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Abstract

We extend the results about the existence of minimizers, relaxation, and approx-
imation proven by BONNETIER AND CHAMBOLLE (SIAM J Appl Math 62:1093—
1121, 2002), CHAMBOLLE AND SoLcI (SIAM J Math Anal 39:77-102, 2007) for
an energy related to epitaxially strained crystalline films, and by BRAIDES et al.
(ESAIM Control Optim Calc Var 13:717-734, 2007) for a class of energies de-
fined on pairs of function-set. We study these models in the framework of three-
dimensional linear elasticity, where a major obstacle to overcome is the lack of any
a priori assumption on the integrability properties of displacements. As a key tool
for the proofs, we introduce a new notion of convergence for (d —1)-rectifiable sets
that are jumps of GSBD? functions, called osl;m-convergence.

1. Introduction

The last years years have witnessed a remarkable progress in the mathematical
and physical literature towards the understanding of stress driven rearrangement
instabilities (SDRI), that is, morphological instabilities of interfaces between elas-
tic phases generated by the competition between elastic and surface energies of
(isotropic or anisotropic) perimeter type. Such phenomena are for instance observed
in the formation of material voids inside elastically stressed solids. Another example
is hetero-epitaxial growth of elastic thin films, when thin layers of highly strained
hetero-systems, such as InGaAs/GaAs or SiGe/Si, are deposited onto a substrate: in
case of a mismatch between the lattice parameters of the two crystalline solids, the
free surface of the film is flat until a critical value of the thickness is reached, after
which the free surface becomes corrugated (see for example [4,46,49,50,56,58]
for some physical and numerical literature).

From a mathematical point of view, the common feature of functionals de-
scribing SDRI is the presence of both stored elastic bulk and surface energies. In
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the static setting, problems arise concerning existence, regularity, and stability of
equilibrium configurations obtained by energy minimization. The analysis of these
issues is by now mostly developed in dimension two only.

Starting with the seminal work by BONNETIER AND CHAMBOLLE [9] who
proved existence of equilibrium configurations, several results have been obtained
in[5,7,35,37,45,48] for hetero-epitaxially strained elastic thin films in 2D. We also
refer to [29,30,53] for related energies and to [52] for a unified model for SDRI.
In the three dimensional setting, results are limited to the geometrically nonlin-
ear setting or to linear elasticity under an antiplane-shear assumption [8,20]. In a
similar fashion, regarding the study of material voids in elastic solids, there are
works about existence and regularity in dimension two [14,34] and a relaxation
result in higher dimensions [11] for nonlinearly elastic energies or in linear elas-
ticity under antiplane-shear assumption. Related to [11], we also mention a similar
relaxation result in the presence of obstacles [33], and the study of homogenization
in periodically perforated domains, cf. for example [13,32].

The goal of the present paper is to extend the results about relaxation, exis-
tence, and approximation obtained for energies related to material voids [11] and
to epitaxial growth [9,20], respectively, to the case of linear elasticity in arbitrary
space dimensions. As already observed in [20], the main obstacle for deriving such
generalizations lies in the fact that a deep understanding of the function space of
generalized special functions of bounded deformation (GSBD) is necessary. Indeed,
our strategy is based extensively on using the theory on GSBD functions which,
initiated by DAL MAso [27], was developed over the last few years, see for example
[16,17,19,21-25,39,40,42,51]. In fact, as a byproduct of our analysis, we intro-
duce two new notions related to this function space: (1) a version of the space with
functions attaining also the value infinity, and (2) a novel notion for convergence
of rectifiable sets, which we call asl;m—convergence. Let us stress that in this work
we exclusively consider a static setting. For evolutionary models, we mention the
recent works [36,43,44,55].

We now introduce the models under consideration in a slightly simplified way,
restricting ourselves to three space dimensions. To describe material voids in elas-
tically stressed solids, we consider the following functional defined on pairs of
function-set (see [56]):

F(u, E):/ Ce(u) : e(n) dx+/ @(vg) dH?, (1.1)
Q2\E QMIE

where E C §2 represents the (sufficiently smooth) shape of voids within an elas-
tic body with reference configuration £2 C R3, and u is an elastic displacement
field. The first part of the functional represents the elastic energy depending on the
linear strain e(u) := %((Vu)T + Vu), where C denotes the fourth-order positive
semi-definite tensor of elasticity coefficients. (In fact, we can incorporate more gen-
eral elastic energies, see (2.2) below.) The surface energy depends on a (possibly
anisotropic) density ¢ evaluated at the outer normal vg to E. This setting is usually
complemented with a volume constraint on the voids £ and nontrivial prescribed
Dirichlet boundary conditions for # on a part of 2. We point out that the boundary
conditions are the reason why the solid is elastically stressed.



Equilibrium Configurations for Epitaxially Strained Films 1043

A variational model for epitaxially strained films can be regarded as a special
case of (1.1) and corresponds to the situation where the material domain is the
subgraph of an unknown nonnegative function 4. More precisely, we assume that
the material occupies the region

2 =(xewxR:0<x3 <h(xy,x2)}

for a given bounded function 2 : @ — [0, 00), v C R2, whose graph represents
the free profile of the film. We consider the energy

G(u,h) = / . Ce(u) : e(u) dx +/ V14 |Vh(xy, x2)|?d(xy, x2). (1.2)
2 5

Here, u satisfies prescribed boundary data on w x {0} which corresponds to the
interface between film and substrate. This Dirichlet boundary condition models the
case of a film growing on an infinitely rigid substrate and is the reason for the film
to be strained. We observe that (1.2) corresponds to (1.1) when ¢ is the Euclidean
norm, 2 = wx (0, M) for some M > 0 large enough, and E = .Q\.QEL.

Variants of the above models (1.1) and (1.2) have been studied by BRAIDES,
CHAMBOLLE, AND SoLclI [11] and by CHAMBOLLE AND SoLcl [20], respectively,
where the linearly elastic energy density Ce(u) : e(u) is replaced by an elastic
energy satisfying a 2-growth (or p-growth, p > 1) condition in the full gradi-
ent Vu with quasiconvex integrands. These works are devoted to giving a sound
mathematical formulation for determining equilibrium configurations. By means of
variational methods and geometric measure theory, they study the relaxation of the
functionals in terms of generalized functions of bounded variation (GSBV) which
allows there to incorporate the possible roughness of the geometry of voids or films.
The existence of minimizers for the relaxed functionals and the approximation of
(the counterpart of) G through a phase-field I"-convergence result are addressed.
In fact, the two articles were written almost simultaneously with many similarities
in both the setting and the proof strategy.

Therefore, we prefer to present the extension of both works to the GSBD set-
ting (that is, to three-dimensional linear elasticity) in a single work to allow for a
comprehensive study of different applications. We now briefly discuss our main
results.

(a) Relaxation of F: We first note that, for fixed E, F(-, E) is weakly lower
semicontinuous in H'! and, for fixed u, F (u, -) can be regarded as a lower
semicontinuous functional on sets of finite perimeter. The energy defined on
pairs (u, E), however, is not lower semicontinuous since, in a limiting process,
the voids E may collapse into a discontinuity of the displacement u. The
relaxation has to take this phenomenon into account, in particular collapsed
surfaces need to be counted twice in the relaxed energy. Provided that the
surface density ¢ is a norm in R3, we show that the relaxation takes the form
(see Proposition 2.1)

F(u, E):/ Ce(u) : e(u) dx+/ (p(vE)de—l—/ 2 (vy) dH?,
Q\E QNI*E JuN(R2\E)! 13
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(b)

(©)

(d)

(e)

We

where E is a set of finite perimeter with essential boundary 3*E, (2\E)!
denotes the set of points of density 1 of 2\E, and u € GSBD?*(£2). Here,
e(u) denotes the approximate symmetrized gradient of class L?(£2; R3*3) and
Jy, 1s the jump set with corresponding measure-theoretical normal v,,. (We refer
to Section 3 for the definition and the main properties of this function space.
Later, we will also consider more general elastic energies and work with the
space GSBDP(£2), 1 < p < oo, thatis, e(u) € LP(£2; R3*3))

Minimizer for F: In Theorem 2.2, we show that such a relaxation result can also
be proved by imposing additionally a volume constraint on E (which reflects
mass conservation) and by prescribing boundary data for u. For this version of
the relaxed functional, we prove the existence of minimizers, see Theorem 2.3.
Relaxation of G: For the model (1.2) describing epitaxially strained crystalline
films, we show in Theorem 2.4 that the lower semicontinous envelope takes
the form

Gu, h) =/+(Ce(u) ce(u) dx + H2(I) + 2 HA(Z), (1.4)

12

where h € BV (w; [0, 00)) and I}, denotes the (generalized) graph of /. Here,
u is again a GSBD?-function and the set ¥ C R3 is a “vertical” rectifiable set
describing the discontinuity set of # inside the subgraph .(2;r . Similar to the
last term in (1.3), this contribution has to be counted twice. We remark that in
[35] the set X is called “vertical cuts”. Also here a volume constraint may be
imposed.

Minimizer for G: In Theorem 2.5, we show compactness for sequences with
bounded G energy. In particular, this implies existence of minimizers for G
(under a volume constraint).

Approximation for G: In Theorem 2.6, we finally prove a phase-field I'-
convergence approximation of G. We remark that we can generalize the as-
sumptions on the regularity of the Dirichlet datum. Whereas in [20, Theo-
rem 5.1] the class H I'n 1.2 was considered, we show that it indeed suffices
to assume H '-regularity.

now provide some information on the proof strategy highlighting in particular

the additional difficulties compared to [11,20]. Here, we will also explain why two
new technical tools related to the space GSBD have to be introduced.

(a)

(b)

The proof of the lower inequality for the relaxation F is closely related to the
analog in [11]: we use an approach by slicing, exploiting the lower inequality
in one dimension, and employing a localization method. To prove the upper
inequality, it is enough to combine the corresponding upper bound from [11]
with a density result for GSBD? (p > 1) functions [17], slightly adapted for
our purposes, see Lemma 5.7.

We point out that, in [11], the existence of minimizers was not addressed due
to the lack of a compactness result. In this sense, our study also delivers a
conceptionally new result without corresponding counterpart in [11]. The main
difficulty lies in the fact that, for configurations with finite energy (1.3), small
pieces of the body could be disconnected from the bulk part, either by the
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voids E or by the jump set J,. Thus, since there are no a priori bounds on
the displacements, the function u could attain arbitrarily large values on cer-
tain components, and this might rule out measure convergence for minimizing
sequences. We remark that truncation methods, used to remedy this issue in
scalar problems, are not applicable in the vectorial setting. This problem was
solved only recently by general compactness results, both in the GSBV? and
the GSBD? setting. The result [41]in GS BV delivers a selection principle for
minimizing sequences showing that one can always find at least one minimizing
sequence converging in measure. With this, the existence of minimizers for the
energies in [11] is immediate.

Our situation in linear elasticity, however, is more delicate, since a comparable
result is not available in GSBD. In [19, Theorem 1.1], a compactness and lower
semicontinuity result in GSBD? is derived relying on the idea that minimiz-
ing sequences may ‘“converge to infinity” on a set of finite perimeter. In the
present work, we refine this result by introducing a topology which induces this
kind of nonstandard convergence. To this end, we need to define the new space
GSBDE, consisting of GSBDP functions which may also attain the value infin-
ity. With these new techniques at hand, we can prove a general compactness
result in GSBDY, (see Theorem 5.9) which particularly implies the existence
of minimizers for (1.3).

Although the functional G in (1.2) is a special case of F, the relaxation result is
not an immediate consequence, due to the additional constraint that the domain
is the subgraph of a function. Indeed, in the lower inequality, a further crucial
step is needed in the description of the (variational) limit of §2;,, when h,, — h
in L' (w). In particular, the vertical set X has to be identified, see (1.4).

This issue is connected to the problem of detecting all possible limits of jump
sets J,, of converging sequences (u,), of GSBD? functions. In the GSBV?
setting, the notion of o ”-convergence of sets is used, which has originally been
developed by DAL MAsO, FRANCFORT, AND TOADER [28] to study quasistatic
crack evolution in nonlinear elasticity. (We refer also to the variant [47] which
is independent of p.) In this work, we introduce an analogous notion in the
GSBD? setting which we call as’;m-convergence. The definition is a bit more
complicated compared to the GS BV setting since it has to be formulated in the
frame of GSBDZ, functions possibly attaining the value infinity. We believe that
this notion may be of independent interest and is potentially helpful for studying
other problems such as quasistatic crack evolution in linear elasticity [42]. We
refer to Section 4 for the definition and properties of as’;m-convergence, as well
as for a comparison to the corresponding notion in the GS BV ? setting.
Showing the upper bound for the relaxation result is considerably more difficult
than the analogous bound for F. In fact, one has to guarantee that recovery
sequences are made up by sets that are still subgraphs. We stress that this
cannot be obtained by some general existence results, but is achieved through a
very careful construction (pp. 29-38) that follows only partially the analogous
one in [20]. We believe that the construction in [20] could indeed be improved
by adopting an approach similar to ours, in order to take also some pathological
situations into account.
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(d) To show the existence of minimizers of G, the delicate step is to prove that min-
imizing sequences have subsequences which converge (at least) in measure. In
the G S BV P setting, this is simply obtained by applying a Poincaré inequality on
vertical slices through the film. The same strategy cannot be pursued in GSBD?,
since by slicing in a certain direction not all components can be controlled. As
a remedy, we proceed in two steps. We first use the novel compactness result
in GSBDE, to identify a limit which might attain the value infinity on a set of
finite perimeter G . Then, a posteriori, we show that, actually, G, = @; see
Section 6.1 for details.

(e) For the phase-field approximation, we combine a variant of the construction
in the upper inequality for G with the general strategy of the corresponding
approximation result in [20]. The latter is slightly modified in order to proceed
without L°°-bound on the displacements.

The paper is organized as follows: in Section 2, we introduce the setting of our
two models on material voids in elastic solids and epitaxially strained films. Here,
we also present our main relaxation, existence, and approximation results. Section 3
collects definition and main properties of the function space GSBD? . In this section,
we also define the space GSBDZ, and show basic properties. In Section 4 we
introduce the novel notion of os’;m—convergence and prove a compactness result for
sequences of rectifiable sets with bounded Hausdorff measure. Section 5 is devoted
to the analysis of functionals defined on pairs of function-set. Finally, in Section 6
we investigate the model for epitaxially strained films and prove the relaxation,
existence, and approximation results.

2. Setting of the Problem and Statement of the Main Results

In this section, we give the precise definitions of the two energy functionals and
present the main relaxation, existence, and approximation results. In the following,
f: M4 — [0, co) denotes a convex function satisfying the growth condition (|- |
is the Frobenius norm on M¢ Xd):

alt™+elP S f@O SelcT+¢lP + 1) forall ¢ € MY, 2.1)

and f(0) = 0, for some 1 < p < +o0. In particular, the convexity of f and (2.1)
imply that f(¢) = f(3(¢T +¢)) for all ¢ € M?*“. For an open subset £2 C R,
we will denote by L%(£2; R?) the space of £¢-measurable functions v: 2 — R¢
endowed with the topology of the convergence in measure. We let 21(£2) be the
family of all £?-measurable subsets of £2.

2.1. Energies on Pairs Function-Set: Material Voids in Elastically Stressed Solids

Let £2 C R? be a Lipschitz domain. We introduce an energy functional defined
on pairs function-set. Given a norm ¢ on R? and f: M4*? — [0, c0), we let
F: L%2;RY) x M(2) — R U {+o0)} be defined by
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Jove Fe@) dx + [or,p (ve) dH™!

F(u,E) = if 9 E Lipschitz, u| oz € Whe(Q\E; RY), ulg =0,
+00 otherwise,
(2.2)
where e(u) = %((VM)T + Vu) denotes the symmetrized gradient, and vg the

outer normal to E. We point out that the energy is determined by E and the values
of u on 2\E. The condition u|p = 0 is for definiteness only. We denote by
F: LO82; RY) x M(2) — R U {+00} the lower semicontinuous envelope of the
functional F with respect to the convergence in measure for the functions and the
Ll(.Q)-convergence of characteristic functions of sets, that is,

F(u, E) = inf { liminf F(uy, )1 uy — uin L°(2; RY) and x5, — x in LI(Q)].

(2.3)
(We observe that the convergence in LO9(£2; R?) is metrizable, so the sequential
lower semicontinuous envelope coincides with the lower semicontinuous envelope
with respect to this convergence.) In what follows, for any s € [0, 1] and any
E € M(£2), E* denotes the set of points with density s for E. By 3* E we indicate
its essential boundary, see [3, Definition 3.60]. For the definition of the space
GSBDP (£2), p > 1, wereferto Section 3 below. In particular, by e(u) = % (Vi) T+
Vu) we denote the approximate symmetrized gradient, and by J,, the jump set of
u with measure-theoretical normal v,. We characterize F as follows:

Proposition 2.1. (Characterization of the lower semicontinuous envelope F) Sup-
pose that f is convex and satisfies (2.1), and that ¢ is a norm on RY. Then, it holds
that

/.Q\E fle@)) dx + [orgep ¢ (VE) dH IJ,,D(SZ\E)‘ 2¢(v,) dH*!
F(u,E) = ifu=uxgo € GSBD?(£2) and HY~ ' (8*E) < +o0,

+o00 otherwise.

Moreover, if LY(E) > 0, then for any (u, E) € L°(§2; RY)xON(2) there exists a
recovery sequence (u,, E,), C LO(2; R xM(82) such that LE(E,) = LA(E)
foralln € N.

The last property shows that it is possible to incorporate a volume constraint on E in
the relaxation result. We now move on to consider a Dirichlet minimization problem
associated to F. We will impose Dirichlet boundary data ug € W7 (R?; R?) on a
subset dp 2 C 952. For technical reasons, we suppose that 02 = dp2Udy2UN
with dp £2 and 9y $2 relatively open, dp 2 NIy 2 = 0, HI=Y(N) =0, 0p82 # 0,
3(dp£2) = 3(dy$2), and that there exist a small § > 0 and xo € R¢ such that for
every § € (0, ), it holds that

Os,x(0p£2) C £2, (2.4)

where Os ,,(x) = xo + (1 — §)(x — x0). (These assumptions are related to
Lemma 5.7 below.) In what follows, we denote by tr(u) the trace of u on 9§2 which
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is well defined for functions in GSBD? (§2), see Section 3. In particular, it LS well
defined for functions u considered in (2.2) satisfying u|g\z € WLr(2\E; RY)
and u|g = 0. By v we denote the outer unit normal to 952.

We now introduce a version of F taking boundary data into account. Given
ugy € W]’P(Rd; R"), we set

d—1 ; _ 7l
Fow (s, E) = F(u, E) + [, onop ¢(vE) dH if tr(u') = tr(up) on Ip2\E,
400 otherwise.
. (2.5)
Similarly to (2.3), we define the lower semicontinuous envelope Fp;; by

Foir(u, E) = {liminf Foie(ttn, En): ty — uin L°(2; RY) and xg, — g in Ll(:z)}.
n—o00
(2.6)
We have the following characterization:

Theorem 2.2. (Characterization of the lower semicontinuous envelope Fpir) Sup-
pose that f is convex and satisfies (2.1), that ¢ is a norm on R?, and that (2.4) is
satisfied. Then it holds that

Fpic(u, E) = F(u, E)+ / p(vg) dH "+ / 2¢(vg) dH*
dpRNI*E {tr(u)#tr(uo)}N(@p 2\0*E)
2.7
Moreover; if L(E) > 0, then for any (u, E) € L°(£2; RY) x9M(82) there exists a
recovery sequence (un, Ep), C L%(82; RO XIM(2) such that LE(E,) = L4(E)
foralln € N.

The proof of Proposition 2.1 and Theorem 2.2 will be given in Section 5.2. There,
we provide also two slight generalizations (see Proposition 5.5 and Theorem 5.8),
namely a relaxation with respect to a weaker convergence in a general space GSBDZ,
(cf. (3.10)), where functions are allowed to attain the value infinity. We close this
subsection with an existence result for F pj,, under a volume constraint for the voids.

Theorem 2.3. (Existence of minimizers for fDir) Suppose that f is convex and
satisfies (2.1), and that ¢ is a norm on RY. Let m > 0. Then the minimization
problem

inf {Fpir(u, E): (u, E) € LY(£2; RN xM(£2), LYE) = m])
admits solutions.

For the proof, we refer to Section 5.3; it relies on the lower semicontinuity of Fp;,
and a compactness result in the general space GSBDE, (cf. (3.10)), see Theorem 5.9.
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2.2. Energies on Domains with a Subgraph Constraint: Epitaxially Strained Films

We now consider the problem of displacement fields in a material domain which
is the subgraph of an unknown nonnegative function 4. Assuming that / is defined
on a Lipschitz domain @ C R?~!, displacement fields u will be defined on the
subgraph

2 =xcewxR:0<xs <h(x)},

where here and in the following we use the notation x = (x’, x4) for x € R4, To
model Dirichlet boundary data at the flat surface w x {0}, we will suppose that
functions are extended to the set 2, == {x € ® x R: — 1 < x4 < h(x')} and
satisfy u = ug on wx(— 1, 0) for a given function ug € WHP(wx(—1,0); RY),
p > 1. In the application to epitaxially strained films, u( represents the substrate
and h represents the profile of the free surface of the film.

For convenience, we introduce the reference domain 2 := wx(—1, M + 1)
for M > 0. We define the energy functional G: L°(£2; R?) x L'(w; [0, M]) —
R U {+00} by

G(u, h) =/+f(e(u(x))) dx—i—/ V14 [VAG)? dx’ 2.8)
2 w

it h € Cl(w; [0, M), ulg, € WHP(2,; RY), u = 0in 2\, and u = ug in
wx(—1,0), and G(u, h) = +o0o otherwise. Here, f: Méaxd _ [0, c0) denotes a
convex function satisfying (2.1), and as before we set e(u) := %((VM)T + Vu).
Notice that, in contrast to [9], we suppose that the functions % are equibounded by a
value M: this is for technical reasons only and is indeed justified from a mechanical
point of view since other effects come into play for very high crystal profiles.

We study the relaxation of G with respect to the L°(£2; R?)x L (w; [0, M)
topology, that s, its lower semicontinuous envelopea: Lo (£2; R4 )X L! (w; [0, M])
— R U {400}, defined as

G(u, h) = inf { liminf G(uy, hy): wy — win L°(2; RY), h, — hin L' (w)}.
n—o0

We characterize G as follows, further assuming that the Lipschitz set ¢ R?~ ! is

uniformly star-shaped with respect to the origin, that is,

tx Cow forall t € (0,1), x € dw. (2.9)

Theorem 2.4. (Characterization of the lower semicontinuous envelope G) Suppose
that f is convex satisfying (2.1) and that (2.9) holds. Then we have

B f-(?;T fle@)dx + HIL@* 2, N 2) +2H4 U, n 2}
G(u,h) = ifu=uxgo, € GSBDP(2), u =uq inwx(—1,0), h € BV(w; [0, M]),

+o00 otherwise,
where

T = xg+1): x € J,, t = 0}. (2.10)
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The assumption (2.9) on w is more general than the one considered in [20],
where w is assumed to be a torus. We point out, however, that both assumptions are
only of technical nature and could be dropped at the expense of more elaborated
estimates, see also [20]. The proof of this result will be given in Section 6.1.

We note that the functional G could be considered with an additional volume
constraint on the film, that is, ﬁ”l(.Q;r )= f () dx’ is fixed. An easy adaptation
of the proof shows that the relaxed functional G is not changed under this constraint,
see Remark 6.8 for details.

In Section 6.2, we further prove the following general compactness result, from
which we deduce the existence of equilibrium configurations for epitaxially strained
films:

Theorem 2.5. (Compactness for G) Suppose that f is convex and satisfies (2.1).
For any (uy, hy), with sup,, G(u,, hy) < 400, there exist a subsequence (not
relabeled) and functions u € GSBDP(82), h € BV (w; [0, M]) withu = uxg,
and u = ug on w x (—1, 0) such that

(Un, hy) = W, h) in LO(Q2; RYx L (w).

In particular, general properties of relaxation (see for example [26, Theorem 3.8])
imply that, given 0 < m < M’H?~!(w), the minimization problem

inf {E(M, h): (u, E) e LO2: RY) x LY(w), £L4(2}) = m} @2.11)

admits solutions. Moreover, fixed m and the volume constraint Ed(.Q;[ ) = m for
G and G, any cluster point for minimizing sequences of G is a minimum point for
G.

Our final issue is a phase-field approximation of G. The idea is to represent
any subgraph 2 by a (regular) function v which will be an approximation of
the characteristic function xg, at a scale of order e. Let W: [0, 1] — [0, co) be
continuous, with W(1) = W(0) = 0, W > 01in (0, 1), and let (n.). with n, > 0
andn.e' P — Oase — 0.Letcy = (fo1 2W (s) ds)~!. In the reference domain
2 = wx(—1, M + 1), we introduce the functionals

Getw = | ((v2 e e +ew(T 4 f|w|2)) dx,  (212)
2 3 2

if
e WHP(2iRY, u=uginwx(~1,0),

ve H'(£2:10,1]), v=1inwx(—1,0),
v=0inwx(M,M+1) 9;v=<0 L -ae.in 2,

and G, (u, v) := 400 otherwise. The following phase-field approximation is the
analog of [20, Theorem 5.1] in the frame of linear elasticity. We remark that here,
differently from [20], we assume only ug € WhP(w x (—=1,0); RY), and not
necessarily ug € L®(w x (—1, 0); R?). For the proof we refer to Section 6.3.
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Theorem 2.6. Let uy € WP (0w x (—1,0); RY). For any decreasing sequence
(en)n of positive numbers converging to zero, the following hold:

(i) For any (up, vn), with sup, Ge, (y, vy) < +00, there exist u € L°(£2; RY)
and h € BV (w; [0, M]) such that, up to a subsequence, u, — u a.e. in §2,
Vp = X@, In LY(£2), and

G(u, h) < liminf G, (uy, vy). (2.13)
“+00

n—

(i) For any (u, h) with G(u, h) < 400, there exists (i, vy, such that u, — u
ae. in$2, v, — x@, in Ll(.Q), and

lim sup G, (up, v,) = G(u, h).

n—o00

3. Preliminaries

In this section, we recall the definition and main properties of the function space
GSBDP . Moreover, we introduce the space GSBDgO of functions which may attain
the value infinity.

3.1. Notation

For every x € R4 and o > 0,let By(x) C R4 be the open ball with center x
and radius o. For x, y € R?, we use the notation x - y for the scalar product and
|x| for the Euclidean norm. By M“*¢ and Mf}fﬁf we denote the set of matrices and
symmetric matrices, respectively. We write xg for the indicator function of any
E C R", which is 1 on E and 0 otherwise. If E is a set of finite perimeter, we
denote its essential boundary by 9* E, and by E* the set of points with density s for
E, see [3, Definition 3.60]. We indicate the minimum and maximum value between
a,b € Rbya Abanda V b, respectively. The symmetric difference of two sets
A, B C R? is indicated by AAB.

We denote by £¢ and H* the d-dimensional Lebesgue measure and the k-
dimensional Hausdorff measure, respectively. For any locally compact subset B C
R<, (that is any point in B has a neighborhood contained in a compact subset
of B), the space of bounded R™-valued Radon measures on B [respectively, the
space of R™-valued Radon measures on B] is denoted by My (B; R™) [resp., by
M(B; R™)]. If m = 1, we write My(B) for Mp(B; R), M(B) for M(B; R),
and M;‘(B) for the subspace of positive measures of My, (B). For every u €
M, (B; R™), its total variation is denoted by ||(B). Given 2 C R? open, we use
the notation L%(£2; R?) for the space of £4-measurable functions v: 2 — R4.

Definition 3.1. Let £ C R?, v € LO%(E; R™), and x € R? such that

d
LUEN By

lim sup v

0—07F Q
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A vector a € RY is the approximate limit of v as y tends to x if for every & > 0 it
holds that
LYENBy(x)N{lv—al >¢})

lim ]

0—07 o

Oa

and then we write
aplimv(y) = a.

y—x

Definition 3.2. Let U C R? be open and v € LO(U; R™). The approximate jump
set Jy is the set of points x € U for which there exist a, b € R™, with a # b, and
v € S9! such that

aplim v(y) =a and aplim v(y) = b.

(y—x)v>0, y—>x (y—x)v<0, y—>x

The triplet (a, b, v) is uniquely determined up to a permutation of (a, b) and a
change of sign of v, and is denoted by (v (x), v~ (x), vy (x)). The jump of v is the
function defined by [v](x) := v (x) — v~ (x) for every x € J,.

We note that J,, is a Borel set with Cd(Jv) = 0, and that [v] is a Borel function.

3.2. BV and BD Functions

Let U C R? be open. We say thata function v € L' (U) is a function of bounded
variationon U, and we write v € BV (U),ifD;v € My(U)fori =1, ..., d, where
Dv = (Djv,...,Dgv) is its distributional derivative. A vector-valued function
v:U — R"isin BV(U; R™) ifv; € BV(U) forevery j =1, ..., m. The space
BVioc(U) is the space of v € Llloc(U) such that D;jv € M(U) fori =1, ...,d.

A function v € L'(U; R?) belongs to the space of functions of bounded de-
formation if the distribution Ev := %((Dv)T + Dv) belongs to M, (U; M‘Siyfr‘f). It
is well known (see [2,59]) that for v € BD(U), J, is countably (H 1, d — 1)
rectifiable, and that

Ev = E% + Ev + E/v,

where E%v is absolutely continuous with respect to £¢, E€v is singular with respect
to £¢ and such that |[E€v|(B) = 0 if H?~1(B) < oo, while E/v is concentrated on
J,. The density of E%v with respect to £ is denoted by e(v).

The space SBD(U) is the subspace of all functions v € BD(U) such that
E¢v = 0. For p € (1, 00), we define

SBDP(U) := {v € SBD(U): e(v) € LP(2; M&d), HI™'(J,) < oo}

Analogous properties hold for BV, such as the countable rectifiability of the jump
set and the decomposition of Dv. The spaces SBV (U; R™) and SBVP?(U; R™)
are defined similarly, with Vv, the density of D%v, in place of e(v). For a complete
treatment of BV, SBV functions and BD, SB D functions, we refer to [3] and to
[2,6,59], respectively.



Equilibrium Configurations for Epitaxially Strained Films 1053

3.3. GBD Functions

We now recall the definition and the main properties of the space GBD of
generalized functions of bounded deformation, introduced in [27], referring to that
paper for a general treatment and more details. Since the definition of GBD is
given by slicing (differently from the definition of GBV, cf. [1,31]), we first need
to introduce some notation. Fixed & € S9~1 := {& e R?: |€| = 1}, we let

mé={yeR?: y.£=0), BS:={(t€R:y+ik e B} foranyyecR? and B C R’

3.1
and for every function v: B — R? and 1 € B§ let
() =0y +18), Ty = vy - & (3.2)

Definition 3.3. ([27]) Let 2 C R be a bounded open set, and let v € LO(£2; RY).
Then v € GBD(S2) if there exists A, € MZ(.Q) such that one of the following
equivalent conditions holds true for every & € S?~!:

(a) for every T € C'(R) with —% <t< % and 0 < 17/ < 1, the partial derivative
D¢ (r(v . E)) = D(r(v . S)) - & belongs to My (£2), and for every Borel set
BcCg

[De (t(v-8))[(B) = 1o(B);

(b) ﬁi € BV]OC(.Qﬁ) for H4 -a.e. y € IT¢, and for every Borel set B C §2
1 0 1 d—1
/H&_ (|D@§|(B§\Jﬁ§) +HO(BS N Jﬁ)) dH () £ Au(B),
1. T
where /1, = [z € Jye SN 2 1}.
The function v belongs to GSBD($2) if v e GBD(£2) andﬁi € SBVlOC(.Qﬁ) for

every £ € SY"! and for H¢ '-ae. y € IT5.

GBD(£2) and GSBD($2) are vector spaces, as stated in [27, Remark 4.6], and
one has the inclusions BD($2) C GBD(£2), SBD(£2) C GSBD(§2), which are
in general strict (see [27, Remark 4.5 and Example 12.3]). Every v € GBD(S2)
has an approximate symmetric gradient e(v) € L'(£2; M4X?) such that for every

sym
£ e S Vand H? '-ae. y € IT¢ it holds that
e()(y +1E)E £ = @) (1) for L' ae. 1 € 25. (3.3)

We recall also that by the area formula (cf. for example [57, (12.4)]; see [2, Theo-
rem 4.10] and [27, Theorem 8.1]) it follows that for any & € sé-1,
(Jf)_f, = J¢ for Hiae. y € I¥, where ]5 ={x e Jy: [v](x) - & # 0},
(3.4a)
/ HO(Le) dHY 1 (y) =/ vy - E]dHIL (3.4b)
g vy 7
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Moreover, it holds that

HITVINIE) =0 forHI ae. & €S9 (3.5)
Finally, if £2 has Lipschitz boundary, for each v € G B D(£2) the traces on d52 are
well defined in the sense that for H?'-a.e. x € 852 there exists tr(v)(x) € R?
such that

aplim v(y) = tr(v)(x).
y—>x, yef2

For 1 < p < oo, the space GSBD? (£2) is defined by
GSBDP(2) := {u € GSBD(R): e(u) € LP(2; M9*%), H4=1(J,) < oo).

sym
We recall below two general density and compactness results in GSBD?, from [17]
and [19].

Theorem 3.4. (Density in GSBD?) Let 2 C R? be an open, bounded set with
finite perimeter and let 0§2 be a (d—1)-rectifiable, p > 1, Y(t) =t A 1, and
u € GSBDP(82). Then there exist u, € SBVP(£2; R?) N L°(2; R?) such that
each J,, is closed in §2 and included in a finite union of closed connected pieces
of C' hypersurfaces, u, € WI’OO(Q\Jun; RY), and

[ s = upax o, (3.60)

2

lle(un) —e@)liLr2)y — O, (3.6b)
HN(J,, AT — 0. (3.6¢)

We refer to [17, Theorem 1.1]. In contrast to [17], we use here the function
¥(t) ;= t A1 for simplicity. It is indeed easy to check that [17, (1.1e)] implies
(3.6a).

Theorem 3.5. (GSBDP? compactness) Let 2 C R be an open, bounded set, and let
(up)n C GSBDP(82) be a sequence satisfying that

supen (le(n)llze (o) + H ™ (Ju,)) < +o0.

Then, there exists a subsequence, still denoted by (uy),, such that the set A :=
{x € £2: |u,(x)| — oo} has finite perimeter, and there exists u € GSBDP(§2)
such that

(i) un — u in L°(2\A; R?),

(i) e(un) — e(u) weakly in L? (2\A; MEXD),

(i) liminf H9~1(J,,) = HI71 (1, U (0* A N 2)). (3.7)
n—0oQ

Moreover, for each I' C $2 with HA-N(TI™) < 400, it holds that
lim inf 74~ (J, \I") = HO ™ ((J, U (9*A N 2)\T). (3.8)
n—o0

Proof. We refer to [19]. The additional statement (3.8) is proved, for example, in
[42, Theorem 2.5]. O

Later, as a byproduct of our analysis, we will generalize the lower semiconti-
nuity property (3.7)(iii) to anisotropic surface energies, see Corollary 5.6.
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3.4. GSBD%, Functions

Inspired by the previous compactness result, we now introduce a space of
GSBDP? functions which may also attain a limit value co. Define R? := R4 U {o0}.
The sum on R? is given by a + 00 = oo for any a € R?. There is a natural bijection
between R? and S¢ = {& € R4t! : |£| = 1} given by the stereographic projection
of S¢ to RY: for & # e441, we define

1
P = 1_—(51’ oo 6ad),

Edv1

and let ¢ (e441) = 00. By ¢ : R? — S we denote the inverse. Note that
dga(x, y) =Y (x) = ¥ (y)| forx,yeR? (3.9)
induces a bounded metric on R?. We define

GSBDL () = {u € LO(2: RY): A% := {u = oo} satisfies H4 ™1 (3*A®) < +o0,

iy = uxo\ax + x4 € GSBDP(2) forall i € Rd}.

(3.10)
Symbolically, we will also write
U= UXQ\AP T 00X AX.
Moreover, for any u € GSBDL,(£2), we set e(u) = 0in Ar°, and
Ju = JMXQ\ASO U (3*A° N £2). (3.11)
In particular, we have that
e(u) = e(uy) £%ae.on 2 and
Ju=Ji, H' 'ae. foralmostallt € R, (3.12)

where i, is the function from (3.10). Hereby, we also get a natural definition of
a normal v, to the jump set J,,, and the slicing properties described in (3.3)—(3.5)
still hold. Finally, we point out that all definitions are consistent with the usual ones
if u € GSBDP(£2), that is, if A}° = (. Since GSBD? (£2) is a vector space, we
observe that the sum of two functions in GSBD5,(£2) lies again in this space.

A metric on GSBD5,(£2) is given by

d(u, v)::f dpa (u(x), v(x)) dx, (3.13)
2

where dpq is the distance in (3.9). We now state compactness properties in
GSBDE,(£2).
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Lemma 3.6. (Compactness in GSBDY) For L > O and I' C $2 with HA-NM) <
+00, we introduce the sets

X1 (2)={ve GSBDL(2): H'7' (1) S L. lle)lLrio) < 1},
Xr(2) = {ve GSBDL(2): H™'UN\T) =0, lle()llLr) S 1}. (3.14)

Then the sets X1.(§2), Xr(£2) C GSBDZL,(2) are compact with respect to the
metric d.

Proof. For X (£2), the statement follows from Theorem 3.5 and the definitions
(3.10)—(3.11): in fact, given a sequence (u"), C X (§2), we consider a sequence
(up )n C GSBDP(£2) as in (3.10), for suitable (z,), C R4 with |f,| — oo. This
implies

&(u”,ﬁ?ﬂ)—)Oasneoo. (3.15)

Then, by Theorem 3.5 there exists v € GSBD?(2) and A = {x € 2 [uf (x)] —
oo} such that u; — v in LO(2\A; RY). We define u = VXo\A T 00xa €
GSBDZX,(2). By (3.7)(ii),(iii) and (3.11) we get that u € X (£2). We observe
that d (i}’ , u) — 0 and then by (3.15) also d (u", u) — 0.

The proof for the set X (§2) is similar, where we additionally use (3.8) to
ensure that 74! S\ =0. O

In the next sections, we will use the following notation. We say that a sequence
(un)n C GSBDE,(£2) converges weakly to u € GSBDE, () if

sup,en (le(n)llLro) + H ™' (1)) < +00 and d(uy, u) — 0 for n — oo.
(3.16)

We close this subsection by pointing out that a similar space has been introduced
in [12], in the case of scalar valued functions attaining extended real values: the
space G BV, (R?) was defined by f: R? — RU {£oo} € GBV,(R?) if and only
if (—MV f) AM € BVipe(R?) for every M > 0. In [12, Proposition 3.1] it is
shown that f € G BV, (RY) if and only if its epigraph is of locally finite perimeter
in R4*t!. Our definition is based on the structure of the set where functions attain
infinite values, rather than employing (the analog of) truncations. In fact, the latter
is not meaningful if one controls only symmetric gradients.

4. The aS@m-Convergence of Sets

This section is devoted to the introduction of a convergence of sets in the
framework of GSBD? functions analogous to o ”-convergence defined in [28] for
the space SBV?. This type of convergence of sets will be useful to study the lower
limits in the relaxation results in Section 6.1 and the compactness properties in
Section 6.2. We believe that this notion may be of independent interest and is
potentially helpful to study also other problems such as quasistatic crack evolution.
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We start by recalling briefly the definition of o ”-convergence in [28]: a sequence
of sets (I',),, o P-convergesto I" if (i) for any sequence (i, ), converging to u weakly
in SBV? with J,, C I}, itholds J, C I' and (ii) there exists a SBV? function
whose jump is I, which is approximated (in the sense of weak convergence in
SBVP) by SBVP functions with jump included in I;,. (Here, weak convergence
in SBV” means that sup,, ([lun|l o +H? ' (J,,)) < +00, Vi, = Vuin LP, and
u, — u almost everywhere) For sequences of sets (I3,), with sup,, HI=N(,) <
400, a compactness result with respect to o ”-convergence is obtained by means of
Ambrosio’s compactness theorem [1]; see [28, Theorem 4.7] and [20, Theorem 3.3].
We refer to [28, Section 4.1] for a general motivation to consider such a kind of
convergence.

We now introduce the notion of os’;m—convergence. In the following, we use
the notation ACB if HY~'(A\B) = 0 and A=B if ACB and BCA. As before,
by (G)! we denote the set of points with density 1 for G C R<. Recall also the
definition and properties of GSBDY, in Section 3.4, in particular (3.16).

Definition 4.1. (asl;m -convergence) Let U C R? be open, let U’ > U be open with
L4(U\U) > 0, and let p € (1, c0). We say that a sequence (I},), C U NU’ with
sup,cyy HY™H(I)) < +00 0dim-converges to a pair (I', Go) satisfying I ¢ UNU’
together with

Hd_l(F) <400, Goo CU, 3*GooNU'CTI, and I'N (Goo)1 =0 (4.1)
if it holds that:

(i) for any sequence (v,), C GSBDS,(U’) with J,, CT;, and v, = 0in U'\U, if
a subsequence (vy, )x converges weakly in GSBD5,(U’) to v € GSBD5,(U'),
then £¢({v = 00}\Goo) = 0 and J,\I'C(G o) ';

(ii) there exists a functionv € GSBDX,(U') and asequence (v,), C GSBDL,(U")
converging weakly in GSBD5,(U’") to v such that J,, C I, v, = 0 on U'\U for
alln e N, J,=I',and {v = 0} = G .

Our definition deviates from o ”-convergence in the sense that, besides a limit-
ing (d—1)-rectifiable set I', there exists also a set of finite perimeter Go,. Roughly
speaking, in view of 3*Go C I" U QU, this set represents the parts which are
completely disconnected by /" from the rest of the domain. The behavior of func-
tions cannot be controlled there, that is, a sequence (v, ), as in (i) may converge to
infinity on this set or exhibit further cracks. In the framework of GSBV ? functions
in [28], it was possible to avoid such a phenomenon by working with truncations
which allows to resort to SBV? functions with uniform L°-bounds. In GSBD,
however, this truncation technique is not available and we therefore need a more
general definition involving the space GSBDX, and a set of finite perimeter G .

Moreover, due to the presence of the set G «,, in contrast to the definition of o ”-
convergence, it is essential to control the functions in a set U"\U: the assumptions
Cd(U "\U) > 0 and G, C U are crucial since otherwise, if U’ = U, conditions
(1) and (ii) would always be trivially satisfied with Goo = U and I" = §J.

We briefly note that the pair (I, Go) is unique. In fact, if there were two dif-
ferent limits (I'!, G})O) and (I"2, Ggo), we could choose functions v! and v? with
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Jvlél"], Jvzél“z, {v1 = o0} = Gl,o, and {v2 = o0} = Ggo, as well as corre-
sponding sequences (v,ll),, and (v,zl)n asin (ii). But then (i) implies r! \FZC(GgO)l,
IA\r'eGl)t, as wellas G, c G2, and G2, ¢ GL,. As ' N (GL)! = 0 for
i = 1,2, this shows (I'!, Gcl,o) = (I'?%, Ggo). In a similar way, if a sequence (17,),
as’;m-converges to (I, Go), then every subsequence as’;m-converges to the same
limit.

Let us mention that, in our application in Section 6, the sets I}, will be graphs
of functions. In this setting, we will be able to ensure that G, = @, see (6.3) below,
and thus a simplification of Definition 4.1 only in terms of I" without G is in
principle possible. We believe, however, that the notion of asl;m-convergence may
be of independent interest and is potentially helpful to study also other problems
such as quasistatic crack evolution in linear elasticity [42], where G, = ¥ cannot
be expected. Therefore, we prefer to treat this more general definition here.

The main goal of this section is to prove the following compactness result for
asl;m -convergence:

Theorem 4.2. (Compactness of osl;m -convergence) Let U C R? be open, let U’ >
U be open with LE(U'\U) > 0, and let p € (1, 00). Then, every sequence (I';), C
U with sup, del(l" W) < 400 has a as’;m-convergent subsequence with limit
(I, Goo) satisfying HE~1(I") < liminf,_, oo H4™1(1,).

For the proof, we need the following two auxiliary results:

Lemma 4.3. Let (v;); C GSBD?(82) such that |le(vi)|Lr2y < 1 for all i and
I = U;’il Jy; satisfies HA"N(M) < +o0. Then there exist constants ¢; > 0,
i €N, suchthaty ;2 ¢; < landv:=7Y ;2 civ; € GSBDP(2) satisfies J,=I.

Lemma 4.4. Let V C RY and suppose that two sequences (Upn)y, (Vy)n € LO(V; Rd)
satisfy |un|, |vn| — 00 on V. Then for L'-a.e. & C (0, 1) it holds that

|(1 —O)u,(x) +60v,(x)| > oo fora.e x €V.
We postpone the proof of the lemmas and proceed with the proof of Theorem4.2.
Proof of Theorem 4.2. For I' C U with H4~1(I") < 400 we define
X(I')={ve GSBDLU"): J,CI, lleW)llLrwn <1, v=00nU\U}.

The set X (I") is compact with respect to the metric d introduced in (3.13). This
follows from Lemma 3.6 and the fact that {v € LO(U’; RY): v = 0on U'\U} is
closed with respect to d.

Since we treat any v € GSB DE,(U’) as a constant function in the exceptional
set A>° (namely we have no jump and e(v) = O therein, see (3.12)), we get that the
convex combination of two v, v’ € X (I") is still in X (I"). (Recall that the sum on
R¢ is given by a 4+ 0o = oo for any a € R?))

Step 1: Identification of a compact and convex subset. Consider (I,), C U with
sup,, HI=Y(I,) < +00. Fix § > 0 small and define

L :=liminf HY~N(I3) + 6. (4.2)

n— o0
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By (4.2) we have that, up to a subsequence (not relabeled), each X (I73,) is contained
in X7 (U’) defined in (3.14). Moreover, as noticed above, X (U’) and each X (I3,)
are compact with respect to d. Since the class of non-empty compact subsets of
a compact metric space (M, dyy) is itself compact with respect to the Hausdorff
distance induced by dj;, a subsequence (not relabeled) of (X (I7,)), converges in
the Hausdorff sense (with the Hausdorff distance induced by d) to a compact set
K c X, (U).

We first observe that the function identical to zero lies in K. We now show

that K is convex. Choose u,v € K and 6 € (0, 1). We need to check that w :=
(1 —0)u+0v € K. Observe that A3 = A™° U AS°, where AS°, AS°, and A7)y are
the exceptional sets given in (3.10). There exist sequences (u,), and (v,), with
Uy, v, € X(I,) such that d(uy, u) — 0 and d(v,, v) — 0.In particular, note that
lup| — oo on AZ° and |v,| — oo on ASC. By Lemma 4.4 and a diagonal argument
we can choose (6,), C (0, 1) with 8, — 6 such that w, := (1 — 6,)u, + 6,v,
satisfies |w,| — oo on AS° N A. As clearly |w,| — oo on APAAY and (1 —
0,)un+6,v, — (1—0)u+0v in measure on U’\(A,‘jOUAl?O),wegetc?(wn, w) = 0.
Since X (I},) is convex, there holds w, € X (I7,). Then d(w,, w) — 0 implies
w € K, as desired.
Step 2: Choice of dense subset. Since K is compact with respect to the metric d (so,
in particular, K is separable), we can choose a countable set (y;); C G S BDE (U")
with y; = 0 on U’\U which is d-dense in K. We now show that this countable set
can be chosen with the additional property

e (Aﬁo\UiASf) —0 forallve K, (4.3)

where we again denote by A;io and AS° the sets where the functions attain the value

o0. In fact, fix an arbitrary countable and d-dense set (yi)iin K,andletn > 0. After
adding a finite number (_smaller than £4(U) /n) of functions of K to this collection,
we obtain a countable d-dense family ( y? ); such that

£d<AS°\UiA;?> <y forallveK.

Then, we obtain the desired countable set by taking the union of (yl.l/ k) ; fork e N.
Step 3: Definition of I and G Fix v,v" € K. Since {x € J,\0*AJ°: [v](x) =
t} has negligible 7¢~!-measure up to a countable set of points ¢, we find some
0 € (0, 1) such that w := Qv + (1 — 0)V’ satisfies

JuCJy U Jy, (Jy U Jy)\Jy C(A° U Ag?)l. 4.4)
Here, we particularly point out that {w = 0o} = AJ°UA?’? and that 0*(A°UASY)N
U’'CJy by (3.11). Note that w € K since K is convex. Since w € K C Xy (U’),
(4.4) implies that

HTN Ty U I)\NAP U A < 1M S L,
HITN@* (AU A NU) S HN I S L.
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Let (y;); C GSBDE, (U’ with yi = 0 on U'\U be the countable and d-dense
subset of K satisfying (4.3) that we defined in Step 2. By the above convexity
argument, we find

Hd—l(LkJ]yi\(LkJAi)l) <L, Hd—l(a*(

i=

L 4.5)

-
=
»
<

N~——
IA

for all k € N, where

We define
Goo = U A;. (4.6)

By passing to the limit k — oo in (4.5), we get H* " 1(8*Goo N U’) < L and

HI (U 1y \(Goo)') < L forall k € N. Passing again to the limit k — oo, and
setting

r=J" 1\Go)", 4.7)

we get HA=1(I") < L. Notice that 'N(Gwo)! = ¥ by definition. Moreover, the fact
that y; = 0on U’\U foralli € Nimplies both that Goo C U andthat I’ C UNU’.
By (4.2) and the arbitrariness of § we get HAN(r) < liminf,_ e HEN(T).
Since 3*A; N U'CJy, foralli € Nby (3.11), we also get I' D 8*Go, N U’. Thus,
(4.1) is satisfied.

We now claim that for each v € K it holds that

LYv=00\Gso) =0 and J\I'C(Guxo)'. (4.8)

Indeed, the first property follows from (4.3) and (4.6). To see the second, we note
that, for any fixed v € K, there is a sequence (yx)r = (yi,)x With c?(yk, v) — 0, by
the density of (y;);. Consider the functions vy := yx (1 — x¢.,) that cz-converge to
U := v(l—xg,,): since J;, C I forany k (we employ (4.7) and that 3*G oo NU'CT),
the fact that X (I") is closed gives that J;CI". This implies (4.8).
Step 4: Proof of properties (i) and (ii). We first show (i). Given a sequence (v,), C
GSBDE,(U') with Jy,CT, and v, = 0 on U’\U, and a subsequence (Un )k that
converges weakly in GSBD5, (U’) to v, we clearly get v € K by Hausdorff conver-
gence of X (I;,) — K. (More precisely, consider Av,, and Av for A > 0 such that
le(va)ILr@wry < 1 for all k.) By (4.8), this implies L4 {v = 00}\Goo) = 0 and
J\I'C(Goo)'. This shows (i).

We now address (ii). Recalling the choice of the sequence (y;); C K, for each
i € N, we choose Ji = yiXu\Go + tiXGs € GSBDP(U') for some 1; € R4
such that J5,=J,,\(G o). (Almost every t; works. Note that the function indeed
lies in GSBD? (U), see (3.10) and (4.6).) In view of (4.7), we also observe that
Ui Js =T.

ByLemma4.3 (recall (y;); C K C X1(£2)) we getafunctiond = Y ;2 ¢;J; €
GSBDP(U’) suchthat Jy=I", where ) :° | ¢; < 1. Wealso define v = Uxyn g, +
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©XG., € GSBDE,(U"). Note that {v = 00} = G and J,=TI"since 'N(G o) =
@#and 3*GooNU’ C I'. Then by the convexity of K, we find z; := Zle ciyi € K.
(Here we also use that the function identical to zero liesin K.) As Goo = Ufi] Aj,
we obtain d(zx, v) — 0 for k — oo. Thus, also v € K since K is compact.
As X (I},) converges to K in Hausdorff convergence, we find a sequence (vy), C
GSBDL,(U") with J,, T, v, = 0 on U'\U, and d(v,, v) — 0. This shows (ii).

O

Next, we prove Lemma 4.3. To this end, we will need the following measure-
theoretical result (see [38, Lemma 4.1, 4.2] and note that the statement in fact holds
in arbitrary space dimensions for measurable functions.):

Lemma 4.5. Ler 2 C R? with ﬁd(.Q) < 00, and N € N. Then for every sequence
(n)n C LO(.Q; RN) with

cf (ﬂneNUmznﬂum — | > 1}) —o. 49)

there exists a subsequence (not relabeled) and an increasing concave function
Y 1 [0, 00) — [0, 00) with lim;_, o V¥ (t) = +00 such that

sup/ Y (|luy]) dx < +o0.
n>1J82

Proof of Lemma 4.3. Let (v;); C GSBD?(§2) be given satisfying the assump-
tions of the lemma. First, choose 0 < d; < 27" such that

! (fiu 2 ﬁ}) <o (e g e 2 di]) <27,
(4.10)

Our goal is to select constants ¢; € (0, d;) such that the function v := Z;’ilci v;
lies in GSBD? (£2) and satisfies J, =1 := U?i] Jy; . We proceed in two steps: we
first show that for each choice ¢; € (0, d;) the function v = Zfi 1¢iv; lies indeed
in GSBD? (£2) (Step 1). Afterwards, we prove that for a specific choice it holds that
Jy=r".

Step 1. Given ¢; € (0, d;), we define u; = Zle civi. Fixm = n+ 1. We
observe that

2277}

m m
i —unl > 13 ={[>" v =1} U e
m 1
> —
- Ui=n+1{|vl| = 2id; }
By passing to the limit m — oo and by using (4.10) we get
(Ut == 1) £ 372 2 i)
m=n m n = i=n+1 = 2idi

o) .
< —i _ H—n
= Zi=n+12 20
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This shows that the sequence (u ) satisfies (4.9), and therefore there exist a subse-
quence (not relabeled) and an increasing continuous function ¢ : [0, co) — [0, c0)
with lim; o ¥ (t) = +00 such that sup; >, fQ Y (Jug|) dx < +o00. Recalling also
that [le(v;)||Lr(2) < 1 foralli and H?~!(I") < 400, we are now in the position to
apply the GSBD?-compactness result [27, Theorem 11.3] (alternatively, one could
apply Theorem 3.5 and observe that the limit v satisfies L4{v = o0}) = 0), to get
that the function v = ) 2, c;v; lies in GSBDP(£2). For later purposes, we note
that by (3.8) (which holds also in addition to [27, Theorem 11.3]) we obtain

JUCU;:JU,. T @.11)

This concludes Step 1 of the proof.
Step 2. We define the constants ¢; € (0, d;) iteratively by following the ar-
guments in [28, Lemma 4.5]. Suppose that (ci)fle, and a decreasing sequence

(ei)f-‘zl C (0, 1) have been chosen such that the functions u; = Z{:l civi,
1 £ j <k, satisfy

. ~1
M Ju,=J,_, o
(i) HOT (€ Juy ujl0)] S e5)) £ 277, (4.12)

and, for 2 < j < k, it holds that
cj Sejpd;2 (4.13)

(Note that in the first step we can simply set ¢c; = 1/4 and 0 < &1 < 1 such that
(4.12)(ii) holds.)

We pass to the step k + 1 as follows. Note that there is a set No C R of negligible
measure such that for all # € R\ N there holds Jy; 4 1v,,  =Ju U Jy,,. We choose
cr+1 € R\Np such that additionally cx+1 < erdi127¥2. Then (4.12)(i) and
(4.13) hold. We can then choose e;11 < & such that also (4.12)(ii) is satisfied.

We proceed in this way for all £k € N. Let us now introduce the sets

Er=\J o (v € Ju,t luml®] Sen)e Fe={]J o v € o, om0 > 1/dy).

(4.14)
Note by (4.10) and (4.12)(ii) that
d—1 -m __ ~2—k
HINELU Fy) < 22'@{ 27 =227k, (4.15)
‘We now show that for all £ € N it holds that
Ju CJy U Ex U Fy. (4.16)

To see this, we first observe that for H9"!-a.e. x € I' = [ JS2, J,, it holds that
oo

w1 = L d ) + ) il (o). (4.17)

=k+1
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Moreover, we get that ¢; < e;d;2~'~! forall i > k + 1 by (4.13) and the fact that
(&i); is decreasing. Fix x € J,, \(Ex U Fy). Then by (4.14) and (4.17) we get

Gl Ze =Y 4

i=k+1 d;

1] 2 ] = S

i=k+1

0o —]—
2 8k(1 B Zi=/<+1 2 1) = &/2,

where we have used that |[u;](x)| = & and [v;](x) < 1/d;, fori 2 k + 1. Thus,
[v](x) # O and therefore x € J,. Consequently, we have shown that Hi 1 qe.
x € Jy, \(Ex U Fy) lies in Jy,. This shows (4.16).

We now conclude the proof as follows: by (4.12)(i) and (4.16), we get that

1 ~ ~

U o =y EJUEURE Jy U ECU Fy
=

for all [ = k, where we used that the sets (Ey)x and (Fy) are decreasing. Taking

the union with respect to [, we get that I'CJ,, U E U Fy for all k € N. By (4.15)

this implies H¢~1(I"\J,) < 2?7, Since k € N was arbitrary, we get I"C J,,. This

along with (4.11), shows that J,=1I", and concludes the proof. O

We close this section with the proof of Lemma 4.4.

Proof of Lemma 4.4. Let B = {x € V: limsup,_, o, [uy(x) — v,(x)| < +o00}.
For 6 € (0, 1), define wg = (1 —0)u, + v, and observe that |w§| — oo on B for
all 0 since |u,| — ocon V.Let Dg = {x € V\B: limsup,_, |w2(x)| < 400}.
AS [ty — vn| — 00 on V\B and thus [w’ — w?| = |(6) — 62) (v — up)| — 0o on
V\B for all 61 # 6>, we obtain Dg; N Dy, = @. This implies that L4(Dg) > 0 for
an at most countable number of different 6. We note that for all 6 with £4(Dg) = 0
there holds |wﬁ| — oo a.e. on V. This yields the claim. O

5. Functionals defined on Pairs of Function-Set

This section is devoted to the proofs of the results announced in Section 2.1.
Before proving the relaxation and existence results, we address the lower bound
separately since this will be instrumental also for Section 6.

5.1. The Lower Bound

In this subsection we prove a lower bound for functionals defined on pairs of
function-set which will be needed for the proof of Theorem 2.2-Theorem 2.4. We
will make use of the definition of GSBD%, (£2) in Section 3.4. In particular, we refer
to the definition of e(u) and of the jump set J,, with its normal v, see (3.11)—(3.12),
as well as to the notion of weak convergence in GSBDS,(£2), see (3.16). We recall
also that for any s € [0, 1] and any E € 91($2), E® denotes the set of points with
density s for E, see [3, Definition 3.60].
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Theorem 5.1. (Lower bound) Let 2 C RY be open and bounded, let 1 < p < .
Consider a sequence of Lipschitz sets (E,), C $2 with sup,cy HIVQE,) <
400 and a sequence of functions (u,), C GSBD?P(§2) such that Mn|g\57 €
WP (Q2\E,; RY) and u, = 0 in E,. Let u € GSBDZX,(£2) and E € IM(82) such
that u, converges weakly in GSBDE,(£2) to u and

xE. — xgin L'(£2). (5.1

n

Then, for any norm ¢ on R? it holds that

e(un) x2\(E,uaz) — e xe\(Euaz)  weakly in LP (2 MEXY), (5.2a)
/ 2¢(vy) dH! +/ o) dHI! < liminf/ go(vEn)de_l,

J.NEO QNI*E n—>+ JonjE,
(5.2b)

where AY° = {u = oo}.

In the proof, we need the following two auxiliary results, (see [11, Proposition
4, Lemma 5]):

Proposition 5.2. Let 2 be an open subset of R? and . be a finite, positive set
function defined on the family of open subsets of §2. Let A € MZ (82), and (gi)ieN
be a family of positive Borel functions on $2. Assume that w(U) = |, y i dA for
every U and i, and that n(U U V) Z w(U) + w(V) whenever U, V CC 2
and U NV = @ (superadditivity). Then u(U) = fU (sup;c &i) dA for every open
U C 2.

Lemma 5.3. Let I' C E° be a (d—1)-rectifiable subset, £ € S~ such that & is not
orthogonal to the normal v to I at any point of I'. Then, for H?'-a.e. y € IT¢,
the set E§ (see (3.1)) has density O in t for every t € Ff.

Proof of Theorem 5.1. Since u, converges weakly in GSBD5,(£2) to u, (3.16)
implies

sup (le@n1] o) + H' ™ (L) + HIT'OED)) = M < 400, (53)
neN

Consequently, Theorem 3.5 and the fact that d(uy, u) — 0, see (3.13) and (3.16),
imply that AS° = {u = oo} = {x € £2: |u,(x)| - oo} and

up — u  L%ae. in 2\A%, (5.4a)
e(un) — e(u) weakly in L” (£2\ A%%; M4x%), (5.4b)

sym
By (5.1), (5.4a), u, = 0 on E,, and the definition of A}°, we have
ENA®=¢ and u=0L%ae inE. (5.5)

Then (5.4b) gives (5.2a).
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We now show (5.2b) which is the core of the proof. Let ¢* be the dual norm of
¢ and observe that (see, for example [10, Section 4.1.2])

v-§ [v-&]
= max ,

@*(E)  gesi=1 9*(§)

where the second equality holds since ¢ (v) = @(—v).

As a preparatory step, we consider a set B C £2 with Lipschitz boundary
and a function v with v|Q\§ € W“’(Q\B; R4 and v = 0 in B (observe that
v € GSBD?(£2)). Recall the notation in (3.1)—(3.2). Lete € (0, 1) and U C £2
be open. For each £ € S?~! and y e IT%, we define

£ BE UE) —
F? (vy,By,Uy)—S/US\Bs
y y

¢(v) = max (5.6)

EeS

|@3)'1” dr + HO(@B; N U;) (5.7)

P*(E)
By Fubini—Tonelli theorem, with the slicing properties (3.3), (3.4), (3.5), for a.e.
£ € S? it holds that

| FE s uhan o =e [ o eracs | V8 51 a1,
it ’ U\B vrag ¢*(&)

Since |e(v)| = |e(v)& - &|, the previous estimate along with (5.6) implies

/ FE @5, By U AR 0) S elle@I L) +/ o(vp) dH .
uh UNdB

By applying this estimate for the sequence of pairs (u,, E,), we get, by (5.3)
that,

/ FE (@)}, (En)5: U5 dHT () < Me + / o(vg,) dH!
¢ UNJE,

< M(lgll @ity + ) (5.8)

for all open U C §2. Since d(uy,,u) — 0, we have that d_((ﬁn)i,ﬁé;) = f9§ dpa

((ﬁy,)i,ﬁi) dx — 0 for H? '-ae. y € IT¢ and H? '-ae. & € SY~!. (Notice that
we have to restrict our choice to the & satisfying |u, - £] — +o0o0 £%-a.e. in A,
which are a set of full measure in Sd_l, cf. [19, Lemma 2.7].) In particular, this
implies that

()5 — @, L'-ae.in (2\A?);, (5.92)
@5 — 400 L'-ae.in (A7), (5.9b)

By using (5.8) and Fatou’s lemma we obtain that
liminf FS (@)%, (En)5; US) < 400 (5.10)
n—o0o -
for H~'-a.e. y € IT5 and any open U C £2. Then, we may find a subsequence
(Um)m = (Up,,)m, depending on €, &, and y, such that

lim FE((@n)§. (En)5: US) = liminf FE((@,)5. (En)5: US) (5.11)
m— 00 7 n—o0 )
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for any open U C §2. At this stage, up to passing to a further subsequence, we have
HY(3(En)}) = Nj €N,

independently of m, so that the points in 9 (Em)i converge, asm — 00,to M f <N §
points

tl,...,th,

which are either in 8 E5 orin a finite set S5 := {r1.....1,,e \OE5 C (Ey)°U(E})",
5

where (-)° and (-)! denote the sets with one-dimensional density 0 or 1, respectively.

Notice that Ei is thus the union of M§ /2— #S§ intervals (up to a finite set of points)

on which there holds ﬁi = 0, see (5.5) and (5.9a). In view of (5.7) and (5.10),
((ﬁm)i)’ are equibounded (with respect to m) in L{;C (¢, tj+1), for any interval

(1), j41) C 25\(ES U S5).
Then, as in the proof of [19, Theorem 1.1], we have two alternative possibilities on
(tj,tj41): either (Tim)i converge locally uniformly in (z;, #;41) toﬁi, or |(i7m)§;| —

+oo Ll-ae. in (), 1j41). Recalling that Je = 3(A2); U ((J)5\(A2)3), see
(3.4a) and (3.11), we find that '

Je,y = Tt N(E})® C S5 N (E". (5.12)

‘We notice that any point in S;§ is the limit of two distinct sequences of points ( p,l,l Vs
(pi)m with p,ln, p,%, € B(Em)i. Thus, in view of (5.7) and (5.11), for any open
U C £2 we derive

o 2

p*(&) p*(&)

< liminf F& (@)%, (En)s: US) = liminf F& (@), (E,)S; US).  (5.13)
m—o0 3 y n—oo € y

s/ G@5)' 1P di + HO(US NIES) +HOWUS N Je.y)
US\(EUAZ);

We apply Lemma 5.3 to the rectifiable set J, N E? N {& - v, # 0} and get that, for
H e, y € T,

yHtE e L,NE'N{E v, #£0) = e (E)".

This along with (5.12)—(5.13), the slicing properties (3.3)—(3.5) (which also hold
for GSBD5S,(£2) functions), and Fatou’s lemma yields that for all £ € S9=1\ Ny,
for some Ny with H¢~1(Np) = 0, it holds that

8/ |e(u)s-f|l’dx+/ Ve £ g
U\(EUA%) vnore ¢*(§)

2Mvy <&l a1
o,
LNENy  ©*(&)

< / lim inf F£ ()5, (E)S: US) dHA!

— Jgg n—o
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< lim inf/ FE((@n)§. (En)5: US) dHO™!
16

n—oo

Introducing the set function u defined on the open subsets of £2 by

w(U) == liminff o(vg,)dHI, (5.14)
UNJE,

n——+00

and letting ¢ — 0 we find by (5.8) for all &€ € SY~!\ Ny that

Vg - €| d—1 f 2|y, - &| a1
pryraal TS g < ). 5.15
/Uﬂa*E ¥*(§) JnENy  9*(E) = n(U) (5.15)

The set function 1 is clearly superadditive. Let A = H4~'L(J,NE®)+H¢~'L*E
and define

2|vy &l 0

& OnJuNES

[vE-&il s

o OnIE

where (&;); C Sd_l\No is a dense sequence in sé-1, By (5.15) we have u(U) 2
fU gidxforalli € Nand all open U C £2. Then, Proposition 5.2 yields u(£2) =
f o sup; g di. In view of (5.6) and (5.14), this implies (5.2b) and concludes the
proof. O

5.2. Relaxation for Functionals defined on Pairs of Function-Set

In this subsection we give the proof of Proposition 2.1 and Theorem 2.2. We also
provide corresponding generalizations to the space GSBD%,, see Proposition 5.5
and Theorem 5.8. For the upper bound, we recall the following result provedin [11,
Proposition 9, Remark 14]:

Proposition 5.4. Let u € L'(£2; RY) and E € () such that H*~1(3*E) <
+ooand uxgo € GSBVP(82; R?). Then, there exists a sequence (i), C Wh?
(£2; Rd) and (Ey), C 9M(82) with E,, of class C*° such thatu, — uin LY(£2; Rd),
XE, — xE in L'(£2), and

Viun o\, — Vuxo\e in LP(2; M),

lim sup/ o(vg,) dH! g/ 20(vy) dH4! +/ p(vg)drd!,
n—oo JIE,NR J.NEO 9*ENS2

Moreover, ide(E) > 0, one can guarantee in addition the condition Ed(E,,) =
L4(E) forn € N.

Proof of Proposition 2.1. We first prove the lower inequality, and then the upper
inequality. The lower inequality relies on Theorem 5.1 and the upper inequality on
a density argument along with Proposition 5.4.

The lower inequality. Suppose thatu,, — u in L9(£2; R?) and XE, = XE in LY(92).
Without restriction, we can assume that sup,, F'(u,, E,) < 4o00. In view of (2.2)
and mings—1 ¢ > 0, this implies HI"YDE,) < 4o00. Moreover, by (2.1) the
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functions v, := u,xe\g, lie in GSBDP(£2) with J,, C dE, N £2 and satisfy
sup,, le(va)llr(2) < +oc. This along with the fact that u, — u in measure shows
that v,, converges weakly in GSBDE,(£2) to u XE0, see (3.16), where we point out
that AS° = {u = oo} = . In particular, u xzo € GSBDZX,(£2) and, since AX =1,
even uxpo € GSBDP(£2), cf. (3.10). As also (5.1) holds, we can apply Theo-
rem 5.1. The lower inequality now follows from (5.2) and the fact that f is convex.

The upper inequality. We first observe the following: given u € LO(£2;R%)
and E € M(2) with HI"1(3*E) < oo and uyzo € GSBDP(£2), we find an
approximating sequence (vy,), C L1(£2; RY) with vnxpo € GSBVP(82; R9) such
that

(1) vy = uxgo in LO(Q; Rd),

(i) e(un)xe\e = e xo\e in LP(2; ME5Y),

(iii) H((Jy, ALY N E®) — 0.

This can be seen by approximating first ux o by a sequence (ii,), by means of
Theorem 3.4, and by setting v, := Uy x o for every n. It is then immediate to verify
that the conditions in (3.6) for (&), imply the three conditions above.

By this approximation, (2.1), and a diagonal argument, it thus suffices to con-
struct a recovery sequence for u € L'(£2;RY) with uxzo € GSBVP(£2; R?).
To this end, we apply Proposition 5.4 to obtain (u,, E,), and we consider the se-
quence u, xo\E,. We further observe that, if L4(E) > 0, this recovery sequences
(n, Ey)n can be constructed ensuring L4 (E,) = LY(E) forn e N. O

We briefly discuss that by a small adaption we get a relaxation result for F* with
respect to the topology induced by d on LO(£2; R?). We introduce F oo : LO(£2; RY) x
M(2) —> RU {400} by

Foolu, E) = inf { lim inf F(u,, En): d(u,, u) — 0 and XE, = XE In Ll(.Q)}.
n—oo

Proposition 5.5. (Characterization of the lower semicontinuous envelope F ) Un-
der the assumptions of Proposition 2.1, it holds that

B Jong Fle@) dx + [onpp @r) AR+ [ o o 2000) dH!
Foo(u, E) = ifu=uyxgo € GSBDL(2) and HY™' (3*E) < 400,

+o00 otherwise.

Moreover, if LY(E) > 0, then for any (u, E) € L%(£2; RY)xM($2) there exists a
recovery sequence (u,, E,), C LO(82: RY)xOM(82) such that L4(E,) = LY (E)
foralln e N.

Proof. It is easy to check that the lower inequality still works for u = uyxgo €
GSBDE,(£2) by Theorem 5.1, where we use (2.1), f(0) = 0, and the fact that
e(u) = 0 on {u = oo}, see (3.12). Moreover, we are able to extend the upper
inequality to any u € LO($2; Rd) such that u = u xpo € GSBDE,(£2). In fact,
it is enough to notice that for any u = u xzo € GSBD5,(£2) and any sequence
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(ty)n C R? with |t,| — oo such that for the functions iy, € GSBDP(82) defined
in (3.10) property (3.12) holds, we obtain it;, = it;, xgo,d (4, u) — 0asn — oo,
and

/ fle@) dx + / o) dH ! + / 2¢(vy) dH'! = F(a,,. E)
Q\E NI*E JuN(2\E)!

for all n € N, with J,, defined by (3.11). Then, the upper inequality follows from
the upper inequality in Proposition 2.1 and a diagonal argument. 0O

As a consequence, we obtain the following lower semicontinuity result in
GSBD?,:

Corollary 5.6. (Lower semicontinuity in GSBDS,) Let us suppose that a sequence
(un)n C GSBDE,(£2) converges weakly in GSBDE,(£2) tou € GSBDL,(£2), see
(3.16). Then for each norm ¢ on R4 it holds that

/ ¢ (v,) dHI! gnminf/ ¢ (vy,) dHIL
Ju n— 00 7,

Un

Proof. Let ¢ > 0 and f(¢) = ¢|¢T + ¢|? for ¢ € M¥*?. The upper inequality
in Proposition 5.5 (for u, and E = () shows that for each u, € GSBDE (),
we can find a Lipschitz set E,, with LYE,) < % and v, € LO(£2;RY) with
Unl o\, € WP (2\E,; RY), vyl g, = 0,and d(vy, uy) < 1 (see (3.13)) such that

/ ele(vy)]? dx+f ¢ (vg,) dH! é/ ele(uy)|? dx
Q\E, NRNIE, 2

+/ 2¢ (v,,) dHI! +%. (5.16)
J,

Un

Observe that d (vp,u) — 0 asn — oo, and thus v, converges weakly to u in
GSBDZ,(£2). By applying Theorem 5.1 on (v,, E,) and using E = ¢} we get

/ 2¢(v,) dHI! < liminf/ ¢ (vg,)dHIL
Ju n—00 JQRNJE,

This, along with (5.16), sup, < lle(u,)llLr(2) < 400, and the arbitrariness of ¢
yields the result. O

We now address the relaxation of Fp;., see (2.5), that is, a version of F' with
boundary data.

We take advantage of the following approximation result which is obtained
by following the lines of [17, Theorem 5.5], where an analogous approximation is
proved for Griffith functionals with Dirichlet boundary conditions. The new feature
with respect to [17, Theorem 5.5] is that, besides the construction of approximating
functions with the correct boundary data, also approximating sets are constructed.
For convenience of the reader, we give a sketch of the proof in Appendix A high-
lighting the adaptations needed with respect to [17, Theorem 5.5]. In the following,

we denote by flljir the functional on the right hand side of (2.7):
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Lemma 5.7. Supposethat dp$2 C 052 satisfies (2.4). Consider (v, H) € LO(2;: RY)
X M($2) such thatf;)ir(v, H) < +o0. Then there exist (v,, Hy) € (LP($2; RN
SBVP(§2; RY)) x MM($2) such that Jy, is closed in §2 and included in a finite union
of closed connected pieces of C' hypersurfaces, v, € Wl’p(.Q\Jvn; RY), v, = ug
in a neighborhood V,, C §2 of 9p$2, H, is a set of finite perimeter, and

() v, — vin L(2; RY),
(i) x, — xu in L'(£2),
s . -/ -/
(i) im sup,,_, o, Fpir(Un, Hy) = Fpi (v, H).

Proof of Theorem 2.2. First, we denote by £2” a bounded open set with 2 C 2’
and 2/ N 32 = dpR. By F' and F we denote the analogs of the functionals
F and F, respectively, defined on L0(£2’; RY)xM(2'). Given u € L°(£2; RY),
we define the extension u’ € L°(£2’; R?) by setting u’ = ug on £2'\£2 for fixed
boundary values ug € wkp (Rd ; Rd). Then, we observe

F'(, E) = Foir(u, E) + / Fle(o) dx, F ', E) = Fouu, E)
ne

+/ S (e(up)) dx. (5.17)
2\

Therefore, the lower inequality follows from Proposition 2.1 applied for F’, F
instead of F, F.

We now address the upper inequality. In view of Lemma 5.7 and by a diagonal
argument, it is enough to prove the result in the case where, besides the assump-
tions in the statement, also u € LP(22; R?) N SBVP(2;RY) and u = ug in a
neighborhood U C £2 of dp£2.

By (u,,, E,), we denote arecovery sequence for (1, E) given by Proposition 5.4.
In general, the functions (u,), do not satisfy the boundary conditions required in
(2.5). Let § > O and let V CC U be a smaller neighborhood of dp$2. In view
of (2.1)—~(2.2), by a standard diagonal argument in the theory of I"-convergence, it
suffices to find a sequence (v,), C L'(£2; R?) with Unl_Q\En € WLP(Q\E,; RY),

v, =0on E,, and v, = ug on V\F,, such that

limsup,, _ o lvn — uxgo “LI(Q) <4, lim sup,,_, o lle(vn) — e(un) x2\E, | Lr(2) <6
(5.18)

To this end, choose v € C*°(£2) with ¢ = 1 in 2\U and ¢ = 0 on V. The
sequence (u,), converges to u only in L 1(§2: RY). Therefore, we introduce trunca-
tions to obtain L”-convergence: for M > 0, we define u™ by ulM =(—MVuj)AM,
where u; denotes the i-th component,i = 1, ..., d. In a similar fashion, we define
uM . By Proposition 5.4 we then get xg, — xg in L'(£2) and

u,[:’l —uM in LP(2;RY), Vuﬁ/lxg\En — VuMXEo in LP(£2; M%*9).
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We define v, = (Yul + (1 — ¥)uo)xe\£,. Clearly, v, = ug on V\E,. By
Vv, = ¥VuM + (1 — ¥)Vug + V¢ ® @M — up) on 2\E,, u = ug on U, and
Proposition 5.4 we find

. M
limsup,,_, o v —ull L1y = lu —u™ 10,
lim sup,,_, o, lle(vy) — e(un) xo\E, lr2) < Vi — VuM || 1y oy

+ IV lloollu — u™ || Lr ().

For M sufficiently large, we obtain (5.18) since u = uxgo. This concludes the
proof. 0O

As done for the passage from Proposition 2.1 to Proposition 5.5, we may obtain
the following characterization of the lower semicon_tinuous envelope of Fpj with
respect to the convergence induced by d on L°(£2; R?).

Theorem 5.8. (Characterization of the lower semicontinuous envelope fDir,oo)
Under the assumptions of Theorem 2.2, the lower semicontinous envelope

Fpir.oo(t, E) = { liminf Foi (it En): d(itn, u) — 0and g, — X in Ll(Q)}
n—oo

foru e L°(£2; R?) and E € M(2) is given by

Fpiroo(, E) = Foolu, E)+ / @(vp) dH* !+ / 20(vg) ™",
dpRNO*E {tr(u) £tr (uo) )N p 2\I*E)
(5.19)
Moreover, if LY(E) > 0, then for any (u, E) € L°($2; RY)xM($2) there exists a
recovery sequence (un, Ep), C L%(2; R xIN(82) such that L(E,) = L4(E)
foralln € N.

Notice that in (5.19) we wrote tr(u) also for u € GSBDE,(£2), with a slight abuse
of notation: tr(x) should be intended as tr(;), cf. (3.10), for any 7 € R? such that
H {up =1} N 9ps2) = 0.

5.3. Compactness and Existence Results for the Relaxed Functional

We start with the following general compactness result:

Theorem 5.9. (Compactness) For every (u,, E,), with sup, F(u,, E,) < 400,
there exist a subsequence (not relabeled), u € GSBD.,(£2), and E € IM(£2)
with HY=Y(3*E) < +o00 such that u, converges weakly in GSBD,(2) to u and
Xg, = xe in L1(£2).

Proof. Let (u,, E,), with sup, F(u,, E,) < +o00. As by the assumptions on
¢ there holds sup, .y HY"'(dE,) < +oo, a compactness result for sets of fi-
nite perimeter (see [3, Remark 4.20]) implies that there exists £ C £2 with
HI"1(9*E) < +o0 such that XE, — XE in L'(£2), up to a subsequence (not
relabeled).
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Since the functions u, = u, xo\k, satisfy J,, C dE,, we getsup, KA1 (Ju,) <
+00. Moreover, by the growth assumptions on f (see (2.1)) we getthat | e(u,) || Lr (2)
is uniformly bounded. Thus, by Theorem 3.5, u,, converges (up to a subsequence)
weakly in GSBD%,(£2) to some u € GSBDX,(£2). This concludes the proof. O

We are now ready to prove Theorem 2.3.

Proof of Theorem 2.3. The existence of minimizers for fDir,oo follows by com-
bining Theorem 5.8 and Theorem 5.9, by means of general properties of relaxations,
see for example [26, Theorem 3.8]. To obtain minimizers for Fpir, it is enough to
observe (recall (3.10), (3.12)) that

Fpir.co(tt, E) = Fpir(vg, E)

for every u € GSBDL,(2) and v, := uxo\ae +axax (recall AY® = {u = o0}),
where a: RY — R? is an arbitrary affine function with skew-symmetric gradient
(usually called an infinitesimal rigid motion). Starting from a minimizer of fDir,oo,
if A% # @, we thus obtain a family of minimizers for Fpj,, parametrized by the
infinitesimal rigid motions a. This concludes the proof. 0O

6. Functionals on Domains with a Subgraph Constraint

In this section we prove the the results announced in Section 2.2.

6.1. Relaxation of the Energy G

This subsection is devoted to the proof of Theorem 2.4. The lower inequality is
obtained by exploiting the tool of asl;m -convergence introduced in Section 4. The
corresponding analysis will prove to be useful also for the compactness theorem
in the next subsection. The proof of the upper inequality is quite delicate, and a
careful procedure is needed to guarantee that the approximating displacements are
still defined on a domain which is the subgraph of a function. We only follow
partially the strategy in [20, Proposition 4.1], and employ also other arguments in
order to improve the GSBYV proof which might fail in some pathological cases.

Consider a Lipschitz set o € R?~! which is uniformly star-shaped with respect
to the origin, see (2.9). We recall the notation 2 = w x (—1, M + 1) and

Qu={xeR: —l<xg<h(x)), 2F=20{xa>0 (6.1

forh: w — [0, M]measurable, where we write x = (x/, xz) forx € RY. Moreover,
welet 217 = 2 N{xg > 0.

The lower inequality. Consider (1, h,), with sup,, G(u,, h,) < +o00. Then,
we have that h, € Cl(w; [0, M]), unle, € WP (24, RY), uslo\@,, =0, and
u, = ugonw x (—1,0). Suppose that (u,, h,), converges in LO(2; RY)x LY (w)
to (u, h). We let

=02, N2 ={xeR: h(x)= x4} (6.2)
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be the graph of the function %,. Note that sup,, HI-N(T,) < 400, We take U =
wx(— %, M)and U’ = 2 = wx (—1, M +1), and apply Theorem 4.2, to deduce
that (I3,), ogg,m-converges (up to a subsequence) to a pair (I, G). A fundamental
step in the proof will be to show that

Goo = ¥. (6.3)

We postpone the proof of this property to Step 3 below. We first characterize the
limiting set I" (Step 1) and prove the lower inequality (Step 2), by following partially
the lines of [20, Section 3.2]. In the whole proof, for simplicity we omit to write C
and = to indicate that the inclusions hold up to 7%~ !-negligible sets.

Step 1: Characterization of the limiting set I". Let us prove that the set

T:=rng 6.4)

is vertical, that is
(X +teg) N2} c ¥ foranyr > 0. (6.5)

This follows as in [20, Section 3.2]; in fact, consider (v,), and v as in Defini-
tion 4.1(ii). In particular, v, = 0 on U'\U, J,,, C I}, and, in view of (6.3), v is R4-
valued with I = J,,. The functions v, (x) 1= v, (x’, x4 — ) x,, (x) (With # > 0,
extended by zero in wx(—1, —1 + 1)) converge to v'(x) := v(x', xg — 1) xe2, (x)
in measure on U’. Since Jy, C I, Definition 4.1(i) implies J\TC(Goo)!. As
Goo = P by (6.3), we get JyC I, so that

(ZHte) N2 =T +te)) N2} =y +te) N2} =JyN2}crnel =x,

where we have used I = J,,. This shows (6.5). In particular, vy -eg = 0 H ae.
in X . Next, we show that

HN @ 2, N 2) + 2HIT N (Z) < lirgioréf/ V14 Vi, (xH2dx'.  (6.6)
n w

To see this, we again consider functions (v;), and v satisfying Definition 4.1(ii).
In particular, we have J,, C I, and J, = I'. Since I}, is the graph of a C 1
function, we either get v,|g, = oo or, by Korn’s inequality, we have v,|g, €
Wl’p(.th; Rd). Since v, = 0 on U’\U, we obtain Unls2, € Wl’p(.th; Rd). We
apply Theorem 5.1 for E,, = £2\$2;,, E = £2\$2;,, and the sequence of functions
Wp = Un XQ\E, = UnX2y,-

Observe that xg, — xg in L'(£2). Moreover, wy, converges weakly in
GSBDZ,(2) to w = v Xg, since v, converges weakly in GSBD%,(£2) to v and
sup, HY"1(3E,) < +o0. By (5.2b) for ¢ = 1 on S~ it holds that

HN @ 2, 0 2) + 2H N, N 2)) S liminf HYT 092, N 2),
n—o0
where we used that E0 = .Q,i and 0*E N 2 = 9*2, N 2. Since J, = I" and

Jw N2} =J,N 2} = X, we indeed get (6.6), where for the right hand side we
use that 9£2;, is the graph of the function 1, € C Lw; [0, MY). For later purposes
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in Step 3, we also note that by Corollary 5.6 for ¢(v) = |& - v|, with £ € S¢!
fixed, we get

/ lvp - E|dHI = / vy - E|dHIT < liminf/ vy, - E]dHI!
r Ju n—oo n

< hmmf/ lvr, - €ldHIL 6.7)

n—oo n

(Strictly speaking, as ¢ is only a seminorm, we apply Corollary 5.6 for ¢ + ¢ for
any ¢ > 0.)
Step 2: The lower inequality. We now show the lower bound. Recall that (u,,, hy),
converges in L°(£2; R?) x L (w) to (u, k) and that (G (u,, hy,)), is bounded. Then,
(2.1) and minge—1 ¢ > 0 along with Theorem 3.5 and the fact that Ed({x €
£2: |lup(x)] = oo}) = 0 imply that the limit u = uyg, lies in GSBD? (£2). It
also holds that u = ug on w x (—1,0) by (3.7)(1) and the fact that u,, = u( on
w x (—1,0) for all n € N. In particular, we observe that u,, = u, X2, converges
weakly in GSBDE,(£2) to u, cf. (3.16). The fact that 1 € BV (w; [0, M]) follows
from a standard compactness argument. This shows G (i, h) < +00.

To obtain the lower bound for the energy, we again apply Theorem 5.1 for E,, =
$£2\82, and E = £2\§2;,. Consider the sequence of functions v, := Vu, xo\E, =
Yu,, where ¥ € C*°(£2) with ¥ = 1 in a neighborhood of 21 = 2 N {xd >
O} and ¥y = Oon w x (—1, —;) We observe that v, = 0 on U\U = w x
(-1, ——]U[M M +1)) and that v, convergestov := Yu € GSBDP(Q)weakly
in GSBDf,)o(.Q) Now we apply Theorem 5.1. First, notice that (5.2a), % = 1on 27T,
and the fact that AS® = ¢ imply e(un)x9+ — e(u)xg+ weakly in LP($2; Mfyxnf).

This along with the convexity of f ylelds
/ f(e(u))dx < liminf / f(e(uy))dx. (6.8)
_Q}-ll— n—o00 'Q;:z

Moreover, applying Definition 4.1(i) on the sequence (v, ),, which satisfies v, = 0
on U'\U and J,, C I}, we observe J, = J, C I', where we have also used (6.3).
Recalling the definition of J, = {(x", x4 +1): x € J,, t 2 0}, see (2.10), and
using (6.4)—(6.5) we find J; N .Q,i C X. Thus, by (6.6), we obtain

HIT O 2N 2) + 2RI N2 £ liminf/ V14 |Vh,(x))2dx’. (6.9)
n—0oo )

Collecting (6.8) and (6.9) we conclude the lower inequality. To conclude the proof,
it remains to confirm (6.3).

Step 3: Proof of G = {. Recall the definition of the graphs I3, in (6.2) and its
asl;m—limit I'onthesets U = w X (— %, M) and U’ = £2. As before, consider
Y € C*(£2) with ¢ = 1 in a neighborhood of 27 and ¢y =0onw x (—1, ——)
By employing (i) in Definition 4.1 for the sequence v, = V¥ xg, eq and its limit
v = Vxa,eqd, we get that (0%2, N 2)\I'C(Gxo)'. Since U' N 3*Goo C I' by
definition of O’S[;,m -convergence, we observe that

I'>(0*Goo N 2) U (3*2, N 2N (Go)?). (6.10)
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ZTq
M -
B*Qh A2
G
J'U.
} H H }
w Wy WA, x’

Fig. 1. A picture of the situation in the argument by contradiction. We show that in fact
Goo - @

We estimate the ¢ ~!-measure of the two terms on the right separately.

The first term. We define W = 9*G N $2 for brevity. Since G « is contained in U =
wx(— %, M)and 2 = wx(—1, M+1),weobserve ¥ = 0*GoN(wxR). Choose
wy C o such that wy x {0} is the orthogonal projection of W onto R4~ % {0}.
Note that W and wy satisfy

HO(W¢) =22 forall y € wy x {0},

since G 1 a set of finite perimeter. Thus
/ HY((0*Goo N 2)%) dH 1 (y) 2 2H " (w). 6.11)
wx{0}

The second term. As 0*$2, N §2 is the (generalized) graph of the function 2: v —
[0, M], we have

/ HO((a*Qh n 9)2‘1) dH () = H N w). (6.12)
wx{0}

In a similar fashion, letting A, = (3%£2;, N 2)\(Goo)? and denoting by wp, C @
its orthogonal projection onto R?~! x {0}, we get

/ H°<((a*.(2h N 9)\(Goo)°)§") M () = H  wny). (6.13)
wx{0}

As Aj is contained in (Goo)1 U 0*Go, We get wp, C oy, see Figure 1.
Therefore, by combining (6.12) and (6.13) we find
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f HO((a*Qh nen (GOO)O);") dH " (y) = N @) — H T (way)
wx{0}

> H N (w) — H Y wy). (6.14)

Now (6.10), (6.11), (6.14) and the fact that 3*G oo N (G o)’ = @ yield

0 eq d—1 > 0 * eq
/wx{mH (rétydHd=" = fwx{o} (H(0*Goo N 20%)

+H ("2 N1 2 0 (Go)")) ) ae!
> H N w) + H  (wy). (6.15)

Since I, are graphs of the functions %, : v — [0, M], we get by the area formula
and (6.7) that

HO(rey dH (y) :/ lvr - eqldHI! gnnmio%ff lvr, - eql dHY™" = HO ™ (o).
i r e Iy

wx{0}

This along with (6.15) shows that H N wy) = 0. By recalling that wg x {0} is
the orthogonal projection of 9*Go, N (w x R) = W onto R4=1 x {0}, we conclude
that G, = 0.

This completes the proof of the lower inequality in Theorem 2.4. O
The upper inequality. To obtain the upper inequality, it clearly suffices to prove
the following result:

Proposition 6.1. Suppose that f = 0 is convex and satisfies (2.1). Consider (u, h)
withu = uxgo, € GSBDP(82), u = ug in wx(—1,0), and h € BV (w; [0, M]).
Then, there exists a sequence (uy, hy), withh, € Cl(w)NBV (w; [0, M]), up |2, €
Wl’p(.th; Rd), u, = 0in 2\82p,,, and u, = ug in wx(—1, 0) such that u, — u
in L°(2; RY), h, — h in L' (w), and

lim sup Fle(uy)) dx < / fe)) dx, (6.16a)
n—00 _th 25
limsup,,_, oo HY71 (052, N 2) £ M7V 0% 2, N 2) + 21T N 2)).
(6.16b)

In particular, it is not restrictive to assume that f = 0. In fact, otherwise we
consider f := f + ¢y > 0 changing the value of the elastic energy by the term
c2L4(§2,) which is continuous with respect to LY (w) convergence for 4. Moreover,
the integrals 25, and £2; can be replaced by Q,;: and Q,T , respectively, since all
functions coincide with ug on w x (—1, 0).

Remark 6.2. The proof of the proposition will show that we can construct the
sequence (i), also in such a way that u, € L>(£2; R?) holds for all n € N. This,
however, comes at the expense of the fact that the boundary data is only satisfied
approximately, that is, up|wx(—1.0) = Uolwx(—1.0) i WP (w x (—1,0); RY).
This slightly different version will be instrumental in Section 6.3.
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As a preparation, we first state some auxiliary results. We recall two lemmas
from [20]. The first is stated in [20, Lemma 4.3].

Lemma 6.3. Let h € BV (w; [0, 400)), with 0*§2), essentially closed, that is,
HAV(5%2,\0%2,) = 0. Then, for any ¢ > 0, there exists g € C*(w; [0, +00))
suchthat g < h a.e.inw, ||g — hll;1(,) < & and

f J1+|Vgl2dx —H 0 2, n2)| < e.
w

Lemma 6.4. Let h € BV (w; [0, M]) and let ¥ C R with H*~1(X) < +00 be
vertical in the sense that x = (x', xg) € X implies (x',xq +1) € X as long as
(x',xq+1) € Q}l. Then, for each & > 0 there exists g € C*°(w; [0, M]) such that

lg — Al = &, (6.17a)
HITN (@ 2,UZ)N2) <e,  (6.17b)

)f J1+ Ve dx' — (R (9% 2, msz)+2nd—1(z))‘ <e  (6.170)

Proof. We refer to the first step in the proof of [20, Proposition 4.1], in particular
[20, Equation (12)-(13)]. We point out that the case of possibly unbounded graphs
has been treated there, that is, 1 € BV (w; [0, +00)). The proof shows that the
upper bound on / is preserved and we indeed obtain g € C*(w; [0, M]) if h €
BV (w; [0, M]). O

Note that Lemma 6.4 states that 9*§2, U X' can be approximated from below
by a smooth graph g. However, this only holds up to a small portion, see (6.17b).
Therefore, two additional approximation techniques are needed, one for graphs and
one for GSBD functions. To this end, we introduce some notation which will also be
needed for the proof of Proposition 6.1. Let k € N, k > 1. For any z € (2k~1)Z4,
consider the hypercubes

@ =4+ (kLY QF =4 (= sk sk (6.18)

Given an open set U C R4, we also define the union of cubes well contained in U
by

Wy = int(UZ: vt q_;f). (6.19)

(Here, int(-) denotes the interior. This definition is unrelated to the notation E* for
the set of points with density s € [0, 1].)

We now address the two approximation results. We start by an approximation
of graphs from which a union of hypercubes has been removed. Recall 27 =
2 N{xg > 0}.

Lemma 6.5. Let g € C®(w; [0, M]) and let Vi, C 27 be a union of cubes Qk,
z€ZC (Zk’1 VZ4 intersected with (.Qg)k. Suppose that Vi is vertical in the sense
that (x', x4) € Vi implies (x', xg+t) € Vi fort = Oaslongas (x', xg+t) € (.Qg)k.
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Then, for k € N sufficiently large, we find a function hy € C*(w; [0, M]) such
that

LYy A21,) £ LY N Vi) + Cok ™, (6.20a)
HITN (@820, N 2) S HT' 052, N 2) + HITH BV N (2)F) + Couk ™",
(6.20b)

where Cyq , > 0 depends on d, g, and w, but is independent of k. Moreover, there
are constants tq, T« > 0 only depending on d, g, and w such that

x=0x) €2 = (1 —t/k) X, (1 = 1/k)xq — 6T4/k) € (2,)\Vi.
6.21)

We point out that (6.21) means that A lies below the boundary of (.Qg)k \ Vi,
up to a slight translation and dilation. We suggest to omit the proof of the lemma
on first reading.

Proof. The proof relies on slight lifting and dilation of the set (.Qg)k\Vk along with
an application of Lemma 6.3. Recall definition (6.19), and define w; C w C Rd-!
such that (& x R)¥ = e x R. Since o is uniformly star-shaped with respect to the
origin, see (2.9), there exists a universal constant t,, > 0 such that

or D1 -1tk Ho fort>r1,. (6.22)

Define 7, := 1+ V/d max,, |Vg|. For k sufficiently large, it is elementary to check
that
2 N (g % (0,00)) C ((2)" + 675k eq). (6.23)
We now “lift” the set (.Qg)k\Vk upwards: define the function
g (X)) i=sup {xq < g(x): (x', xq — 675/k) € (2)F\Vi}  forx’ € o.
(6.24)
We observe that g,’( € BV (wg; [0, M]). Define (.Q)k as in (6.19) and, similar to
(6.1), we let ‘Qgi ={xewm x(=1,M+1): —1 < x4 < g,(x)}. Since V; is
vertical, we note that B.Qg;( N (£2)* is made of two parts: one part is contained in

the smooth graph of g and the rest in the boundary of Vj + 6rgk_led. In particular,

by (6.23) we get

02, N(2)* C (2, N2)U (02, N ()" N 2y) C (32, N 2) U (Vi N (2))
+ 67k eq).

Then, we deduce

Hd*‘(aszg;{ NN S HTN @2, n2) + 1IN OV N (2)F).  (6.25)

Since by (6.23) and (6.24) there holds (£25\$2,/) N (£2)* C Vi + 675k "¢y, the
fact that Vj is vertical implies that
Ld((.QgAQgL) N(2)F) < £9(2, N (Vi + 615k eq)) S L2, N V).
(6.26)
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As g,’{ is only defined on wy, we further need a dilation: letting 7, := 74, V (674 + 6)
and recalling (6.22) we define g,’{/ € BV(w; [0, M]) by

Q) =g (1 =k Hx) for x' € w. (6.27)

(The particular choice of t, will become clear in the proof of (6.21) below.) By
(6.26) we get that

£4(92, A Q) < L2 N Vi) + Co k™!, (6.28a)

|Hd‘1(852g£ ne) - Hd—l(assz N2 £ Ceuk™,  (6.28b)
where the constant Cg ,, depends only on d, g, and w. We also notice that fxiant
(B*Qg;(/\a*ﬂgl) = 0. Then by Lemma 6.3 applied for ¢ = 1/k we find a function
hi € C*(w; [0, M) with k. < g/ on w such that

gy — hell iy S k71 M= @820, N 2) — Hd—l(a*gg;g ne)| <k
(6.29)

By passing to a larger constant C,, ¢ and by using (6.25), (6.28), and (6.29), we get
(6.20). We finally show (6.21). In view of the definitions of g,’{ and g,i’ in (6.24) and
(6.27), respectively, and the fact that /i < g}/, we get

x=0xa) €y = ((1—t/k)x, x4 —674/k) € (2)"\Vk.

Recall 7, = 1, v (674 + 6) and observe that —(1 — 7, /k) — 67, /k =2 —1 + 6/k.
Also note that (£2,)% D (2)* N (w x (=1 + 6/k, 0)), cf. (6.19). This, along with
the verticality of V; C £27, shows that

x =, xq) € 2p, = ((1 — /) x', (1 — 1o/ k) xg — 6rg/k) € (.Qg)k\Vk.
This concludes the proof. O

Next, we present an approximation technique for GSBD functions based on
[17]. In what follows, v : [0, 00) — [0, 00) denotes the function ¥ () =t A 1.

Lemma 6.6. Let U C R? be open, bounded, p > 1, and k € N, § € (0,1)
with k=Y, 0 small enough. Let F C GSBDP(U) be such that ¥ (|v]) + |e(v)|?
is equiintegrable for v € F. Suppose that for v € F there exists a set of finite
perimeter V. C U such that for each qé‘, z € (2k~1HYZ4, intersecting (U)X\V, it
holds that

HITH 05N uy) S ok (6.30)
Then there exists a function wy € Wl’oo((U)k\V; RY)Y such that
/ Y (lwg —v])dx = Ry, (6.31a)
(N7
/ le(wp)|? dx < / le(v)|” dx + Ry, (6.31b)
U\v U

where (Ry)i is a sequence independent of v € F with Ry — 0 as k — oo.
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The lemma is essentially a consequence of the rough estimate proved in [17,
Theorem 3.1]. For the convenience of the reader, we include a short proof in Ap-
pendix A.

After having collected auxiliary lemmas, we now give a short outline of the
proof. Recall that 2 = w x (—1, M + 1) for given M > 0. Consider a pair (u, h)
as in Proposition 6.1. We work with u x, € GSBD? (§2) in the following, without
specifying each time that u = 0 in the complement of £2;,. Recall J, defined in
(2.10), and, as before, set ¥ := J, N .Q,i This implies J, C (0*§2, N 2) U X.
Since X is vertical, we can approximate (9*$2; N §2) U X by the graph of a smooth
function g € C*°(w; [0, M]) in the sense of Lemma 6.4.

Our goal is to construct a regular approximation of u in (most of) £2, by means
of Lemma 6.6. The main step is to identify suitable exceptional sets (Vj ) such that
for the cubes outside of (Vi)x we can verify (6.30). In this context, we emphasize
that it is crucial that each Vj is vertical since this allows us to apply Lemma 6.5 and
to approximate the boundary of (.Qg)k\Vk from below by a smooth graph. Before
we start with the actual proof of Proposition 6.1, we address the construction of
(V). To this end, we introduce the notion of good and bad nodes, and collect some
important properties.

Define the set of nodes

Nii={z € @kHZ: gk C 2,). (6.32)

Let us introduce the families of good nodes and bad nodes atlevel k. Let p1, pp > 0
to be specified below. By G we denote the set of good nodes z € N, namely those
satisfying

HI gk n (%2, U D)) < k', (6.33)

or having the property that there exists a set of finite perimeter F Zk C qf, such that

gkne) c (FH', 1N (9*FF) < pok' 1, HOTN (gEnZn(FHY) < okt
(6.34)
We define the set of bad nodes by By = Ny \Gr. Moreover, let

G¢ = {z € Gk (6.33) does not hold}. (6.35)

For an illustration of the cubes in G we refer to Figure 2.
We partition the set of good nodes Gy into

Gi={eeb: LG ne) S lqfnaeh). G =0)\d. (636

We introduce the terminology “qé‘, is above ¢~ meaning that qi‘, and q§ have the
same vertical projection onto R?~!x {0} and 2> 24

We remark that bad nodes have been defined differently in [20], namely as the
cubes having an edge which intersects 0*§2, N X. This definition is considerably
easier than our definition. It may, however, fail in some pathological situations since,
in this case, the union of cubes with bad nodes as centers does not necessarily form
a “vertical set”.
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(FF)
1
8*Qh Qh
8*Qh 2 8*sz 2
z € Gy \G, z€g;

Fig. 2. A simplified representation of nodes in Gy, for d = 2 and with ¥ = ¢J. The set
gk\g;g corresponds to the cubes containing only a small portion of 9*§2;, U X, see first

picture. For the cubes QZ‘, the portion of 3*£2y, is contained in a set F, zk with small boundary,
see second picture. Intuitively, this along with the fact that (6.33) does not hold means that
0™ 82}, is highly oscillatory in such cubes

Lemma 6.7. (Properties of good and bad nodes) Given 2, and X, define $2, as
in Lemma 6.4 for ¢ > 0 sufficiently small. We can choose 0 < p1 < pp satisfying
o1, 2 =< %57‘19 such that the following properties hold for the good and bad nodes
defined in (6.32)—(6.36):

@) ifqé‘, is above qf and z € By U g,f Jthen7 € By U g,%;

(i) ifz.2 € Ge with H'™ (3g* N 3g5) > 0, thenz, 2/ € G} orz.2' € GF;
(iti) #By 4 #G; < 20, 'k e

: d k <
(iv) Zzegg L2 ngl) Se.

We suggest to omit the proof of the lemma on first reading and to proceed
directly with the proof of Proposition 6.1.

Proof. By ¢; = 1 we denote the maximum of the constants appearing in the
isoperimetric inequality and the relative isoperimetric inequality on a cube in di-
mension d. We will show the statement for ¢ and 0 < py < 1 sufficiently small
satisfying py < %5"’0, and for p; = ((3d + Dex) L po.

Preparations. First, we observe that for p, sufficiently small we have that G; C
g,j. Indeed, since for z € G} property (6.34) holds, the isoperimetric inequality
implies that

£ N 20 < LUFY < en(HI @ F) YD < e p/ VK (6.37)

Then, for p, sufficiently small we get L4 (qé‘ N .Q,(l)) < %Ed (qé‘), and thus z € g,i,
see (6.36).

As a further preparation, we show that foreach z € G ,: there exists a set of finite
perimeter HZk with .Q,(l) N qé‘ - sz - qf such that

d/(d—-1), — — _
LUHY) < erpd TV, W 0 HE) < ook,
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HI gk N 2N (HH) £ pok! . (6.38)

Indeed, if (6.34) holds, this follows directly from (6.34) and (6.37) for HZk = sz.
Now suppose that z € g,l satisfies (6.33). In this case, we define sz = .Q,? ﬂqé‘.

To control the volume, we use the relative isoperimetric inequality on qé‘ to find by
(6.33)

_ d/(d—1
L4HY = 24200 g") A LYR2) N b € e (M 0% 20 0 gh)) Y
A (6.39)

that is, the first part of (6.38) holds since p; = ((3d + 1)cz)~ ' ps. To obtain
the second estimate in (6.38), the essential step is to control Hd_l(aqf N .{22).
For simplicity, we only estimate 7% ~! (quéC N 92) where qué‘ denotes the two
faces of Bqé‘ whose normal vector is parallel to e;. The other faces can be treated
in a similar fashion. Write z = (Z/, z¢) and define w, = 7/ + (—k~ !, k=141,
By w, C w; we denote the largest measurable set such that the cylindrical set
(we x R) N qf is contained in .Q,?. Then by the area formula (cf. for example [57,
(12.4) in Section 12]) and by recalling notation (3.1) we get

M 0aqt N 2) < 21 (@) +2 / HO(@*2n)5) dH ™ (y)
(0 \wx) x{0} i
< 2H N (wy) + 2f lvg, - eq| dH!
9* 2pNgk
< d—1 d—1/q% k
S 2HY (wye) + 2HT (0782, N qy). (6.40)

As (@ x B) N gk € 20N gk and £9(20 N ¢F) < cnp Pk by (6.39),
we deduce 2k HI " (w,) < cppf/“ Pk, This along with (6.33) and (6.40),
yields

H 0agF N 20) < expl! VR 4 201k < Ber prk!

By repeating this argument for the other faces and by recalling H¢ ! (3*£2;, ﬂqé‘ ) =
p1k! ¢, we conclude that H* = 2 N ¢* satisfies that

HITN @ HE) = HOT 0% 2, N g + HIT (0gk N 2))
< k'~ 4 d - 3erpik! = < ok,

where the last step follows from p; = ((3d + Deg)~ ! p2. This concludes the the
second part of (6.38). The third part follows from (6.33) and p; < p,. We are now
in a position to prove the statement.

Proof of (i). We need to show that for 7/ € Q,: there holds z € g,l forall z € Ny
such that qé‘, is above qé‘ . Fix such cubes qé‘ and qé‘,.

Consider the set H Zk, with .{22 N qé‘, CH Zk, C qi‘, introduced in (6.38), and define

sz = sz, — 7/ + z. Since £2, is a generalized graph, we get (sz)l D 522 N qé‘.
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Moreover, since ¥ = J;, N .Q,i is vertical in §2;, see (2.10), and (HZ",)O - .Q,i ﬁqf,,
we have

snFH = 2ne2inFH’ c (neinw:)) -7 = (ZnHE) 427

By (6.38) we thus get H4 ! (gk N Z N (FF)0) < Hd~! (@ NZN(HE) < pok! .
Then the third property in (6.34) is satisfied for z. Again by (6.38) we note that also
the first two properties of (6.34) hold, and thus z € Gi. Using once more that £2),
is a generalized graph, we get £ (82, NgX) = £4(2, N qf,). Then 7’ € G} implies
zZ€E g,i, see (6.36). This shows (i).

Proof of (ii). Suppose by contradiction that there exist z € Q,i and 7’ € Q,?
satisfying HY ™! (9q¥ N dg%) > 0. Define the set F := HX U (2 N ¢%) with H}
from (6.38), and observe that F is contained in the cuboid qi‘ = int(EU qé‘,). Since
Hzlf D .Q,(l) N qé‘, we find

HI gk no*F) < RN @ HE) + M 0% 20 N ).

As Q,f NGy =0, cf. (6.37), for 7€ g,% estimate (6.33) holds true. This along with
(6.38) yields

HIT gk N a*F) < pok' ™ + pik' ™4 < 20k .
Then, the relative isoperimetric inequality on qf yields

£k n Py A L4gf\F) £ (T gk n ot )T £ o@Dk
6.41)

for some universal Cy, > 0. On the other hand, it holds that £9 (qf NF) =>4 (.Q,? N

%) 2 1@k and £4(gI\F) 2 £UGN\HE) 2 @k — cxpy/ T ke by

(6.38). However, for p, sufficiently small, this contradicts (6.41). This concludes
the proof of (ii).
Proof of (iii). Note that H?1-a.e. point in R? is contained in at most two

different closed cubes qé‘, qé‘,. Therefore, since the cubes with centers in g,f and By
do not satisfy (6.33), we get

#Be +#G; < p 'k Y HIT (g @720 U D))
ZEBkUglf
< 207 'KITTHATN (9752, U 2) N £2,),
where the last step follows from (6.32). This along with (6.17b) shows (iii).

Proof of (iv). Recall that each z € g,f satisfies (6.33), cf. (6.35) and before
(6.37). The relative isoperimetric inequality, (6.32) and (6.36) yield that

d ky = dia0 A pdiol Ak
Zzeg,g£ (Qhﬂqz)—zzeg%E (82, Ngz) ALY, Ngz)

d

Ser ) g (W@ 200 gD)TT
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d/(d=1)
d—1 k
< er( D, 02N h)

< er (M (0% 20 N 29)) 7470,

By (6.17b) we conclude for & small enough that Zzegf L4250 qé‘) < ¢ ed/@d=D
<e 0O

Proof of Proposition 6.1. Consider a pair («, h) and set X := J, N £2} with J,
as in (2.10). Given ¢ > 0, we approximate (9*£2; N §2) U X' by the graph of a
smooth function g € C*(w; [0, M]) in the sense of Lemma 6.4. Define the good
and bad nodes as in (6.32)—(6.36) for 0 < p1, p» < %5"”0 such that the properties
in Lemma 6.7 hold. We will first define approximating regular graphs (Step 1) and
regular functions (Step 2) for fixed ¢ > 0. Finally, we let ¢ — 0 and obtain the
result by a diagonal argument (Step 3). In the whole proof, C > 0 will denote a
constant depending only on d, p, p1, and p.

Step 1: Definition of regular graphs. Recall (6.19). For each k € N, we define the
set

N k k
Vi = Uzeggugk of n (2t (6.42)

‘We observe that
EYol (6.43)

vin (2 c k.
In fact, consider z € By U Q,f such that Q’Zf N Vi # @ and one face of 8Q’Z‘
intersects d Vi N (.Qg)k .Inview of (6.42), there exists an adjacent cube qi‘, satisfying
Hd_l(aqf N Bqé‘,) >0and 7 € g,i since otherwise BQIZ‘ NV N (.Qg)k =0. As
7€ g,l, Lemma 6.7(ii) implies z ¢ Q,f and therefore z € By. This shows (6.43). A
similar argument yields

Ve = (UzeBk Q]Z( v Uzegf 6]?) N (‘Qg)k (6.44)

up to a negligible set. Indeed, since Vj is a union of cubes of sidelength 2k~!
centered in nodes in A, it suffices to prove that for a fixed z € Ay N Vi there
holds (a) z € g,f or that (b) there exists 7/ € By such that z € Q’Z‘/. Arguing by
contradiction, if z € Ny N V; and neither (a) nor (b) hold, we deduce that z € g,i
and Q¥ N By = 0. Then all 2’ € Ny N QF lie in G. More precisely, by z € G} and
Lemma 6.7(ii) we get that all z/ € NV; N Q@ lie in G}. Then Q¥ N (GZ U By) = 4,
so that qé‘ N Vi = ¥ by (6.42). This contradicts z € V.

Let us now estimate the surface and volume of V. By (6.43) and Lemma 6.7(iii)
we get

ZEBk

HIT @V N (29)F) < ZzeBk HITNBOY) S Ck'THBL < Ce, (6.45)

where C depends on pj. In a similar fashion, by (6.44) and Lemma 6.7(iii),(iv) we
obtain

LEVen2y) < Ck 4 #B, + degz Ll nay £ ckle+e < Ce.
. k
(6.46)
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Note that V. is vertical in the sense that (x, x4) € Vi implies (x, x4 +1) € V; for

t Z0aslongas (x',xg+1) € (.Qg)k. This follows from Lemma 6.7(i) and (6.42).
We apply Lemma 6.5 for g and Vj to find functions h; € C*(w; [0, M])

satisfying (6.20) and (6.21). Therefore, by (6.17a), (6.20), and (6.46) we get

L2 0 2p,) £ LU2e A 20,) + LU(2,0021) S LY(2, N V)
+ Co k™' + L£4(2,0021)
S LU N Vi) 4 Co k™ +2L9(2,002;) £ Ce + Co k™'
(6.47)
Moreover, by (6.17c), (6.20) and (6.45) we obtain that

HIT (@820, N 2) S HIT' 082, N 2) +HITH BV N (2)F) + Cg k™!
SHITN O 2, N 2) +2HITH(ED) 4 Ce + Cy k™! (6.48)

Step 2: Definition of regular functions. Recall (6.34)—(6.35), and observe that
Lemma 6.7(iii) implies

dopky < do ky < rp—dyos < -1 k. ky1
L4F% < Zzeg}: gl £ ck™4G; < Cek™!, where F*: Uzeg;:(FZ) )
We define the functions vy € GSBDP (£2) by

v = u(l — xpx) X2 (6.49)
Since u = 0in £2\2;, and vy = 0in £2\£2,, we get by (6.17a) and (6.49)

lim sup £9 ({vx # u})) < limsup £9(FF U (2,\82,)) < Ce. (6.50)

k—o00 k— 00

‘We also obtain
HITN Ok N gy S 0k 6.51)

for each qé‘ intersecting (Qg)k\Vk. To see this, note that the definitions of A} in
(6.32) and of Vj in (6.42) imply that for each g* with g* N ((£2,)*\ Vi) # ¥, each
7' € Ny with q;‘, N Q’Z‘ # () satisfies 7/ € Gy. In view of p; < pp < %5“’9 (see
Lemma 6.7), the property then follows from (6.33), (6.34), J, N 2, C 3%£2, U X,
and the fact that Q/Zf consists of 5¢ different cubes qi‘/.

Notice that |vx| < |u| and |e(vg)| < |e(u)| pointwise a.e., that is, the functions
Y (Jvk]) + le(vk)|? are equiintegrable, where ¥ () =t A 1. In view of (6.51), we
can apply Lemma 6.6 on U = £2, for the function vy € GSBD?(£2,) and the sets
Vi, to get functions wi € W1°((£2,)%\ Vi; RY) such that (6.31a) and (6.31b) hold
for a sequence Ry — O.

We now define the function Wy : 2 — RY by

wk((l — 1. /b)) x', (1 — 14/ k) x4 —61:g/k) if —1<xg<he(x),

Wi (x) 1= )
0 otherwise.
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Note that, in view of (6.21), the mapping is well defined and satisfies w| o, €
W1’°°(.Qhk; RY). By (6.17a) (6.31a), (6.47), (6.50), and ¢ < 1 we get

lim sup |1 (k. — ul)ll 1@y = limsup (19 (1dx — veD 1)
o

k—o00 k—

+ L9 ({ue # u})) £ Ce. (6.52)

In a similar fashion, by employing (6.31b) in place of (6.31a) and by the fact that
le@ ey < 1+ Cyuk™h) ||e(wk)||Lp((Qg)k\Vk) for some C)s depending on M
and t,, we obtain

lim sup/ le(wr)|? dx < lim sup/ le(wy)|? dx
2 (R24)\ Vi

k—o00 k— 00

< lim sup/ le(v)|? dx §/ le(u)|? dx,  (6.53)
Qg

k—o0 $2p

where the last step follows from (6.49).

Step 3: Conclusion. Performing the construction above for ¢ = 1/n, n € N, and
choosing for each n € N an index k = k(n) € N sufficiently large, we obtain a
sequence (Wwy, h,) such that by (6.47) and (6.52) we get

Wy — u=uyg, in L°2;RY) and h, — hin L' (o). (6.54)

By (6.48) and the definition ¥ = J, N .Q,: we obtain (6.16b). By GSBD? com-
pactness (see Theorem 3.5) applied on W, = W, xg,, € GSBDP(2) along with
W, — uin L°(£2; R?) we get

/ lew)|? dx < liminf/ le(w,)|? dx.
'Qh n—oo th

This along with (6.53) and the strict convexity of the norm || - || 1r () gives

e(y) — e(u) in LP(2; MEXD). (6.55)
In view of (2.1), this shows the statement apart from the fact that the configurations
W, do possibly not satisfy the boundary data. (that is, we have now proved the
version described in Remark 6.2 since 0, € L (§2; R?).) It remains to adjust the
boundary values.

To this end, choose a continuous extension operator from W LP(wx(—1,0); RY)
to WP (£2; R?) and denote by (wp), the extensions of (W, — u0)|wx(—1,0) to £2.
Clearly, w, — 0 strongly in W17 (£2; R%) since (W, — uo)|lwx(—1,00 = 0 in
WLP(w x (—1,0); RY). We now define the sequence (up), by u, = (W, —
Wn) X2, - By (6.54) we immediately deduce u, — u in L9(£2; RY). Moreover,
Unl2,, € WP (23, RY), uy = 0in 2\82;,, un = up ae. in® x (—1,0) and
(6.55) still holds with u,, in place of w,. Due to (2.1), this shows (6.16a) and
concludes the proof. O
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Remark 6.8. (Volume constraint) Given a volume constraint Ed(.Qh+ ) = m with
0 <m < MH? " (w), one can construct the sequence (u,, hy,) in Proposition 6.1
such that also 4, satisfies the volume constraint, cf. [20, Remark 4.2]. Indeed, if
lhlloo < M, we consider i}(x") = rn_lhn(x/) and u} (X', xq) = up(x’, rpxq),
where r, = m™! [, hn dx. Then [ h% dx = m. Note that we can assume
121 ]lco < |Ihlco (apply Proposition 6.1 with ||/« in place of M). Since r,, — 1,
we then find &, : @ — [0, M] for n sufficiently large, and (6.16) still holds.

If ||h]lp>(w) = M instead, we need to perform a preliminary approximation:
given § > 0, define A%Y = h A (M — §) and hs(x') = ry 'h®M (x'), where
rs =m~! fw h®M dx. Since £2), is a subgraph and m < MH?~(w), it is easy to
check thatrs > (M —§)/M and therefore ||/s||cc < M.Moreover, by construction
we have fw hs dx = m. We define us(x’, x;) = u(x’, rsXd) X2, We now apply
the above approximation on fixed (us, hs), then consider a sequence § — 0, and
use a diagonal argument.

Remark 6.9. (Surface tension) We remark that, similar to [9,20,35], we could also
derive a relaxation result for more general models where the surface tension o for
the substrate can be different from the the surface tension o¢ of the crystal. This
corresponds to surface energies of the form

os Hd—l({h — 0}) + ac')—(d_l (aﬂh N (CL)X(O, +OO)))

In the relaxed setting, the surface energy is then given by
(o5 n0c) HI™ ({h = 0 -+oc (M (0" 2N (@x (0, +oon) +2 H4~ (J;n2)) ).

We do not prove this fact here for simplicity, but refer to [20, Section 2.4, Re-
mark 4.4] for details how the proof needs to be adapted to deal with such a situation.

6.2. Compactness and Existence of Minimizers

In this short subsection we give the proof of the compactness result stated in
Theorem 2.5. As discussed in Section 2.2, this immediately implies the existence
of minimizers for problem (2.11).

Proof of Theorem 2.5. Consider (u,, h,), with sup,, G(u,, h,) < +oo. First, by
(2.8) and a standard compactness argument we find 4 € BV (w; [0, M]) such that
h, — hin L'(w), up to a subsequence (not relabeled). Moreover, by (2.1), (2.8),
and the fact that J,, C 9£2;, N 2 we can apply Theorem 3.5 to obtain some
u € GSBDX,(£2) such that u, — u weakly in GSBD%,. We also observe that
u=uxg, and u = up on w x (—1,0) by B.7)(), un = unxe,,, and u, = ug
onw X (—1,0) for all n € N. It remains to show that u € GSBD?(S2), that is,
{u =00} =40.

To this end, we take U = w X (— %,M) andU' =2 =wx(—1,M+1),and
apply Theorem 4.2 on the sequence I, = 0£2;, N 2 to find that I, US’;m-converges
(up to a subsequence) to a pair (I, G ). Consider v, = Yu,, where € C>(£2)
with ¥ = 1 in a neighborhood of w x (0, M + 1) and ¥ =0 onw x (—1, —%).
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Clearly, v, converges weakly in GSBDE,(2)tov := Yyu.As J,, C Iandv, =0
on U\U for all n € N, we also obtain {v = 00} C G (up to a L¢-negligible
set), see Definition 4.1(i). As by definition of v we have {u = oo} = {v = oo}, we
deduce {u = 0o} C Goo. It now suffices to recall G, = @, see (6.3), to conclude
fu=00}=0. 0O

6.3. Phase Field Approximation of G

This final subsection is devoted to the phase-field approximation of the func-
tional G. Recall the functionals introduced in (2.12).

Proof of Theorem 2.6. Fix a decreasing sequence (g,), of positive numbers con-
verging to zero. We first prove the liminf and then the limsup inequality.

Proof of (i). Let (u,, vy), With sup,, G, (un, vy) < 400. Then, v, is nonincreasing
in x4, and therefore

Vp(x) i =0V (v,(x) = pxg) Al forxeQ=wx(=1,M+1)

is strictly decreasing on {0 < v, < 1}, where (8,), is a decreasing sequence of
positive numbers converging to zero. For a suitable choice of (§,),, depending on
(én)n and W, we obtain [[v, — Unll 1) — 0 and

Gsn (Un, vy) = Ge,, (un, 5n) + O(1/n). (6.56)

By using the implicit function theorem and the coarea formula for v,,, we can see,
exactly as in the proof of [20, Theorem 5.1], that for a.e. s € (0, 1) and n € N the
superlevel set {U, > s} is the subgraph of a function 4§ € H Y(w; [0, M]). (Every
h3 takes values in [0, M] since U, = 0 in wx (M, M + 1).) By the coarea formula
for v, 3*{v,, > s} N 2 = 8*2s N £2, and Young’s inequality we obtain that

1
/ V2W () RN (8% 2y N 2) ds g/ V2W@,) [VT,| dx
0 2
& 1
< TR+ —W(E
:fﬂ(zwm +8nW(vn))dx.

Then, by Fatou’s lemma, we get that

1
f ~/2W(s)<liminf/ ,/1+|Vh;,(x/)|2dx’)ds
O n—0oo w

I
< lim inf/ (8—”|v5,,,|2 + —W(En)) dx < 400 (6.57)
2 2 En

n— oo

and thus liminf, o [ /1 + VA (x")|?dx’ is finite for a.e. s € (0,1). By a
diagonal argument, we can find a subsequence (still denoted by (e,,),) and (sx)x C
(0, 1) with limg_, o sx = O such that for every k € N it holds that

lim 1+ VA ()2 dx’ =liminf/ 1+ VA ()2 dx’ < +oo.
n—>oo w n—>oo w
(6.58)
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Up to a further (not relabeled) subsequence, we may thus assume that /,* converges
in L!(w) to some function A% for every k. Since sup,, G, (i, V) < +00 and thus
W(,) — 0 ae.in £2, we obtain v,, — 0 for a.e. x with x; > A% (x’) and
v, — 1 for a.e. x with x; < h%(x’). (Recall W(t) = 0 & t € {0, 1}.) This
shows that the functions 4% are independent of k, and will be denoted simply by
h € BV (w; [0, M]).

Let us denote by u’,; € GSBD?(£2) the function given by

(6.59)

koon Jua) ifxg < hyf(x),
tn (x) = 0 else

Then (uﬁ)n satisfies the hypothesis of Theorem 3.5 for every k € N. Indeed, Ju’kl C
8*‘th," and H9~! (0* ‘thlk ) is uniformly bounded in n by (6.58). Moreover, (e(uﬁ)),,
is uniformly bounded in L?(§2; M%X¢) by (2.1) and the fact that

sym

G, (tn, Tp) Z (e, + 57) /Q f(e(uy)) dx.

Therefore, Theorem 3.5 implies that, up to a subsequence, uﬁ converges weakly in
GSBDY,(£2) to a function u¥. Furthermore, we infer, arguing exactly as in the proof
of Theorem 2.5 above, that actually uk € GSBDP (£2), that is, the exceptional set
{uF = oo} is empty. By (3.7)(i) this yields uX — u* in L°(£2; RY). By a diagonal
argument we get (up to a further subsequence) that u’,‘, — u* pointwise a.e. as
n — oo forall k € N.

Recalling now the definition of uﬁ in (6.59) and the fact that lim, o |73} —
hilp 1 = 0forall k € N, we deduce that the functions u* are independent of k.
This function will simply be denoted by u € GSBD?(£2) in the following. Note
that u = uyg, and that u = ug on w x (—1, 0) since u,, = up on w x (—1, 0) for
alln € N.

For the proof of (2.13), we can now follow exactly the lines of the lower bound
in [20, Theorem 5.1]. We sketch the main arguments for convenience of the reader.
We first observe that

U (x)
[ rewna= [ ([ sas) sletuno ax
2 2 0

1
> 2s / f(e(uy))dx)ds.
/(; < {Un>s} ! )

This, along with (6.57) and Fatou’s lemma, yields that
1
f lim inf <2s f Fe(un)) dx + cw/2W(s) / J1+ VR 2 dx’) ds
0 "> (U, >5) ®
< liminf Ge, (i, Bp). (6.60)
n—0oo

Thus, the integrand

Iy :=2s / f(e(up)) dx + cwy/2W(s) / JU+ v Py
{§n>s}

w
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is finite for a.e. s € (0, 1). We then take s such that &} € H'(w) for all n, and
consider a subsequence (7,,);, such that lim,,_, I,fm = liminf, . I;. Exactly
as in (6.59), we let uflm be the function given by u,,, if x4 < hflm (x") and by zero
otherwise. Repeating the compactness argument below (6.59), we get uy —— u
a.e.in £2 and hflm — hin LY (w) as m — co. We observe that this can be done for
a.e. s € (0, 1), for a subsequence depending on s.

By fm ~gy fle(up,))dx = Jo f (e, ))dx and the (lower inequality in the)
relaxation result Theorem 2.4 (up to different constants in front of the elastic energy
and surface energy) we obtain

2s / fle@)dx + cw/2W(s) (RN @* 2, N 2) +2HT (I, N 2}))
o

< lim [, =liminf [,

Ny —> 00 n—00
fora.e.s € (0, 1). We obtain (2.13) by integrating the above inequality and by using
(6.56) and (6.60). Indeed, the integral on the left-hand side gives exactly G (u, h)
as cw = (fy 2W(s)ds)~".
Proof of (ii). Let (u, h) with G(u, h) < 4o00. By the construction in the upper
inequality for Theorem 2.4, see Proposition 6.1 and Remark 6.2, we find s, €
C!(w; [0, M]) with h, — h in L'(w) and u, € L>(2;RY) with u,|g, €
Wl*l’(.th; R?) and u,, — u a.e. in £2 such that

G(u, h) = lim H(uy, hy) for H(un, hy) := / | Sle(un))dx +HT 002, N82),
— th

(6.61)
as well as
(tn — u0)lwx(—1.0) = 0 in WP (wx(—1,0); RY). (6.62)

For each (u,, h,), we can use the construction in [20] to find sequences (u’,‘,)k C
WP (2; RY) and (vk), ¢ H'(£2; [0, 1]) with u® = u, onw x (—1,0), uk — u,
in L'(£2; RY), and v& — xg, in L'(£2) such that (cf. (6.61))

k
lim sup/ <(<v,’;)2+nek)f<e(ui>>+cw(W(U") +€—"|w’,§|2)> dx < H(uy. ).
2 Ek 2

k— 00
(6.63)
In particular, we refer to [20, Equation (28)] and mention that the functions (v’,f )k
can be constructed such that v,’§ =lonwx(—1,0)and v,"j =0inwox (M, M+1).
We also point out that for this construction the assumption 7.6'=” — 0 as & — 0
is needed.
By (6.61), (6.63), and a standard diagonal extraction argument we find se-
quences (WX, C (uﬁ)n,k and (v ), C (vﬁ)n,k such that #¥ — u ae. in £2,
LN X, 1n L'(£2), and

k
lim sup/ (((vk)2 + 11 ) £ @R + CW<W(U ) 4 8_"|ka|2)> dx < G(u, h).
k—oo J£2 Ek 2 (6 64)
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By using (6.62) and the fact that uﬁ = uy forall k, n € N, we can modify (F)g as
described at the end of the proof of Proposition 6.1 (see below (6.55)): we find a
sequence (uk)k which satisfies u¥ = upon w x (—1,0), converges to u a.e. in 2,
and (6.64) still holds, that is, lim sup;_, ., G, (u*, v*) < G(u, h). This concludes
the proof. 0O
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A. Auxiliary Results

In this appendix, we prove two technical approximation results employed in Sec-
tions 5 and 6, based on tools from [17].

Proof. Let (v, H) be given as in the statement of the lemma. Clearly, it suf-
fices to prove the following statement: for every n > 0, there exists (v, H") €
LP(£2; RY)xOM(£2) with the regularity and the properties required in the state-
ment of the lemma (in particular, v"7 = ug in a neighborhood V" C £ of 9p$2),
such that, for a universal constant C, one has d(v", v) < Cn (cf. (3.13) for d),
L4(HAH") < Cn, and

Fp 0", H") < Fp (v, H) + Cr.

We start by recalling the main steps of the construction in [17, Theorem 5.5] and
we refer to [17] for details (see also [18, Section 4, first part]). Based on this, we
then explain how to construct (v, H) simultaneously, highlighting particularly
the steps needed for constructing H".

Let ¢ > 0, to be chosen small with respect to . By using the assumptions on
052 given before (2.4), a preliminary step is to find cubes (Q ;) ]]-:1 with pairwise
disjoint closures and hypersurfaces (Fj)jj.: | with the following properties: each
Q; is centered at x; € dy$2 with sidelength g}, dist(Q;, dp§2) > d. > 0 with
limg_.9d, = 0, and

H oy D) + LY@ S, for0:=J_ 0. (AD
j=1
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Moreover, each I'; is a C!-hypersurface with x; € I'; C Q jo
€ —
R v 24T 1°Q)) S o)™ = —HT ov2 N Q).

and [jisaC I_graph with respect to vy (x ) with Lipschitz constant less than £/2.
(We can say that oy §2 N Q is “almost” the intersection of Q ; with the hyperplane
passing through x; with normal vy (x;).) We can also guarantee that

HIW@*HUJ)N2NO)Se,  HITY@HUL)NIQ) =0 (A2)

forall j =1,..., J.Toeach Q;, we associate the following rectangles:

Rj = {x1+Z Vibji+yavj:yi € (=0j.0)), ya € (=3e0j — 891-)},

/

R; = [x1+2 Yibji+yavj:yi € (=0j,0)), ya € (= EQJ’SQ]+I)}

and R j = Rj UR’, where vj = — ;0 (x;) denotes the generalized outer normal,

(bj,l-)gl:]] is an orthonormal basis of (vj)l, and ¢+ > 0 is small with respect to 1.
We remark that I'; C R} and that R; is a small strip adjacent to R}, which is
included in £2 N Q. (We use here the notation ; in place of ; y adopted in [17,
Theorem 5.5].)

After this preliminary part, the approximating function " was constructed in [17,
Theorem 5.5] starting from a given function u through the following three steps:

(i) definition of an extension ¥ € GSBDP (2 + B:(0)) which is obtamed by a
reflection argument /a Nitsche [54] inside R; 7, equal to u in £2\ U R; 7, and
equal to uq elsewhere. This can be done such that, for # and ¢ small, there holds
(see below [17, (5.13)])

/ le(u)|P dx +/ le(@)|P dx +/ le@)|? dx +HI™ (Jz N R) < 1,
(2+B,0)\2
(A.3)
where R := Ujj»zl R; and R := Ujj:l ﬁj N (2 + B;(0)).

(ii) application of Theorem 3.4 on the function %’ := & o (Op.,) ™' + uo — ug o
(05, XO)_1 (for some § sufficiently small) to get approximating functions 'i[fl
with the required regularity which are equal to ug * v, in a neighborhood of
dpS$2 in §2, where 1, is a suitable mollifier. Here, assumption (2.4) is crucial.

(iii) correcting the boundary values by defining u” as u” := ﬁﬁ + ug — ug * Y, for
6 and 1/n small enough.

After having recalled the main steps of the construction in [17, Theorem 5.5], let
us now construct v"7 and H" at the same time, following the lines of the steps (i),
(i), and (iii) above. The main novelty is the analog of step (i) for the approximating
sets, while the approximating functions are constructed in a very similar way. For
this reason, we do not recall more details from [17, Theorem 5.5].

Step (i). Step (i) for v is the same done before for u”, starting from v in place of
u. Hereby, we get a function v € GSBD?(£2 + B;(0)).
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For the construction of H”, we introduce a set HcQ+ B;(0) as follows: in R},
we define a set H ; by a simple reflection of the set H N R; with respect to the
common hyperface between R and R’ Then, we let H:=HU U]J‘=1 (H;N(£2+
B;(0))). Since H has finite perimeter, also H has finite perimeter. By (A.2) we get
HIV@*HNR) < n/3 for ¢ small, where as before R:= U]J'=1 ﬁj N (2 + B:(0)).
‘We choose 8, ¢, and ¢ so small that

Hd‘l(oa,xo(Uj.:] aR;\aR‘,) N Q) < g (A4)

We let H" = 05,xo(ﬁ). Then, we get LY(H"AH) < nfor e, t, and § small

enough. By (A.1), (A.4), and Hd’l(a*ﬁ N ﬁ) < 1n/3 we also have (again take
suitable &, §)

/ @) dHIT < / o) dH . (A.5)
9*H 9* HN(2Udp £2)

Moreover, in view of (2.4) and dist(Q;, dp2) > d. > 0 for all j, H" does not
intersect a suitable neighborhood of 35 §2. Define 7 := T o (05 ) ™' + 1o — ug o
(Os, xo)_1 and observe that the function 7° Xumo coincides with ug in a suitable
neighborhood of dp§2. By (A.5), by the properties recalled for i, see (A.3), and
the fact that v = v x yo, it is elementary to check that

— ~ —/ —
Fri@ xno. H") < Fpie(vxgo, H) + Cn = Fpi (v, H) + Cn. (A6)

Notice that here it is important to take the same & both for 2% and H", that is to
“dilate” the function and the set at the same time.

Step 2. We apply Theorem 3.4 to 7° X(Hmy0, to get approximating functions '17,‘2 with
the required regularity. For n sufficiently large, we obtain d (v° X(HmO> P Xnyo) =
n and

—_ ~, —/ ~
| F i (0 x(grny0. H™) = Fge @ X (ggmpo, HM| < .

Step 3. Similar to item (ii) above, we obtain '{Iﬁ = ug * Yy in a neighborhood of
dp $2. Therefore, it is enough to define v" as v" := 32 + ug — ug * ¥,. Then by
(A.6) and Step 2 we obtain d(v", v) < Cnand Fpy; (0", H") < Fp. (v, H) + Cn
for n sufficiently large. O

We now proceed with the proof of Lemma 6.6 which relies strongly on [17, The-
orem 3.1]. Another main ingredient is the following Korn—Poincaré inequality in
GSBDP? | see [15, Proposition 3].

Proposition A.1. Let Q = (—r,r)¢, Q' = (—r/2,r/2)% u € GSBDP(Q), p €
[1, 00). Then there exist a Borel set o C Q' and an affine function a: R — R4
with e(a) = 0 such that £4(w) < crHA1(J,,) and

1*

f (Ju —a|”)" dx < cr(f’—m*(/ le(u)|? dx> . (A7)
0"\ 0
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If additionally p > 1, then there exists ¢ > 0 (depending on p and d) such
that, for a given mollifier ¢, € CZ°(B/4), ¢r(x) = r~i(x/r), the function
W = Uxonw + axw obeys

d-1
/ le(w @) — e(u) * gr|"dx < ¢ (H L )) / le@)|”dx,  (A.8)
Q//

where Q" = (—r/4,r/4)%. The constant in (A.7) depends only on p and d, the
one in (A.8) also on ¢.

Proof of Lemma 6.6. We recall the definition of the hypercubes
af =+ (kL G = 2kt 2,
OF i= 74 (= 5k, 5k,

where in addition to the notation in (6.18), we have also defined the hypercubes q~é‘ .
In contrast to [17, Theorem 3.1], the cubes Q’Zc have sidelength 10k~ instead of
8k~!. This, however, does not affect the estimates. We point out that at some points
in [17, Theorem 3.1] cubes of the form z 4+ (— 8k~!, 8k~ 1) are used. By a slight
alternation of the argument, however, it suffices to take cubes Qk In particular it
is enough to show the inequality [17, (3.19)] for a cube Q; (of sidelength 10k~ )
in place of 0; j (of sidelength 16k~ 1), which may be done by employing rigidity
properties of affine functions. Let us fix a smooth radial function ¢ with compact
support on the unit ball B1(0) C R4, and define ok (x) = kd<p(kx). We choose
0 < (16¢)~!, where c is the constant in Proposition A.1 (cf. also [17, Lemma 2.12]).
Recall (6.19) and set

N = {z e @kHZ: g* n()M\V # @),

We apply Proposition A.1 forr = 4k~!, forany z € N by taking v as the reference
function and z + (—4k~!, 4k~ 1) as Q therein. (In the following, we may then
use the bigger cube Q’zC in the estimates from above.) Then, there exist w, C (jé‘
and a;: R? — R4 affine with e(a;) = 0 such that by (6.30), (A.7), and Holder’s
inequality it holds that

L w,) £ 4ck "M (I, N QF) < dcok, (A.9a)
v = azll Lo gtre,) < 4k lle@)llLogt)- (A.9b)

Moreover, by (6.30) and (A.8) it holds that

N _ _1\4
[, 6500 = ew s ax e (e wnn @) [ e as

< COq/ le(v)|? dx
Qk

Z

for 0, := UXgk\w, T 4z Xw, and a suitable g > 0 depending on p and d. Let us set

k. l
w = w
zeN]
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We order (arbitrarily) the nodes z € A/, and denote the set by (z j)jes- We define

v in (UzeNk’ ng)\wk’

ﬂ;k = .
aZj n ij\ Ui<j Wz;»

(A.10)

and

Wi = g * @ in (U)F\V. (A.11)
We have that wy is smooth since (U)X\V + supp gy C UZEM éf C U (recall
(6.19)) and v] e\ ¢ € LP(Gh\o*; RY) for any z € N}, by (A.9b).
We define the sets G’f ={zeN: HA (T, N Q’Z‘) < k1/2=d}y and GK = N,;\Gg.
By 5’{ and 5’5, respectively, we denote their “neighbors”, see [17, (3.11)] for the

exact definition. We let
ok . k
-Qg,z ._l |ze5§ 0.

It holds that (cf. [17, (3.8), (3.9), (3.12)])
lim (£9(") + £(2f ) =0. (A.12)
k—o00 ’

At this point, we notice that the set Ey in [17, (3.8)] reduces to oF sirlce in our

situation all nodes are “good” (see (6.30) and [17, (3.2)]) and therefore .Q,’j therein

is empty.

The proof of (3.1a), (3.1d), (3.1b) in [17, Theorem 3.1] may be followed exactly,

with the modifications described just above and the suitable slight change of nota-
tion. More precisely, by [17, equation below (3.22)] we obtain

lwe — U||Lp(((U)k\v)\wk) < Ck™! le)llLr @) (A.13)

for a constant C > 0 depending only on d and p, and [17, equation before (3.26)]
gives

/ Y (lwg — v dx = C(/ (T4 yduh)dx + k712
ok wkUQ;z

/ (1 + ¥ (lvl)) dx +k—P/ le(v)|? dx), (A.14)
U U

where ¥ (f) = t A 1. Combining (A.13)-(A.14), using (A.12), and recalling that
Y is sublinear, we obtain (6.31a). Note that the sequence Ry — 0 can be chosen
independently of v € F since ¥ (Jv]) + |e(v)|? is equiintegrable for v eF.
Moreover, recalling (A.10)-(A.11), we sum [17, (3.34)[ forz = z; € G’§ and [17,
(3.35)]forz =z € (N?]f to obtain

/ le(wy)|? dx §/ le(v)|? dx—l—Ck_q//z/ le(v)|? dx—i—CfN
(LNY U U ok

le(v)|? dx
2.2

for some ¢’ > 0. This along with (A.12) and the equiintegrability of |e(v)|” shows
(6.31b). O
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