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Because of the unavoidable intrinsic noise affecting biochemical processes, a
stochastic approach is usually preferred whenever a deterministic model gives
too rough information or, worse, may lead to erroneous qualitative behaviors
and/or quantitatively wrong results. In this work we focus on the chemical
master equation (CME)-based method which provides an accurate stochastic
description of complex biochemical reaction networks in terms of the probability
distribution of the underlying chemical populations. Indeed, deterministic mod-
els can be dealt with as first-order approximations of the average-value dynamics
coming from the stochastic CME approach. Here we investigate the double phos-
phorylation/dephosphorylation cycle, a well-studied enzymatic reaction network
where the inherent double time scale requires one to exploit quasisteady state
approximation (QSSA) approaches to infer qualitative and quantitative informa-
tion. Within the deterministic realm, several researchers have deeply investi-
gated the use of the proper QSSA, agreeing to highlight that only one type of
QSSA (the total QSSA) is able to faithfully replicate the qualitative behavior
of bistability occurrences, as well as the correct assessment of the equilibrium
points, accordingly to the not approximated (full) model. Based on recent results
providing CME solutions that do not resort to Monte Carlo simulations, the pro-
posed stochastic approach shows some counterintuitive facts arising when trying
to straightforwardly transfer bistability deterministic results into the stochastic
realm, and suggests how to handle such cases according to both theoretical and
numerical results.

1. Introduction

One of the main contributions of mathematicians to the biological field is one of the
best-known models of enzyme kinetics put forth during the beginning of the twen-
tieth century by Henri [1901a; 1901b; 1902], and Michaelis and Menten [1913],
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and later continued by Briggs and Haldane [1925]. This formulation considers a
reaction where a substrate S binds an enzyme E reversibly to form a complex C .
The complex can then decay irreversibly to a product P and the enzyme, which is
then free to bind another molecule of the substrate. These reactions are summarized
in the scheme

E + S
k1
−−→
←−−
k−1

C
k2
−→ E + P, (1)

where k1, k−1, and k2 are kinetic parameters associated with the reaction rates (i.e.,
rate constants).

A very common approximation in the deterministic setting consists of assuming
that, after a transient phase, the complex concentration can be considered approxi-
mately constant with respect to the substrate dynamics: standard quasisteady state
approximation (sQSSA) [Lin and Segel 1988]. The sQSSA utilizes timescale sep-
aration to project models of biochemical networks onto lower-dimensional slow
manifolds; thus, rapidly fluctuating species are not simulated explicitly (see, among
others, [Segel 1988; Segel and Slemrod 1989], and the review paper [Bersani et al.
2015]). In recent decades, many researchers highlighted limits and malfunctioning
of the sQSSA, thereby introducing and exploring a new approximation, called total
quasisteady state approximation (tQSSA). Under suitable and biologically consis-
tent hypotheses, the tQSSA-based methods were revealed to be very effective in
handling the full system of equations, considerably unburdening the computational
effort and providing a good approximation at the same time (see, among others,
[Laidler 1955; Borghans et al. 1996; Tzafriri 2003; Dell’Acqua and Bersani 2012;
Bersani and Dell’Acqua 2012; Bersani et al. 2015]). In the case of reactions that
involve only a small number of key regulatory molecules, intrinsic noise is not neg-
ligible [Blake et al. 2003; Fedoroff and Fontana 2002], and the enzymatic reaction
scheme is more appropriately modeled in a stochastic discrete framework by means
of CMEs [van Kampen 2007]. CME-based modeling is a promising approach in
systems biology due to its capability of well-fitting experimental data in single-cell
experiments, also describing diffusion effects derived from fluctuations and chemi-
cal fluxes capable of driving switching from one equilibrium to another. In more de-
tail, the CME provides an accurate stochastic description of complex biochemical
networks in terms of the probability distribution of the underlying chemical popula-
tions, in contrast to deterministic methods which handle biochemical processes in
terms of evolution of the average concentrations for each involved species. Indeed,
deterministic models can be dealt with as first-order approximations of the average-
value dynamics coming from the stochastic CME approach [van Kampen 2007].
Within the framework of enzymatic reaction networks, many authors investigated
the QSSAs via the CME approach, with the aim of providing a good approximation
of the full model also in this setting [Cao and Petzold 2005; Gillespie 2001; 2009a;
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2009b; Cao et al. 2005; Mastny et al. 2007; Rao and Arkin 2003; Székely and Bur-
rage 2014; Thomas et al. 2011]. In [Barik et al. 2008; MacNamara et al. 2008] the
authors studied independently the application of the tQSSA to some well-known
biochemical mechanisms providing bistability according to deterministic models.

The work proposed here investigates a CME-based stochastic model of the
double phosphorylation/dephosphorylation (PDP) mechanism. This kind of activa-
tion/deactivation reaction might be the key to explaining the interactions occurring
among the intracellular enzyme networks and several intercellular and macroscopic
phenomena, as could be the case highlighted in [George et al. 2019], in the frame-
work of mechanobiology and bone remodeling [Bednarczyk and Lekszycki 2016;
Giorgio et al. 2016; 2019; George et al. 2018].

The double PDP cycle is a paradigmatic case of how the application of the
sQSSA may provide qualitatively wrong results. With regards to the deterministic
approach, several authors (see for example [Ortega et al. 2006; Chickarmane et al.
2007; Kholodenko 2000; Bersani et al. 2011]) studied the appearance of bistable
states in the double PDP mechanism, for both the full system and the QSSA settings.
In [Dell’Acqua and Bersani 2013; 2011], it is shown that the tQSSA reproduces the
behavior of the solutions of the full system for a very wide range of parameters and
different initial conditions. On the contrary, the sQSSA can provide misleading
results, mainly in the asymptotic concentration values, predicting bistability for
large value ranges, whereas the full system (and the tQSSA) shows monostability.

Bistability of several biochemical mechanisms usually in the stochastic frame-
work results in a bimodal stationary probability distribution with randomness allow-
ing for fluctuation around both modes of the distribution, preventing the evolution
to stick around just one of the two equilibrium points [Hwang and Velázquez 2013a;
2013b; Bruna et al. 2014; Bazzani et al. 2012; Samoilov et al. 2005]. Within this
framework, QSSA still plays an important role to unburden the computational load,
though sQSSA may often lead to large errors (both quantitative in matching the
wrong modes, and qualitative in failing to catch the bimodal fashion) even when
timescale separation holds (see [Kim et al. 2014; 2015] where the stochastic tQSSA
is shown to be more accurate than the sQSSA).

Let us underline that references [Kim et al. 2014; 2015] provide very interesting
insights into the investigation of stochastic QSS approximations. The common
denominator with our work is the way of associating propensities to CME from
an ODE initial framework. In more detail, they investigated how different QSS
approximations (especially in [Kim et al. 2014], where they consider standard
QSSA, total QSSA, and prefactor QSSA) may provide similar results in the de-
terministic field, but completely different results in the stochastic field. Indeed, the
authors showed that, according to a specific setting of the model parameters under
investigation, deterministic tQSSA and pQSSA provided the same ODE system
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(therefore leading to the same results), while stochastic tQSSA and pQSSA pro-
vided a completely different stochastic approximation. In other words, [Kim et al.
2014] provided some caveat concerning different QSSAs and provided a criterion
to understand in a specific framework whether a stochastic QSSA is reliable or
not. Unfortunately these results are not straightforwardly applicable to our case:
in [Kim et al. 2015] a unique double time scale enzymatic reaction is considered,
while in our manuscript we consider four double time scale enzymatic reactions.

Our study investigates the applicability of both standard and total QSSA to a
CME-based stochastic model of the double PDP cycle, showing the preeminent role
of the tQSSA. The methodology exploited is the one proposed in [Borri et al. 2013;
2016; Bersani et al. 2014] managing to cope with the computational burden, which
usually arises for CMEs, by means of a proper organization of the probabilities in
the CME entries. This enables us to characterize the CME dynamics according to
a recursive block-tridiagonal structure. In this way, explicit solutions of the CME
are achieved for both standard and total QSSA, according to a smart application
of the Gauss elimination method [Borri et al. 2016]. This allows us not to resort
to Monte Carlo simulation, which may be computationally demanding as well as
lead to misleading results unless allowing for enough stochastic realizations (whose
number is not known a priori).

Preliminary results have been presented in [Bersani et al. 2014], by introduc-
ing the CME-based stochastic model for the double PDP cycle. In the present
work we get in deeper details, proposing solutions to the CME according to a
wider set that goes beyond the toy-setting of [Bersani et al. 2014], facing real
numerical problems arising when dealing with the double time scale. Besides the
larger variety of cases here reported, we aim at answering the questions arisen in
[Bersani et al. 2014] and to conciliate some counterintuitive behaviors occurring
when trying to straightforwardly apply deterministic results to stochastic models.
To this end, some new theoretical results on the CME-based stochastic model have
been assessed, showing the uniqueness of the stationary probability distribution.

The result of the work is twofold. On the one hand, it shows the preeminent
role of the tQSSA, also in the stochastic CME-based model of the double PDP
cycle. Its ability to faithfully replicate in the stochastic framework the qualitative
behavior of bistability occurrences is shown, as well as the correct assessment of
the equilibrium points, in conformity with the nonapproximated model. On the
other hand, according to a given setting in the parameter space, and to chosen
initial conditions, bistability provided by the deterministic model may be lost in a
unimodal distribution when dealing with the stochastic CME. Such a mode coin-
cides with one of the two deterministic equilibria. This counterintuitive result is
obtained by means of Monte Carlo simulation for the full system, and is confirmed
by the exact CME solution provided by the tQSSA.



STOCHASTIC MODELS FOR DOUBLE PHOSPHO/DEPHOSPHO CYCLE 265

The paper is organized as follows. In Section 2 we briefly recall the most
important background concerning the sQSSA and the tQSSA for enzymatic re-
actions. Section 3 proposes the double PDP reactions in detail, dealing with the
CME-based stochastic model. Section 4 reports the standard and total QSSA of
the double PDP cycle CME-based stochastic model, by first providing them in
the deterministic framework. A novel result on the uniqueness of the stationary
probability distribution is also provided in this section. In Section 5 we discuss the
appearance (or the absence) of stationary bimodality in comparison to bistability
arising in deterministic models. Section 6 contains the concluding remarks and
perspectives.

2. Introductory notions on sQSSA and tQSSA

The Michaelis–Menten (MM) kinetics give a very good description of (1), in terms
of ordinary differential equations (ODEs). For notational convenience we will use
the same symbol to denote both a chemical species and its concentration (i.e., the
variables of the ODEs), omitting its dependence on time. We can mathematically
describe reaction (1) using the mass action principle — where the growth rates of
each reactant are proportional to the instantaneous concentrations of the reactants
themselves — and conservation laws. This approach leads to the (full) system{ d S

dt =−k1(ET −C)S+ k−1C,

dC
dt = k1(ET −C)S− (k−1+ k2)C,

(2)

with the initial conditions

S(0)= ST , C(0)= 0, E(0)= ET (3)

and the conservation laws

E +C = ET , S+C + P = ST , (4)

where ET and ST are the total enzyme and substrate concentrations, respectively.
The MM reaction is characterized by two phases: a short transient phase of rapid

increase of the complex C and a second, slower, phase, called the quasisteady state
phase, where the complex is considered substantially in equilibrium.

The hypothesis of quasisteady state simplifies the reaction, leading to an ODE
for the substrate, with initial condition S(0)= ST , while the complex is assumed to
be in a quasisteady state, i.e., dC

dt ≈ 0. The standard QSSA (sQSSA) of system (2)
is thus achieved: 

C ≈ ET · S/(KM + S),
d S
dt ≈−k2C ≈−VmaxS/(KM + S),

S(0)= ST ,

(5)
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where KM = (k2 + k−1)/k1 is called the MM constant or affinity constant, and
Vmax = k2 ET .

Let us consider again the classical MM kinetics (2). Introducing the total sub-
strate at generic time instant t , S(t)= S(t)+C(t), (2) then becomes

d S
dt =−k2C,

dC
dt = k1[C2

− (ET + S+ KM)C + ET S],

S(0)= ST , C(0)= 0,

(6)

with conservation laws

E +C = ET , S+ P = ST . (7)

Assuming that the complex is in a quasisteady state
( dC

dt ≈ 0
)

yields the total QSSA
(tQSSA) [Borghans et al. 1996], which is valid for a broader range of parameters,
with respect to sQSSA, covering both high and low enzyme concentrations:

d S
dt
≈−k2C−(S), S(0)= ST , (8)

where

C−(S)=
(ET + KM + S)−

√
(ET + KM + S)2− 4ET S

2
(9)

is the only biologically allowed solution of dC
dt = 0 in the second equation of (6).

3. CME-based stochastic model of the double PDP cycle

The double PDP cycle is one of the most important biochemical mechanisms in
intracellular reaction networks. The scheme here investigated is a generalization
of the enzymatic reaction network (1) and refers to [Ortega et al. 2006], where
both phosphorylation and dephosphorylation are supposed to happen in only one
step. Reactions are reported in (10), where M , Mp, and Mpp represent the inactive,
the mono-phosphorylated, and the double-phosphorylated substrate, respectively,
K and P are the kinase (the phosphorylating enzyme) and the phosphatase (the
dephosphorylating enzyme), respectively, and Ci are the intermediate complexes:

M + K
k11
−−→
←−−
k−11

C1
k12
−→ Mp + K , Mp + K

k21
−−→
←−−
k−21

C2
k22
−→ Mpp + K ,

Mpp + P
k31
−−→
←−−
k−31

C3
k32
−→ Mp + P, Mp + P

k41
−−→
←−−
k−41

C4
k42
−→ M + P.

(10)

Before building the stochastic model, we write the deterministic full system by
exploiting the mass conservation law to reduce the system complexity. Indeed, the
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conservation law involves the total substrate MT ,

M +Mp +Mpp +C1+C2+C3+C4 = MT , (11)

and the total enzymes KT and PT ,

K +C1+C2 = KT , P +C3+C4 = PT , (12)

so that it is possible to reduce the number of deterministic variables (species concen-
trations) to six independent ones. By taking, for example, {M, Mpp, C1, C2, C3, C4}

as the set of the independent variables, using the law of mass action, the full system
of equations governing the dynamics of the system is therefore

d M
dt
=−k11 M K + k−11C1+ k42C4,

d Mpp

dt
=−k31 Mpp P + k−31C3+ k22C2,

dC1

dt
= k11 M K − (k−11+ k12)C1,

dC2

dt
= k21 Mp K − (k−21+ k22)C2,

dC3

dt
= k31 Mpp P − (k−31+ k32)C3,

dC4

dt
= k41 Mp P − (k−41+ k42)C4,

(13)

with initial conditions

M(0)= MT , Mpp(0)= 0, Ci (0)= 0, (14)

where i = 1, . . . , 4. Let us observe that, for the sake of brevity, we left in (13) the
terms Mp, K , and P , which are related to the six independent variables by (11)
and (12):

Mp = MT − (Mpp +C1+C2+C3+C4+M),

K = KT − (C1+C2), P = PT − (C3+C4).

According to a large variety of literature that manages to reformulate the dy-
namics of a system from an ODE into a CME (chemical master equation) frame-
work (see, e.g., [Bazzani et al. 2012] or [Bersani et al. 2014]), we treat the state
variables as discrete copy numbers. In this context, we reinterpret the determin-
istic reaction rates as probabilities per unit time (or propensities) of a properly
defined continuous-time Markov chain (CTMC), i.e., a stochastic process whose
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event reset propensity

M , K binding x1 7→ x1− 1 k11x1(KT − x3− x4)

x3 7→ x3+ 1

M , K unbinding x1 7→ x1+ 1 k−11x3

x3 7→ x3− 1

Mp release x3 7→ x3− 1 k12x3

Mp, K binding x4 7→ x4+ 1 k21(MT −
∑6

i=1 xi )(KT − x3− x4)

Mp, K unbinding x4 7→ x4− 1 k−21x4

Mpp release x2 7→ x2+ 1 k22x4

x4 7→ x4− 1

Mpp, P binding x2 7→ x2− 1 k31x2(PT − x5− x6)

x5 7→ x5+ 1

Mpp, P unbinding x2 7→ x2+ 1 k−31x5

x5 7→ x5− 1

Mp release x5 7→ x5− 1 k32x5

Mp, P binding x6 7→ x6+ 1 k41(MT −
∑6

i=1 xi )(PT − x5− x6)

Mp, P unbinding x6 7→ x6− 1 k−41x6

M release x1 7→ x1+ 1 k42x6

x6 7→ x6− 1

Table 1. Chemical reactions, full system.

trajectories evolve on an n-dimensional lattice, and whose dynamics (in terms of
probability of being in a specific state of the CTMC) is described by the CME.

Renaming the independent state variables in the CME-based stochasting setting
as x1 = M , x2 = Mpp, x3 = C1, x4 = C2, x5 = C3, and x6 = C4, the reset map
associated with the chemical reaction network in (10) is reported in Table 1.

The CME dynamics is Ṗ = GP, where G is called the infinitesimal generator
(or transition matrix) of the CTMC, which is built according to the propensities in
Table 1 (see [Borri et al. 2016] for further details), and P is the vector collecting
the time-varying probabilities of all the states of the process. When the dimension
of G is large enough to make computationally too demanding the exact solution
of the equilibrium equation, GP= 0, one can still employ the Gillespie stochastic
simulation algorithm (SSA) [Gillespie 1977; 2001; 2009a; 2009b; Cao et al. 2005],
returning one or more statistically correct trajectories of the process, which can be
used in a Monte Carlo simulation or in an ergodic setting to obtain a sampled
(approximate) equilibrium distribution of the process.
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4. QSSA of the double PDP cycle stochastic model

Similarly to the deterministic approach, where the complexes behave as fast vari-
ables, while the substrates are the slow variables, the double time scale affects as
well the CMEs associated with the reset map detailed in Table 1, slowing down the
computational efficiency. Therefore, a need exists to introduce a QSSA also for the
stochastic case. Differently from other reactions, as for example the so-called auxil-
iary (or coupled) reactions [Eilertsen and Schnell 2018], where multiple timescales
are present, the four reactions involved in the PDP cycle are characterized by a dou-
ble timescale. In [Bersani et al. 2014] a way to obtain both standard and total QSSA
for the double PDP cycle was shown. In both cases, we start from the ODE version
of the QSSA and stochastify it by introducing suitably defined one-step processes.
Note that, as already described at the end of Section 3, the stochastic approach
considered in [Bersani et al. 2014] and here does not consist of perturbing the
ODE setting by means of noise terms, which is typical of the stochastic differential
equation (SDE)/Langevin approach, but of reinterpreting the deterministic reaction
rates as probabilities per unit time (or propensities) of a properly defined CTMC.

With respect to the ODE systems reported below, the continuous state variables
actually represent a first-order approximation of the expected value of the copy
numbers, which are indeed stochastic variables [van Kampen 2007]. Section 4.1
treats the QSSAs of the ODE system, whereas Section 4.2 concerns the CME-based
stochastic version of the QSSAs. Finally, in Section 4.3 a sufficient condition for
the uniqueness of the stationary solution for the CME has been provided.

4.1. QSSA of the deterministic model of the double PDP cycle. With regard to
the sQSSA, its ODE version is written by setting the complex dynamics at steady
state. In this way complexes are related to substrate and enzyme concentrations by
means of algebraic constraints and, after computations (see [Bersani et al. 2011]
and references therein for the details), the M and Mpp dynamics become

d M
dt
=−

k12

K1
M K +

k42

K4
Mp P,

d Mpp

dt
=

k22

K2
Mp K −

k32

K3
Mpp P,

(15)

where Ki = (k−i1+ ki2)/ki1, i = 1, . . . , 4, with

K =
KT

1+M/K1+Mp/K2
, P =

PT

1+Mpp/K3+Mp/K4
. (16)

Concerning Mp, the sQSSA constrains it to other substrates according to

Mp = MT −M −Mpp, (17)

thus neglecting the complexes’ contribution to the mass conservation law.
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Remark. The comparison of the mass conservation law of the full system (11) with
(17) leads to the so-called complex depletion paradox [Dell’Acqua and Bersani
2013]: the application of the sQSSA implies that, even if the complexes are related
to the substrates by their algebraic equations, they are implicitly set equal to zero,
because of (17). The consequences are that the sQSSA predicts asymptotic values
for the different substrate species which are higher than those predicted by the full
system.

For what concerns the tQSSA, as in [Bersani et al. 2011; Dell’Acqua and Bersani
2013; 2011], we set the total substrates at a generic time instant t :

M = M +C1, M p = Mp +C2+C4, M pp = Mpp +C3. (18)

In terms of these new variables, the dynamics of the total substrates are given by

d M
dt
= k42C4− k12C1,

d M pp

dt
=−k32C3+ k22C2,

(19)

with conservation law
M +M p +M pp = MT . (20)

Moreover, by properly accounting for the QSSA, i.e., complexes’ dynamics at
steady state, we have the constraints

(M −C1)(KT −C1−C2)− K1C1 = 0,

(M p −C2−C4)(KT −C1−C2)− K2C2 = 0,

(M pp −C3)(PT −C3−C4)− K3C3 = 0,

(M p −C2−C4)(PT −C3−C4)− K4C4 = 0.

(21)

Remark. It is worth noting that the complex depletion paradox emerging for the
sQSSA is not present for the total, since no violation of the mass conservation law
occurs. Thus, the tQSSA yields the same asymptotic values for all the reactants
(complexes included) as the full system.

4.2. QSSA of the CME-based stochastic model of the PDP cycle. In agreement
with [Bazzani et al. 2012] or [Bersani et al. 2014], we treat the state variables in
(15) and (19) as discrete copy numbers that increase by one or decrease by one
(according to a one-step process approach [van Kampen 2007]), with propensity
provided by the sum of the production or clearance rates of the ODE dynamics
for the one-step increase or decrease reaction, respectively. In this way, the reset
maps associated with the standard and total QSSA are reported in Tables 2 and 3,
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event reset propensity

M production M 7→ M + 1 w
(s)
1

M clearance M 7→ M − 1 w
(s)
2

Mpp production Mpp 7→ Mpp + 1 w
(s)
3

Mpp clearance Mpp 7→ Mpp − 1 w
(s)
4

Table 2. Chemical reactions, sQSSA.

event reset propensity

M production M 7→ M + 1 w
(t)
1

M clearance M 7→ M − 1 w
(t)
2

M pp production M pp 7→ M pp + 1 w
(t)
3

M pp clearance M pp 7→ M pp − 1 w
(t)
4

Table 3. Chemical reactions, tQSSA.

respectively. Regarding the propensities, the ones of the sQSSA, achieved from
(15), by exploiting constraints (16) and (17), are

w
(s)
j (x1, x2)=



k42 PT K3(MT − x1− x2)

K3K4+ K4x2+ (MT − x1− x2)K3
, j = 1,

k12KT K2x1

K1K2+ K2x1+ K1(MT − x1− x2)
, j = 2,

k22KT K1(MT − x1− x2)

K1K2+ K2x1+ K1(MT − x1− x2)
, j = 3,

k32 PT K4x2

K3K4+ K4x2+ K3(MT − x1− x2)
, j = 4.

(22)

With regards to the tQSSA, one needs to solve the system of equations (21) with
respect to the complexes C1, . . . , C4 (see, e.g., [Pedersen et al. 2008]), which are
functions of the state, and then define

w
(t)
j (x1, x2)=


k42C4(x1, x2), j = 1,

k12C1(x1, x2), j = 2,

k22C2(x1, x2), j = 3,

k32C3(x1, x2), j = 4.

(23)

4.3. Uniqueness of the stationary distribution. An important feature to be inves-
tigated when dealing with stochastic models coming from CME is whether the
stationary distribution is unique, whatever the CME initial conditions. Besides
the qualitative behavior properties, the uniqueness of the stationary distribution is
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invoked also when dealing with Monte Carlo numerical issues, since it implies the
process is ergodic, thus allowing one to resort to a unique very long run of the
stochastic sampling algorithm (SSA), by inferring the statistical distribution from
the computation of the average recurrence time in each state of the process. With
respect to the PDP cycle investigated in this paper, such an issue is of paramount
importance: in case of bistability, what one is expected to find from the CME
stochastic approach is to have a bimodal stationary distribution, with the modes
close to the ODE stable stationary equilibria. However, supposing that bimodality
actually occurs, it may happen that any single stochastic realization is able to ex-
hibit only one of the two modes, according to the chosen initial conditions. This
is because the model parameters are such that too much time would be required in
order to completely explore the space of the admissible states. To know a priori
whether the stationary distribution is unique or not allows one to understand if
different stochastic realizations provide different stationary distributions because
of different initial conditions or just because of the too long time required to obtain
a stochastically exhaustive trajectory. To properly address the issue concerning the
uniqueness of the stationary distribution, we consider the graph associated with the
CTMC of the CME under investigation.

Theorem 1. The graph associated with the full system is strongly connected.

Proof. The graph associated with the full system consists of as many nodes as fea-
sible 6-tuples provided by the copy numbers of the independent species M, Mpp,

C1, C2, C3, C4, with node A connected to node B if there exists a reaction that
updates the species’ copy numbers from A to B. Differently from a one-step
process, here we have reactions that simultaneously vary couples of state variables,
namely M, K binding and unbinding, Mpp release, Mpp, P binding and unbinding,
and M release (see Table 1). The proof consists of showing that, starting from any
6-tuple, there exists a combination of feasible reactions providing any possible one-
step update. This fact allows the system to inherit the strong connectivity property
associated with one-step processes. The one-step updates we consider, clearly,
disregard the ones already provided by the chemical reaction network. Below, for
any such one-step update we report the sequence of reactions required to obtain it:

• M 7→ M + 1: provided by the combination of Mp, P binding and M release.

• M 7→ M − 1: provided by the combination of M, K binding and Mp release.

• Mpp 7→ Mpp + 1: provided by the combination of Mp, K binding and Mpp

release.

• Mpp 7→ Mpp − 1: provided by the combination of Mpp, P binding and Mp

release.
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• C1 7→ C1+ 1: provided by the combination of M, K binding, Mp, P binding,
and M release.

• C3 7→C3+1: provided by the combination of Mp, K binding, Mpp, P binding,
and Mpp release. �

Theorem 1 proves that the graph associated with the CME here considered is
strongly connected, i.e., for any two nodes of the graph there exists a path that
connects one node to the other, and vice versa. This is sufficient to prove that
there exists a unique terminal strongly connected component associated with any
of the three graphs (the graph itself, actually), and this proves the uniqueness of
the stationary solution for the CME [Bang-Jensen and Gutin 2009].

Remark. To prove the strong connectivity of both the QSSAs is trivial. Indeed,
they are built as one-step processes; therefore, the graph associated with them is
a complete 2D lattice where any point is reachable from any other by means of
one-step independent movement. Therefore, results provided in Section 3 for the
full system, dealing with the uniqueness of the stationary probability distribution,
hold true also for both standard and total QSSA.

5. ODE bistability versus CME bimodality: a word of caution

This section is devoted to investigating and discussing whether bistability behav-
ior arising from deterministic models of the double PDP cycle transforms into
a bimodal distribution of the stationary probability distribution coming from the
CME-based stochastic model. To this end, Monte Carlo simulations are carried
out when dealing with the original full system, while numerical tools providing
the CME analytical solution are exploited for both standard and total QSSAs.

In the following four illustrated cases, the values of the chosen parameters in (10)
are k11 = 0.02, k−11 = 1, k12 = 0.01; k21 = 0.032, k−21 = 1, k22 = 15; k31 = 0.045,
k−31 = 1, k32 = 0.092; and k41 = 0.01, k−41 = 1, k42 = 0.5.

We set MT = 500 and four different pairs of mass-balance constraints for the
kinase and phosphatase:

(a) KT = 200, PT = 200,

(b) KT = 600, PT = 400,

(c) KT = 292, PT = 300,

(d) KT = 293, PT = 300,

with initial condition M(0)= MT in the deterministic case. Following [Dell’Acqua
and Bersani 2011] (see Figures 3 and 4 therein), when we plot the initial value of the
kinase MAPKK, i.e., KT (on the horizontal axis) and the corresponding asymptotic
value of Mpp (on the vertical axis), we obtain:
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(a) The deterministic full system is bistable, with equilibrium points for Mpp equal to

M1
pp = 4.30, M2

pp = 290.97;

the deterministic sQSSA and tQSSA are able to recover the bistable behavior, but
with completely different levels of accuracy. In fact, the equilibria are

M s,1
pp = 2.52, M s,2

pp = 494.35

for the sQSSA, and

M t,1
pp = 4.31, M t,2

pp = 290.86

for the tQSSA. This implies that also in this case the tQSSA is much more reli-
able than the sQSSA, which in fact suffers from the so-called complex depletion
paradox, as discussed in [Dell’Acqua and Bersani 2011].

(b) The deterministic full system is monostable, with equilibrium point for Mpp

equal to

Mpp = 118.89;

the deterministic tQSSA is able to reproduce this feature:

M t
pp = 118.17.

As discussed in [Dell’Acqua and Bersani 2013; 2011], the sQSSA always gives
bistability in a larger set of values of KT than the full system and the tQSSA; in
fact, in this case the sQSSA has two stable states

M s,1
pp = 9.08, M s,2

pp = 496.94,

which are very far from the real equilibrium.

(c) The full system is bistable, with equilibrium points for Mpp equal to

M1
pp = 5.70, M2

pp = 185;

the deterministic sQSSA and tQSSA are able to reproduce the bistable behavior,
but with completely different levels of accuracy. In fact, the equilibria are

M s,1
pp = 2.30, M s,2

pp = 494

for the sQSSA, and

M t,1
pp = 5.70, M t,2

pp = 185

for the tQSSA. This case also confirms the superiority of the tQSSA with respect
to the sQSSA.



STOCHASTIC MODELS FOR DOUBLE PHOSPHO/DEPHOSPHO CYCLE 275

(d) This case presents the same features as case (c), but even if it slightly differs
in the amount of the mass-balance constraint KT for the kinase, it is of interest be-
cause of the peculiar phenomenon shown by its stochastic counterpart, as described
below.

We now compare the behavior of the stochastic representations of full system as
well as the sQSSA and tQSSA. With regards to the full system, the state evolves
on a 6-dimensional lattice (copy numbers refer to M, Mpp and the 4 complexes),
formally bounded by the substrate upper bound (MT = 500) and the complexes’
upper bounds provided by min{KT , MT } for C1, C2 and min{PT , MT } for C3, C4.
For instance, concerning case (a), the lattice is inside a 6-dimensional box lattice
including 5002

× 2004
' 400 trillion states. Clearly, not all such states are admis-

sible (e.g., because they can violate the mass conservation laws) but, in any case,
there still remain too many states (billions) that prevent any reliable numerical
approach to straightforwardly solve the underlining CME. For this reason, the full
system is simulated by means of statistical methods, such as the Gillespie stochastic
simulation algorithm (SSA) [Gillespie 1977; 2001; 2009a; 2009b; Cao et al. 2005],
where Theorem 1 ensures the uniqueness of the stationary probability distribution
and the ergodicity of the CTMC associated with the CME.

On the other hand, both the standard and total QSSA evolve on a (lower) 2-
dimensional lattice (copy numbers refer to substrates M, Mpp or total substrates
M, M pp, respectively), formally bounded by the 2-dimensional box lattice includ-
ing 500× 500= 250 000 states, that reduce to about 125 000 when accounting for
mass conservation laws. These numbers allow one to compute explicitly, and in
a computationally very efficient way, the exact theoretical distribution by apply-
ing Gaussian elimination, or block-based efficient solvers [Borri et al. 2016], to
the CME equilibrium problem. The numerical simulations were performed in the
Matlab suite on an Apple MacBook Pro laptop with 2.5 GHz Intel Core i5 CPU
and 16 GB RAM. The computation time of the equilibrium distribution is just 3
seconds for the sQSSA and for the tQSSA.

Figure 1 shows the plot of the steady-state marginal distribution of species Mpp

for case (a). It is apparent that both the standard and total QSSA resemble the full
system, although the stochastic modes are not able to catch both equilibrium points
coming from the deterministic approach, since apparent unimodal distributions
come out. Indeed, the modes of the three distributions substantially reproduce
the lower equilibrium point, with the full system and the total QSSA providing a
slightly better match than the standard QSSA.

Figure 2 reports the steady-state marginal distribution of species Mpp for case (b).
Again, we have a very good match between full system and tQSSA, both providing
a unimodal distribution, with the mode resembling the unique equilibrium point of
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Figure 1. Stochastic setting of the case (a). Steady-state marginal
distribution of species Mpp. The blue solid line represents the
steady-state distribution computed by means of the Gillespie al-
gorithm for the full model of reactions, while the black and red
solid lines represent the sQSSA and tQSSA distributions, respec-
tively. The deterministic equilibria are reported in dashed lines.
The plot shows that the second modes, which are present in the
deterministic counterpart, are not detected. The system appears to
be monostable.

the deterministic model; the stochastic sQSSA also exhibits one mode, correspond-
ing to the higher equilibrium of its deterministic counterpart and is hence very far
from the modes of full system and tQSSA.

Finally, Figures 3 and 4 show the steady-state marginal distribution of species
Mpp for cases (c) and (d). Again it is apparent that the Monte Carlo simulation of
the full system confirms that only the tQSSA provides a very good approximation.
Case (c), for instance, shows that the tQSSA (as well as the full system) provides
a bimodal distribution, with the modes corresponding to the equilibrium points
of the deterministic model, while the sQSSA provides a unimodal distribution.
Moreover, by slightly varying the parameter setting of just 1 copy number, case (d)
shows a completely different qualitative behavior, with full and tQSSA providing
a unimodal distribution (with the mode resembling the highest of the 2 equilib-
rium points of the deterministic model), while the sQSSA provides a unimodal
distribution completely different from the one coming from the full system.
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Figure 2. Stochastic setting of the case (b). Steady-state marginal
distribution of species Mpp. The blue solid line represents the
steady-state distribution computed by means of the Gillespie al-
gorithm for the full system of reactions, while the black and red
solid lines represent the sQSSA and tQSSA distributions, respec-
tively. The deterministic equilibria are reported in dashed lines.
Differently from sQSSA, the tQSSA reproduces with very good
approximation the mode of the full system.

One important consideration that comes out from these results is that the stochas-
tic tQSSA seems to be a promising tool for the approximation of the distribution
of the full system, when the computation of the exact equilibrium distribution of
this system is intractable. Note also that the dimensions of resulting CME matrices
are exactly the same in sQSSA and tQSSA, so there is no loss in computational
performance in exploiting the latter, which is far more accurate than sQSSA in
capturing the position of the modes. Indeed, results from Theorem 1 allow one to
trust the stationary distribution as coming from different initial conditions as the
unique one, and the correctness of the full system stationary distribution allows one
to trust the tQSSA (instead of the sQSSA) as the golden standard to approximate
(at least) the steady-state behavior. This result somehow mimics what is already
known from the deterministic viewpoint.

Another important consideration concerns the topic of mono/bistability. It is
thus important to note that a bistable behavior in the deterministic approach (i.e., in
the ODEs) is not (necessarily) associated with a bimodal behavior in the stochastic
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Figure 3. Stochastic setting of the case (c). Steady-state marginal
distribution of species Mpp. The blue and red solid lines represent
the sQSSA and tQSSA distributions, respectively. The determinis-
tic equilibria are reported in dashed lines. The tQSSA reproduces
with very good approximation the bistable behavior of the full sys-
tem, whereas the sQSSA shows a monostable behavior, contrary
to what happens in the deterministic setting.

approach (i.e., in the CMEs). Indeed, among the analyzed cases, in cases (a) and
(d) numerical simulations show that the stochastic setting presents just one mode,
matching one of the two deterministic equilibria. A possible explanation for this
phenomenon is that when we consider a deterministic system, we can study its
basins of attraction, from which the trajectories flow necessarily towards the same
equilibrium point. On the other hand, in the stochastic framework, a trajectory
(realization) can always go from any state to any other one during the evolution
of the system, in that the graph of reactions is connected and the Markov model
is positively recurrent (see [Borri et al. 2016] for further details). So, it is rea-
sonable that, depending on the propensity values, one of the two deterministic
equilibrium points can be visited much more often than the other one and that the
trajectories (almost) never leave a neighborhood of the dominating point, which is
stochastically a kind of black hole. As a consequence, the other equilibrium point
disappears from the plots of the probability distribution and the stochastic system
behavior is qualitatively monomodal. Indeed, there is still a way to recover (at least
numerically) the bimodal behavior which is not present at a stochastic macroscopic
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Figure 4. Stochastic setting of the case (d). Steady-state marginal
distribution of species Mpp. The blue and red solid lines represent
the sQSSA and tQSSA distributions, respectively. The determin-
istic equilibria are reported in dashed lines. Differently from the
deterministic setting, both the stochastic QSSAs present only one
mode, but while the tQSSA exactly reproduces the second mode
of the full system, the sQSSA wrongly reproduces the mode.

level. For the case (a), a plot of the discrete derivative of the steady-state marginal
distribution of the species Mpp, for sQSSA and tQSSA, is shown in Figure 5, and
it shows that both sQSSA and tQSSA exhibit some zero crossings of the derivative
corresponding to the second deterministic equilibrium point (around Mpp = 495 in
sQSSA and Mpp = 290 in tQSSA), which are necessary conditions for the existence
of second modes. Anyway, such modes are not detected in Figure 1.

In conclusion, the simulations show the deeper insight of the stochastic ap-
proach into the understanding of the qualitative behavior of reaction networks; in
particular, stochastic simulations are able to provide information about the actual
probability of reaching different equilibrium conditions. This information is lost
in the deterministic approach which constitutes just a first-order approximation of
the mean value of the CME [van Kampen 2007]. Based on this statement, we can
assert that a mode of the stochastic approach always has an equilibrium point as
its deterministic counterpart, but that the converse is not always true. Furthermore,
in both settings, the superiority of the tQSSA approach compared to the sQSSA
is confirmed, in that the former shows a much greater numerical accuracy than
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Figure 5. Discrete derivative of the steady-state marginal distribu-
tion of species Mpp (stochastic case), in case (a), for the sQSSA
(top) and tQSSA (bottom) distributions, respectively. The plots
show the existence of the second mode (zero crossing of the dis-
crete derivative) in the zone of the second deterministic equilib-
rium point (reported in dashed line), both in sQSSA and in tQSSA.

the latter in matching the equilibrium points/modes. In the stochastic approach, in
addition, the better performance of tQSSA is obtained at the same computational
cost as in sQSSA, since the obtained CME dynamical matrices have the same
dimension in the two cases.

6. Conclusions

In this work we investigated a stochastic approach for modeling the biochemical
reaction cycle of double phosphorylation/dephosphorylation (PDP), which is one
of the most important biochemical mechanisms in intracellular reaction networks.
The goal of the work is twofold. On the one hand, we aimed to understand whether
the QSSA approach could be transferred to the investigation of the qualitative be-
havior of the double PDP cycle also in the stochastic scheme, usually assessed as
the best approach whenever dealing with biochemical processes which are intrin-
sically noisy and for which the average copy number dynamics is the only (and
little informative) result available from a deterministic approach. Our results have
somehow extended to the stochastic realm results already established from the
deterministic approach: the tQSSA is a superior tool (with respect to sQSSA) to
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deal with affordable approximations, since it is able to faithfully replicate the full
system results also in those cases where sQSSA fails. On the other hand, proposed
results show how deterministic models could produce misleading results if not
properly accounted for in the wider setting of the stochastic approach, according to
which ODE models can be thought of as a first-order approximation of the average
dynamics. Indeed, what emerges is that, in some cases, deterministic bistability
does not provide a stationary bimodal distribution.

It is reasonable to state that the apparently paradoxical phenomenon described
above may be explained by the following considerations. Continuous-time Markov
chains (CTMCs) describe the probabilities for the state of a discrete-event system
to stay in a specific point on the state space. According to a given reaction, the
dynamics of these probabilities are described by the CME, with reaction rates
providing the propensities for the state to jump from one point of the space to
another one. We therefore conjecture that the disappearance of one mode in the
stationary bimodal distribution could occur when the probability of leaving one
basin of attraction is so low that it would require a (quite) infinite time to occur. In
this case, we can expect a switching phenomenon from one state to the other one
after a very long time, in contrast with what occurs in the deterministic case, as ob-
served, in a different context, in [Székely and Burrage 2014]. Under the hypothesis
that the ergodicity property of CTMC holds, it is well-known that the stationary
probability distribution is unique whatever the initial condition, and that statistical
properties can be deduced from a single, sufficiently long realization (stochastic
realization) of the stochastic process. The fact that this feature of Markov chains
obviously cannot be captured by the deterministic approach could be the reason
for the discrepancy between the two different approaches. Waiting for one single
(long enough) Gillespie stochastic simulation, instead of running a (large enough)
number of them, could be a way to capture the second stable state of a bistable
system. The aim of our future work will be to give further explanations of this
phenomenon which is still a subject of our studies.

Finally, as already observed in the introduction, in [Kim et al. 2014] it was
investigated how different QSS approximations (standard QSSA, total QSSA, and
prefactor QSSA) may provide similar results in the deterministic field, while pro-
viding completely different results in the stochastic field. In other words, [Kim et al.
2014] provided some caveat concerning different QSSAs and provided a criterion
to understand in a specific framework whether a stochastic QSSA is reliable or
not. Unfortunately these results are not straightforwardly applicable to our case:
in [Kim et al. 2015] a unique double time scale enzymatic reaction is considered,
while in our manuscript we consider four double time scale enzymatic reactions.
However, we plan to extend such results to our more general framework in the
continuation of our research.
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