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Abstract

Weextend the results about the existence ofminimizers, relaxation, and approx-
imation proven by Bonnetier and Chambolle (SIAM J Appl Math 62:1093–
1121, 2002), Chambolle and Solci (SIAM J Math Anal 39:77–102, 2007) for
an energy related to epitaxially strained crystalline films, and by Braides et al.
(ESAIM Control Optim Calc Var 13:717–734, 2007) for a class of energies de-
fined on pairs of function-set. We study these models in the framework of three-
dimensional linear elasticity, where a major obstacle to overcome is the lack of any
a priori assumption on the integrability properties of displacements. As a key tool
for the proofs, we introduce a new notion of convergence for (d−1)-rectifiable sets
that are jumps of GSBDp functions, called σ

p
sym-convergence.

1. Introduction

The last years years have witnessed a remarkable progress in the mathematical
and physical literature towards the understanding of stress driven rearrangement
instabilities (SDRI), that is, morphological instabilities of interfaces between elas-
tic phases generated by the competition between elastic and surface energies of
(isotropic or anisotropic) perimeter type. Such phenomena are for instance observed
in the formation ofmaterial voids inside elastically stressed solids.Another example
is hetero-epitaxial growth of elastic thin films, when thin layers of highly strained
hetero-systems, such as InGaAs/GaAs or SiGe/Si, are deposited onto a substrate: in
case of a mismatch between the lattice parameters of the two crystalline solids, the
free surface of the film is flat until a critical value of the thickness is reached, after
which the free surface becomes corrugated (see for example [4,46,49,50,56,58]
for some physical and numerical literature).

From a mathematical point of view, the common feature of functionals de-
scribing SDRI is the presence of both stored elastic bulk and surface energies. In
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the static setting, problems arise concerning existence, regularity, and stability of
equilibrium configurations obtained by energy minimization. The analysis of these
issues is by now mostly developed in dimension two only.

Starting with the seminal work by Bonnetier and Chambolle [9] who
proved existence of equilibrium configurations, several results have been obtained
in [5,7,35,37,45,48] for hetero-epitaxially strained elastic thin films in 2D.We also
refer to [29,30,53] for related energies and to [52] for a unified model for SDRI.
In the three dimensional setting, results are limited to the geometrically nonlin-
ear setting or to linear elasticity under an antiplane-shear assumption [8,20]. In a
similar fashion, regarding the study of material voids in elastic solids, there are
works about existence and regularity in dimension two [14,34] and a relaxation
result in higher dimensions [11] for nonlinearly elastic energies or in linear elas-
ticity under antiplane-shear assumption. Related to [11], we also mention a similar
relaxation result in the presence of obstacles [33], and the study of homogenization
in periodically perforated domains, cf. for example [13,32].

The goal of the present paper is to extend the results about relaxation, exis-
tence, and approximation obtained for energies related to material voids [11] and
to epitaxial growth [9,20], respectively, to the case of linear elasticity in arbitrary
space dimensions. As already observed in [20], the main obstacle for deriving such
generalizations lies in the fact that a deep understanding of the function space of
generalized special functions of bounded deformation (GSBD) is necessary. Indeed,
our strategy is based extensively on using the theory on GSBD functions which,
initiated byDalMaso [27], was developed over the last few years, see for example
[16,17,19,21–25,39,40,42,51]. In fact, as a byproduct of our analysis, we intro-
duce two new notions related to this function space: (1) a version of the space with
functions attaining also the value infinity, and (2) a novel notion for convergence
of rectifiable sets, which we call σ p

sym-convergence. Let us stress that in this work
we exclusively consider a static setting. For evolutionary models, we mention the
recent works [36,43,44,55].

We now introduce the models under consideration in a slightly simplified way,
restricting ourselves to three space dimensions. To describe material voids in elas-
tically stressed solids, we consider the following functional defined on pairs of
function-set (see [56]):

F(u, E) =
∫

Ω\E
C e(u) : e(u) dx +

∫
Ω∩∂E

ϕ(νE ) dH2, (1.1)

where E ⊂ Ω represents the (sufficiently smooth) shape of voids within an elas-
tic body with reference configuration Ω ⊂ R

3, and u is an elastic displacement
field. The first part of the functional represents the elastic energy depending on the
linear strain e(u) := 1

2

(
(∇u)T + ∇u

)
, where C denotes the fourth-order positive

semi-definite tensor of elasticity coefficients. (In fact, we can incorporatemore gen-
eral elastic energies, see (2.2) below.) The surface energy depends on a (possibly
anisotropic) density ϕ evaluated at the outer normal νE to E . This setting is usually
complemented with a volume constraint on the voids E and nontrivial prescribed
Dirichlet boundary conditions for u on a part of ∂Ω . We point out that the boundary
conditions are the reason why the solid is elastically stressed.
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A variational model for epitaxially strained films can be regarded as a special
case of (1.1) and corresponds to the situation where the material domain is the
subgraph of an unknown nonnegative function h. More precisely, we assume that
the material occupies the region

Ω+
h := {x ∈ ω × R : 0 < x3 < h(x1, x2)}

for a given bounded function h : ω → [0,∞), ω ⊂ R
2, whose graph represents

the free profile of the film. We consider the energy

G(u, h) =
∫

Ω+
h

C e(u) : e(u) dx +
∫

ω

√
1 + |∇h(x1, x2)|2 d(x1, x2). (1.2)

Here, u satisfies prescribed boundary data on ω × {0} which corresponds to the
interface between film and substrate. This Dirichlet boundary condition models the
case of a film growing on an infinitely rigid substrate and is the reason for the film
to be strained. We observe that (1.2) corresponds to (1.1) when ϕ is the Euclidean
norm, Ω = ω×(0, M) for some M > 0 large enough, and E = Ω\Ω+

h .
Variants of the above models (1.1) and (1.2) have been studied by Braides,

Chambolle, and Solci [11] and by Chambolle and Solci [20], respectively,
where the linearly elastic energy density C e(u) : e(u) is replaced by an elastic
energy satisfying a 2-growth (or p-growth, p > 1) condition in the full gradi-
ent ∇u with quasiconvex integrands. These works are devoted to giving a sound
mathematical formulation for determining equilibrium configurations. Bymeans of
variational methods and geometric measure theory, they study the relaxation of the
functionals in terms of generalized functions of bounded variation (GSBV ) which
allows there to incorporate the possible roughness of the geometry of voids or films.
The existence of minimizers for the relaxed functionals and the approximation of
(the counterpart of) G through a phase-field Γ -convergence result are addressed.
In fact, the two articles were written almost simultaneously with many similarities
in both the setting and the proof strategy.

Therefore, we prefer to present the extension of both works to the GSBD set-
ting (that is, to three-dimensional linear elasticity) in a single work to allow for a
comprehensive study of different applications. We now briefly discuss our main
results.

(a) Relaxation of F : We first note that, for fixed E , F(·, E) is weakly lower
semicontinuous in H1 and, for fixed u, F(u, ·) can be regarded as a lower
semicontinuous functional on sets of finite perimeter. The energy defined on
pairs (u, E), however, is not lower semicontinuous since, in a limiting process,
the voids E may collapse into a discontinuity of the displacement u. The
relaxation has to take this phenomenon into account, in particular collapsed
surfaces need to be counted twice in the relaxed energy. Provided that the
surface density ϕ is a norm in R

3, we show that the relaxation takes the form
(see Proposition 2.1)

F(u, E) =
∫

Ω\E
C e(u) : e(u) dx+

∫
Ω∩∂∗E

ϕ(νE ) dH2+
∫
Ju∩(Ω\E)1

2 ϕ(νu) dH2,

(1.3)
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where E is a set of finite perimeter with essential boundary ∂∗E , (Ω\E)1

denotes the set of points of density 1 of Ω\E , and u ∈ GSBD2(Ω). Here,
e(u) denotes the approximate symmetrized gradient of class L2(Ω;R3×3) and
Ju is the jump set with correspondingmeasure-theoretical normal νu . (We refer
to Section 3 for the definition and the main properties of this function space.
Later, we will also consider more general elastic energies and work with the
space GSBDp(Ω), 1 < p < ∞, that is, e(u) ∈ L p(Ω;R3×3).)

(b) Minimizer for F : In Theorem2.2, we show that such a relaxation result can also
be proved by imposing additionally a volume constraint on E (which reflects
mass conservation) and by prescribing boundary data for u. For this version of
the relaxed functional, we prove the existence of minimizers, see Theorem 2.3.

(c) Relaxation ofG: For the model (1.2) describing epitaxially strained crystalline
films, we show in Theorem 2.4 that the lower semicontinous envelope takes
the form

G(u, h) =
∫

Ω+
h

C e(u) : e(u) dx + H2(Γh) + 2H2(Σ), (1.4)

where h ∈ BV (ω; [0,∞)) and Γh denotes the (generalized) graph of h. Here,
u is again a GSBD2-function and the set Σ ⊂ R

3 is a “vertical” rectifiable set
describing the discontinuity set of u inside the subgraph Ω+

h . Similar to the
last term in (1.3), this contribution has to be counted twice. We remark that in
[35] the set Σ is called “vertical cuts”. Also here a volume constraint may be
imposed.

(d) Minimizer for G: In Theorem 2.5, we show compactness for sequences with
bounded G energy. In particular, this implies existence of minimizers for G
(under a volume constraint).

(e) Approximation for G: In Theorem 2.6, we finally prove a phase-field Γ -
convergence approximation of G. We remark that we can generalize the as-
sumptions on the regularity of the Dirichlet datum. Whereas in [20, Theo-
rem 5.1] the class H1 ∩ L∞ was considered, we show that it indeed suffices
to assume H1-regularity.

We now provide some information on the proof strategy highlighting in particular
the additional difficulties compared to [11,20]. Here, we will also explain why two
new technical tools related to the space GSBD have to be introduced.

(a) The proof of the lower inequality for the relaxation F is closely related to the
analog in [11]: we use an approach by slicing, exploiting the lower inequality
in one dimension, and employing a localization method. To prove the upper
inequality, it is enough to combine the corresponding upper bound from [11]
with a density result for GSBDp (p > 1) functions [17], slightly adapted for
our purposes, see Lemma 5.7.

(b) We point out that, in [11], the existence of minimizers was not addressed due
to the lack of a compactness result. In this sense, our study also delivers a
conceptionally new result without corresponding counterpart in [11]. The main
difficulty lies in the fact that, for configurations with finite energy (1.3), small
pieces of the body could be disconnected from the bulk part, either by the



Equilibrium Configurations for Epitaxially Strained Films 1045

voids E or by the jump set Ju . Thus, since there are no a priori bounds on
the displacements, the function u could attain arbitrarily large values on cer-
tain components, and this might rule out measure convergence for minimizing
sequences. We remark that truncation methods, used to remedy this issue in
scalar problems, are not applicable in the vectorial setting. This problem was
solved only recently by general compactness results, both in the GSBV p and
theGSBDp setting. The result [41] inGSBV p delivers a selection principle for
minimizing sequences showing that one can always find at least one minimizing
sequence converging in measure. With this, the existence of minimizers for the
energies in [11] is immediate.
Our situation in linear elasticity, however, is more delicate, since a comparable
result is not available inGSBD. In [19, Theorem 1.1], a compactness and lower
semicontinuity result in GSBDp is derived relying on the idea that minimiz-
ing sequences may “converge to infinity” on a set of finite perimeter. In the
present work, we refine this result by introducing a topology which induces this
kind of nonstandard convergence. To this end, we need to define the new space
GSBDp∞ consisting of GSBDp functions which may also attain the value infin-
ity. With these new techniques at hand, we can prove a general compactness
result in GSBDp∞ (see Theorem 5.9) which particularly implies the existence
of minimizers for (1.3).

(c) Although the functional G in (1.2) is a special case of F , the relaxation result is
not an immediate consequence, due to the additional constraint that the domain
is the subgraph of a function. Indeed, in the lower inequality, a further crucial
step is needed in the description of the (variational) limit of ∂Ωhn when hn → h
in L1(ω). In particular, the vertical set Σ has to be identified, see (1.4).
This issue is connected to the problem of detecting all possible limits of jump
sets Jun of converging sequences (un)n of GSBDp functions. In the GSBV p

setting, the notion of σ p-convergence of sets is used, which has originally been
developed by Dal Maso, Francfort, and Toader [28] to study quasistatic
crack evolution in nonlinear elasticity. (We refer also to the variant [47] which
is independent of p.) In this work, we introduce an analogous notion in the
GSBDp setting which we call σ

p
sym-convergence. The definition is a bit more

complicated compared to the GSBV setting since it has to be formulated in the
frame ofGSBDp∞ functions possibly attaining the value infinity.We believe that
this notionmay be of independent interest and is potentially helpful for studying
other problems such as quasistatic crack evolution in linear elasticity [42]. We
refer to Section 4 for the definition and properties of σ

p
sym-convergence, as well

as for a comparison to the corresponding notion in the GSBV p setting.
Showing the upper bound for the relaxation result is considerably more difficult
than the analogous bound for F . In fact, one has to guarantee that recovery
sequences are made up by sets that are still subgraphs. We stress that this
cannot be obtained by some general existence results, but is achieved through a
very careful construction (pp. 29–38) that follows only partially the analogous
one in [20]. We believe that the construction in [20] could indeed be improved
by adopting an approach similar to ours, in order to take also some pathological
situations into account.
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(d) To show the existence of minimizers ofG, the delicate step is to prove that min-
imizing sequences have subsequences which converge (at least) in measure. In
theGSBV p setting, this is simply obtained by applying a Poincaré inequality on
vertical slices through the film. The same strategy cannot be pursued inGSBDp,
since by slicing in a certain direction not all components can be controlled. As
a remedy, we proceed in two steps. We first use the novel compactness result
in GSBDp∞ to identify a limit which might attain the value infinity on a set of
finite perimeter G∞. Then, a posteriori, we show that, actually, G∞ = ∅; see
Section 6.1 for details.

(e) For the phase-field approximation, we combine a variant of the construction
in the upper inequality for G with the general strategy of the corresponding
approximation result in [20]. The latter is slightly modified in order to proceed
without L∞-bound on the displacements.

The paper is organized as follows: in Section 2, we introduce the setting of our
two models on material voids in elastic solids and epitaxially strained films. Here,
we also present ourmain relaxation, existence, and approximation results. Section 3
collects definition andmain properties of the function spaceGSBDp. In this section,
we also define the space GSBDp∞ and show basic properties. In Section 4 we
introduce the novel notion of σ

p
sym-convergence and prove a compactness result for

sequences of rectifiable sets with bounded Hausdorff measure. Section 5 is devoted
to the analysis of functionals defined on pairs of function-set. Finally, in Section 6
we investigate the model for epitaxially strained films and prove the relaxation,
existence, and approximation results.

2. Setting of the Problem and Statement of the Main Results

In this section, we give the precise definitions of the two energy functionals and
present the main relaxation, existence, and approximation results. In the following,
f : Md×d → [0,∞) denotes a convex function satisfying the growth condition (| · |
is the Frobenius norm onMd×d ):

c1|ζT + ζ |p � f (ζ ) � c2(|ζT + ζ |p + 1) for all ζ ∈ M
d×d , (2.1)

and f (0) = 0, for some 1 < p < +∞. In particular, the convexity of f and (2.1)
imply that f (ζ ) = f ( 12 (ζ

T + ζ )) for all ζ ∈ M
d×d . For an open subset Ω ⊂ R

d ,
we will denote by L0(Ω;Rd) the space of Ld -measurable functions v : Ω → R

d

endowed with the topology of the convergence in measure. We let M(Ω) be the
family of all Ld -measurable subsets of Ω .

2.1. Energies on Pairs Function-Set: Material Voids in Elastically Stressed Solids

Let Ω ⊂ R
d be a Lipschitz domain. We introduce an energy functional defined

on pairs function-set. Given a norm ϕ on R
d and f : Md×d → [0,∞), we let

F : L0(Ω;Rd) × M(Ω) → R ∪ {+∞} be defined by
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F(u, E) =

⎧⎪⎨
⎪⎩

∫
Ω\E f (e(u)) dx + ∫

Ω∩∂E ϕ(νE ) dHd−1

if ∂E Lipschitz, u|Ω\E ∈ W 1,p(Ω\E;Rd), u|E = 0,

+∞ otherwise,
(2.2)

where e(u) := 1
2

(
(∇u)T + ∇u

)
denotes the symmetrized gradient, and νE the

outer normal to E . We point out that the energy is determined by E and the values
of u on Ω\E . The condition u|E = 0 is for definiteness only. We denote by
F : L0(Ω;Rd) ×M(Ω) → R ∪ {+∞} the lower semicontinuous envelope of the
functional F with respect to the convergence in measure for the functions and the
L1(Ω)-convergence of characteristic functions of sets, that is,

F(u, E) = inf
{
lim inf
n→∞ F(un, En) : un → u in L0(Ω;Rd) and χEn → χE in L1(Ω)

}
.

(2.3)
(We observe that the convergence in L0(Ω;Rd) is metrizable, so the sequential
lower semicontinuous envelope coincides with the lower semicontinuous envelope
with respect to this convergence.) In what follows, for any s ∈ [0, 1] and any
E ∈ M(Ω), Es denotes the set of points with density s for E . By ∂∗E we indicate
its essential boundary, see [3, Definition 3.60]. For the definition of the space
GSBDp(Ω), p > 1,we refer to Section 3 below. In particular, by e(u) = 1

2 ((∇u)T+
∇u) we denote the approximate symmetrized gradient, and by Ju the jump set of
u with measure-theoretical normal νu . We characterize F as follows:

Proposition 2.1. (Characterization of the lower semicontinuous envelope F) Sup-
pose that f is convex and satisfies (2.1), and that ϕ is a norm on Rd . Then, it holds
that

F(u, E) =

⎧⎪⎨
⎪⎩

∫
Ω\E f (e(u)) dx + ∫

Ω∩∂∗E ϕ(νE ) dHd−1 + ∫
Ju∩(Ω\E)1

2 ϕ(νu) dHd−1

if u = u χE0 ∈ GSBDp(Ω) andHd−1(∂∗E) < +∞,

+∞ otherwise.

Moreover, if Ld(E) > 0, then for any (u, E) ∈ L0(Ω;Rd)×M(Ω) there exists a
recovery sequence (un, En)n ⊂ L0(Ω;Rd)×M(Ω) such that Ld(En) = Ld(E)

for all n ∈ N.

The last property shows that it is possible to incorporate a volume constraint on E in
the relaxation result.We nowmove on to consider aDirichletminimization problem
associated to F . We will impose Dirichlet boundary data u0 ∈ W 1,p(Rd ;Rd) on a
subset ∂DΩ ⊂ ∂Ω . For technical reasons, we suppose that ∂Ω = ∂DΩ ∪∂NΩ ∪N
with ∂DΩ and ∂NΩ relatively open, ∂DΩ ∩ ∂NΩ = ∅,Hd−1(N ) = 0, ∂DΩ �= ∅,
∂(∂DΩ) = ∂(∂NΩ), and that there exist a small δ > 0 and x0 ∈ R

d such that for
every δ ∈ (0, δ), it holds that

Oδ,x0(∂DΩ) ⊂ Ω, (2.4)

where Oδ,x0(x) := x0 + (1 − δ)(x − x0). (These assumptions are related to
Lemma 5.7 below.) In what follows, we denote by tr(u) the trace of u on ∂Ω which
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is well defined for functions in GSBDp(Ω), see Section 3. In particular, it is well
defined for functions u considered in (2.2) satisfying u|Ω\E ∈ W 1,p(Ω\E;Rd)

and u|E = 0. By νΩ we denote the outer unit normal to ∂Ω .
We now introduce a version of F taking boundary data into account. Given

u0 ∈ W 1,p(Rd ;Rd), we set

FDir(u, E) =
{
F(u, E) + ∫

∂DΩ∩∂E ϕ(νE ) dHd−1 if tr(u) = tr(u0) on ∂DΩ\E,

+∞ otherwise.
(2.5)

Similarly to (2.3), we define the lower semicontinuous envelope FDir by

FDir(u, E) =
{
lim inf
n→∞ FDir(un, En) : un → u in L0(Ω;Rd ) and χEn → χE in L1(Ω)

}
.

(2.6)
We have the following characterization:

Theorem 2.2. (Characterization of the lower semicontinuous envelope FDir) Sup-
pose that f is convex and satisfies (2.1), that ϕ is a norm on R

d , and that (2.4) is
satisfied. Then it holds that

FDir(u, E) = F(u, E)+
∫

∂DΩ∩∂∗E

ϕ(νE ) dHd−1+
∫

{tr(u) �=tr(u0)}∩(∂DΩ\∂∗E)

2 ϕ(νΩ) dHd−1.

(2.7)
Moreover, if Ld(E) > 0, then for any (u, E) ∈ L0(Ω;Rd)×M(Ω) there exists a
recovery sequence (un, En)n ⊂ L0(Ω;Rd)×M(Ω) such that Ld(En) = Ld(E)

for all n ∈ N.

The proof of Proposition 2.1 and Theorem 2.2 will be given in Section 5.2. There,
we provide also two slight generalizations (see Proposition 5.5 and Theorem 5.8),
namely a relaxationwith respect to aweaker convergence in a general spaceGSBDp∞
(cf. (3.10)), where functions are allowed to attain the value infinity. We close this
subsectionwith an existence result for FDir, under a volume constraint for the voids.

Theorem 2.3. (Existence of minimizers for FDir) Suppose that f is convex and
satisfies (2.1), and that ϕ is a norm on R

d . Let m > 0. Then the minimization
problem

inf
{
FDir(u, E) : (u, E) ∈ L0(Ω;Rd)×M(Ω), Ld(E) = m

}

admits solutions.

For the proof, we refer to Section 5.3; it relies on the lower semicontinuity of FDir
and a compactness result in the general spaceGSBDp∞ (cf. (3.10)), see Theorem 5.9.



Equilibrium Configurations for Epitaxially Strained Films 1049

2.2. Energies on Domains with a Subgraph Constraint: Epitaxially Strained Films

Wenow consider the problem of displacement fields in amaterial domainwhich
is the subgraph of an unknown nonnegative function h. Assuming that h is defined
on a Lipschitz domain ω ⊂ R

d−1, displacement fields u will be defined on the
subgraph

Ω+
h := {x ∈ ω × R : 0 < xd < h(x ′)},

where here and in the following we use the notation x = (x ′, xd) for x ∈ R
d . To

model Dirichlet boundary data at the flat surface ω × {0}, we will suppose that
functions are extended to the set Ωh := {x ∈ ω × R : − 1 < xd < h(x ′)} and
satisfy u = u0 on ω×(− 1, 0) for a given function u0 ∈ W 1,p(ω×(−1, 0);Rd),
p > 1. In the application to epitaxially strained films, u0 represents the substrate
and h represents the profile of the free surface of the film.

For convenience, we introduce the reference domain Ω := ω×(−1, M + 1)
for M > 0. We define the energy functional G : L0(Ω;Rd) × L1(ω; [0, M]) →
R ∪ {+∞} by

G(u, h) =
∫

Ω+
h

f (e(u(x))) dx +
∫

ω

√
1 + |∇h(x ′)|2 dx ′ (2.8)

if h ∈ C1(ω; [0, M]), u|Ωh ∈ W 1,p(Ωh;Rd), u = 0 in Ω\Ωh , and u = u0 in
ω×(−1, 0), and G(u, h) = +∞ otherwise. Here, f : Md×d → [0,∞) denotes a
convex function satisfying (2.1), and as before we set e(u) := 1

2

(
(∇u)T + ∇u

)
.

Notice that, in contrast to [9], we suppose that the functions h are equibounded by a
value M : this is for technical reasons only and is indeed justified from amechanical
point of view since other effects come into play for very high crystal profiles.

We study the relaxation of G with respect to the L0(Ω;Rd)×L1(ω; [0, M])
topology, that is, its lower semicontinuous envelopeG : L0(Ω;Rd)×L1(ω; [0, M])
→ R ∪ {+∞}, defined as

G(u, h) = inf
{
lim inf
n→∞ G(un, hn) : un → u in L0(Ω;Rd), hn → h in L1(ω)

}
.

We characterize G as follows, further assuming that the Lipschitz set ω ⊂ R
d−1 is

uniformly star-shaped with respect to the origin, that is,

t x ⊂ ω for all t ∈ (0, 1), x ∈ ∂ω. (2.9)

Theorem 2.4. (Characterization of the lower semicontinuous envelopeG) Suppose
that f is convex satisfying (2.1) and that (2.9) holds. Then we have

G(u, h) =

⎧⎪⎪⎨
⎪⎪⎩

∫
Ω+
h

f (e(u)) dx + Hd−1(∂∗Ωh ∩ Ω) + 2Hd−1(J ′
u ∩ Ω1

h )

if u = uχΩh ∈ GSBDp(Ω), u = u0 in ω×( −1, 0), h ∈ BV (ω; [0, M]),
+∞ otherwise,

where

J ′
u := {(x ′, xd + t) : x ∈ Ju, t � 0}. (2.10)



1050 Vito Crismale & Manuel Friedrich

The assumption (2.9) on ω is more general than the one considered in [20],
where ω is assumed to be a torus. We point out, however, that both assumptions are
only of technical nature and could be dropped at the expense of more elaborated
estimates, see also [20]. The proof of this result will be given in Section 6.1.

We note that the functional G could be considered with an additional volume
constraint on the film, that is, Ld(Ω+

h ) = ∫
ω
h(x ′) dx ′ is fixed. An easy adaptation

of the proof shows that the relaxed functionalG is not changed under this constraint,
see Remark 6.8 for details.

In Section 6.2, we further prove the following general compactness result, from
whichwe deduce the existence of equilibriumconfigurations for epitaxially strained
films:

Theorem 2.5. (Compactness for G) Suppose that f is convex and satisfies (2.1).
For any (un, hn)n with supn G(un, hn) < +∞, there exist a subsequence (not
relabeled) and functions u ∈ GSBDp(Ω), h ∈ BV (ω; [0, M]) with u = uχΩh

and u = u0 on ω × (−1, 0) such that

(un, hn) → (u, h) in L0(Ω;Rd)×L1(ω).

In particular, general properties of relaxation (see for example [26, Theorem 3.8])
imply that, given 0 < m < MHd−1(ω), the minimization problem

inf
{
G(u, h) : (u, E) ∈ L0(Ω;Rd) × L1(ω), Ld(Ω+

h ) = m
}

(2.11)

admits solutions. Moreover, fixed m and the volume constraint Ld(Ω+
h ) = m for

G and G, any cluster point for minimizing sequences of G is a minimum point for
G.

Our final issue is a phase-field approximation of G. The idea is to represent
any subgraph Ωh by a (regular) function v which will be an approximation of
the characteristic function χΩh at a scale of order ε. Let W : [0, 1] → [0,∞) be
continuous, with W (1) = W (0) = 0, W > 0 in (0, 1), and let (ηε)ε with ηε > 0
and ηεε

1−p → 0 as ε → 0. Let cW := (
∫ 1
0

√
2W (s) ds)−1. In the reference domain

Ω = ω×(−1, M + 1), we introduce the functionals

Gε(u, v) :=
∫

Ω

(
(v2 + ηε) f (e(u)) + cW

(W (v)

ε
+ ε

2
|∇v|2

))
dx, (2.12)

if

u ∈ W 1,p(Ω;Rd), u = u0 in ω×(−1, 0),

v ∈ H1(Ω; [0, 1]), v = 1 in ω×(−1, 0),

v = 0 in ω×(M, M + 1) ∂dv � 0 Ld -a.e. in Ω,

and Gε(u, v) := +∞ otherwise. The following phase-field approximation is the
analog of [20, Theorem 5.1] in the frame of linear elasticity. We remark that here,
differently from [20], we assume only u0 ∈ W 1,p(ω × (−1, 0);Rd), and not
necessarily u0 ∈ L∞(ω × (−1, 0);Rd). For the proof we refer to Section 6.3.
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Theorem 2.6. Let u0 ∈ W 1,p(ω × (−1, 0);Rd). For any decreasing sequence
(εn)n of positive numbers converging to zero, the following hold:

(i) For any (un, vn)n with supn Gεn (un, vn) < +∞, there exist u ∈ L0(Ω;Rd)

and h ∈ BV (ω; [0, M]) such that, up to a subsequence, un → u a.e. in Ω ,
vn → χΩh in L1(Ω), and

G(u, h) � lim inf
n→+∞ Gεn (un, vn). (2.13)

(ii) For any (u, h) with G(u, h) < +∞, there exists (un, vn)n such that un → u
a.e. in Ω , vn → χΩh in L1(Ω), and

lim sup
n→∞

Gεn (un, vn) = G(u, h).

3. Preliminaries

In this section, we recall the definition andmain properties of the function space
GSBDp. Moreover, we introduce the space GSBDp∞ of functions which may attain
the value infinity.

3.1. Notation

For every x ∈ R
d and � > 0, let B�(x) ⊂ R

d be the open ball with center x
and radius �. For x , y ∈ R

d , we use the notation x · y for the scalar product and
|x | for the Euclidean norm. ByMd×d andMd×d

sym we denote the set of matrices and
symmetric matrices, respectively. We write χE for the indicator function of any
E ⊂ R

n , which is 1 on E and 0 otherwise. If E is a set of finite perimeter, we
denote its essential boundary by ∂∗E , and by Es the set of points with density s for
E , see [3, Definition 3.60]. We indicate the minimum and maximum value between
a, b ∈ R by a ∧ b and a ∨ b, respectively. The symmetric difference of two sets
A, B ⊂ R

d is indicated by A�B.
We denote by Ld and Hk the d-dimensional Lebesgue measure and the k-

dimensional Hausdorff measure, respectively. For any locally compact subset B ⊂
R
d , (that is any point in B has a neighborhood contained in a compact subset

of B), the space of bounded R
m-valued Radon measures on B [respectively, the

space of Rm-valued Radon measures on B] is denoted by Mb(B;Rm) [resp., by
M(B;Rm)]. If m = 1, we write Mb(B) for Mb(B;R), M(B) for M(B;R),
and M+

b (B) for the subspace of positive measures of Mb(B). For every μ ∈
Mb(B;Rm), its total variation is denoted by |μ|(B). Given Ω ⊂ R

d open, we use
the notation L0(Ω;Rd) for the space of Ld -measurable functions v : Ω → R

d .

Definition 3.1. Let E ⊂ R
d , v ∈ L0(E;Rm), and x ∈ R

d such that

lim sup
�→0+

Ld(E ∩ B�(x))

�d
> 0.
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A vector a ∈ R
d is the approximate limit of v as y tends to x if for every ε > 0 it

holds that

lim
�→0+

Ld(E ∩ B�(x) ∩ {|v − a| > ε})
�d

= 0,

and then we write
ap lim
y→x

v(y) = a.

Definition 3.2. Let U ⊂ R
d be open and v ∈ L0(U ;Rm). The approximate jump

set Jv is the set of points x ∈ U for which there exist a, b ∈ R
m , with a �= b, and

ν ∈ S
d−1 such that

ap lim
(y−x)·ν>0, y→x

v(y) = a and ap lim
(y−x)·ν<0, y→x

v(y) = b.

The triplet (a, b, ν) is uniquely determined up to a permutation of (a, b) and a
change of sign of ν, and is denoted by (v+(x), v−(x), νv(x)). The jump of v is the
function defined by [v](x) := v+(x) − v−(x) for every x ∈ Jv .

We note that Jv is a Borel set with Ld(Jv) = 0, and that [v] is a Borel function.

3.2. BV and BD Functions

LetU ⊂ R
d be open.We say that a function v ∈ L1(U ) is a function of bounded

variation onU , andwewrite v ∈ BV (U ), ifDiv ∈ Mb(U ) for i = 1, . . . , d, where
Dv = (D1v, . . . ,Ddv) is its distributional derivative. A vector-valued function
v : U → R

m is in BV (U ;Rm) if v j ∈ BV (U ) for every j = 1, . . . ,m. The space
BVloc(U ) is the space of v ∈ L1

loc(U ) such that Div ∈ M(U ) for i = 1, . . . , d.
A function v ∈ L1(U ;Rd) belongs to the space of functions of bounded de-

formation if the distribution Ev := 1
2 ((Dv)T + Dv) belongs to Mb(U ;Md×d

sym ). It

is well known (see [2,59]) that for v ∈ BD(U ), Jv is countably (Hd−1, d − 1)
rectifiable, and that

Ev = Eav + Ecv + E jv,

where Eav is absolutely continuous with respect toLd , Ecv is singular with respect
to Ld and such that |Ecv|(B) = 0 ifHd−1(B) < ∞, while E jv is concentrated on
Jv . The density of Eav with respect to Ld is denoted by e(v).

The space SBD(U ) is the subspace of all functions v ∈ BD(U ) such that
Ecv = 0. For p ∈ (1,∞), we define

SBDp(U ) := {v ∈ SBD(U ) : e(v) ∈ L p(Ω;Md×d
sym ), Hd−1(Jv) < ∞}.

Analogous properties hold for BV , such as the countable rectifiability of the jump
set and the decomposition of Dv. The spaces SBV (U ;Rm) and SBV p(U ;Rm)

are defined similarly, with ∇v, the density of Dav, in place of e(v). For a complete
treatment of BV , SBV functions and BD, SBD functions, we refer to [3] and to
[2,6,59], respectively.
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3.3. GBD Functions

We now recall the definition and the main properties of the space GBD of
generalized functions of bounded deformation, introduced in [27], referring to that
paper for a general treatment and more details. Since the definition of GBD is
given by slicing (differently from the definition of GBV , cf. [1,31]), we first need
to introduce some notation. Fixed ξ ∈ S

d−1 := {ξ ∈ R
d : |ξ | = 1}, we let

Πξ := {y ∈ R
d : y ·ξ = 0}, Bξ

y := {t ∈ R : y+tξ ∈ B} for any y ∈ R
d and B ⊂ R

d ,

(3.1)
and for every function v : B → R

d and t ∈ Bξ
y let

vξ
y(t) := v(y + tξ), v̂ξ

y(t) := vξ
y(t) · ξ. (3.2)

Definition 3.3. ([27]) Let Ω ⊂ R
d be a bounded open set, and let v ∈ L0(Ω;Rd).

Then v ∈ GBD(Ω) if there exists λv ∈ M+
b (Ω) such that one of the following

equivalent conditions holds true for every ξ ∈ S
d−1:

(a) for every τ ∈ C1(R) with − 1
2 � τ � 1

2 and 0 � τ ′ � 1, the partial derivative
Dξ

(
τ(v · ξ)

) = D
(
τ(v · ξ)

) · ξ belongs to Mb(Ω), and for every Borel set
B ⊂ Ω ∣∣Dξ

(
τ(v · ξ)

)∣∣(B) � λv(B);
(b) v̂

ξ
y ∈ BVloc(Ω

ξ
y ) for Hd−1-a.e. y ∈ Πξ , and for every Borel set B ⊂ Ω

∫
Πξ

(∣∣Dv̂ξ
y

∣∣(Bξ
y\J 1v̂ξ

y

) + H0(Bξ
y ∩ J 1

v̂
ξ
y

))
dHd−1(y) � λv(B),

where J 1
ûξ
y

:=
{
t ∈ Ĵ

uξ
y

: |[̂uξ
y]|(t) � 1

}
.

The function v belongs to GSBD(Ω) if v ∈ GBD(Ω) and v̂
ξ
y ∈ SBVloc(Ω

ξ
y ) for

every ξ ∈ S
d−1 and forHd−1-a.e. y ∈ Πξ .

GBD(Ω) and GSBD(Ω) are vector spaces, as stated in [27, Remark 4.6], and
one has the inclusions BD(Ω) ⊂ GBD(Ω), SBD(Ω) ⊂ GSBD(Ω), which are
in general strict (see [27, Remark 4.5 and Example 12.3]). Every v ∈ GBD(Ω)

has an approximate symmetric gradient e(v) ∈ L1(Ω;Md×d
sym ) such that for every

ξ ∈ S
d−1 and Hd−1-a.e. y ∈ Πξ it holds that

e(v)(y + tξ)ξ · ξ = (̂vξ
y)

′(t) for L1-a.e. t ∈ Ωξ
y . (3.3)

We recall also that by the area formula (cf. for example [57, (12.4)]; see [2, Theo-
rem 4.10] and [27, Theorem 8.1]) it follows that for any ξ ∈ S

d−1,

(J ξ
v )ξy = Ĵ

v
ξ
y
for Hd−1-a.e. y ∈ Πξ , where J ξ

v := {x ∈ Jv : [v](x) · ξ �= 0},
(3.4a)∫

Πξ

H0( Ĵ
v

ξ
y
) dHd−1(y) =

∫
J ξ
v

|νv · ξ | dHd−1. (3.4b)
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Moreover, it holds that

Hd−1(Jv\J ξ
v ) = 0 for Hd−1-a.e. ξ ∈ S

d−1. (3.5)

Finally, if Ω has Lipschitz boundary, for each v ∈ GBD(Ω) the traces on ∂Ω are
well defined in the sense that for Hd−1-a.e. x ∈ ∂Ω there exists tr(v)(x) ∈ R

d

such that

ap lim
y→x, y∈Ω

v(y) = tr(v)(x).

For 1 < p < ∞, the space GSBDp(Ω) is defined by

GSBDp(Ω) := {u ∈ GSBD(Ω) : e(u) ∈ L p(Ω;Md×d
sym ), Hd−1(Ju) < ∞}.

We recall below two general density and compactness results inGSBDp, from [17]
and [19].

Theorem 3.4. (Density in GSBDp) Let Ω ⊂ R
d be an open, bounded set with

finite perimeter and let ∂Ω be a (d−1)-rectifiable, p > 1, ψ(t) = t ∧ 1, and
u ∈ GSBDp(Ω). Then there exist un ∈ SBV p(Ω;Rd) ∩ L∞(Ω;Rd) such that
each Jun is closed in Ω and included in a finite union of closed connected pieces
of C1 hypersurfaces, un ∈ W 1,∞(Ω\Jun ;Rd), and∫

Ω

ψ(|un − u|) dx → 0, (3.6a)

‖e(un) − e(u)‖L p(Ω) → 0, (3.6b)

Hd−1(Jun�Ju) → 0. (3.6c)

We refer to [17, Theorem 1.1]. In contrast to [17], we use here the function
ψ(t) := t ∧ 1 for simplicity. It is indeed easy to check that [17, (1.1e)] implies
(3.6a).

Theorem 3.5. (GSBDp compactness) Let Ω ⊂ R be an open, bounded set, and let
(un)n ⊂ GSBDp(Ω) be a sequence satisfying that

supn∈N
(‖e(un)‖L p(Ω) + Hd−1(Jun )

)
< +∞.

Then, there exists a subsequence, still denoted by (un)n, such that the set A :=
{x ∈ Ω : |un(x)| → ∞} has finite perimeter, and there exists u ∈ GSBDp(Ω)

such that

(i) un → u in L0(Ω\A;Rd),

(ii) e(un) ⇀ e(u) weakly in L p(Ω\A;Md×d
sym ),

(iii) lim inf
n→∞ Hd−1(Jun ) � Hd−1(Ju ∪ (∂∗A ∩ Ω)). (3.7)

Moreover, for each Γ ⊂ Ω withHd−1(Γ ) < +∞, it holds that

lim inf
n→∞ Hd−1(Jun\Γ ) � Hd−1((Ju ∪ (∂∗A ∩ Ω))\Γ )

. (3.8)

Proof. We refer to [19]. The additional statement (3.8) is proved, for example, in
[42, Theorem 2.5]. ��

Later, as a byproduct of our analysis, we will generalize the lower semiconti-
nuity property (3.7)(iii) to anisotropic surface energies, see Corollary 5.6.
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3.4. GSBDp∞ Functions

Inspired by the previous compactness result, we now introduce a space of
GSBDp functions which may also attain a limit value ∞. Define R̄d := R

d ∪ {∞}.
The sum on R̄d is given by a+∞ = ∞ for any a ∈ R̄

d . There is a natural bijection
between R̄d and Sd = {ξ ∈ R

d+1 : |ξ | = 1} given by the stereographic projection
of Sd to R̄d : for ξ �= ed+1, we define

φ(ξ) = 1

1 − ξd+1
(ξ1, . . . , ξd),

and let φ(ed+1) = ∞. By ψ : R̄d → S
d we denote the inverse. Note that

d
R̄d (x, y) := |ψ(x) − ψ(y)| for x, y ∈ R̄

d (3.9)

induces a bounded metric on R̄
d . We define

GSBDp∞(Ω) :=
{
u ∈ L0(Ω; R̄d) : A∞

u := {u = ∞} satisfies Hd−1(∂∗A∞
u ) < +∞,

ũt := uχΩ\A∞
u

+ tχA∞
u

∈ GSBDp(Ω) for all t ∈ R
d
}
.

(3.10)

Symbolically, we will also write

u = uχΩ\A∞
u

+ ∞χA∞
u

.

Moreover, for any u ∈ GSBDp∞(Ω), we set e(u) = 0 in A∞
u , and

Ju = JuχΩ\A∞
u

∪ (∂∗A∞
u ∩ Ω). (3.11)

In particular, we have that

e(u) = e(ũt ) Ld -a.e. on Ω and

Ju = Jũt Hd−1-a.e. for almost all t ∈ R, (3.12)

where ũt is the function from (3.10). Hereby, we also get a natural definition of
a normal νu to the jump set Ju , and the slicing properties described in (3.3)–(3.5)
still hold. Finally, we point out that all definitions are consistent with the usual ones
if u ∈ GSBDp(Ω), that is, if A∞

u = ∅. Since GSBDp(Ω) is a vector space, we
observe that the sum of two functions in GSBDp∞(Ω) lies again in this space.

A metric on GSBDp∞(Ω) is given by

d̄(u, v):=
∫

Ω

d
R̄d (u(x), v(x)) dx, (3.13)

where d
R̄d is the distance in (3.9). We now state compactness properties in

GSBDp∞(Ω).
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Lemma 3.6. (Compactness in GSBDp∞) For L > 0 and Γ ⊂ Ω with Hd−1(Γ ) <

+∞, we introduce the sets

XL(Ω) = {
v ∈ GSBDp∞(Ω) : Hd−1(Jv) � L , ‖e(v)‖L p(Ω) � 1

}
,

XΓ (Ω) = {
v ∈ GSBDp∞(Ω) : Hd−1(Jv\Γ ) = 0, ‖e(v)‖L p(Ω) � 1

}
. (3.14)

Then the sets XL(Ω), XΓ (Ω) ⊂ GSBDp∞(Ω) are compact with respect to the
metric d̄.

Proof. For XL(Ω), the statement follows from Theorem 3.5 and the definitions
(3.10)–(3.11): in fact, given a sequence (un)n ⊂ XL(Ω), we consider a sequence
(ũntn )n ⊂ GSBDp(Ω) as in (3.10), for suitable (tn)n ⊂ R

d with |tn| → ∞. This
implies

d̄(un, ũntn ) → 0 as n → ∞. (3.15)

Then, by Theorem 3.5 there exists v ∈ GSBDp(Ω) and A = {x ∈ Ω : |ũntn (x)| →
∞} such that ũntn → v in L0(Ω\A;Rd). We define u = vχΩ\A + ∞χA ∈
GSBDp∞(Ω). By (3.7)(ii),(iii) and (3.11) we get that u ∈ XL(Ω). We observe
that d̄(ũntn , u) → 0 and then by (3.15) also d̄(un, u) → 0.

The proof for the set XΓ (Ω) is similar, where we additionally use (3.8) to
ensure that Hd−1(Ju\Γ ) = 0. ��
In the next sections, we will use the following notation. We say that a sequence
(un)n ⊂ GSBDp∞(Ω) converges weakly to u ∈ GSBDp∞(Ω) if

supn∈N
(‖e(un)‖L p(Ω) + Hd−1(Jun )

)
< +∞ and d̄(un, u) → 0 for n → ∞.

(3.16)

We close this subsection by pointing out that a similar space has been introduced
in [12], in the case of scalar valued functions attaining extended real values: the
space GBV∗(Rd) was defined by f : Rd → R ∪ {±∞} ∈ GBV∗(Rd) if and only
if (− M ∨ f ) ∧ M ∈ BVloc(Rd) for every M > 0. In [12, Proposition 3.1] it is
shown that f ∈ GBV∗(Rd) if and only if its epigraph is of locally finite perimeter
in R

d+1. Our definition is based on the structure of the set where functions attain
infinite values, rather than employing (the analog of) truncations. In fact, the latter
is not meaningful if one controls only symmetric gradients.

4. The σ
p
sym-Convergence of Sets

This section is devoted to the introduction of a convergence of sets in the
framework of GSBDp functions analogous to σ p-convergence defined in [28] for
the space SBV p. This type of convergence of sets will be useful to study the lower
limits in the relaxation results in Section 6.1 and the compactness properties in
Section 6.2. We believe that this notion may be of independent interest and is
potentially helpful to study also other problems such as quasistatic crack evolution.
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We start by recalling briefly the definition ofσ p-convergence in [28]: a sequence
of sets (Γn)n σ p-converges toΓ if (i) for any sequence (un)n converging to uweakly
in SBV p with Jun ⊂ Γn , it holds Ju ⊂ Γ and (ii) there exists a SBV p function
whose jump is Γ , which is approximated (in the sense of weak convergence in
SBV p) by SBV p functions with jump included in Γn . (Here, weak convergence
in SBV p means that supn

(‖un‖L∞ +Hd−1(Jun )
)

< +∞, ∇un ⇀ ∇u in L p, and
un → u almost everywhere) For sequences of sets (Γn)n with supn Hd−1(Γn) <

+∞, a compactness result with respect to σ p-convergence is obtained by means of
Ambrosio’s compactness theorem [1]; see [28, Theorem4.7] and [20, Theorem3.3].
We refer to [28, Section 4.1] for a general motivation to consider such a kind of
convergence.

We now introduce the notion of σ
p
sym-convergence. In the following, we use

the notation A⊂̃B if Hd−1(A\B) = 0 and A=̃B if A⊂̃B and B⊂̃A. As before,
by (G)1 we denote the set of points with density 1 for G ⊂ R

d . Recall also the
definition and properties of GSBDp∞ in Section 3.4, in particular (3.16).

Definition 4.1. (σ p
sym-convergence) LetU ⊂ R

d be open, letU ′ ⊃ U be open with
Ld(U ′\U ) > 0, and let p ∈ (1,∞). We say that a sequence (Γn)n ⊂ U ∩U ′ with
supn∈NHd−1(Γn) < +∞ σ

p
sym-converges to a pair (Γ,G∞) satisfyingΓ ⊂ U∩U ′

together with

Hd−1(Γ ) < +∞, G∞ ⊂ U, ∂∗G∞ ∩U ′ ⊂̃ Γ, and Γ ∩ (G∞)1 = ∅ (4.1)

if it holds that:

(i) for any sequence (vn)n ⊂ GSBDp∞(U ′) with Jvn ⊂̃Γn and vn = 0 in U ′\U , if
a subsequence (vnk )k converges weakly in GSBDp∞(U ′) to v ∈ GSBDp∞(U ′),
then Ld({v = ∞}\G∞) = 0 and Jv\Γ ⊂̃(G∞)1;

(ii) there exists a function v ∈ GSBDp∞(U ′) and a sequence (vn)n ⊂ GSBDp∞(U ′)
converging weakly inGSBDp∞(U ′) to v such that Jvn ⊂̃Γn , vn = 0 onU ′\U for
all n ∈ N, Jv=̃Γ , and {v = ∞} = G∞.

Our definition deviates from σ p-convergence in the sense that, besides a limit-
ing (d−1)-rectifiable set Γ , there exists also a set of finite perimeter G∞. Roughly
speaking, in view of ∂∗G∞ ⊂ Γ ∪ ∂U , this set represents the parts which are
completely disconnected by Γ from the rest of the domain. The behavior of func-
tions cannot be controlled there, that is, a sequence (vn)n as in (i) may converge to
infinity on this set or exhibit further cracks. In the framework of GSBV p functions
in [28], it was possible to avoid such a phenomenon by working with truncations
which allows to resort to SBV p functions with uniform L∞-bounds. In GSBD,
however, this truncation technique is not available and we therefore need a more
general definition involving the space GSBDp∞ and a set of finite perimeter G∞.

Moreover, due to the presence of the setG∞, in contrast to the definition of σ p-
convergence, it is essential to control the functions in a set U ′\U : the assumptions
Ld(U ′\U ) > 0 and G∞ ⊂ U are crucial since otherwise, if U ′ = U , conditions
(i) and (ii) would always be trivially satisfied with G∞ = U and Γ = ∅.

We briefly note that the pair (Γ,G∞) is unique. In fact, if there were two dif-
ferent limits (Γ 1,G1∞) and (Γ 2,G2∞), we could choose functions v1 and v2 with
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Jv1=̃Γ 1, Jv2=̃Γ 2, {v1 = ∞} = G1∞, and {v2 = ∞} = G2∞, as well as corre-
sponding sequences (v1n)n and (v2n)n as in (ii). But then (i) implies Γ 1\Γ 2⊂̃(G2∞)1,
Γ 2\Γ 1⊂̃(G1∞)1, as well as G1∞ ⊂ G2∞ and G2∞ ⊂ G1∞. As Γ i ∩ (Gi∞)1 = ∅ for
i = 1, 2, this shows (Γ 1,G1∞) = (Γ 2,G2∞). In a similar way, if a sequence (Γn)n
σ
p
sym-converges to (Γ,G∞), then every subsequence σ

p
sym-converges to the same

limit.
Let us mention that, in our application in Section 6, the sets Γn will be graphs

of functions. In this setting, we will be able to ensure thatG∞ = ∅, see (6.3) below,
and thus a simplification of Definition 4.1 only in terms of Γ without G∞ is in
principle possible. We believe, however, that the notion of σ

p
sym-convergence may

be of independent interest and is potentially helpful to study also other problems
such as quasistatic crack evolution in linear elasticity [42], where G∞ = ∅ cannot
be expected. Therefore, we prefer to treat this more general definition here.

The main goal of this section is to prove the following compactness result for
σ
p
sym-convergence:

Theorem 4.2. (Compactness of σ
p
sym-convergence) Let U ⊂ R

d be open, let U ′ ⊃
U be open withLd(U ′\U ) > 0, and let p ∈ (1,∞). Then, every sequence (Γn)n ⊂
U with supn Hd−1(Γn) < +∞ has a σ

p
sym-convergent subsequence with limit

(Γ,G∞) satisfying Hd−1(Γ ) � lim infn→∞ Hd−1(Γn).

For the proof, we need the following two auxiliary results:

Lemma 4.3. Let (vi )i ⊂ GSBDp(Ω) such that ‖e(vi )‖L p(Ω) � 1 for all i and
Γ := ⋃∞

i=1 Jvi satisfies Hd−1(Γ ) < +∞. Then there exist constants ci > 0,
i ∈ N, such that

∑∞
i=1 ci � 1 and v := ∑∞

i=1civi ∈ GSBDp(Ω) satisfies Jv=̃Γ .

Lemma 4.4. Let V ⊂ R
d and suppose that two sequences (un)n, (vn)n ∈ L0(V ; R̄d)

satisfy |un|, |vn| → ∞ on V . Then for L1-a.e. θ ⊂ (0, 1) it holds that

|(1 − θ)un(x) + θvn(x)| → ∞ for a.e. x ∈ V .

Wepostpone the proof of the lemmas andproceedwith the proof ofTheorem4.2.

Proof of Theorem 4.2. For Γ ⊂ U withHd−1(Γ ) < +∞ we define

X (Γ ) = {
v ∈ GSBDp∞(U ′) : Jv⊂̃Γ, ‖e(v)‖L p(U ′) � 1, v = 0 on U ′\U}

.

The set X (Γ ) is compact with respect to the metric d̄ introduced in (3.13). This
follows from Lemma 3.6 and the fact that {v ∈ L0(U ′; R̄d) : v = 0 on U ′\U } is
closed with respect to d̄.

Since we treat any v ∈ GSBDp∞(U ′) as a constant function in the exceptional
set A∞

v (namely we have no jump and e(v) = 0 therein, see (3.12)), we get that the
convex combination of two v, v′ ∈ X (Γ ) is still in X (Γ ). (Recall that the sum on
R̄
d is given by a + ∞ = ∞ for any a ∈ R̄

d .)
Step 1: Identification of a compact and convex subset. Consider (Γn)n ⊂ U with
supn Hd−1(Γn) < +∞. Fix δ > 0 small and define

L := lim inf
n→∞ Hd−1(Γn) + δ. (4.2)
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By (4.2) we have that, up to a subsequence (not relabeled), each X (Γn) is contained
in XL(U ′) defined in (3.14). Moreover, as noticed above, XL(U ′) and each X (Γn)

are compact with respect to d̄. Since the class of non-empty compact subsets of
a compact metric space (M, dM ) is itself compact with respect to the Hausdorff
distance induced by dM , a subsequence (not relabeled) of (X (Γn))n converges in
the Hausdorff sense (with the Hausdorff distance induced by d̄) to a compact set
K ⊂ XL(U ′).

We first observe that the function identical to zero lies in K . We now show
that K is convex. Choose u, v ∈ K and θ ∈ (0, 1). We need to check that w :=
(1− θ)u + θv ∈ K . Observe that A∞

w = A∞
u ∪ A∞

v , where A∞
u , A∞

v , and A∞
w are

the exceptional sets given in (3.10). There exist sequences (un)n and (vn)n with
un, vn ∈ X (Γn) such that d̄(un, u) → 0 and d̄(vn, v) → 0. In particular, note that
|un| → ∞ on A∞

u and |vn| → ∞ on A∞
v . By Lemma 4.4 and a diagonal argument

we can choose (θn)n ⊂ (0, 1) with θn → θ such that wn := (1 − θn)un + θnvn
satisfies |wn| → ∞ on A∞

u ∩ A∞
v . As clearly |wn| → ∞ on A∞

u �A∞
v and (1 −

θn)un+θnvn → (1−θ)u+θv inmeasure onU ′\(A∞
u ∪A∞

v ), we get d̄(wn, w) → 0.
Since X (Γn) is convex, there holds wn ∈ X (Γn). Then d̄(wn, w) → 0 implies
w ∈ K , as desired.
Step 2: Choice of dense subset. Since K is compact with respect to the metric d̄ (so,
in particular, K is separable), we can choose a countable set (yi )i ⊂ GSBDp∞(U ′)
with yi = 0 on U ′\U which is d̄-dense in K . We now show that this countable set
can be chosen with the additional property

Ld
(
A∞

v \
⋃

i
A∞
yi

)
= 0 for all v ∈ K , (4.3)

where we again denote by A∞
yi and A∞

v the sets where the functions attain the value

∞. In fact, fix an arbitrary countable and d̄-dense set (yi )i in K , and let η > 0. After
adding a finite number (smaller thanLd(U )/η) of functions of K to this collection,
we obtain a countable d̄-dense family (yη

i )i such that

Ld
(
A∞

v \
⋃

i
A∞
yη
i

)
� η for all v ∈ K .

Then, we obtain the desired countable set by taking the union of (y1/ki )i for k ∈ N.
Step 3: Definition of Γ and G∞. Fix v, v′ ∈ K . Since {x ∈ Jv\∂∗A∞

v : [v](x) =
t} has negligible Hd−1-measure up to a countable set of points t , we find some
θ ∈ (0, 1) such that w := θv + (1 − θ)v′ satisfies

Jw⊂̃Jv ∪ Jv′ , (Jv ∪ Jv′)\Jw⊂̃(A∞
v ∪ A∞

v′ )1. (4.4)

Here, we particularly point out that {w = ∞} = A∞
v ∪A∞

v′ and that ∂∗(A∞
v ∪A∞

v′ )∩
U ′⊂̃Jw by (3.11). Note that w ∈ K since K is convex. Since w ∈ K ⊂ XL(U ′),
(4.4) implies that

Hd−1((Jv ∪ Jv′)\(A∞
v ∪ A∞

v′ )1) � Hd−1(Jw) � L ,

Hd−1(∂∗(A∞
v ∪ A∞

v′ ) ∩U ′) � Hd−1(Jw) � L .
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Let (yi )i ⊂ GSBDp∞(U ′) with yi = 0 on U ′\U be the countable and d̄-dense
subset of K satisfying (4.3) that we defined in Step 2. By the above convexity
argument, we find

Hd−1
( k⋃
i=1

Jyi \
( k⋃
i=1

Ai
)1) � L , Hd−1

(
∂∗( k⋃

i=1

Ai
) ∩U ′) � L (4.5)

for all k ∈ N, where

Ai := A∞
yi = {yi = ∞}.

We define

G∞ :=
∞⋃
i=1

Ai . (4.6)

By passing to the limit k → ∞ in (4.5), we get Hd−1(∂∗G∞ ∩ U ′) � L and
Hd−1(

⋃k
i=1 Jyi \(G∞)1) � L for all k ∈ N. Passing again to the limit k → ∞, and

setting

Γ :=
⋃∞

i=1
Jyi \(G∞)1, (4.7)

we getHd−1(Γ ) � L . Notice thatΓ ∩(G∞)1 = ∅ by definition.Moreover, the fact
that yi = 0 onU ′\U for all i ∈ N implies both thatG∞ ⊂ U and that Γ ⊂ U ∩U ′.
By (4.2) and the arbitrariness of δ we get Hd−1(Γ ) � lim infn→∞ Hd−1(Γn).
Since ∂∗Ai ∩ U ′⊂̃Jyi for all i ∈ N by (3.11), we also get Γ ⊃̃ ∂∗G∞ ∩ U ′. Thus,
(4.1) is satisfied.

We now claim that for each v ∈ K it holds that

Ld({v = ∞}\G∞) = 0 and Jv\Γ ⊂̃(G∞)1. (4.8)

Indeed, the first property follows from (4.3) and (4.6). To see the second, we note
that, for any fixed v ∈ K , there is a sequence (yk)k = (yik )k with d̄(yk, v) → 0, by
the density of (yi )i . Consider the functions ṽk := yk(1 − χG∞) that d̄-converge to
ṽ := v(1−χG∞): since Jṽk ⊂̃Γ for any k (we employ (4.7) and that ∂∗G∞∩U ′⊂̃Γ ),
the fact that X (Γ ) is closed gives that Jṽ⊂̃Γ . This implies (4.8).
Step 4: Proof of properties (i) and (ii).We first show (i). Given a sequence (vn)n ⊂
GSBDp∞(U ′) with Jvn ⊂̃Γn and vn = 0 on U ′\U , and a subsequence (vnk )k that
converges weakly inGSBDp∞(U ′) to v, we clearly get v ∈ K by Hausdorff conver-
gence of X (Γn) → K . (More precisely, consider λvnk and λv for λ > 0 such that
‖e(λvnk )‖L p(U ′) � 1 for all k.) By (4.8), this implies Ld({v = ∞}\G∞) = 0 and
Jv\Γ ⊂̃(G∞)1. This shows (i).

We now address (ii). Recalling the choice of the sequence (yi )i ⊂ K , for each
i ∈ N, we choose ỹi = yiχU ′\G∞ + tiχG∞ ∈ GSBDp(U ′) for some ti ∈ R

d

such that Jỹi =̃Jyi \(G∞)1. (Almost every ti works. Note that the function indeed
lies in GSBDp(U ), see (3.10) and (4.6).) In view of (4.7), we also observe that⋃

i Jỹi = Γ .
ByLemma4.3 (recall (yi )i ⊂ K ⊂ XL(Ω))we get a function ṽ = ∑∞

i=1 ci ỹi ∈
GSBDp(U ′) such that Jṽ=̃Γ , where

∑∞
i=1 ci � 1.We also define v = ṽχU ′\G∞ +
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∞χG∞ ∈ GSBDp∞(U ′). Note that {v = ∞} = G∞ and Jv=̃Γ sinceΓ ∩(G∞)1 =
∅ and ∂∗G∞∩U ′ ⊂ Γ . Then by the convexity of K , we find zk := ∑k

i=1 ci yi ∈ K .
(Here we also use that the function identical to zero lies in K .) As G∞ = ⋃∞

i=1 Ai ,
we obtain d̄(zk, v) → 0 for k → ∞. Thus, also v ∈ K since K is compact.
As X (Γn) converges to K in Hausdorff convergence, we find a sequence (vn)n ⊂
GSBDp∞(U ′) with Jvn ⊂̃Γn , vn = 0 on U ′\U , and d̄(vn, v) → 0. This shows (ii).

��
Next, we prove Lemma 4.3. To this end, we will need the following measure-

theoretical result (see [38, Lemma 4.1, 4.2] and note that the statement in fact holds
in arbitrary space dimensions for measurable functions.):

Lemma 4.5. Let Ω ⊂ R
d with Ld(Ω) < ∞, and N ∈ N. Then for every sequence

(un)n ⊂ L0(Ω;RN ) with

Ld
(⋂

n∈N
⋃

m�n
{|um − un| > 1}

)
= 0, (4.9)

there exists a subsequence (not relabeled) and an increasing concave function
ψ : [0,∞) → [0,∞) with limt→∞ ψ(t) = +∞ such that

sup
n�1

∫
Ω

ψ(|un|) dx < +∞.

Proof of Lemma 4.3. Let (vi )i ⊂ GSBDp(Ω) be given satisfying the assump-
tions of the lemma. First, choose 0 < di < 2−i such that

Ld
({

|vi | � 1

2i di

})
� 2−i , Hd−1

({
x ∈ Jvi : |[vi ](x)| � 1

di

})
� 2−i .

(4.10)

Our goal is to select constants ci ∈ (0, di ) such that the function v := ∑∞
i=1civi

lies in GSBDp(Ω) and satisfies Jv =̃ Γ := ⋃∞
i=1 Jvi . We proceed in two steps: we

first show that for each choice ci ∈ (0, di ) the function v = ∑∞
i=1civi lies indeed

inGSBDp(Ω) (Step 1). Afterwards, we prove that for a specific choice it holds that
Jv=̃Γ .

Step 1. Given ci ∈ (0, di ), we define uk = ∑k
i=1 civi . Fix m � n + 1. We

observe that

{|um − un| > 1} =
{∣∣∑m

i=n+1
civi

∣∣ > 1
}

⊂
⋃m

i=n+1

{
|civi | � 2−i

}

⊂
⋃m

i=n+1

{
|vi | � 1

2i di

}
.

By passing to the limit m → ∞ and by using (4.10) we get

Ld
(⋃

m�n
{|um − un| > 1}

)
�

∑∞
i=n+1

Ld
({

|vi | � 1

2i di

})

�
∑∞

i=n+1
2−i = 2−n .
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This shows that the sequence (uk)k satisfies (4.9), and therefore there exist a subse-
quence (not relabeled) and an increasing continuous functionψ : [0,∞) → [0,∞)

with limt→∞ ψ(t) = +∞ such that supk�1

∫
Ω

ψ(|uk |) dx < +∞. Recalling also

that ‖e(vi )‖L p(Ω) � 1 for all i andHd−1(Γ ) < +∞, we are now in the position to
apply the GSBDp-compactness result [27, Theorem 11.3] (alternatively, one could
apply Theorem 3.5 and observe that the limit v satisfies Ld({v = ∞}) = 0), to get
that the function v = ∑∞

i=1 civi lies in GSBDp(Ω). For later purposes, we note
that by (3.8) (which holds also in addition to [27, Theorem 11.3]) we obtain

Jv⊂̃
⋃∞

i=1
Jvi = Γ. (4.11)

This concludes Step 1 of the proof.
Step 2. We define the constants ci ∈ (0, di ) iteratively by following the ar-

guments in [28, Lemma 4.5]. Suppose that (ci )ki=1, and a decreasing sequence

(εi )
k
i=1 ⊂ (0, 1) have been chosen such that the functions u j = ∑ j

i=1 civi ,
1 � j � k, satisfy

(i) Ju j =̃
⋃ j

i=1
Jvi ,

(ii) Hd−1({x ∈ Ju j : |[u j ](x)| � ε j }) � 2− j , (4.12)

and, for 2 � j � k, it holds that

c j � ε j−1d j2
− j−1. (4.13)

(Note that in the first step we can simply set c1 = 1/4 and 0 < ε1 < 1 such that
(4.12)(ii) holds.)

We pass to the step k+1 as follows. Note that there is a set N0 ⊂ R of negligible
measure such that for all t ∈ R\N0 there holds Juk+tvk+1=̃Juk ∪ Jvk+1 . We choose
ck+1 ∈ R\N0 such that additionally ck+1 � εkdk+12−k−2. Then (4.12)(i) and
(4.13) hold. We can then choose εk+1 � εk such that also (4.12)(ii) is satisfied.

We proceed in this way for all k ∈ N. Let us now introduce the sets

Ek =
⋃

m�k
{x ∈ Jum : |[um](x)| � εm}, Fk =

⋃
m�k

{x ∈ Jvm : |[vm](x)| > 1/dm}.
(4.14)

Note by (4.10) and (4.12)(ii) that

Hd−1(Ek ∪ Fk) � 2
∑

m�k
2−m = 22−k . (4.15)

We now show that for all k ∈ N it holds that

Juk ⊂̃Jv ∪ Ek ∪ Fk . (4.16)

To see this, we first observe that forHd−1-a.e. x ∈ Γ = ⋃∞
i=1 Jvi it holds that

[v](x) = [uk](x) +
∑∞

i=k+1
ci [vi ](x). (4.17)
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Moreover, we get that ci � εkdi2−i−1 for all i � k + 1 by (4.13) and the fact that
(εi )i is decreasing. Fix x ∈ Juk\(Ek ∪ Fk). Then by (4.14) and (4.17) we get

|[v](x)| � |[uk](x)| −
∑∞

i=k+1
ci |[vi ](x)| � εk −

∑∞
i=k+1

ci
di

� εk

(
1 −

∑∞
i=k+1

2−i−1
)

� εk/2,

where we have used that |[uk](x)| � εk and [vi ](x) � 1/di , for i � k + 1. Thus,
[v](x) �= 0 and therefore x ∈ Jv . Consequently, we have shown that Hd−1-a.e.
x ∈ Juk\(Ek ∪ Fk) lies in Jv . This shows (4.16).

We now conclude the proof as follows: by (4.12)(i) and (4.16), we get that

⋃l

i=1
Jvi =̃ Jul ⊂̃ Jv ∪ El ∪ Fl⊂̃ Jv ∪ Ek ∪ Fk

for all l � k, where we used that the sets (Ek)k and (Fk)k are decreasing. Taking
the union with respect to l, we get that Γ ⊂̃Jv ∪ Ek ∪ Fk for all k ∈ N. By (4.15)
this implies Hd−1(Γ \Jv) � 22−k . Since k ∈ N was arbitrary, we get Γ ⊂̃Jv . This
along with (4.11), shows that Jv=̃Γ , and concludes the proof. ��

We close this section with the proof of Lemma 4.4.

Proof of Lemma 4.4. Let B = {x ∈ V : lim supn→∞ |un(x) − vn(x)| < +∞}.
For θ ∈ (0, 1), define wθ

n = (1− θ)un + θvn and observe that |wθ
n | → ∞ on B for

all θ since |un| → ∞ on V . Let Dθ = {x ∈ V \B : lim supn→∞ |wθ
n(x)| < +∞}.

As |un − vn| → ∞ on V \B and thus |wθ1
n −w

θ2
n | = |(θ1 − θ2)(vn − un)| → ∞ on

V \B for all θ1 �= θ2, we obtain Dθ1 ∩ Dθ2 = ∅. This implies that Ld(Dθ ) > 0 for
an at most countable number of different θ . We note that for all θ withLd(Dθ ) = 0
there holds |wθ

n | → ∞ a.e. on V . This yields the claim. ��

5. Functionals defined on Pairs of Function-Set

This section is devoted to the proofs of the results announced in Section 2.1.
Before proving the relaxation and existence results, we address the lower bound
separately since this will be instrumental also for Section 6.

5.1. The Lower Bound

In this subsection we prove a lower bound for functionals defined on pairs of
function-set which will be needed for the proof of Theorem 2.2–Theorem 2.4. We
will make use of the definition ofGSBDp∞(Ω) in Section 3.4. In particular, we refer
to the definition of e(u) and of the jump set Ju with its normal νu , see (3.11)–(3.12),
as well as to the notion of weak convergence in GSBDp∞(Ω), see (3.16). We recall
also that for any s ∈ [0, 1] and any E ∈ M(Ω), Es denotes the set of points with
density s for E , see [3, Definition 3.60].
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Theorem 5.1. (Lower bound) Let Ω ⊂ R
d be open and bounded, let 1 < p < ∞.

Consider a sequence of Lipschitz sets (En)n ⊂ Ω with supn∈NHd−1(∂En) <

+∞ and a sequence of functions (un)n ⊂ GSBDp(Ω) such that un|Ω\En
∈

W 1,p(Ω\En;Rd) and un = 0 in En. Let u ∈ GSBDp∞(Ω) and E ∈ M(Ω) such
that un converges weakly in GSBD

p∞(Ω) to u and

χEn → χE in L1(Ω). (5.1)

Then, for any norm ϕ on R
d it holds that

e(un)χΩ\(En∪A∞
u ) ⇀ e(u)χΩ\(E∪A∞

u ) weakly in L p(Ω;Md×d
sym ), (5.2a)∫

Ju∩E0
2ϕ(νu) dHd−1 +

∫
Ω∩∂∗E

ϕ(νE ) dHd−1 � lim inf
n→+∞

∫
Ω∩∂En

ϕ(νEn ) dHd−1,

(5.2b)

where A∞
u = {u = ∞}.

In the proof, we need the following two auxiliary results, (see [11, Proposition
4, Lemma 5]):

Proposition 5.2. Let Ω be an open subset of Rd and μ be a finite, positive set
function defined on the family of open subsets of Ω . Let λ ∈ M+

b (Ω), and (gi )i∈N
be a family of positive Borel functions on Ω . Assume that μ(U ) �

∫
U gi dλ for

every U and i , and that μ(U ∪ V ) � μ(U ) + μ(V ) whenever U, V ⊂⊂ Ω

and U ∩ V = ∅ (superadditivity). Then μ(U ) �
∫
U (supi∈N gi ) dλ for every open

U ⊂ Ω .

Lemma 5.3. LetΓ ⊂ E0 be a (d−1)-rectifiable subset, ξ ∈ S
d−1 such that ξ is not

orthogonal to the normal νΓ to Γ at any point of Γ . Then, forHd−1-a.e. y ∈ Πξ ,
the set Eξ

y (see (3.1)) has density 0 in t for every t ∈ Γ
ξ
y .

Proof of Theorem 5.1. Since un converges weakly in GSBDp∞(Ω) to u, (3.16)
implies

sup
n∈N

(‖e(un)‖p
L p(Ω) + Hd−1(Jun ) + Hd−1(∂En)

) =: M < +∞. (5.3)

Consequently, Theorem 3.5 and the fact that d̄(un, u) → 0, see (3.13) and (3.16),
imply that A∞

u = {u = ∞} = {x ∈ Ω : |un(x)| → ∞} and
un → u Ld -a.e. in Ω\A∞

u , (5.4a)

e(un) ⇀ e(u) weakly in L p(Ω\A∞
u ;Md×d

sym ). (5.4b)

By (5.1), (5.4a), un = 0 on En , and the definition of A∞
u , we have

E ∩ A∞
u = ∅ and u = 0 Ld -a.e. in E . (5.5)

Then (5.4b) gives (5.2a).
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We now show (5.2b) which is the core of the proof. Let ϕ∗ be the dual norm of
ϕ and observe that (see, for example [10, Section 4.1.2])

ϕ(ν) = max
ξ∈Sd−1

ν · ξ

ϕ∗(ξ)
= max

ξ∈Sd−1

|ν · ξ |
ϕ∗(ξ)

, (5.6)

where the second equality holds since ϕ(ν) = ϕ(− ν).
As a preparatory step, we consider a set B ⊂ Ω with Lipschitz boundary

and a function v with v|Ω\B ∈ W 1,p(Ω\B;Rd) and v = 0 in B (observe that
v ∈ GSBDp(Ω)). Recall the notation in (3.1)–(3.2). Let ε ∈ (0, 1) and U ⊂ Ω

be open. For each ξ ∈ S
d−1 and y ∈ Πξ , we define

Fξ
ε (̂vξ

y , B
ξ
y ;U ξ

y ) = ε

∫
U ξ
y \Bξ

y

|(̂vξ
y)

′|p dt + H0(∂Bξ
y ∩U ξ

y )
1

ϕ∗(ξ)
. (5.7)

By Fubini–Tonelli theorem, with the slicing properties (3.3), (3.4), (3.5), for a.e.
ξ ∈ S

d−1 it holds that∫
Πξ

Fξ
ε (̂vξ

y , B
ξ
y ;U ξ

y ) dHd−1(y) = ε

∫
U\B

|e(v)ξ · ξ |p dx +
∫
U∩∂B

|νB · ξ |
ϕ∗(ξ)

dHd−1.

Since |e(v)| � |e(v)ξ · ξ |, the previous estimate along with (5.6) implies
∫

Πξ

Fξ
ε (̂vξ

y , B
ξ
y ;U ξ

y ) dHd−1(y) � ε‖e(v)‖p
L p(U\B) +

∫
U∩∂B

ϕ(νB) dHd−1.

By applying this estimate for the sequence of pairs (un, En), we get, by (5.3)
that, ∫

Πξ

Fξ
ε ((̂un)

ξ
y, (En)

ξ
y;U ξ

y ) dHd−1(y) � Mε +
∫
U∩∂En

ϕ(νEn ) dHd−1

� M(‖ϕ‖L∞(Sd−1) + ε) (5.8)

for all open U ⊂ Ω . Since d̄(un, u) → 0, we have that d̄((̂un)
ξ
y, û

ξ
y) = ∫

Ω
ξ
y
d
R̄d

((̂un)
ξ
y, û

ξ
y) dx → 0 for Hd−1-a.e. y ∈ Πξ and Hd−1-a.e. ξ ∈ S

d−1. (Notice that
we have to restrict our choice to the ξ satisfying |un · ξ | → +∞ Ld -a.e. in A∞

u ,
which are a set of full measure in S

d−1, cf. [19, Lemma 2.7].) In particular, this
implies that

(̂un)
ξ
y → ûξ

y L1-a.e. in (Ω\A∞
u )ξy, (5.9a)

|(̂un)ξy | → +∞ L1-a.e. in (A∞
u )ξy . (5.9b)

By using (5.8) and Fatou’s lemma we obtain that

lim inf
n→∞ Fξ

ε ((̂un)
ξ
y, (En)

ξ
y;U ξ

y ) < +∞ (5.10)

for Hd−1-a.e. y ∈ Πξ and any open U ⊂ Ω . Then, we may find a subsequence
(um)m = (unm )m , depending on ε, ξ , and y, such that

lim
m→∞ Fξ

ε ((̂um)ξy, (Em)ξy;U ξ
y ) = lim inf

n→∞ Fξ
ε ((̂un)

ξ
y, (En)

ξ
y;U ξ

y ) (5.11)
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for any openU ⊂ Ω . At this stage, up to passing to a further subsequence, we have

H0(∂(Em)ξy
) = N ξ

y ∈ N,

independently ofm, so that the points in ∂(Em)
ξ
y converge, asm → ∞, toMξ

y � N ξ
y

points
t1, . . . , tMξ

y
,

which are either in ∂Eξ
y or in a finite set S

ξ
y := {t1, . . . , tMξ

y
}\∂Eξ

y ⊂ (Eξ
y )

0∪(Eξ
y )

1,

where (·)0 and (·)1 denote the setswith one-dimensional density 0 or 1, respectively.
Notice that Eξ

y is thus the union of M
ξ
y /2−#Sξ

y intervals (up to a finite set of points)

on which there holds ûξ
y = 0, see (5.5) and (5.9a). In view of (5.7) and (5.10),

((̂um)
ξ
y)

′ are equibounded (with respect to m) in L p
loc(t j , t j+1), for any interval

(t j , t j+1) ⊂ Ωξ
y \(Eξ

y ∪ Sξ
y ).

Then, as in the proof of [19, Theorem 1.1], we have two alternative possibilities on
(t j , t j+1): either (̂um)

ξ
y converge locally uniformly in (t j , t j+1) to û

ξ
y , or |(̂um)

ξ
y | →

+∞ L1-a.e. in (t j , t j+1). Recalling that Ĵ
uξ
y

= ∂(A∞
u )

ξ
y ∪ (

(J ξ
u )

ξ
y\(A∞

u )
ξ
y
)
, see

(3.4a) and (3.11), we find that

Jξ,y := Ĵ
uξ
y
∩ (Eξ

y )
0 ⊂ Sξ

y ∩ (Eξ
y )

0. (5.12)

We notice that any point in Sξ
y is the limit of two distinct sequences of points (p1m)m ,

(p2m)m with p1m , p
2
m ∈ ∂(Em)

ξ
y . Thus, in view of (5.7) and (5.11), for any open

U ⊂ Ω we derive

ε

∫
U ξ
y \(E∪A∞

u )
ξ
y

|(̂uξ
y)

′|p dt + H0(U ξ
y ∩ ∂Eξ

y )
1

ϕ∗(ξ)
+ H0(U ξ

y ∩ Jξ,y)
2

ϕ∗(ξ)

� lim inf
m→∞ Fξ

ε ((̂um)ξy, (Em)ξy;U ξ
y ) = lim inf

n→∞ Fξ
ε ((̂un)

ξ
y, (En)

ξ
y;U ξ

y ). (5.13)

We apply Lemma 5.3 to the rectifiable set Ju ∩ E0 ∩ {ξ · νu �= 0} and get that, for
Hd−1-a.e. y ∈ Πξ ,

y + tξ ∈ Ju ∩ E0 ∩ {ξ · νu �= 0} ⇒ t ∈ (Eξ
y )

0.

This along with (5.12)–(5.13), the slicing properties (3.3)–(3.5) (which also hold
for GSBDp∞(Ω) functions), and Fatou’s lemma yields that for all ξ ∈ S

d−1\N0,
for some N0 withHd−1(N0) = 0, it holds that

ε

∫
U\(E∪A∞

u )

|e(u)ξ · ξ |p dx +
∫
U∩∂∗E

|νE · ξ |
ϕ∗(ξ)

dHd−1

+
∫
Ju∩E0∩U

2|νu · ξ |
ϕ∗(ξ)

dHd−1

�
∫

Πξ

lim inf
n→∞ Fξ

ε ((̂un)
ξ
y, (En)

ξ
y;U ξ

y ) dHd−1
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� lim inf
n→∞

∫
Πξ

Fξ
ε ((̂un)

ξ
y, (En)

ξ
y;U ξ

y ) dHd−1.

Introducing the set function μ defined on the open subsets of Ω by

μ(U ) := lim inf
n→+∞

∫
U∩∂En

ϕ(νEn ) dHd−1, (5.14)

and letting ε → 0 we find by (5.8) for all ξ ∈ S
d−1\N0 that∫

U∩∂∗E

|νE · ξ |
ϕ∗(ξ)

dHd−1 +
∫
Ju∩E0∩U

2|νu · ξ |
ϕ∗(ξ)

dHd−1 � μ(U ). (5.15)

The set functionμ is clearly superadditive. Letλ = Hd−1
(
Ju∩E0

)+Hd−1 ∂∗E
and define

gi =
⎧⎨
⎩

2|νu ·ξi |
ϕ∗(ξi ) on Ju ∩ E0,

|νE ·ξi |
ϕ∗(ξi ) on ∂∗E,

where (ξi )i ⊂ S
d−1\N0 is a dense sequence in S

d−1. By (5.15) we have μ(U ) �∫
U gi dλ for all i ∈ N and all open U ⊂ Ω . Then, Proposition 5.2 yields μ(Ω) �∫
Ω
supi gi dλ. In view of (5.6) and (5.14), this implies (5.2b) and concludes the

proof. ��

5.2. Relaxation for Functionals defined on Pairs of Function-Set

In this subsectionwe give the proof of Proposition 2.1 andTheorem2.2.We also
provide corresponding generalizations to the space GSBDp∞, see Proposition 5.5
and Theorem 5.8. For the upper bound, we recall the following result proved in [11,
Proposition 9, Remark 14]:

Proposition 5.4. Let u ∈ L1(Ω;Rd) and E ∈ M(Ω) such that Hd−1(∂∗E) <

+∞ and uχE0 ∈ GSBV p(Ω;Rd). Then, there exists a sequence (un)n ⊂ W 1,p

(Ω;Rd) and (En)n ⊂ M(Ω)with En of class C∞ such that un → u in L1(Ω;Rd),
χEn → χE in L1(Ω), and

∇unχΩ\En → ∇uχΩ\E in L p(Ω;Md×d),

lim sup
n→∞

∫
∂En∩Ω

ϕ(νEn ) dHd−1 �
∫
Ju∩E0

2ϕ(νu) dHd−1 +
∫

∂∗E∩Ω

ϕ(νE ) dHd−1.

Moreover, if Ld(E) > 0, one can guarantee in addition the condition Ld(En) =
Ld(E) for n ∈ N.

Proof of Proposition 2.1. We first prove the lower inequality, and then the upper
inequality. The lower inequality relies on Theorem 5.1 and the upper inequality on
a density argument along with Proposition 5.4.
The lower inequality.Suppose thatun → u in L0(Ω;Rd) and χEn → χE in L1(Ω).
Without restriction, we can assume that supn F(un, En) < +∞. In view of (2.2)
and minSd−1 ϕ > 0, this implies Hd−1(∂En) < +∞. Moreover, by (2.1) the
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functions vn := unχΩ\En lie in GSBDp(Ω) with Jvn ⊂ ∂En ∩ Ω and satisfy
supn ‖e(vn)‖L p(Ω) < +∞. This along with the fact that un → u in measure shows
that vn converges weakly in GSBDp∞(Ω) to uχE0 , see (3.16), where we point out
that A∞

u = {u = ∞} = ∅. In particular, uχE0 ∈ GSBDp∞(Ω) and, since A∞
u = ∅,

even uχE0 ∈ GSBDp(Ω), cf. (3.10). As also (5.1) holds, we can apply Theo-
rem 5.1. The lower inequality now follows from (5.2) and the fact that f is convex.

The upper inequality. We first observe the following: given u ∈ L0(Ω;Rd)

and E ∈ M(Ω) with Hd−1(∂∗E) < ∞ and uχE0 ∈ GSBDp(Ω), we find an
approximating sequence (vn)n ⊂ L1(Ω;Rd)with vnχE0 ∈ GSBV p(Ω;Rd) such
that

(i) vn → uχE0 in L0(Ω;Rd),

(ii) e(vn)χΩ\E → e(u)χΩ\E in L p(Ω;Md×d
sym ),

(iii) Hd−1((Jvn�Ju) ∩ E0) → 0.

This can be seen by approximating first uχE0 by a sequence (̃un)n by means of
Theorem 3.4, and by setting vn := ũnχE0 for every n. It is then immediate to verify
that the conditions in (3.6) for (̃un)n imply the three conditions above.

By this approximation, (2.1), and a diagonal argument, it thus suffices to con-
struct a recovery sequence for u ∈ L1(Ω;Rd) with uχE0 ∈ GSBV p(Ω;Rd).
To this end, we apply Proposition 5.4 to obtain (un, En)n and we consider the se-
quence unχΩ\En . We further observe that, if Ld(E) > 0, this recovery sequences
(un, En)n can be constructed ensuring Ld(En) = Ld(E) for n ∈ N. ��

We briefly discuss that by a small adaption we get a relaxation result for F with
respect to the topology inducedby d̄ on L0(Ω; R̄d).We introduce F∞ : L0(Ω; R̄d)×
M(Ω) → R ∪ {+∞} by

F∞(u, E) = inf
{
lim inf
n→∞ F(un, En) : d̄(un, u) → 0 and χEn → χE in L1(Ω)

}
.

Proposition 5.5. (Characterization of the lower semicontinuous envelope F∞)Un-
der the assumptions of Proposition 2.1, it holds that

F∞(u, E) =

⎧⎪⎨
⎪⎩

∫
Ω\E f (e(u)) dx + ∫

Ω∩∂∗E ϕ(νE ) dHd−1 + ∫
Ju∩(Ω\E)1

2 ϕ(νu) dHd−1

if u = u χE0 ∈ GSBDp∞(Ω) and Hd−1(∂∗E) < +∞,

+∞ otherwise.

Moreover, if Ld(E) > 0, then for any (u, E) ∈ L0(Ω; R̄d)×M(Ω) there exists a
recovery sequence (un, En)n ⊂ L0(Ω;Rd)×M(Ω) such that Ld(En) = Ld(E)

for all n ∈ N.

Proof. It is easy to check that the lower inequality still works for u = uχE0 ∈
GSBDp∞(Ω) by Theorem 5.1, where we use (2.1), f (0) = 0, and the fact that
e(u) = 0 on {u = ∞}, see (3.12). Moreover, we are able to extend the upper
inequality to any u ∈ L0(Ω; R̄d) such that u = u χE0 ∈ GSBDp∞(Ω). In fact,
it is enough to notice that for any u = u χE0 ∈ GSBDp∞(Ω) and any sequence
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(tn)n ⊂ R
d with |tn| → ∞ such that for the functions ũtn ∈ GSBDp(Ω) defined

in (3.10) property (3.12) holds, we obtain ũtn = ũtn χE0 , d̄(ũtn , u) → 0 as n → ∞,
and

∫
Ω\E

f (e(u)) dx +
∫

Ω∩∂∗E
ϕ(νE ) dHd−1 +

∫
Ju∩(Ω\E)1

2 ϕ(νu) dHd−1 = F(ũtn , E)

for all n ∈ N, with Ju defined by (3.11). Then, the upper inequality follows from
the upper inequality in Proposition 2.1 and a diagonal argument. ��

As a consequence, we obtain the following lower semicontinuity result in
GSBDp∞:

Corollary 5.6. (Lower semicontinuity in GSBDp∞) Let us suppose that a sequence
(un)n ⊂ GSBDp∞(Ω) converges weakly in GSBDp∞(Ω) to u ∈ GSBDp∞(Ω), see
(3.16). Then for each norm φ on R

d it holds that∫
Ju

φ(νu) dHd−1 � lim inf
n→∞

∫
Jun

φ(νun ) dHd−1.

Proof. Let ε > 0 and f (ζ ) = ε|ζT + ζ |p for ζ ∈ M
d×d . The upper inequality

in Proposition 5.5 (for un and E = ∅) shows that for each un ∈ GSBDp∞(Ω),
we can find a Lipschitz set En with Ld(En) � 1

n and vn ∈ L0(Ω;Rd) with
vn|Ω\En

∈ W 1,p(Ω\En;Rd), vn|En = 0, and d̄(vn, un) � 1
n (see (3.13)) such that

∫
Ω\En

ε|e(vn)|p dx +
∫

Ω∩∂En

φ(νEn ) dHd−1 �
∫

Ω

ε|e(un)|p dx

+
∫
Jun

2φ(νun ) dHd−1 + 1

n
. (5.16)

Observe that d̄(vn, u) → 0 as n → ∞, and thus vn converges weakly to u in
GSBDp∞(Ω). By applying Theorem 5.1 on (vn, En) and using E = ∅ we get∫

Ju
2φ(νu) dHd−1 � lim inf

n→∞

∫
Ω∩∂En

φ(νEn ) dHd−1.

This, along with (5.16), supn∈N ‖e(un)‖L p(Ω) < +∞, and the arbitrariness of ε

yields the result. ��
We now address the relaxation of FDir, see (2.5), that is, a version of F with

boundary data.
We take advantage of the following approximation result which is obtained

by following the lines of [17, Theorem 5.5], where an analogous approximation is
proved for Griffith functionals with Dirichlet boundary conditions. The new feature
with respect to [17, Theorem 5.5] is that, besides the construction of approximating
functions with the correct boundary data, also approximating sets are constructed.
For convenience of the reader, we give a sketch of the proof in Appendix A high-
lighting the adaptations needed with respect to [17, Theorem 5.5]. In the following,
we denote by F

′
Dir the functional on the right hand side of (2.7):
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Lemma 5.7. Suppose that ∂DΩ ⊂ ∂Ω satisfies (2.4). Consider (v, H) ∈ L0(Ω;Rd)

×M(Ω) such that F
′
Dir(v, H) < +∞. Then there exist (vn, Hn) ∈ (L p(Ω;Rd)∩

SBV p(Ω;Rd))×M(Ω) such that Jvn is closed inΩ and included in a finite union
of closed connected pieces of C1 hypersurfaces, vn ∈ W 1,p(Ω\Jvn ;Rd), vn = u0
in a neighborhood Vn ⊂ Ω of ∂DΩ , Hn is a set of finite perimeter, and

(i) vn → v in L0(Ω;Rd),
(ii) χHn → χH in L1(Ω),

(iii) lim supn→∞ F
′
Dir(vn, Hn) � F

′
Dir(v, H).

Proof of Theorem 2.2. First, we denote by Ω ′ a bounded open set with Ω ⊂ Ω ′
and Ω ′ ∩ ∂Ω = ∂DΩ . By F ′ and F

′
we denote the analogs of the functionals

F and F , respectively, defined on L0(Ω ′;Rd)×M(Ω ′). Given u ∈ L0(Ω;Rd),
we define the extension u′ ∈ L0(Ω ′;Rd) by setting u′ = u0 on Ω ′\Ω for fixed
boundary values u0 ∈ W 1,p(Rd ;Rd). Then, we observe

F ′(u′, E) = FDir(u, E) +
∫

Ω ′\Ω
f (e(u0)) dx, F

′
(u′, E) = FDir(u, E)

+
∫

Ω ′\Ω
f (e(u0)) dx . (5.17)

Therefore, the lower inequality follows from Proposition 2.1 applied for F ′, F ′

instead of F, F .
We now address the upper inequality. In view of Lemma 5.7 and by a diagonal

argument, it is enough to prove the result in the case where, besides the assump-
tions in the statement, also u ∈ L p(Ω;Rd) ∩ SBV p(Ω;Rd) and u = u0 in a
neighborhood U ⊂ Ω of ∂DΩ .

By (un, En)n wedenote a recovery sequence for (u, E)givenbyProposition5.4.
In general, the functions (un)n do not satisfy the boundary conditions required in
(2.5). Let δ > 0 and let V ⊂⊂ U be a smaller neighborhood of ∂DΩ . In view
of (2.1)–(2.2), by a standard diagonal argument in the theory of Γ -convergence, it
suffices to find a sequence (vn)n ⊂ L1(Ω;Rd)with vn|Ω\En

∈ W 1,p(Ω\En;Rd),

vn = 0 on En , and vn = u0 on V \En such that

lim supn→∞ ‖vn − uχE0‖L1(Ω) � δ, lim supn→∞ ‖e(vn) − e(un)χΩ\En‖L p(Ω) � δ.

(5.18)

To this end, choose ψ ∈ C∞(Ω) with ψ = 1 in Ω\U and ψ = 0 on V . The
sequence (un)n converges to u only in L1(Ω;Rd). Therefore, we introduce trunca-
tions to obtain L p-convergence: forM > 0,wedefineuM byuM

i = (− M∨ui )∧M ,
where ui denotes the i-th component, i = 1, . . . , d. In a similar fashion, we define
uM
n . By Proposition 5.4 we then get χEn → χE in L1(Ω) and

uM
n → uM in L p(Ω;Rd), ∇uM

n χΩ\En → ∇uMχE0 in L p(Ω;Md×d).
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We define vn := (ψuM
n + (1 − ψ)u0)χΩ\En . Clearly, vn = u0 on V \En . By

∇vn = ψ∇uM
n + (1 − ψ)∇u0 + ∇ψ ⊗ (uM

n − u0) on Ω\En , u = u0 on U , and
Proposition 5.4 we find

lim supn→∞ ‖vn − u‖L1(Ω) � ‖u − uM‖L1(Ω),

lim supn→∞ ‖e(vn) − e(un)χΩ\En‖L p(Ω) � ‖∇u − ∇uM‖L p(E0)

+ ‖∇ψ‖∞‖u − uM‖L p(Ω).

For M sufficiently large, we obtain (5.18) since u = uχE0 . This concludes the
proof. ��

As done for the passage from Proposition 2.1 to Proposition 5.5, we may obtain
the following characterization of the lower semicontinuous envelope of FDir with
respect to the convergence induced by d̄ on L0(Ω; R̄d).

Theorem 5.8. (Characterization of the lower semicontinuous envelope FDir,∞)
Under the assumptions of Theorem 2.2, the lower semicontinous envelope

FDir,∞(u, E) =
{
lim inf
n→∞ FDir(un, En) : d̄(un, u) → 0 and χEn → χE in L1(Ω)

}

for u ∈ L0(Ω; R̄d) and E ∈ M(Ω) is given by

FDir,∞(u, E) = F∞(u, E)+
∫

∂DΩ∩∂∗E

ϕ(νE ) dHd−1+
∫

{tr(u)�=tr(u0)}∩(∂DΩ\∂∗E)

2 ϕ(νΩ) dHd−1.

(5.19)
Moreover, if Ld(E) > 0, then for any (u, E) ∈ L0(Ω; R̄d)×M(Ω) there exists a
recovery sequence (un, En)n ⊂ L0(Ω;Rd)×M(Ω) such that Ld(En) = Ld(E)

for all n ∈ N.

Notice that in (5.19) we wrote tr(u) also for u ∈ GSBDp∞(Ω), with a slight abuse
of notation: tr(u) should be intended as tr(ũt ), cf. (3.10), for any t ∈ R

d such that
Hd−1({u0 = t} ∩ ∂DΩ) = 0.

5.3. Compactness and Existence Results for the Relaxed Functional

We start with the following general compactness result:

Theorem 5.9. (Compactness) For every (un, En)n with supn F(un, En) < +∞,
there exist a subsequence (not relabeled), u ∈ GSBDp∞(Ω), and E ∈ M(Ω)

with Hd−1(∂∗E) < +∞ such that un converges weakly in GSBDp∞(Ω) to u and
χEn → χE in L1(Ω).

Proof. Let (un, En)n with supn F(un, En) < +∞. As by the assumptions on
ϕ there holds supn∈NHd−1(∂En) < +∞, a compactness result for sets of fi-
nite perimeter (see [3, Remark 4.20]) implies that there exists E ⊂ Ω with
Hd−1(∂∗E) < +∞ such that χEn → χE in L1(Ω), up to a subsequence (not
relabeled).
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Since the functionsun = unχΩ\En satisfy Jun ⊂ ∂En ,weget supn Hd−1(Jun ) <

+∞.Moreover, by thegrowth assumptions on f (see (2.1))weget that‖e(un)‖L p(Ω)

is uniformly bounded. Thus, by Theorem 3.5, un converges (up to a subsequence)
weakly in GSBDp∞(Ω) to some u ∈ GSBDp∞(Ω). This concludes the proof. ��
We are now ready to prove Theorem 2.3.

Proof of Theorem 2.3. The existence of minimizers for FDir,∞ follows by com-
biningTheorem5.8 andTheorem5.9, bymeans of general properties of relaxations,
see for example [26, Theorem 3.8]. To obtain minimizers for FDir, it is enough to
observe (recall (3.10), (3.12)) that

FDir,∞(u, E) � FDir(va, E)

for every u ∈ GSBDp∞(Ω) and va := uχΩ\A∞
u

+ aχA∞
u
(recall A∞

u = {u = ∞}),
where a : Rd → R

d is an arbitrary affine function with skew-symmetric gradient
(usually called an infinitesimal rigid motion). Starting from a minimizer of FDir,∞,
if A∞

u �= ∅, we thus obtain a family of minimizers for FDir, parametrized by the
infinitesimal rigid motions a. This concludes the proof. ��

6. Functionals on Domains with a Subgraph Constraint

In this section we prove the the results announced in Section 2.2.

6.1. Relaxation of the Energy G

This subsection is devoted to the proof of Theorem 2.4. The lower inequality is
obtained by exploiting the tool of σ

p
sym-convergence introduced in Section 4. The

corresponding analysis will prove to be useful also for the compactness theorem
in the next subsection. The proof of the upper inequality is quite delicate, and a
careful procedure is needed to guarantee that the approximating displacements are
still defined on a domain which is the subgraph of a function. We only follow
partially the strategy in [20, Proposition 4.1], and employ also other arguments in
order to improve the GSBV proof which might fail in some pathological cases.

Consider a Lipschitz setω ⊂ R
d−1 which is uniformly star-shaped with respect

to the origin, see (2.9). We recall the notation Ω = ω × (−1, M + 1) and

Ωh = {x ∈ Ω : − 1 < xd < h(x ′)}, Ω+
h = Ωh ∩ {xd > 0} (6.1)

for h : ω → [0, M]measurable,wherewewrite x = (x ′, xd) for x ∈ R
d .Moreover,

we let Ω+ = Ω ∩ {xd > 0}.
The lower inequality. Consider (un, hn)n with supn G(un, hn) < +∞. Then,

we have that hn ∈ C1(ω; [0, M]), un|Ωhn
∈ W 1,p(Ωhn ;Rd), un|Ω\Ωhn

= 0, and
un = u0 on ω × (−1, 0). Suppose that (un, hn)n converges in L0(Ω;Rd)×L1(ω)

to (u, h). We let

Γn := ∂Ωhn ∩ Ω = {x ∈ Ω : hn(x
′) = xd} (6.2)
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be the graph of the function hn . Note that supn Hd−1(Γn) < +∞. We take U =
ω× (− 1

2 , M) andU ′ = Ω = ω× (−1, M+1), and apply Theorem 4.2, to deduce
that (Γn)n σ

p
sym-converges (up to a subsequence) to a pair (Γ,G∞). A fundamental

step in the proof will be to show that

G∞ = ∅. (6.3)

We postpone the proof of this property to Step 3 below. We first characterize the
limiting setΓ (Step 1) and prove the lower inequality (Step 2), by following partially
the lines of [20, Section 3.2]. In the whole proof, for simplicity we omit to write ⊂̃
and =̃ to indicate that the inclusions hold up to Hd−1-negligible sets.
Step 1: Characterization of the limiting set Γ . Let us prove that the set

Σ := Γ ∩ Ω1
h (6.4)

is vertical, that is
(Σ + ted) ∩ Ω1

h ⊂ Σ for any t � 0. (6.5)

This follows as in [20, Section 3.2]; in fact, consider (vn)n and v as in Defini-
tion 4.1(ii). In particular, vn = 0 onU ′\U , Jvn⊂Γn , and, in view of (6.3), v is Rd -
valued with Γ = Jv . The functions v′

n(x) := vn(x ′, xd − t)χΩhn
(x) (with t > 0,

extended by zero in ω×(−1,−1 + t)) converge to v′(x) := v(x ′, xd − t)χΩh (x)
in measure on U ′. Since Jv′

n
⊂ Γn , Definition 4.1(i) implies Jv′ \Γ ⊂(G∞)1. As

G∞ = ∅ by (6.3), we get Jv′⊂Γ , so that

(Σ + ted) ∩ Ω1
h = (Γ + ted) ∩ Ω1

h = (Jv + ted) ∩ Ω1
h = Jv′ ∩ Ω1

h ⊂ Γ ∩ Ω1
h = Σ,

where we have used Γ = Jv . This shows (6.5). In particular, νΣ ·ed = 0Hd−1-a.e.
in Σ . Next, we show that

Hd−1(∂∗Ωh ∩ Ω) + 2Hd−1(Σ) � lim inf
n→∞

∫
ω

√
1 + |∇hn(x ′)|2 dx ′. (6.6)

To see this, we again consider functions (vn)n and v satisfying Definition 4.1(ii).
In particular, we have Jvn ⊂ Γn and Jv = Γ . Since Γn is the graph of a C1

function, we either get vn|Ωhn
≡ ∞ or, by Korn’s inequality, we have vn|Ωhn

∈
W 1,p(Ωhn ;Rd). Since vn = 0 on U ′\U , we obtain vn|Ωhn

∈ W 1,p(Ωhn ;Rd). We
apply Theorem 5.1 for En = Ω\Ωhn , E = Ω\Ωh , and the sequence of functions
wn := vnχΩ\En = vnχΩhn

.
Observe that χEn → χE in L1(Ω). Moreover, wn converges weakly in

GSBDp∞(Ω) to w := vχΩh since vn converges weakly in GSBDp∞(Ω) to v and
supn Hd−1(∂En) < +∞. By (5.2b) for ϕ ≡ 1 on S

d−1 it holds that

Hd−1(∂∗Ωh ∩ Ω) + 2Hd−1(Jw ∩ Ω1
h ) � lim inf

n→∞ Hd−1(∂Ωhn ∩ Ω),

where we used that E0 = Ω1
h and ∂∗E ∩ Ω = ∂∗Ωh ∩ Ω . Since Jv = Γ and

Jw ∩ Ω1
h = Jv ∩ Ω1

h = Σ , we indeed get (6.6), where for the right hand side we
use that ∂Ωhn is the graph of the function hn ∈ C1(ω; [0, M]). For later purposes
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in Step 3, we also note that by Corollary 5.6 for φ(ν) = |ξ · ν|, with ξ ∈ S
d−1

fixed, we get∫
Γ

|νΓ · ξ | dHd−1 =
∫
Jv

|νv · ξ | dHd−1 � lim inf
n→∞

∫
Jvn

|νvn · ξ | dHd−1

� lim inf
n→∞

∫
Γn

|νΓn · ξ | dHd−1. (6.7)

(Strictly speaking, as φ is only a seminorm, we apply Corollary 5.6 for φ + ε for
any ε > 0.)
Step 2: The lower inequality.We now show the lower bound. Recall that (un, hn)n
converges in L0(Ω;Rd)×L1(ω) to (u, h) and that (G(un, hn))n is bounded. Then,
(2.1) and minSd−1 ϕ > 0 along with Theorem 3.5 and the fact that Ld({x ∈
Ω : |un(x)| → ∞}) = 0 imply that the limit u = uχΩh lies in GSBDp(Ω). It
also holds that u = u0 on ω × (−1, 0) by (3.7)(i) and the fact that un = u0 on
ω × (−1, 0) for all n ∈ N. In particular, we observe that un = unχΩhn

converges
weakly in GSBDp∞(Ω) to u, cf. (3.16). The fact that h ∈ BV (ω; [0, M]) follows
from a standard compactness argument. This shows G(u, h) < +∞.

To obtain the lower bound for the energy, we again apply Theorem 5.1 for En =
Ω\Ωhn and E = Ω\Ωh . Consider the sequence of functions vn := ψunχΩ\En =
ψun , where ψ ∈ C∞(Ω) with ψ = 1 in a neighborhood of Ω+ = Ω ∩ {xd >

0} and ψ = 0 on ω × (−1,− 1
2 ). We observe that vn = 0 on U ′\U = ω ×

((−1,− 1
2 ]∪[M, M+1)) and that vn converges to v := ψu ∈ GSBDp(Ω)weakly

inGSBDp∞(Ω). Nowwe apply Theorem5.1. First, notice that (5.2a),ψ = 1 onΩ+,
and the fact that A∞

u = ∅ imply e(un)χΩ+
hn

⇀ e(u)χΩ+
h
weakly in L p(Ω;Md×d

sym ).

This along with the convexity of f yields∫
Ω+

h

f (e(u)) dx � lim inf
n→∞

∫
Ω+

hn

f (e(un)) dx . (6.8)

Moreover, applying Definition 4.1(i) on the sequence (vn)n , which satisfies vn = 0
on U ′\U and Jvn ⊂ Γn , we observe Ju = Jv ⊂ Γ , where we have also used (6.3).
Recalling the definition of J ′

u = {(x ′, xd + t) : x ∈ Ju, t � 0}, see (2.10), and
using (6.4)–(6.5) we find J ′

u ∩ Ω1
h ⊂ Σ . Thus, by (6.6), we obtain

Hd−1(∂∗Ωh ∩ Ω) + 2Hd−1(J ′
u ∩ Ω1

h ) � lim inf
n→∞

∫
ω

√
1 + |∇hn(x ′)|2 dx ′. (6.9)

Collecting (6.8) and (6.9) we conclude the lower inequality. To conclude the proof,
it remains to confirm (6.3).
Step 3: Proof of G∞ = ∅. Recall the definition of the graphs Γn in (6.2) and its
σ
p
sym-limit Γ on the sets U = ω × (− 1

2 , M) and U ′ = Ω . As before, consider
ψ ∈ C∞(Ω) with ψ = 1 in a neighborhood of Ω+ and ψ = 0 on ω × (−1,− 1

2 ).
By employing (i) in Definition 4.1 for the sequence vn = ψχΩhn

ed and its limit
v = ψχΩh ed , we get that (∂∗Ωh ∩ Ω)\Γ ⊂(G∞)1. Since U ′ ∩ ∂∗G∞ ⊂ Γ by
definition of σ

p
sym-convergence, we observe that

Γ ⊃ (
∂∗G∞ ∩ Ω

) ∪ (
∂∗Ωh ∩ Ω ∩ (G∞)0

)
. (6.10)
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Fig. 1. A picture of the situation in the argument by contradiction. We show that in fact
G∞ = ∅

We estimate the Hd−1-measure of the two terms on the right separately.
The first term.Wedefine� = ∂∗G∞∩Ω for brevity. SinceG∞ is contained inU =
ω×(− 1

2 , M) andΩ = ω×(−1, M+1), we observe� = ∂∗G∞∩(ω×R). Choose
ω� ⊂ ω such that ω� × {0} is the orthogonal projection of � onto R

d−1 × {0}.
Note that � and ω� satisfy

H0(�ed
y

)
� 2 for all y ∈ ω� × {0},

since G∞ is a set of finite perimeter. Thus

∫
ω×{0}

H0((∂∗G∞ ∩ Ω)edy
)
dHd−1(y) � 2Hd−1(ω�). (6.11)

The second term. As ∂∗Ωh ∩ Ω is the (generalized) graph of the function h : ω →
[0, M], we have

∫
ω×{0}

H0
((

∂∗Ωh ∩ Ω
)ed
y

)
dHd−1(y) = Hd−1(ω). (6.12)

In a similar fashion, letting �2 = (∂∗Ωh ∩ Ω)\(G∞)0 and denoting by ω�2 ⊂ ω

its orthogonal projection onto R
d−1 × {0}, we get

∫
ω×{0}

H0
((

(∂∗Ωh ∩ Ω)\(G∞)0
)ed
y

)
dHd−1(y) = Hd−1(ω�2). (6.13)

As �2 is contained in (G∞)1 ∪ ∂∗G∞, we get ω�2 ⊂ ω� , see Figure 1.
Therefore, by combining (6.12) and (6.13) we find
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∫
ω×{0}

H0
((

∂∗Ωh ∩ Ω ∩ (G∞)0
)ed
y

)
dHd−1(y) = Hd−1(ω) − Hd−1(ω�2)

� Hd−1(ω) − Hd−1(ω�). (6.14)

Now (6.10), (6.11), (6.14) and the fact that ∂∗G∞ ∩ (G∞)0 = ∅ yield
∫

ω×{0}
H0(Γ ed

y ) dHd−1 �
∫

ω×{0}

(
H0((∂∗G∞ ∩ Ω)edy

)

+ H0
((

∂∗Ωh ∩ Ω ∩ (G∞)0
)ed
y

))
dHd−1

� Hd−1(ω) + Hd−1(ω�). (6.15)

Since Γn are graphs of the functions hn : ω → [0, M], we get by the area formula
and (6.7) that

∫
ω×{0}

H0(Γ ed
y ) dHd−1(y) =

∫
Γ

|νΓ · ed |dHd−1 � lim inf
n→∞

∫
Γn

|νΓn · ed | dHd−1 = Hd−1(ω).

This along with (6.15) shows that Hd−1(ω�) = 0. By recalling that ω� × {0} is
the orthogonal projection of ∂∗G∞ ∩ (ω ×R) = � onto Rd−1 × {0}, we conclude
that G∞ = ∅.

This completes the proof of the lower inequality in Theorem 2.4. ��
The upper inequality. To obtain the upper inequality, it clearly suffices to prove
the following result:

Proposition 6.1. Suppose that f � 0 is convex and satisfies (2.1). Consider (u, h)

with u = uχΩh ∈ GSBDp(Ω), u = u0 in ω×(−1, 0), and h ∈ BV (ω; [0, M]).
Then, there exists a sequence (un, hn)n with hn ∈ C1(ω)∩BV (ω; [0, M]), un|Ωhn

∈
W 1,p(Ωhn ;Rd), un = 0 in Ω\Ωhn , and un = u0 in ω×(−1, 0) such that un → u
in L0(Ω;Rd), hn → h in L1(ω), and

lim sup
n→∞

∫
Ωhn

f (e(un)) dx �
∫

Ωh

f (e(u)) dx, (6.16a)

lim supn→∞ Hd−1(∂Ωhn ∩ Ω) � Hd−1(∂∗Ωh ∩ Ω) + 2Hd−1(J ′
u ∩ Ω1

h ).

(6.16b)

In particular, it is not restrictive to assume that f � 0. In fact, otherwise we
consider f̃ := f + c2 � 0 changing the value of the elastic energy by the term
c2Ld(Ωh)which is continuous with respect to L1(ω) convergence for h. Moreover,
the integrals Ωhn and Ωh can be replaced by Ω+

hn
and Ω+

h , respectively, since all
functions coincide with u0 on ω × (−1, 0).

Remark 6.2. The proof of the proposition will show that we can construct the
sequence (un)n also in such a way that un ∈ L∞(Ω;Rd) holds for all n ∈ N. This,
however, comes at the expense of the fact that the boundary data is only satisfied
approximately, that is, un|ω×( −1,0) → u0|ω×( −1,0) in W 1,p(ω × (−1, 0);Rd).
This slightly different version will be instrumental in Section 6.3.
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As a preparation, we first state some auxiliary results. We recall two lemmas
from [20]. The first is stated in [20, Lemma 4.3].

Lemma 6.3. Let h ∈ BV (ω; [0,+∞)), with ∂∗Ωh essentially closed, that is,
Hd−1(∂∗Ωh\∂∗Ωh) = 0. Then, for any ε > 0, there exists g ∈ C∞(ω; [0,+∞))

such that g � h a.e. in ω, ‖g − h‖L1(ω) � ε, and
∣∣∣∣
∫

ω

√
1 + |∇g|2 dx ′ − Hd−1(∂∗Ωh ∩ Ω)

∣∣∣∣ � ε.

Lemma 6.4. Let h ∈ BV (ω; [0, M]) and let Σ ⊂ R
d with Hd−1(Σ) < +∞ be

vertical in the sense that x = (x ′, xd) ∈ Σ implies (x ′, xd + t) ∈ Σ as long as
(x ′, xd + t) ∈ Ω1

h . Then, for each ε > 0 there exists g ∈ C∞(ω; [0, M]) such that
‖g − h‖L1(ω) � ε, (6.17a)

Hd−1((∂∗Ωh ∪ Σ) ∩ Ωg
)

� ε, (6.17b)∣∣∣
∫

ω

√
1 + |∇g|2 dx ′ − (Hd−1(∂∗Ωh ∩ Ω) + 2Hd−1(Σ)

)∣∣∣ � ε. (6.17c)

Proof. We refer to the first step in the proof of [20, Proposition 4.1], in particular
[20, Equation (12)-(13)]. We point out that the case of possibly unbounded graphs
has been treated there, that is, h ∈ BV (ω; [0,+∞)). The proof shows that the
upper bound on h is preserved and we indeed obtain g ∈ C∞(ω; [0, M]) if h ∈
BV (ω; [0, M]). ��

Note that Lemma 6.4 states that ∂∗Ωh ∪ Σ can be approximated from below
by a smooth graph g. However, this only holds up to a small portion, see (6.17b).
Therefore, two additional approximation techniques are needed, one for graphs and
one forGSBD functions. To this end, we introduce some notation which will also be
needed for the proof of Proposition 6.1. Let k ∈ N, k > 1. For any z ∈ (2k−1)Zd ,
consider the hypercubes

qkz := z + (− k−1, k−1)d , Qk
z := z + (− 5k−1, 5k−1)d . (6.18)

Given an open set U ⊂ R
d , we also define the union of cubes well contained in U

by

(U )k := int
( ⋃

z : Qk
z⊂U

qkz
)
. (6.19)

(Here, int(·) denotes the interior. This definition is unrelated to the notation Es for
the set of points with density s ∈ [0, 1].)

We now address the two approximation results. We start by an approximation
of graphs from which a union of hypercubes has been removed. Recall Ω+ =
Ω ∩ {xd > 0}.
Lemma 6.5. Let g ∈ C∞(ω; [0, M]) and let Vk ⊂ Ω+ be a union of cubes Qk

z ,
z ∈ Z ⊂ (2k−1)Zd , intersected with (Ωg)

k . Suppose that Vk is vertical in the sense
that (x ′, xd) ∈ Vk implies (x ′, xd+t) ∈ Vk for t � 0 as long as (x ′, xd+t) ∈ (Ωg)

k .
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Then, for k ∈ N sufficiently large, we find a function hk ∈ C∞(ω; [0, M]) such
that

Ld(Ωg �Ωhk ) � Ld(Ωg ∩ Vk) + Cg,ωk
−1, (6.20a)

Hd−1(∂Ωhk ∩ Ω) � Hd−1(∂Ωg ∩ Ω) + Hd−1(∂Vk ∩ (Ωg)
k) + Cg,ωk

−1,

(6.20b)

where Cg,ω > 0 depends on d, g, and ω, but is independent of k. Moreover, there
are constants τg, τ∗ > 0 only depending on d, g, and ω such that

x = (x ′, xd) ∈ Ωhk ⇒ (
(1 − τ∗/k) x ′, (1 − τ∗/k) xd − 6τg/k

) ∈ (Ωg)
k\Vk .
(6.21)

We point out that (6.21) means that hk lies below the boundary of (Ωg)
k\Vk ,

up to a slight translation and dilation. We suggest to omit the proof of the lemma
on first reading.

Proof. The proof relies on slight lifting and dilation of the set (Ωg)
k\Vk along with

an application of Lemma 6.3. Recall definition (6.19), and define ωk ⊂ ω ⊂ R
d−1

such that (ω ×R)k = ωk ×R. Since ω is uniformly star-shaped with respect to the
origin, see (2.9), there exists a universal constant τω > 0 such that

ωk ⊃ (1 − τk−1) ω for τ � τω. (6.22)

Define τg := 1+ √
d maxω |∇g|. For k sufficiently large, it is elementary to check

that
Ωg ∩ (ωk × (0,∞)) ⊂ (

(Ωg)
k + 6 τgk

−1ed
)
. (6.23)

We now “lift” the set (Ωg)
k\Vk upwards: define the function

g′
k(x

′) := sup
{
xd < g(x ′) : (x ′, xd − 6 τg/k) ∈ (Ωg)

k\Vk
}

for x ′ ∈ ωk .

(6.24)
We observe that g′

k ∈ BV (ωk; [0, M]). Define (Ω)k as in (6.19) and, similar to
(6.1), we let Ωg′

k
= {x ∈ ωk × (−1, M + 1) : − 1 < xd < g′

k(x
′)}. Since Vk is

vertical, we note that ∂Ωg′
k
∩ (Ω)k is made of two parts: one part is contained in

the smooth graph of g and the rest in the boundary of Vk + 6τgk−1ed . In particular,
by (6.23) we get

∂Ωg′
k
∩ (Ω)k ⊂ (∂Ωg ∩ Ω) ∪ (

∂Ωg′
k
∩ (Ω)k ∩ Ωg

) ⊂ (∂Ωg ∩ Ω) ∪ (
(∂Vk ∩ (Ωg)

k)

+ 6 τgk
−1 ed

)
.

Then, we deduce

Hd−1(∂Ωg′
k
∩ (Ω)k) � Hd−1(∂Ωg ∩ Ω) + Hd−1(∂Vk ∩ (Ωg)

k). (6.25)

Since by (6.23) and (6.24) there holds (Ωg\Ωg′
k
) ∩ (Ω)k ⊂ Vk + 6 τgk−1ed , the

fact that Vk is vertical implies that

Ld((Ωg�Ωg′
k
) ∩ (Ω)k

)
� Ld(Ωg ∩ (Vk + 6 τgk

−1ed)
)

� Ld(Ωg ∩ Vk).

(6.26)
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As g′
k is only defined on ωk , we further need a dilation: letting τ∗ := τω ∨ (6τg +6)

and recalling (6.22) we define g′′
k ∈ BV (ω; [0, M]) by

g′′
k (x

′) = g′
k((1 − τ∗k−1) x ′) for x ′ ∈ ω. (6.27)

(The particular choice of τ∗ will become clear in the proof of (6.21) below.) By
(6.26) we get that

Ld(Ωg �Ωg′′
k
) � Ld(Ωg ∩ Vk) + Cg,ωk

−1, (6.28a)∣∣Hd−1(∂Ωg′′
k

∩ Ω) − Hd−1(∂Ωg′
k
∩ (Ω)k)

∣∣ � Cg,ωk
−1, (6.28b)

where the constant Cg,ω depends only on d, g, and ω. We also notice that Hd−1(
∂∗Ωg′′

k
\∂∗Ωg′′

k

) = 0. Then by Lemma 6.3 applied for ε = 1/k we find a function
hk ∈ C∞(ω; [0, M]) with hk � g′′

k on ω such that

‖g′′
k − hk‖L1(ω) � k−1,

∣∣Hd−1(∂Ωhk ∩ Ω) − Hd−1(∂∗Ωg′′
k

∩ Ω)
∣∣ � k−1.

(6.29)

By passing to a larger constant Cω,g and by using (6.25), (6.28), and (6.29), we get
(6.20). We finally show (6.21). In view of the definitions of g′

k and g
′′
k in (6.24) and

(6.27), respectively, and the fact that hk � g′′
k , we get

x = (x ′, xd) ∈ Ωhk ⇒ (
(1 − τ∗/k) x ′, xd − 6τg/k

) ∈ (Ωg)
k\Vk .

Recall τ∗ = τω ∨ (6τg + 6) and observe that −(1 − τ∗/k) − 6τg/k � −1 + 6/k.
Also note that (Ωg)

k ⊃ (Ω)k ∩ (ω × (−1 + 6/k, 0)), cf. (6.19). This, along with
the verticality of Vk ⊂ Ω+, shows that

x = (x ′, xd) ∈ Ωhk ⇒ (
(1 − τ∗/k) x ′, (1 − τ∗/k) xd − 6τg/k

) ∈ (Ωg)
k\Vk .

This concludes the proof. ��
Next, we present an approximation technique for GSBD functions based on

[17]. In what follows, ψ : [0,∞) → [0,∞) denotes the function ψ(t) = t ∧ 1.

Lemma 6.6. Let U ⊂ R
d be open, bounded, p > 1, and k ∈ N, θ ∈ (0, 1)

with k−1, θ small enough. Let F ⊂ GSBDp(U ) be such that ψ(|v|) + |e(v)|p
is equiintegrable for v ∈ F . Suppose that for v ∈ F there exists a set of finite
perimeter V ⊂ U such that for each qkz , z ∈ (2k−1)Zd , intersecting (U )k\V , it
holds that

Hd−1(Qk
z ∩ Jv

)
� θk1−d . (6.30)

Then there exists a function wk ∈ W 1,∞((U )k\V ;Rd) such that∫
(U )k\V

ψ(|wk − v|) dx � Rk, (6.31a)

∫
(U )k\V

|e(wk)|p dx �
∫
U

|e(v)|p dx + Rk, (6.31b)

where (Rk)k is a sequence independent of v ∈ F with Rk → 0 as k → ∞.
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The lemma is essentially a consequence of the rough estimate proved in [17,
Theorem 3.1]. For the convenience of the reader, we include a short proof in Ap-
pendix A.

After having collected auxiliary lemmas, we now give a short outline of the
proof. Recall that Ω = ω × (−1, M + 1) for given M > 0. Consider a pair (u, h)

as in Proposition 6.1.We work with uχΩh ∈ GSBDp(Ω) in the following, without
specifying each time that u = 0 in the complement of Ωh . Recall J ′

u defined in
(2.10), and, as before, set Σ := J ′

u ∩ Ω1
h . This implies Ju ⊂ (∂∗Ωh ∩ Ω) ∪ Σ .

Since Σ is vertical, we can approximate (∂∗Ωh ∩Ω)∪Σ by the graph of a smooth
function g ∈ C∞(ω; [0, M]) in the sense of Lemma 6.4.

Our goal is to construct a regular approximation of u in (most of) Ωg by means
of Lemma 6.6. The main step is to identify suitable exceptional sets (Vk)k such that
for the cubes outside of (Vk)k we can verify (6.30). In this context, we emphasize
that it is crucial that each Vk is vertical since this allows us to apply Lemma 6.5 and
to approximate the boundary of (Ωg)

k\Vk from below by a smooth graph. Before
we start with the actual proof of Proposition 6.1, we address the construction of
(Vk)k . To this end, we introduce the notion of good and bad nodes, and collect some
important properties.

Define the set of nodes

Nk := {z ∈ (2k−1)Zd : qkz ⊂ Ωg}. (6.32)

Let us introduce the families of good nodes and bad nodes at level k. Let ρ1, ρ2 > 0
to be specified below. By Gk we denote the set of good nodes z ∈ Nk , namely those
satisfying

Hd−1(qkz ∩ (∂∗Ωh ∪ Σ)
)

� ρ1k
1−d , (6.33)

or having the property that there exists a set of finite perimeter Fk
z ⊂ qkz , such that

qkz ∩Ω0
h ⊂ (Fk

z )1, Hd−1(∂∗Fk
z

)
� ρ2k

1−d , Hd−1(qkz ∩Σ∩(Fk
z )0

)
� ρ2k

1−d .

(6.34)
We define the set of bad nodes by Bk = Nk\Gk . Moreover, let

G∗
k := {z ∈ Gk : (6.33) does not hold}. (6.35)

For an illustration of the cubes in Gk we refer to Figure 2.
We partition the set of good nodes Gk into

G1
k = {

z ∈ Gk : Ld(qkz ∩ Ω0
h ) � Ld(qkz ∩ Ω1

h )
}
, G2

k = Gk\G1
k . (6.36)

We introduce the terminology “qkz′ is above q
k
z ” meaning that qkz′ and qkz have the

same vertical projection onto R
d−1×{0} and z′d > zd .

We remark that bad nodes have been defined differently in [20], namely as the
cubes having an edge which intersects ∂∗Ωh ∩ Σ . This definition is considerably
easier than our definition. Itmay, however, fail in somepathological situations since,
in this case, the union of cubes with bad nodes as centers does not necessarily form
a “vertical set”.
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Fig. 2. A simplified representation of nodes in Gk , for d = 2 and with Σ = ∅. The set
Gk\G∗

k corresponds to the cubes containing only a small portion of ∂∗Ωh ∪ Σ , see first

picture. For the cubes G∗
k , the portion of ∂∗Ωh is contained in a set Fk

z with small boundary,
see second picture. Intuitively, this along with the fact that (6.33) does not hold means that
∂∗Ωh is highly oscillatory in such cubes

Lemma 6.7. (Properties of good and bad nodes) Given Ωh and Σ , define Ωg as
in Lemma 6.4 for ε > 0 sufficiently small. We can choose 0 < ρ1 < ρ2 satisfying
ρ1, ρ2 � 1

25
−dθ such that the following properties hold for the good and bad nodes

defined in (6.32)–(6.36):

(i) if qkz′ is above q
k
z and z ∈ Bk ∪ G2

k , then z′ ∈ Bk ∪ G2
k ;

(ii) if z, z′ ∈ Gk withHd−1(∂qkz ∩ ∂qkz′) > 0, then z, z′ ∈ G1
k or z, z′ ∈ G2

k ;
(iii) #Bk + #G∗

k � 2ρ−1
1 kd−1ε;

(iv)
∑

z∈G2
k

Ld(Ωh ∩ qkz ) � ε.

We suggest to omit the proof of the lemma on first reading and to proceed
directly with the proof of Proposition 6.1.

Proof. By cπ � 1 we denote the maximum of the constants appearing in the
isoperimetric inequality and the relative isoperimetric inequality on a cube in di-
mension d. We will show the statement for ε and 0 < ρ2 < 1 sufficiently small
satisfying ρ2 � 1

25
−dθ , and for ρ1 = ((3d + 1)cπ )−1ρ2.

Preparations. First, we observe that for ρ2 sufficiently small we have that G∗
k ⊂

G1
k . Indeed, since for z ∈ G∗

k property (6.34) holds, the isoperimetric inequality
implies that

Ld(qkz ∩ Ω0
h ) � Ld(Fk

z ) � cπ

(Hd−1(∂∗Fk
z )

)d/(d−1) � cπρ
d/(d−1)
2 k−d . (6.37)

Then, for ρ2 sufficiently small we get Ld(qkz ∩ Ω0
h ) < 1

2Ld(qkz ), and thus z ∈ G1
k ,

see (6.36).
As a further preparation, we show that for each z ∈ G1

k there exists a set of finite
perimeter Hk

z with Ω0
h ∩ qkz ⊂ Hk

z ⊂ qkz such that

Ld(Hk
z ) � cπρ

d/(d−1)
2 k−d , Hd−1(∂∗Hk

z ) � ρ2k
1−d ,
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Hd−1(qkz ∩ Σ ∩ (Hk
z )0

)
� ρ2k

1−d . (6.38)

Indeed, if (6.34) holds, this follows directly from (6.34) and (6.37) for Hk
z := Fk

z .
Now suppose that z ∈ G1

k satisfies (6.33). In this case, we define H
k
z := Ω0

h ∩qkz .
To control the volume, we use the relative isoperimetric inequality on qkz to find by
(6.33)

Ld(Hk
z ) = Ld(Ω0

h ∩ qkz ) ∧ Ld(Ω1
h ∩ qkz ) � cπ

(Hd−1(∂∗Ωh ∩ qkz )
)d/(d−1)

� cπρ
d/(d−1)
1 k−d , (6.39)

that is, the first part of (6.38) holds since ρ1 = ((3d + 1)cπ )−1ρ2. To obtain
the second estimate in (6.38), the essential step is to control Hd−1(∂qkz ∩ Ω0

h ).
For simplicity, we only estimate Hd−1(∂dqkz ∩ Ω0

h ) where ∂dqkz denotes the two
faces of ∂qkz whose normal vector is parallel to ed . The other faces can be treated
in a similar fashion. Write z = (z′, zd) and define ωz = z′ + (− k−1, k−1)d−1.
By ω∗ ⊂ ωz we denote the largest measurable set such that the cylindrical set
(ω∗ × R) ∩ qkz is contained in Ω0

h . Then by the area formula (cf. for example [57,
(12.4) in Section 12]) and by recalling notation (3.1) we get

Hd−1(∂dq
k
z ∩ Ω0

h ) � 2Hd−1(ω∗) + 2
∫

(ωz\ω∗)×{0}
H0((∂∗Ωh)

ed
y

)
dHd−1(y)

� 2Hd−1(ω∗) + 2
∫

∂∗Ωh∩qkz
|νΩh · ed | dHd−1

� 2Hd−1(ω∗) + 2Hd−1(∂∗Ωh ∩ qkz ). (6.40)

As (ω∗ × R) ∩ qkz ⊂ Ω0
h ∩ qkz and Ld(Ω0

h ∩ qkz ) � cπρ
d/(d−1)
1 k−d by (6.39),

we deduce 2k−1Hd−1(ω∗) � cπρ
d/(d−1)
1 k−d . This along with (6.33) and (6.40),

yields

Hd−1(∂dq
k
z ∩ Ω0

h ) � cπρ
d/(d−1)
1 k1−d + 2ρ1k

1−d � 3cπρ1k
1−d .

By repeating this argument for the other faces and by recallingHd−1(∂∗Ωh∩qkz ) �
ρ1k1−d , we conclude that Hk

z = Ω0
h ∩ qkz satisfies that

Hd−1(∂∗Hk
z ) = Hd−1(∂∗Ωh ∩ qkz ) + Hd−1(∂qkz ∩ Ω0

h )

� ρ1k
1−d + d · 3cπρ1k

1−d � ρ2k
1−d ,

where the last step follows from ρ1 = ((3d + 1)cπ )−1ρ2. This concludes the the
second part of (6.38). The third part follows from (6.33) and ρ1 � ρ2. We are now
in a position to prove the statement.

Proof of (i).We need to show that for z′ ∈ G1
k there holds z ∈ G1

k for all z ∈ Nk

such that qkz′ is above q
k
z . Fix such cubes qkz and qkz′ .

Consider the set Hk
z′ withΩ0

h ∩qkz′ ⊂ Hk
z′ ⊂ qkz′ introduced in (6.38), and define

Fk
z := Hk

z′ − z′ + z. Since Ωh is a generalized graph, we get (Fk
z )1 ⊃ Ω0

h ∩ qkz .
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Moreover, since Σ = J ′
u ∩Ω1

h is vertical in Ωh , see (2.10), and (Hk
z′)

0 ⊂ Ω1
h ∩qkz′ ,

we have

Σ∩(Fk
z )0 = Σ∩Ω1

h ∩(Fk
z )0 ⊂ (Σ∩Ω1

h ∩(Hk
z′)

0)+z−z′ = (Σ∩(Hk
z′)

0)+z−z′.

By (6.38) we thus getHd−1(qkz ∩Σ ∩(Fk
z )0) � Hd−1(qkz′ ∩Σ ∩(Hk

z′)
0) � ρ2k1−d .

Then the third property in (6.34) is satisfied for z. Again by (6.38) we note that also
the first two properties of (6.34) hold, and thus z ∈ Gk . Using once more that Ωh

is a generalized graph, we get Ld(Ωh ∩ qkz ) � Ld(Ωh ∩ qkz′). Then z
′ ∈ G1

k implies
z ∈ G1

k , see (6.36). This shows (i).
Proof of (ii). Suppose by contradiction that there exist z ∈ G1

k and z′ ∈ G2
k

satisfying Hd−1(∂qkz ∩ ∂qkz′) > 0. Define the set F := Hk
z ∪ (Ω0

h ∩ qkz′) with Hk
z

from (6.38), and observe that F is contained in the cuboid qk∗ = int(qkz ∪qkz′). Since
Hk
z ⊃ Ω0

h ∩ qkz , we find

Hd−1(qk∗ ∩ ∂∗F) � Hd−1(∂∗Hk
z ) + Hd−1(∂∗Ωh ∩ qkz′).

As G2
k ∩ G∗

k = ∅, cf. (6.37), for z′ ∈ G2
k estimate (6.33) holds true. This along with

(6.38) yields

Hd−1(qk∗ ∩ ∂∗F) � ρ2k
1−d + ρ1k

1−d � 2ρ2k
1−d .

Then, the relative isoperimetric inequality on qk∗ yields

Ld(qk∗ ∩ F) ∧ Ld(qk∗\F) � C∗
(Hd−1(qk∗ ∩ ∂∗F)

)d/(d−1) � C∗(2ρ2)d/(d−1)k−d

(6.41)

for some universalC∗ > 0. On the other hand, it holds thatLd(qk∗ ∩F) � Ld(Ω0
h ∩

qkz′) � 1
2 (2k

−1)d and Ld(qk∗\F) � Ld(qkz \Hk
z ) � (2k−1)d − cπρ

d/(d−1)
2 k−d by

(6.38). However, for ρ2 sufficiently small, this contradicts (6.41). This concludes
the proof of (ii).

Proof of (iii). Note that Hd−1-a.e. point in R
d is contained in at most two

different closed cubes qkz , q
k
z′ . Therefore, since the cubes with centers in G∗

k and Bk

do not satisfy (6.33), we get

#Bk + #G∗
k � ρ−1

1 kd−1
∑

z∈Bk∪G∗
k

Hd−1(qkz ∩ (∂∗Ωh ∪ Σ)
)

� 2ρ−1
1 kd−1Hd−1((∂∗Ωh ∪ Σ) ∩ Ωg

)
,

where the last step follows from (6.32). This along with (6.17b) shows (iii).
Proof of (iv). Recall that each z ∈ G2

k satisfies (6.33), cf. (6.35) and before
(6.37). The relative isoperimetric inequality, (6.32) and (6.36) yield that

∑
z∈G2

k

Ld(Ωh ∩ qkz ) =
∑

z∈G2
k

Ld(Ω0
h ∩ qkz ) ∧ Ld(Ω1

h ∩ qkz )

� cπ

∑
z∈G2

k

(Hd−1(∂∗Ωh ∩ qkz )
) d
d−1
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� cπ

( ∑
z∈G2

k

Hd−1(∂∗Ωh ∩ qkz )
)d/(d−1)

� cπ

(Hd−1(∂∗Ωh ∩ Ωg)
)d/(d−1)

.

By (6.17b) we conclude for ε small enough that
∑

z∈G2
k
Ld(Ωh ∩qkz ) � cπεd/(d−1)

� ε. ��
Proof of Proposition 6.1. Consider a pair (u, h) and set Σ := J ′

u ∩ Ω1
h with J ′

u
as in (2.10). Given ε > 0, we approximate (∂∗Ωh ∩ Ω) ∪ Σ by the graph of a
smooth function g ∈ C∞(ω; [0, M]) in the sense of Lemma 6.4. Define the good
and bad nodes as in (6.32)–(6.36) for 0 < ρ1, ρ2 � 1

25
−dθ such that the properties

in Lemma 6.7 hold. We will first define approximating regular graphs (Step 1) and
regular functions (Step 2) for fixed ε > 0. Finally, we let ε → 0 and obtain the
result by a diagonal argument (Step 3). In the whole proof, C > 0 will denote a
constant depending only on d, p, ρ1, and ρ2.
Step 1: Definition of regular graphs. Recall (6.19). For each k ∈ N, we define the
set

Vk :=
⋃

z∈G2
k∪Bk

Qk
z ∩ (Ωg)

k . (6.42)

We observe that
∂Vk ∩ (Ωg)

k ⊂
⋃

z∈Bk
∂Qk

z . (6.43)

In fact, consider z ∈ Bk ∪ G2
k such that Qk

z ∩ Vk �= ∅ and one face of ∂Qk
z

intersects ∂Vk∩(Ωg)
k . In view of (6.42), there exists an adjacent cube qkz′ satisfying

Hd−1(∂qkz ∩ ∂qkz′) > 0 and z′ ∈ G1
k since otherwise ∂Qk

z ∩ ∂Vk ∩ (Ωg)
k = ∅. As

z′ ∈ G1
k , Lemma 6.7(ii) implies z /∈ G2

k and therefore z ∈ Bk . This shows (6.43). A
similar argument yields

Vk =
(⋃

z∈Bk
Qk

z ∪
⋃

z∈G2
k

qkz
)

∩ (Ωg)
k (6.44)

up to a negligible set. Indeed, since Vk is a union of cubes of sidelength 2k−1

centered in nodes in Nk , it suffices to prove that for a fixed z ∈ Nk ∩ Vk there
holds (a) z ∈ G2

k or that (b) there exists z′ ∈ Bk such that z ∈ Qk
z′ . Arguing by

contradiction, if z ∈ Nk ∩ Vk and neither (a) nor (b) hold, we deduce that z ∈ G1
k

and Qk
z ∩ Bk = ∅. Then all z′ ∈ Nk ∩ Qk

z lie in Gk . More precisely, by z ∈ G1
k and

Lemma 6.7(ii) we get that all z′ ∈ Nk ∩ Qk
z lie in G1

k . Then Qk
z ∩ (G2

k ∪ Bk) = ∅,
so that qkz ∩ Vk = ∅ by (6.42). This contradicts z ∈ Vk .

Let us now estimate the surface and volume of Vk . By (6.43) and Lemma 6.7(iii)
we get

Hd−1(∂Vk ∩ (Ωg)
k) �

∑
z∈Bk

Hd−1(∂Qk
z ) � Ck1−d#Bk � Cε, (6.45)

where C depends on ρ1. In a similar fashion, by (6.44) and Lemma 6.7(iii),(iv) we
obtain

Ld(Vk ∩ Ωh) � Ck−d #Bk +
∑

z∈G2
k

Ld(qkz ∩ Ωh) � Ck−1ε + ε � Cε.

(6.46)
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Note that Vk is vertical in the sense that (x ′, xd) ∈ Vk implies (x ′, xd + t) ∈ Vk for
t � 0 as long as (x ′, xd + t) ∈ (Ωg)

k . This follows from Lemma 6.7(i) and (6.42).
We apply Lemma 6.5 for g and Vk to find functions hk ∈ C∞(ω; [0, M])

satisfying (6.20) and (6.21). Therefore, by (6.17a), (6.20), and (6.46) we get

Ld(Ωh �Ωhk ) � Ld(Ωg �Ωhk ) + Ld(Ωg�Ωh) � Ld(Ωg ∩ Vk)

+ Cg,ωk
−1 + Ld(Ωg�Ωh)

� Ld(Ωh ∩ Vk) + Cg,ωk
−1 + 2Ld(Ωg�Ωh) � Cε + Cg,ωk

−1.

(6.47)

Moreover, by (6.17c), (6.20) and (6.45) we obtain that

Hd−1(∂Ωhk ∩ Ω) � Hd−1(∂Ωg ∩ Ω) + Hd−1(∂Vk ∩ (Ωg)
k) + Cg,ωk

−1

� Hd−1(∂∗Ωh ∩ Ω) + 2Hd−1(Σ) + Cε + Cg,ωk
−1. (6.48)

Step 2: Definition of regular functions. Recall (6.34)–(6.35), and observe that
Lemma 6.7(iii) implies

Ld(Fk) �
∑

z∈G∗
k

Ld(qkz ) � Ck−d#G∗
k � Cε k−1, where Fk :=

⋃
z∈G∗

k

(Fk
z )1.

We define the functions vk ∈ GSBDp(Ω) by

vk := u(1 − χFk ) χΩg . (6.49)

Since u = 0 in Ω\Ωh and vk = 0 in Ω\Ωg , we get by (6.17a) and (6.49)

lim sup
k→∞

Ld({vk �= u}) � lim sup
k→∞

Ld(Fk ∪ (Ωh\Ωg)
)

� Cε. (6.50)

We also obtain
Hd−1(Qk

z ∩ Jvk ) � θk1−d (6.51)

for each qkz intersecting (Ωg)
k\Vk . To see this, note that the definitions of Nk in

(6.32) and of Vk in (6.42) imply that for each qkz with qkz ∩ ((Ωg)
k\Vk) �= ∅, each

z′ ∈ Nk with qkz′ ∩ Qk
z �= ∅ satisfies z′ ∈ Gk . In view of ρ1 < ρ2 � 1

25
−dθ (see

Lemma 6.7), the property then follows from (6.33), (6.34), Ju ∩Ωg ⊂ ∂∗Ωh ∪Σ ,
and the fact that Qk

z consists of 5
d different cubes qkz′ .

Notice that |vk | � |u| and |e(vk)| � |e(u)| pointwise a.e., that is, the functions
ψ(|vk |) + |e(vk)|p are equiintegrable, where ψ(t) = t ∧ 1. In view of (6.51), we
can apply Lemma 6.6 onU = Ωg for the function vk ∈ GSBDp(Ωg) and the sets
Vk , to get functionswk ∈ W 1,∞((Ωg)

k\Vk;Rd) such that (6.31a) and (6.31b) hold
for a sequence Rk → 0.

We now define the function ŵk : Ω → R
d by

ŵk(x) :=
{

wk
(
(1 − τ∗/k) x ′, (1 − τ∗/k) xd − 6 τg/k

)
if − 1 < xd < hk(x ′),

0 otherwise.
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Note that, in view of (6.21), the mapping is well defined and satisfies ŵk |Ωhk
∈

W 1,∞(Ωhk ;Rd). By (6.17a) (6.31a), (6.47), (6.50), and ψ � 1 we get

lim sup
k→∞

‖ψ(|ŵk − u|)‖L1(Ω) � lim sup
k→∞

(‖ψ(|ŵk − vk |)‖L1(Ω)

+ Ld({vk �= u})) � Cε. (6.52)

In a similar fashion, by employing (6.31b) in place of (6.31a) and by the fact that
‖e(ŵk)‖L p(Ω) � (1+CMk−1)‖e(wk)‖L p((Ωg)k\Vk ) for some CM depending on M
and τ∗, we obtain

lim sup
k→∞

∫
Ω

|e(ŵk)|p dx � lim sup
k→∞

∫
(Ωg)k\Vk

|e(wk)|p dx

� lim sup
k→∞

∫
Ωg

|e(vk)|p dx �
∫

Ωh

|e(u)|p dx, (6.53)

where the last step follows from (6.49).
Step 3: Conclusion. Performing the construction above for ε = 1/n, n ∈ N, and
choosing for each n ∈ N an index k = k(n) ∈ N sufficiently large, we obtain a
sequence (ŵn, hn) such that by (6.47) and (6.52) we get

ŵn → u = uχΩh in L0(Ω;Rd) and hn → h in L1(ω). (6.54)

By (6.48) and the definition Σ = J ′
u ∩ Ω1

h we obtain (6.16b). By GSBDp com-
pactness (see Theorem 3.5) applied on ŵn = ŵnχΩhn

∈ GSBDp(Ω) along with
ŵn → u in L0(Ω;Rd) we get

∫
Ωh

|e(u)|p dx � lim inf
n→∞

∫
Ωhn

|e(ŵn)|p dx .

This along with (6.53) and the strict convexity of the norm ‖ · ‖L p(Ω) gives

e(ŵn) → e(u) in L p(Ω;Md×d
sym ). (6.55)

In view of (2.1), this shows the statement apart from the fact that the configurations
ŵn do possibly not satisfy the boundary data. (that is, we have now proved the
version described in Remark 6.2 since ŵn ∈ L∞(Ω;Rd).) It remains to adjust the
boundary values.

To this end, choose a continuous extensionoperator fromW 1,p(ω×(−1, 0);Rd)

to W 1,p(Ω;Rd) and denote by (wn)n the extensions of (ŵn − u0)|ω×( −1,0) to Ω .
Clearly, wn → 0 strongly in W 1,p(Ω;Rd) since (ŵn − u0)|ω×( −1,0) → 0 in
W 1,p(ω × (−1, 0);Rd). We now define the sequence (un)n by un := (ŵn −
wn)χΩhn

. By (6.54) we immediately deduce un → u in L0(Ω;Rd). Moreover,
un|Ωhn

∈ W 1,p(Ωhn ;Rd), un = 0 in Ω\Ωhn , un = u0 a.e. in ω × (−1, 0) and
(6.55) still holds with un in place of ŵn . Due to (2.1), this shows (6.16a) and
concludes the proof. ��
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Remark 6.8. (Volume constraint) Given a volume constraint Ld(Ω+
h ) = m with

0 < m < MHd−1(ω), one can construct the sequence (un, hn) in Proposition 6.1
such that also hn satisfies the volume constraint, cf. [20, Remark 4.2]. Indeed, if
‖h‖∞ < M , we consider h∗

n(x
′) = r−1

n hn(x ′) and u∗
n(x

′, xd) = un(x ′, rnxd),
where rn := m−1

∫
ω
hn dx . Then

∫
ω
h∗
n dx = m. Note that we can assume

‖hn‖∞ � ‖h‖∞ (apply Proposition 6.1 with ‖h‖∞ in place of M). Since rn → 1,
we then find hn : ω → [0, M] for n sufficiently large, and (6.16) still holds.

If ‖h‖L∞(ω) = M instead, we need to perform a preliminary approximation:
given δ > 0, define ĥδ,M = h ∧ (M − δ) and hδ(x ′) = r−1

δ ĥδ,M (x ′), where
rδ = m−1

∫
ω
ĥδ,M dx . Since Ωh is a subgraph and m < MHd−1(ω), it is easy to

check that rδ > (M−δ)/M and therefore ‖hδ‖∞ < M . Moreover, by construction
we have

∫
ω
hδ dx = m. We define uδ(x ′, xd) = u(x ′, rδxd)χΩhδ

. We now apply
the above approximation on fixed (uδ, hδ), then consider a sequence δ → 0, and
use a diagonal argument.

Remark 6.9. (Surface tension) We remark that, similar to [9,20,35], we could also
derive a relaxation result for more general models where the surface tension σS for
the substrate can be different from the the surface tension σC of the crystal. This
corresponds to surface energies of the form

σS Hd−1({h = 0}) + σCHd−1(∂Ωh ∩ (ω×(0,+∞))
)
.

In the relaxed setting, the surface energy is then given by

(σS∧σC )Hd−1({h = 0})+σC

(
Hd−1(∂∗Ωh∩(ω×(0,+∞))

)+2Hd−1(J ′
u∩Ω1

h )
)
.

We do not prove this fact here for simplicity, but refer to [20, Section 2.4, Re-
mark 4.4] for details how the proof needs to be adapted to deal with such a situation.

6.2. Compactness and Existence of Minimizers

In this short subsection we give the proof of the compactness result stated in
Theorem 2.5. As discussed in Section 2.2, this immediately implies the existence
of minimizers for problem (2.11).

Proof of Theorem 2.5. Consider (un, hn)n with supn G(un, hn) < +∞. First, by
(2.8) and a standard compactness argument we find h ∈ BV (ω; [0, M]) such that
hn → h in L1(ω), up to a subsequence (not relabeled). Moreover, by (2.1), (2.8),
and the fact that Jun ⊂ ∂Ωhn ∩ Ω we can apply Theorem 3.5 to obtain some
u ∈ GSBDp∞(Ω) such that un → u weakly in GSBDp∞. We also observe that
u = uχΩh and u = u0 on ω × (−1, 0) by (3.7)(i), un = unχΩhn

, and un = u0
on ω × (−1, 0) for all n ∈ N. It remains to show that u ∈ GSBDp(Ω), that is,
{u = ∞} = ∅.

To this end, we takeU = ω × (− 1
2 , M) andU ′ = Ω = ω × (−1, M +1), and

apply Theorem 4.2 on the sequence Γn = ∂Ωhn ∩Ω to find that Γn σ
p
sym-converges

(up to a subsequence) to a pair (Γ,G∞). Consider vn = ψun , where ψ ∈ C∞(Ω)

with ψ = 1 in a neighborhood of ω × (0, M + 1) and ψ = 0 on ω × (−1,− 1
2 ).



1088 Vito Crismale & Manuel Friedrich

Clearly, vn converges weakly inGSBD
p∞(Ω) to v := ψu. As Jvn ⊂ Γn and vn = 0

on U ′\U for all n ∈ N, we also obtain {v = ∞} ⊂ G∞ (up to a Ld -negligible
set), see Definition 4.1(i). As by definition of v we have {u = ∞} = {v = ∞}, we
deduce {u = ∞} ⊂ G∞. It now suffices to recall G∞ = ∅, see (6.3), to conclude
{u = ∞} = ∅. ��

6.3. Phase Field Approximation of G

This final subsection is devoted to the phase-field approximation of the func-
tional G. Recall the functionals introduced in (2.12).

Proof of Theorem 2.6. Fix a decreasing sequence (εn)n of positive numbers con-
verging to zero. We first prove the liminf and then the limsup inequality.
Proof of (i). Let (un, vn)n with supn Gεn (un, vn) < +∞. Then, vn is nonincreasing
in xd , and therefore

ṽn(x) := 0 ∨ (vn(x) − δnxd) ∧ 1 for x ∈ Ω = ω × (−1, M + 1)

is strictly decreasing on {0 < ṽn < 1}, where (δn)n is a decreasing sequence of
positive numbers converging to zero. For a suitable choice of (δn)n , depending on
(εn)n and W , we obtain ‖vn − ṽn‖L1(Ω) → 0 and

Gεn (un, vn) = Gεn (un, ṽn) + O(1/n). (6.56)

By using the implicit function theorem and the coarea formula for ṽn , we can see,
exactly as in the proof of [20, Theorem 5.1], that for a.e. s ∈ (0, 1) and n ∈ N the
superlevel set {̃vn > s} is the subgraph of a function hsn ∈ H1(ω; [0, M]). (Every
hsn takes values in [0, M] since ṽn = 0 in ω×(M, M + 1).) By the coarea formula
for ṽn , ∂∗{̃vn > s} ∩ Ω = ∂∗Ωhsn ∩ Ω , and Young’s inequality we obtain that

∫ 1

0

√
2W (s)Hd−1(∂∗Ωhsn ∩ Ω) ds �

∫
Ω

√
2W (̃vn) |∇ṽn| dx

�
∫

Ω

(εn

2
|∇ṽn|2 + 1

εn
W (̃vn)

)
dx .

Then, by Fatou’s lemma, we get that
∫ 1

0

√
2W (s)

(
lim inf
n→∞

∫
ω

√
1 + |∇hsn(x

′)|2dx ′)ds
� lim inf

n→∞

∫
Ω

(εn

2
|∇ṽn|2 + 1

εn
W (̃vn)

)
dx < +∞ (6.57)

and thus lim infn→∞
∫
ω

√
1 + |∇hsn(x

′)|2 dx ′ is finite for a.e. s ∈ (0, 1). By a
diagonal argument, we can find a subsequence (still denoted by (εn)n) and (sk)k ⊂
(0, 1) with limk→∞ sk = 0 such that for every k ∈ N it holds that

lim
n→∞

∫
ω

√
1 + |∇hskn (x ′)|2 dx ′ = lim inf

n→∞

∫
ω

√
1 + |∇hskn (x ′)|2 dx ′ < +∞.

(6.58)
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Up to a further (not relabeled) subsequence, wemay thus assume that hskn converges
in L1(ω) to some function hsk for every k. Since supn Gεn (un, ṽn) < +∞ and thus
W (̃vn) → 0 a.e. in Ω , we obtain ṽn → 0 for a.e. x with xd > hsk (x ′) and
ṽn → 1 for a.e. x with xd < hsk (x ′). (Recall W (t) = 0 ⇔ t ∈ {0, 1}.) This
shows that the functions hsk are independent of k, and will be denoted simply by
h ∈ BV (ω; [0, M]).

Let us denote by ukn ∈ GSBDp(Ω) the function given by

ukn(x) =
{
un(x) if xd < hskn (x ′),
0 else.

(6.59)

Then (ukn)n satisfies the hypothesis of Theorem 3.5 for every k ∈ N. Indeed, Jukn ⊂
∂∗Ωh

sk
n
andHd−1(∂∗Ωh

sk
n

) is uniformly bounded in n by (6.58).Moreover, (e(ukn))n
is uniformly bounded in L p(Ω;Md×d

sym ) by (2.1) and the fact that

Gεn (un, ṽn) � (ηεn + s2k )
∫

Ω

f (e(ukn)) dx .

Therefore, Theorem 3.5 implies that, up to a subsequence, ukn converges weakly in
GSBDp∞(Ω) to a function uk . Furthermore, we infer, arguing exactly as in the proof
of Theorem 2.5 above, that actually uk ∈ GSBDp(Ω), that is, the exceptional set
{uk = ∞} is empty. By (3.7)(i) this yields ukn → uk in L0(Ω;Rd). By a diagonal
argument we get (up to a further subsequence) that ukn → uk pointwise a.e. as
n → ∞ for all k ∈ N.

Recalling now the definition of ukn in (6.59) and the fact that limn→∞ ‖hskn −
h‖L1(ω) = 0 for all k ∈ N, we deduce that the functions uk are independent of k.
This function will simply be denoted by u ∈ GSBDp(Ω) in the following. Note
that u = uχΩh and that u = u0 on ω × (−1, 0) since un = u0 on ω × (−1, 0) for
all n ∈ N.

For the proof of (2.13), we can now follow exactly the lines of the lower bound
in [20, Theorem 5.1]. We sketch the main arguments for convenience of the reader.
We first observe that∫

Ω

ṽn f (e(un)) dx =
∫

Ω

(
2

∫ ṽn(x)

0
s ds

)
f (e(un)(x)) dx

�
∫ 1

0
2s

( ∫
{̃vn>s}

f (e(un)) dx
)
ds.

This, along with (6.57) and Fatou’s lemma, yields that
∫ 1

0
lim inf
n→∞

(
2s

∫
{̃vn>s}

f (e(un)) dx + cW
√
2W (s)

∫
ω

√
1 + |∇hsn|2 dx ′) ds

� lim inf
n→∞ Gεn (un, ṽn). (6.60)

Thus, the integrand

I sn := 2s
∫

{̃vn>s}
f (e(un)) dx + cW

√
2W (s)

∫
ω

√
1 + |∇hsn|2 dx ′
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is finite for a.e. s ∈ (0, 1). We then take s such that hsn ∈ H1(ω) for all n, and
consider a subsequence (nm)m such that limm→∞ I snm = lim infn→∞ I sn . Exactly
as in (6.59), we let usnm be the function given by unm if xd < hsnm (x ′) and by zero
otherwise. Repeating the compactness argument below (6.59), we get usnm → u
a.e. in Ω and hsnm → h in L1(ω) as m → ∞. We observe that this can be done for
a.e. s ∈ (0, 1), for a subsequence depending on s.

By
∫
{̃vnm>s} f (e(unm )) dx = ∫

Ω
f (e(usnm )) dx and the (lower inequality in the)

relaxation result Theorem 2.4 (up to different constants in front of the elastic energy
and surface energy) we obtain

2s
∫

Ω+
h

f (e(u)) dx + cW
√
2W (s)

(Hd−1(∂∗Ωh ∩ Ω) + 2Hd−1(J ′
u ∩ Ω1

h )
)

� lim
nm→∞ I snm = lim inf

n→∞ I sn

for a.e. s ∈ (0, 1).We obtain (2.13) by integrating the above inequality and by using
(6.56) and (6.60). Indeed, the integral on the left-hand side gives exactly G(u, h)

as cW = (
∫ 1
0

√
2W (s) ds)−1.

Proof of (ii). Let (u, h) with G(u, h) < +∞. By the construction in the upper
inequality for Theorem 2.4, see Proposition 6.1 and Remark 6.2, we find hn ∈
C1(ω; [0, M]) with hn → h in L1(ω) and un ∈ L∞(Ω;Rd) with un|Ωhn

∈
W 1,p(Ωhn ;Rd) and un → u a.e. in Ω such that

G(u, h) = lim
n→∞ H(un, hn) for H(un, hn) :=

∫
Ω+

hn

f (e(un)) dx +Hd−1(∂Ωhn ∩Ω),

(6.61)
as well as

(un − u0)|ω×( −1,0) → 0 in W 1,p(ω×(−1, 0);Rd). (6.62)

For each (un, hn), we can use the construction in [20] to find sequences (ukn)k ⊂
W 1,p(Ω;Rd) and (vkn)k ⊂ H1(Ω; [0, 1]) with ukn = un on ω × (−1, 0), ukn → un
in L1(Ω;Rd), and vkn → χΩhn

in L1(Ω) such that (cf. (6.61))

lim sup
k→∞

∫
Ω

((
(vkn)

2+ηεk

)
f (e(ukn))+cW

(W (vkn)

εk
+ εk

2
|∇vkn |2

))
dx � H(un, hn).

(6.63)
In particular, we refer to [20, Equation (28)] and mention that the functions (vkn)k
can be constructed such that vkn = 1 onω×(−1, 0) and vkn = 0 inω×(M, M+1).
We also point out that for this construction the assumption ηεε

1−p → 0 as ε → 0
is needed.

By (6.61), (6.63), and a standard diagonal extraction argument we find se-
quences (ûk)k ⊂ (ukn)n,k and (vk)k ⊂ (vkn)n,k such that ûk → u a.e. in Ω ,
vk → χΩh in L1(Ω), and

lim sup
k→∞

∫
Ω

((
(vk)2 + ηεk

)
f (e(ûk)) + cW

(W (vk)

εk
+ εk

2
|∇vk |2

))
dx � G(u, h).

(6.64)
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By using (6.62) and the fact that ukn = un for all k, n ∈ N, we can modify (ûk)k as
described at the end of the proof of Proposition 6.1 (see below (6.55)): we find a
sequence (uk)k which satisfies uk = u0 on ω × (−1, 0), converges to u a.e. in Ω ,
and (6.64) still holds, that is, lim supk→∞ Gεk (u

k, vk) � G(u, h). This concludes
the proof. ��
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A. Auxiliary Results

In this appendix, we prove two technical approximation results employed in Sec-
tions 5 and 6, based on tools from [17].

Proof. Let (v, H) be given as in the statement of the lemma. Clearly, it suf-
fices to prove the following statement: for every η > 0, there exists (vη, Hη) ∈
L p(Ω;Rd)×M(Ω) with the regularity and the properties required in the state-
ment of the lemma (in particular, vη = u0 in a neighborhood V η ⊂ Ω of ∂DΩ),
such that, for a universal constant C , one has d̄(vη, v) � Cη (cf. (3.13) for d̄),
Ld(H�Hη) � Cη, and

F
′
Dir(v

η, Hη) � F
′
Dir(v, H) + Cη.

We start by recalling the main steps of the construction in [17, Theorem 5.5] and
we refer to [17] for details (see also [18, Section 4, first part]). Based on this, we
then explain how to construct (vη, Hη) simultaneously, highlighting particularly
the steps needed for constructing Hη.
Let ε > 0, to be chosen small with respect to η. By using the assumptions on
∂Ω given before (2.4), a preliminary step is to find cubes (Q j )

J
j=1 with pairwise

disjoint closures and hypersurfaces (Γ j )
J
j=1 with the following properties: each

Q j is centered at x j ∈ ∂NΩ with sidelength � j , dist(Q j , ∂DΩ) > dε > 0 with
limε→0 dε = 0, and

Hd−1(∂NΩ\Q̂) + Ld(Q̂) � ε, for Q̂ :=
⋃J

j=1
Q j . (A.1)
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Moreover, each Γ j is a C1-hypersurface with x j ∈ Γ j ⊂ Q j ,

Hd−1((∂NΩ�Γ j ) ∩ Q j
)

� ε(2� j )
d−1 � ε

1 − ε
Hd−1(∂NΩ ∩ Q j ),

and Γ j is aC1-graph with respect to ν∂Ω(x j )with Lipschitz constant less than ε/2.
(We can say that ∂NΩ ∩ Q j is “almost” the intersection of Q j with the hyperplane
passing through x j with normal ν∂Ω(x j ).) We can also guarantee that

Hd−1((∂∗H ∪ Ju) ∩ Ω ∩ Q̂
)

� ε, Hd−1((∂∗H ∪ Ju) ∩ ∂Q j
) = 0 (A.2)

for all j = 1, . . . , J . To each Q j , we associate the following rectangles:

R j :=
{
x j +

∑d−1

i=1
yi b j,i + yd ν j : yi ∈ (− � j , � j ), yd ∈ (− 3ε� j − t,−ε� j )

}
,

R′
j :=

{
x j +

∑d−1

i=1
yi b j,i + yd ν j : yi ∈ (− � j , � j ), yd ∈ (− ε� j , ε� j + t)

}
,

and R̂ j := R j ∪ R′
j , where ν j = − ν∂Ω(x j ) denotes the generalized outer normal,

(b j,i )
d−1
i=1 is an orthonormal basis of (ν j )

⊥, and t > 0 is small with respect to η.
We remark that Γ j ⊂ R′

j and that R j is a small strip adjacent to R′
j , which is

included in Ω ∩ Q j . (We use here the notation j in place of h,N adopted in [17,
Theorem 5.5].)
After this preliminary part, the approximating function uη was constructed in [17,
Theorem 5.5] starting from a given function u through the following three steps:

(i) definition of an extension ũ ∈ GSBDp(Ω + Bt (0)) which is obtained by a
reflection argument la Nitsche [54] inside R̂ j , equal to u in Ω\⋃

j R̂ j , and
equal to u0 elsewhere. This can be done such that, for t and ε small, there holds
(see below [17, (5.13)])∫

(Ω+Bt (0))\Ω
|e(u0)|p dx +

∫

R̂

|e(̃u)|p dx +
∫

R

|e(u)|p dx + Hd−1( J̃u ∩ R̂
)

� η,

(A.3)
where R := ⋃J

j=1 R j and R̂ := ⋃J
j=1 R̂ j ∩ (Ω + Bt (0)).

(ii) application of Theorem 3.4 on the function ũδ := ũ ◦ (Oδ,x0)
−1 + u0 − u0 ◦

(Oδ,x0)
−1 (for some δ sufficiently small) to get approximating functions ũδ

n
with the required regularity which are equal to u0 ∗ ψn in a neighborhood of
∂DΩ in Ω , where ψn is a suitable mollifier. Here, assumption (2.4) is crucial.

(iii) correcting the boundary values by defining uη as uη := ũδ
n + u0 − u0 ∗ ψn , for

δ and 1/n small enough.

After having recalled the main steps of the construction in [17, Theorem 5.5], let
us now construct vη and Hη at the same time, following the lines of the steps (i),
(ii), and (iii) above. The main novelty is the analog of step (i) for the approximating
sets, while the approximating functions are constructed in a very similar way. For
this reason, we do not recall more details from [17, Theorem 5.5].
Step (i). Step (i) for vη is the same done before for uη, starting from v in place of
u. Hereby, we get a function ṽ ∈ GSBDp(Ω + Bt (0)).
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For the construction of Hη, we introduce a set H̃ ⊂ Ω + Bt (0) as follows: in R′
j ,

we define a set H ′
j by a simple reflection of the set H ∩ R j with respect to the

common hyperface between R j and R′
j . Then, we let H̃ := H ∪⋃J

j=1(H
′
j ∩ (Ω +

Bt (0))). Since H has finite perimeter, also H̃ has finite perimeter. By (A.2) we get
Hd−1(∂∗ H̃ ∩ R̂) � η/3 for ε small, where as before R̂ := ⋃J

j=1 R̂ j ∩(Ω +Bt (0)).
We choose δ, ε, and t so small that

Hd−1
(
Oδ,x0

( ⋃J

j=1
∂R′

j\∂R j

)
∩ Ω

)
� η

3
. (A.4)

We let Hη := Oδ,x0(H̃). Then, we get Ld(Hη�H) � η for ε, t , and δ small
enough. By (A.1), (A.4), and Hd−1(∂∗ H̃ ∩ R̂) � η/3 we also have (again take
suitable ε, δ)

∫
∂∗Hη

ϕ(νHη ) dHd−1 �
∫

∂∗H∩(Ω∪∂DΩ)

ϕ(νH ) dHd−1 + η. (A.5)

Moreover, in view of (2.4) and dist(Q j , ∂DΩ) > dε > 0 for all j , Hη does not
intersect a suitable neighborhood of ∂DΩ . Define ṽδ := ṽ ◦ (Oδ,x0)

−1 + u0 − u0 ◦
(Oδ,x0)

−1 and observe that the function ṽδχ(Hη)0 coincides with u0 in a suitable
neighborhood of ∂DΩ . By (A.5), by the properties recalled for ũ, see (A.3), and
the fact that v = vχH0 , it is elementary to check that

F
′
Dir (̃v

δχ(Hη)0 , H
η) � F

′
Dir(vχH0 , H) + Cη = F

′
Dir(v, H) + Cη. (A.6)

Notice that here it is important to take the same δ both for ṽδ and Hη, that is to
“dilate” the function and the set at the same time.
Step 2.We apply Theorem 3.4 to ṽδχ(Hη)0 , to get approximating functions ṽδ

n with
the required regularity. For n sufficiently large, we obtain d̄ (̃vδ

nχ(Hη)0 , ṽ
δχ(Hη)0) �

η and

|F ′
Dir (̃v

δ
nχ(Hη)0 , H

η) − F
′
Dir (̃v

δχ(Hη)0 , H
η)| � η.

Step 3. Similar to item (ii) above, we obtain ṽδ
n = u0 ∗ ψn in a neighborhood of

∂DΩ . Therefore, it is enough to define vη as vη := ṽδ
n + u0 − u0 ∗ ψn . Then by

(A.6) and Step 2 we obtain d̄(vη, v) � Cη and F
′
Dir(v

η, Hη) � F
′
Dir(v, H) + Cη

for n sufficiently large. ��
We now proceed with the proof of Lemma 6.6 which relies strongly on [17, The-
orem 3.1]. Another main ingredient is the following Korn–Poincaré inequality in
GSBDp, see [15, Proposition 3].

Proposition A.1. Let Q = (− r, r)d , Q′ = (− r/2, r/2)d , u ∈ GSBDp(Q), p ∈
[1,∞). Then there exist a Borel set ω ⊂ Q′ and an affine function a : Rd → R

d

with e(a) = 0 such that Ld(ω) � crHd−1(Ju) and

∫
Q′\ω

(|u − a|p)1∗
dx � cr (p−1)1∗

( ∫
Q

|e(u)|p dx
)1∗

. (A.7)
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If additionally p > 1, then there exists q > 0 (depending on p and d) such
that, for a given mollifier ϕr ∈ C∞

c (Br/4), ϕr (x) = r−dϕ1(x/r), the function
w = uχQ′\ω + aχω obeys

∫
Q′′

|e(w ∗ ϕr ) − e(u) ∗ ϕr |p dx � c

(Hd−1(Ju)

rd−1

)q ∫
Q

|e(u)|p dx, (A.8)

where Q′′ = (− r/4, r/4)d . The constant in (A.7) depends only on p and d, the
one in (A.8) also on ϕ1.

Proof of Lemma 6.6. We recall the definition of the hypercubes

qkz := z + (− k−1, k−1)d , q̃kz := z + (− 2k−1, 2k−1)d ,

Qk
z := z + (− 5k−1, 5k−1)d ,

where in addition to the notation in (6.18), we have also defined the hypercubes q̃kz .
In contrast to [17, Theorem 3.1], the cubes Qk

z have sidelength 10k−1 instead of
8k−1. This, however, does not affect the estimates. We point out that at some points
in [17, Theorem 3.1] cubes of the form z + (− 8k−1, 8k−1)d are used. By a slight
alternation of the argument, however, it suffices to take cubes Qk

z . In particular it
is enough to show the inequality [17, (3.19)] for a cube Q j (of sidelength 10k−1)
in place of Q̃ j (of sidelength 16k−1), which may be done by employing rigidity
properties of affine functions. Let us fix a smooth radial function ϕ with compact
support on the unit ball B1(0) ⊂ R

d , and define ϕk(x) := kdϕ(kx). We choose
θ < (16c)−1, where c is the constant in PropositionA.1 (cf. also [17, Lemma2.12]).
Recall (6.19) and set

N ′
k := {z ∈ (2k−1)Zd : qkz ∩ (U )k\V �= ∅}.

We apply Proposition A.1 for r = 4k−1, for any z ∈ N ′
k by taking v as the reference

function and z + (− 4k−1, 4k−1)d as Q therein. (In the following, we may then
use the bigger cube Qk

z in the estimates from above.) Then, there exist ωz ⊂ q̃kz
and az : Rd → R

d affine with e(az) = 0 such that by (6.30), (A.7), and Hölder’s
inequality it holds that

Ld(ωz) � 4ck−1Hd−1(Jv ∩ Qk
z ) � 4cθk−d , (A.9a)

‖v − az‖L p(q̃kz \ωz)
� 4ck−1‖e(v)‖L p(Qk

z )
. (A.9b)

Moreover, by (6.30) and (A.8) it holds that∫
qkz

|e(v̂z ∗ ϕk) − e(v) ∗ ϕk |p dx � c
(
Hd−1(Jv ∩ Qk

z ) k
d−1

)q ∫
Qk

z

|e(v)|p dx

� cθq
∫
Qk

z

|e(v)|p dx

for v̂z := vχq̃kz \ωz
+ azχωz and a suitable q > 0 depending on p and d. Let us set

ωk :=
⋃

z∈N ′
k

ωz .
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We order (arbitrarily) the nodes z ∈ N ′
k , and denote the set by (z j ) j∈J . We define

w̃k :=
{

v in
( ⋃

z∈N ′
k
Qk

z

)\ωk,

az j in ωz j \
⋃

i< j ωzi ,
(A.10)

and
wk := w̃k ∗ ϕk in (U )k\V . (A.11)

We have that wk is smooth since (U )k\V + suppϕk ⊂ ⋃
z∈N ′

k
q̃kz ⊂ U (recall

(6.19)) and v|q̃kz \ωk ∈ L p(q̃kz \ωk;Rd) for any z ∈ N ′
k , by (A.9b).

We define the sets Gk
1 := {z ∈ N ′

k : Hd−1(Jv ∩Qk
z ) � k1/2−d} and Gk

2 := N ′
k\Gk

2.
By G̃k

1 and G̃k
2, respectively, we denote their “neighbors”, see [17, (3.11)] for the

exact definition. We let
Ω̃k

g,2 :=
⋃

z∈G̃k
2

Qk
z .

It holds that (cf. [17, (3.8), (3.9), (3.12)])

lim
k→∞

(Ld(ωk) + Ld(Ω̃k
g,2)

) = 0. (A.12)

At this point, we notice that the set Ek in [17, (3.8)] reduces to ωk since in our
situation all nodes are “good” (see (6.30) and [17, (3.2)]) and therefore Ω̃k

b therein
is empty.
The proof of (3.1a), (3.1d), (3.1b) in [17, Theorem 3.1] may be followed exactly,
with the modifications described just above and the suitable slight change of nota-
tion. More precisely, by [17, equation below (3.22)] we obtain

‖wk − v‖L p(((U )k\V )\ωk ) � Ck−1‖e(v)‖L p(U ) (A.13)

for a constant C > 0 depending only on d and p, and [17, equation before (3.26)]
gives

∫
ωk

ψ(|wk − v|) dx � C
( ∫

ωk∪Ω̃k
g,2

(
1 + ψ(|v|)) dx + k−1/2

∫
U

(
1 + ψ(|v|)) dx + k−p

∫
U

|e(v)|p dx
)
, (A.14)

where ψ(t) = t ∧ 1. Combining (A.13)-(A.14), using (A.12), and recalling that
ψ is sublinear, we obtain (6.31a). Note that the sequence Rk → 0 can be chosen
independently of v ∈ F since ψ(|v|) + |e(v)|p is equiintegrable for v ∈ F .
Moreover, recalling (A.10)-(A.11), we sum [17, (3.34)] for z = z j ∈ G̃k

2 and [17,
(3.35)] for z = z j ∈ G̃k

1 to obtain

∫
(U )k\V

|e(wk)|p dx �
∫
U

|e(v)|p dx + Ck−q ′/2
∫
U

|e(v)|p dx + C
∫

Ω̃k
g,2

|e(v)|p dx

for some q ′ > 0. This along with (A.12) and the equiintegrability of |e(v)|p shows
(6.31b). ��
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