genes of parents
with the weaker parents, thus ensuring the survival of the
fittest along with the selection of a very small proportion of
weaker individuals. We use a tournament selection size of five
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solutions, which is the size of the subset of the total population
composed of 12 candidate solutions. The selection technique
returns the best individual from the five randomly chosen
individuals. The selection is then exploited different times
to extract pairs of individuals used to generate new children
chromosome through the process of crossover.

Crossover. Analogously to the crossover that happens dur-
ing the biological reproduction, the newly generated offspring
of the parent solutions share genetic information belonging to
its parents. We select two parents by repeating the selection
process two times, which then proceeds to generate one
offspring solution. The crossover process used in our problem
is the uniform crossover technique, in which each element
of the new chromosome (gene) is randomly chosen from
one of the two parents with equal probability. This spreads
out the genetic information evenly among the genes of the
offspring, ensuring equal contribution from both the parents.
This also ensures the exploitation, or the preservation of better
solutions. The mating process is repeated with the selection
of other pairs of parents, and their crossover to produce other
offspring until a new population generation with the suitable
size is produced. In our case, a size 12 individuals was
employed. The elite chromosomes are immune to crossover,
that is, they are the only solutions not replaced by the new
generated child solutions. However, elite chromosomes can
take part in the mating process as parents.

Mutation and halting. The newly generated children solu-
tions then proceed to be subjected to the mutation operator.
Mutation alters the genetic information in the individuals
from its initial state, modifying the solution from the previous
one. In our algorithm, chromosomes �� with higher fitness
values S(��) have more immunity to the mutation process.
In particular, the mutation probability of each gene of a
chromosome is equal to 0.55[1 − S(��)]. This rule has been
chosen in order to save the fitter individuals from mutation
and expose the weaker or less fit chromosomes to it, ensuring
the increase in genetic diversity as well as preventing the good
solutions from alterations. The number 0.55 signifies the rate
of mutation, and has been chosen using trial and error methods
for better exploration of the search space when the algorithm
reaches saturation near local minima. Every ith gene is mu-
tated by changing the value of the original gene to a value
drawn from a Gaussian distribution with mean equal to the
original gene, and with variance equal to 1/i, where i repre-
sents the position of the gene in the chromosome vector. This
mutation variance follows the intuition that, increasing the
number of probes, the difference of feedback phase decreases
approximately like SQL. Indeed, as the number of probes
increase, the necessary variation around the corresponding
gene to find the optimal solution is expected to be smaller.
During the mutation, we also introduce an infected individual,
that is, a randomly created chromosome, in place of one of
the two worse individuals. When the number N of photons is
less than 25, such infection process happens with a probability
of 0.25, otherwise for N � 25 the probability of infection is
N/100. In this way, the infection ensures a proper random
exploration of the search space, maintaining the genetic di-
versity in the mating pool for the succeeding generations. The
new generation, produced through the application of these
genetic operators, commonly has an increased average fitness

value. The whole described processes of selection, crossover,
mutation, and infection are repeated in a cycle until a halting
criterion is fulfilled. The halting criterion of the algorithm
is the attainment of a threshold fitness value approximately
equal to the SQL for the respective value of N , or when the
number of generations exceeds a fixed limit. In the latter case,
the fitness value can be far from SQL and thus the algorithm
fails to reach a value near to the bound.

C. Numerical simulations of algorithm performances

In this section, we perform numerical simulation to study
the optimal policies generated by our GA algorithm for phase
estimation. We consider values of probes numbers N ranging
from 1 to 80. In Fig. 3(a), we report the average of V H

obtained by the estimation of 105 uniformly distributed un-
known phases, showing that the SQL is attained after small
values of N . Furthermore, the inset focuses on different distant
values of N independently, and demonstrates in both cases a
good convergence to every unknown phase. Figure 3(b) shows
the results of estimations at each independently optimized N
policy, obtained for two different values of unknown phases.
Performances of the policies are studied in terms of Holevo
variance V H scaling as function of N . These results show
the high efficiency of the algorithm even if a small number
of resources is used. In particular, the scaling of V H shows
the high quality of optimal solutions found by GA research,
by which the estimation process reach the true values of the
unknown phases. The value of V H for N < 5 lower then SQL
depends on the fact that the algorithm is optimized for phases
lying in the interval [0, π ]. Conversely for greater N , the SQL
retains its role as a suitable limit on the estimation precision.
In the optical system under analysis, the algorithm finds that
the optimal feedbacks are those where the relative phase shift
φ − � between the two modes of the MZI is π/2, which
corresponds to the point in which the likelihood function has
a maximum of the derivative modulus.

These numerical evidences demonstrate the effectiveness
of the offline policies found by GA optimization, able to
optimally estimate unknown phases with sensitivities that
reach SQL after few data.

III. EXPERIMENTAL RESULTS

We experimentally tested the GA approach to estimate
unknown relative phase shifts inside a MZI injected by single
photons. The employed apparatus [Fig. 1(b)] is a MZI in
the polarization degree of freedom, where the optical phase
to be estimated is a relative one between the vertical (V)
and horizontal (H) polarizations of the photon. Photons are
generated by injecting a λ = 404 nm continuous wave pump
beam in a periodically poled potassium titanyl phosphate
(PPKTP). Through the SPDC process inside the crystal, two
degenerate photons with λ = 808 nm are generated. One
photon of each pair is sent directly to the trigger avalanche
photodiode (APD), while the other one is employed for the
phase estimation process after its polarization state is prepared
through a polarizing beamsplitter (PBS). The interferometer is
composed by two half-wave plates (HWPs) rotated by 22.5◦
and two adjacent liquid crystals (LCs) interposed between
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FIG. 3. Numerical results. Performances of the learning protocol using policies optimized by GA algorithm for different number N of
input photons. (a) Comparison between SQL (red dashed line) and the Holevo variance V H obtained by simulations (blue dots), averaged over
105 phases in the interval [0, π ]. GA searching finds different optimal feedback strategies for different values of N . The inset graph shows
difference between simulated value of estimated phase φest and the actual phase value φ, reported as function of φ. Here, results show same
performances for two distant values of N : 25 and 77. (b) Numerical phase estimation of two different phases φ(i) (i = 1, 2) as function of
N adopted probes. The estimated phase value φ

(i)
est (dot) converge to the true phase value (solid line) in a few number of probes. Each dot

is averaged over 100 independent experiments, and its error (color filled area) is computed by normalizing the variance to the number of
experiments.

the HWPs. The first LC controls the unknown phase shift
φ and the second one acts as feedback phase �. After the
second HWP, a final PBS separates H and V polarizations
in two different spatial modes that are measured by two
APDs. The complete process is automatically controlled by a
dedicated software. In particular, all three APDs are connected
to an electronic system that reads all the single photon counts
and provides digital timestamps to the computer. Through
an analysis of such time stamps, twofold coincidences be-
tween trigger and one of the two measurement detectors are
recorded by choosing a coincidence window of 3 ns. The
first coincidence recorded within a fixed amount of time of
0.5 s generates the single event used in the estimation process.
After each recorded event, the processing unit recovers the
feedback phase to be applied from the pre-calculated list, and
consequently drives the corresponding LC. An additional time
interval of 0.3 s between two consecutive events is inserted
due to the switching time of LC. In this way, all steps of
the experiments, including phase tuning, photon detection
and application of the GA policies, are controlled by the
processing unit.

The apparatus described above has been employed to per-
form the estimation of different phases. Experimental results
are shown in Fig. 4(a), for different phases between 0 and π .
Each point, at fixed N , is an average of 100 estimates using the
optimal policy for that N . The results show that the estimation
reach the true values of the phases after few ∼25 photons.
While in an ideal MZI the Fisher information does not depend
on the phase φtot = φ − �, the presence of experimental
imperfection may cause the bound to be phase-related [see
Fig. 4(b)], which is observed when nonadaptive strategies are
employed. This different behavior can be predicted by taking
into account the effect of noise in calculation of the likelihood
function of the system. More specifically, our apparatus is
characterized by a nonunitary visibility of the polarization

fringe pattern. This effect can be expressed by correcting the
likelihood function with a parameter p ∈ [0, 1], related to the
visibility as V = (1 − p) �= 1, leading to the following output
probabilities:

P0 = 1 − P1 = (1 − p) cos2

(
φ − �

2

)
+ p/2, (3)

where P0 (P1) is the probability to find the photons with polar-
ization H (V ). By measuring the output probabilities, we char-
acterized both the phase shifts associated to the voltages ap-
plied to the LCs, and the experimental likelihood function, ob-
taining the following estimate for p: pexp = (7.93 ± 0.16) ×
10−3. The noisy likelihood is associated to a different Fisher
information F−1

exp(φ), which leads to different limits on preci-
sion for the experimental apparatus, as shown in Fig. 4(b). The
difference with the ideal noiseless case becomes significant at
the edges of the [0, π ] interval. Since the sensitivity depends
on the value of the unknown phase, different phases would be
estimated with different precision if nonadaptive techniques
are employed. Conversely, adaptive strategies allow to obtain
a phase-independent behavior for the estimation error. Indeed,
the feedback phase is adjusted throughout the protocol by the
adaptive strategy to exploit the most informative points of
the likelihood. In this way, we observe a phase-independent
behavior as shown in Fig. 4(b), where the sensitivities achieve
the optimal CRB minφ F

−1
exp/N � 1.016/N obtained from ex-

perimental probabilities [see, for instance, the case N =
80 in Fig. 4(b)]. As a result, the error of the estimations,
shown in Fig. 4(c), quickly approaches the SQL as a function
of N . In our analysis we consider as figures of merit not only
the averaged Holevo variance V H over the M measured phases
(blue dots), but also the circular mean square error (MSE)
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(a) (b)

(c) (d)

FIG. 4. Experimental results. Six different phases have been estimated 100 independent times, using adaptive GA protocols. (a) Estimation
of different phases as a function of the number of photons N . Dashed lines are the real applied unknown phase shifts, while dots represent
the circular mean of the repetitions with same N . (b) (Top) Holevo Variance (V H ) as function of the phase for three different values of N :
N = 10 (green dots), 20 (red dots), and 80 (blue dots). Straight lines are ideal bounds, while dashed ones represent the bounds corrected by
depolarizing noise, considering pexp = (7.93 ± 0.16) × 10−3 (see main text). (Bottom) Fisher information as a function of the phase. Orange
solid line represents the experimental information, while orange dashed line represents the ideal case. (c) Holevo variance V H and mean square
error, MSE, as function of the number N of exploited photons. Blue (cyan) dots are the mean value of V H (MSE) over the six different phases.
Filled band represents the confidence interval inside the standard deviation. The red line is the ideal SQL, the black dotted line instead is
the minimum over all φ of SQL in presence of noise. (d) Example of experimental decision tree. Values of the feedback phases employed
during the estimation process of the phase φ = 2.35, using the first N = 6 single photons. For any process, after each photon measurement,
the feedback phase is updated according the rule in Eq. (1), realizing a branch of the tree. Red dashed line represents the real value of φ, while
the orange branches of the tree are 100 independent process of estimation. The intensity of the color is proportional to the number of times the
estimation follows that branch. The blue cross is the final mean of all estimations: φest = 2.15 ± 0.42.

(cyan dots), which is defined as

MSE(φ) =
M∑

k=1

(
arg

[
ei(φ−φ

(k)
est )

])2
/M. (4)

Finally, in Fig. 4(d), we show how the algorithm works in
terms of policies applied. Then, after sending and measuring
each photon, the feedback phase is updated depending on
the outcome according to Eq. (1). The feedback phase shifts
are the optimal ones provided by GA protocol. At each step
there are two possible outcome values, and the estimation
generates a branch. Among all 2N possible branches relative to
each estimation, only the ones observed during the experiment
are represented, with intensity proportional to the number

of times a given path is followed. In general the change in
the feedback phase, that is, the policy, decreases with the
step number, meaning an increasing precision of estimation.
Finally, the comparison between the unknown phase and the
resulting estimation is reported, together with its circular
variance over all 100 independent runs.

IV. ROBUSTNESS TO NOISE

In this section, we perform some numerical simulations to
study the robustness of the policies generated by our genetic
algorithm against different sources of noise. In particular, we
consider depolarizing and phase errors, which are two of the
most common noise models in interferometric setups.
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(a) (b)

FIG. 5. Robustness to depolarizing noise. Numerical analysis of GA protocol performances in terms of Holevo variance V H (top panels),
for different values of depolarizing noise parameter p = 0, 0.05, 0.15, 0.25, and 0.5. When N probes are adopted, the dependence on p of
the achievable precision CRBp can be computed by considering the noisy likelihood in calculation of F−1

exp(φ, p). The applied policies to the
noisy scenario can be calculated via the GA approach by taking into account [right panel (b)] or not [left panel (a)] the noise model. In the
bottom panels, we report an equivalent representation in terms of the ratio �V H

SQL = (V H − SQL)/SQL.

Depolarizing noise is caused by the presence of dark counts
or by the limited visibility of the interferometer. This effect is
introduced in the simulations via an additional parameter p,
which gives the probability of a random click. In this way, the
simulated data are drawn by a noisy likelihood distribution
having the following form: Pnoisy(x) = (1 − p)P(x) + p/2,
where x = 0, 1 are the measurement outcomes and P(x) is the
probability in noiseless condition. This kind of noise has been
considered to describe the experimental results of previous
section. We now analyze numerically the robustness of the
policies generated by our GA approach. More specifically, the
policies are calculated by assuming a noiseless experiment
(p = 0) and applied to a noisy estimation process (p �= 0),
where we considered different noise levels corresponding to
p = 0.05, 0.15, 0.25, and 0.5. This analysis is performed to
quantify the robustness of policies, generated using an ideal
model, in noisy conditions. The results of the simulations are
reported in Fig. 5(a). These data show that the policies are
robust against noises with p � 0.25 even if they are trained
with ideal conditions. This implies that this technique can be
employed also in systems with moderate unknown values of
depolarizing noise without losing the capability to reach the
ultimate limit provided by the CRB. More specifically the
CRB of the optimal point in a depolarizing noisy interferome-
ter, using single photons, is equal to: CRBp = 1/[N (1 − p)2].
For larger p, the policies fail to reach the sensitivity bounds.

As a second step, we consider the scenario in which the
noise parameter is calibrated before the experiment. In this
case, the GA approach can be adapted to generate policies
optimized for this scenario by taking into account the actual
noise level during the computation. Hence, we generated
policies using knowledge of the depolarizing noise parameter.
The analysis of the estimation of unknown phase shifts using
policies trained in the presence of noises is shown in Fig. 5(b).

Here, as expected, the performances of the estimation pro-
cesses are improved when compared with those achieved with
the policies for p = 0. In particular, the optimal CRB asso-
ciated to each noise is approached by the estimations using
noisy policies. Such improvement is larger for increasing
values of p. Note that, for large values of noise (p = 0.5),
a difference with the CRB is still obtained, which is to be
attributed to the probabilistic feature of genetic algorithms
which may fail to reach convergence in a given number of it-
erations. In conclusion, our protocol is not only robust against
depolarizing noise, but can also be adapted to approach the
ultimate bound in such noisy conditions.

Finally, we considered the effect of phase noise, due to ran-
dom errors in setting the feedback phase. For instance, this can
be attributed to random imperfections in the phase control or
to phase fluctuations between the arms of the interferometer.
We have numerically simulated phase estimation processes
under this noise by altering the value of the feedback phase �k

by an amount δ�. Such amount is randomly generated at each
step according to a normal distribution with mean equal to the
original value, and standard deviation described by the param-
eter κ . In these conditions, we test the policies calculated for
a noiseless scenario. The results of the simulated estimation
processes for different values of the parameter κ are shown
in Fig. 6. We observe that the policies generated via GA are
robust to this kind of error, even for a considerable amount of
phase noise with κ � 0.6.

V. CONCLUSIONS AND PERSPECTIVES

Phase estimation is a fundamental task in several appli-
cations, ranging from biology to gravitational wave detec-
tion. Furthermore, such problem represents a benchmark for
general estimation protocols. In this context, an important
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FIG. 6. Robustness to phase noise. Plot of Holevo variance VH as
function of the number N of photon probes, in the presence of phase
noise for κ = 0.2, 0.4, 0.5, 0.6, and 0.8. Simulations are performed
by using the policies calculated in absence of noise, applied to
noisy simulated phase estimation processes. More specifically, A
random shift around the feedback phase is added at each step of the
experiment, according the normal distribution around the original
value with variance κ2. Results for different noise intensities are
compared with the noiseless case (dark blue dots) and the SQL (red
dashed line). Each shown acquisition is averaged over 100 simulated
rounds of the estimation process. The distance of the achievable
precision from the SQL becomes significant only for high value of
the noise.

practical scenario is the estimation of phases when a limited
number of probes is available. In this condition, adaptive
protocols can be employed to optimize the estimation process
and to enhance the capability to reach the ultimate limits by
using a small amount of resources. In parallel, for some sce-
narios where the computational power during the estimation is
limited, an offline calculation of the optimal feedback actions
to be employed during process is required. For such task,
machine learning techniques, able to optimize functions in
high-dimensional searching spaces, represent a powerful tool.

In this work, we presented a novel technique based on
a genetic algorithm, able to find optimal feedback actions
for single phase estimations, that are also robust against

different sources of noises. We then performed an experi-
mental demonstration of such protocol through a photonic
platform showing fast convergence of the estimation error
to the ultimate limits after few probes. Such demonstration
opens the way to further applications in quantum metrology
tasks with limited data. Future steps will require to devise
and test experimentally such class of algorithms with different
probes enabling quantum-enhanced performances. Even the
study of photonic realization of probes states can be improved
by GA algorithms [47,50,51], giving rise to accessible and
robust-to-noise states for metrology tasks. Then, a natural
generalization of this approach is to apply GA optimization
for offline protocols in multiparameter quantum metrology
problems [17,77–79], with particular attention to the limited
data regime [80]. While online adaptive Bayesian techniques
for multiphase estimation were demonstrated [81], offline
solutions have still to be explored and GA promises to be a
useful tool for this task. Notably, this kind of approach can
be applied to other quantum information tasks, in which an
optimization of multiple feedbacks is needed.
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