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Primordial gravitational waves, i.e., a background of metric perturbations sourced by the quantum
inflationary fluctuations, if measured, could both provide substantial evidence for primordial inflation and
shed light on physics at extremely high energy scales. In this work we focus on their propagating speed.
Using an effective field theory approach we introduce a time-dependent propagating speed cTðtÞ showing
that also small deviations from the general relativity (GR) prediction cTðtÞ ¼ c can lead to testable
consequences. We derive a set of equations that relate the propagating speed and its time dependence to the
inflationary parameters and that generalize the usual slow roll consistency relations. Imposing the new
generalized consistency relations and combining small and large scales data, we derive model-independent
constraints on inflation with nontrivial primordial tensor speed. In particular, we constrain its scale
dependence to be d log cT=d log k ¼ 0.082þ0.047

−0.11 at 68% C.L. while we only derive the lower bound
cT > 0.22c at 95%C.L.We also constrain the tensor-to-scalar ratio at the pivot scale k� ¼ 0.05 Mpc−1 to be
r < 0.0599 at 95% C.L. in agreement with the result provided by the Planck Collaboration. Thanks to a
proper small scale parametrization of the tensor spectrum we derive stringent constraints on the tensor
tilt nT ¼ −0.084þ0.10

−0.047 at 68% C.L. and on its runnings αT ¼ dnT=d log k ¼ 0.0141þ0.0035
−0.021 and βT ¼

dαT=d log k ¼ −0.0061þ0.010
−0.0014 both at 68% C.L. Our results show a remarkable agreement with the standard

slow roll predictions and prove that current data can significantly constrain deviations from GR on the
inflationary energy scales.

DOI: 10.1103/PhysRevD.102.083530

I. INTRODUCTION

Primordial inflation [1], a phase of accelerated expansion
of the early universe, cannot only solve all the hot big bang
theory shortcomings, but it can also make some predictions.
In fact, the quantum inflationary fluctuations can both
explain the scalar perturbations observed in the Universe
and predict a background of metric perturbations, known as
primordial gravitationalwaves (PGWs) [2–9]. The detection
of B modes in the cosmic microwave background (CMB)
polarization originated from the inflationary tensor modes
and, in general, the detection of the PGWs is one of the most
important goals of modern cosmology since they can both
provide substantial evidence for primordial inflation and
shed light on its physical nature [10–13]. At least in the
simplest models, the total amount of PGWs is proportional
to the energy scale at which inflation occurs and a satiable
background of PGWs is expected at sufficiently high
energy scales [4,5,7–9,13–16]. PGWs can therefore provide
information about the theory of gravity at extremely high

energy and consequently they can be used to test general
relativity (GR).
In the recent years the bound on the amplitude of

PGWs from CMB data, parametrized through the so-called
tensor-to-scalar ratio r, has witnessed significant improve-
ment. An upper limit r0.002 < 0.056 at 95% C.L. has been
provided in the last data release of the Planck Collaboration
[17] combining Planck and BICEP2/Keck array (BK15)
data [18]. An improvement of an order of magnitude with
respect to the first constraints from the BICEP experiment
of r < 0.72 at 95% C.L. [19]. In the upcoming decade, a
new generation of CMB experiments (e.g., BICEP3 [20],
CLASS [21], SPT-3G [22], Advanced ACTPol [23],
LBIRD [24], and CMB-S4 [25]) is expected to bring the
sensitivity to the amplitude of tensor perturbations down to
r ∼ 0.01–0.001 improving the current Planck upper limit
around an order of magnitude and possibly leading to the
first detection of nonzero tensor amplitude. However, these
bounds on the tensor amplitude are derived assuming
the usual consistency relation between the tensor spectral
index nT and the tensor-to-scalar ratio, namely nT ¼ −r=8,
basically leading to an almost flat tensor spectrum (see
also [26,27]). In practice the consistency relation between r
and nT is violated in many (nonstandard) models of
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inflation1 and in most of them it is no more possible to fix
the energy scale of inflation from a direct measurement of
the tensor modes amplitude. Moreover, when the infla-
tionary consistency relation is relaxed (i.e., nT ≠ −r=8),
Planck data only weakly constrain the tensor tilt nT to be
−0.55 < nT < 2.54 [17]. Combining CMB data with
ground-based gravitational waves interferometers data,
the upper bound on the tensor tilt is further improved to
nT < 0.52 [17].
In fact, along with B-modes polarization, primordial

gravitational waves may also imprint the so-called stochas-
tic gravitational waves background, the analogous CMB
for gravitational waves [35]. While a direct detection of
the stochastic background has not yet been provided, the
first and second observing runs of the LIGO/VIRGO
Collaboration placed an upper bound on its amplitude
for the scales kLV ∈ ð1.3 − 5.5Þ × 1016 Mpc−1, i.e.,

ΩGWðkLVÞ ≤ 1.7 × 10−7; ð1Þ

at 95% C.L. [36,37]. Assuming that the power-law
approximation for primordial spectra is valid from these
ultrahigh k all the way up to the CMB scales,2 the LIGO/
VIRGO constraint on the amplitude of the stochastic
background can be translated into constraints on the
primordial tensor modes [17,33,39–41].
In fact, the fraction of the energy density of the universe

due to PGWs at the present time and at a given scale
k ¼ 2πf is [17,33,39,40]

ΩGWðkÞ ≐
1

ρc

dρGW
d log k

¼ PTðkÞ
24zeq

; ð2Þ

where PT is the primordial tensor spectrum at the
scale k and zeq ∼ 3400 is the redshift at the matter-radiation
equivalence [17].
For a power-law tensor spectrum, taking PTðk�Þ ¼

rPSðk�Þ where PSðk�Þ is the amplitude of scalar perturba-
tion at k� ¼ 0.05 Mpc−1, one can translate an upper bound
on the stochastic background ΩGWðkÞ into a constraint on
the tensor tilt:

nT <
lnð24zeqΩGWðkÞ

rPSðk�Þ Þ
lnð kk�Þ

≲ 0.5; ð3Þ

where in the last inequality we have evaluated the expres-
sion at k ¼ kLV using the LIGO/VIRGO limit (1) and
taking PSðk�Þ ¼ 2.1 × 10−9 and r ∼ 10−2. The next gen-
eration of gravitational waves probes (such as LISA [42]
and Einstein Telescope [43]) are expected to bring this
upper limit down by a factor of ∼2 (see Fig. 1).3 If the
tensor tilt is assumed to be scale independent, these bounds
clearly refer to the CMB scales nTðk�Þ≡ nTðkÞ; ∀ k.
However, due to the huge difference in the scales proved

by CMB and GW data, nonlinearities may significantly
affect the shape of the primordial spectrum possibly
breaking the power-law assumption [45–47]. When non-
linear corrections are considered, the higher-order terms in
the primordial spectrum (i.e., the runnings [48–50]), even if
tiny on CMB scales, may lead to non-negligible corrections
on smaller scales where the amplitude of PGWs is proved
by gravitational detectors and cannot be ignored when
constraints are derived from such data. In fact, high-order
corrections may nontrivially connect the constraints on
the CMB scales with the constraints on the astrophysical

FIG. 1. Small-scale constraints in the plane (r, nT) derived by
ΩGWðkÞ through Eq. (3) or equivalently its scale-dependent
generalization (60). The red region is excluded at 95% C.L. by
the LIGO/VIRGO limit (1) (red solid line). The green regions
represent the sensitivity of future GWs experiment, such as LISA
[42] (green dashed line) and ET [43] (green solid line). If the tensor
tilt is assumed to be scale independent, all these constraints refer
also to its value on the CMB scale: nTðk�Þ. Instead in the scale-
dependent parametrization Eq. (59) they refer to different scales:
nTðkETÞ≲ nTðkLISAÞ < nTðkLVÞ, as discussed in Sec. IV B.

1For example, one can consider a mechanism of sourced
gravitational waves form a rolling spectator axion coupled with
gauge fields during inflation [28–32], or even more elaborated
scenarios [33,34].

2It is worth noting that the Planck Collaboration has shown
that the assumption of a pure power law for the primordial
spectrum is valid at least between the scales proved by Planck
data, i.e., 0.005 Mpc−1 ≲ k≲ 0.2 Mpc−1 where primordial per-
turbations are linear. We also note that recently it has been shown
that bounds on the stochastic background can be derived on CMB
scales from CMB data alone assuming that gravitational waves
behave as an effective neutrino species [38], i.e., that PGWs
effectively contribute to the total number of relativistic species at
recombination [38,39].

3We assumed LISA to have a sensitivity to the stochastic
background ΩGWðkLisaÞ ≃ 1 × 10−12 on scales kLisa ≈ 1 ×
1013 Mpc−1 [40] while for the Einstein Telescope we assumed
a sensitivity of ΩGWðkETÞ ≃ 3 × 10−13 on scales kET ≈ 5 ×
1015 Mpc−1 [44].
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scales, i.e., nTðkÞ ≠ nTðk�Þ, so that, depending on the
model, an improvement in the constraints on astrophysical
scales may or may not lead to an improvement in the
constraints on the CMB scales.
The increased precision in the constraints on the pri-

mordial tensor modes from the current (and future) small
and large scale experiments opens up the possibility of
probing the physics of inflation with primordial gravita-
tional waves, testing deviations from the standard slow roll
predictions as a hint for new physics. It is therefore timely
to investigate which constraints one can obtain from current
CMB and GW data on inflationary models that can lead
to deviations from the standard inflationary consistency
relations.
In this paper we focus on models with a nontrivial

propagating speed of primordial gravitational waves. In GR
the propagating speed of the gravitational waves, cT, is the
same as the speed of light c. Thus, working in the natural
units, one can set cT ¼ c ¼ ℏ ¼ 1. However, this cannot be
true in more elaborated modified gravity theories such as
the Horndeski theory of gravity [51–56], the Gauss-Bonnet
gravity [57–63], and also the low-energy effective string
theory with higher-order corrections [64–75]. Even if the
propagating speed of the astrophysics gravitational waves
is measured from the ground-based interferometers and it is
in good agreement with the speed of light [76–78] (see also
[79] for forecasts at high redshift), the propagating speed of
the cosmological primordial gravitational waves, albeit
previously discussed in literature [80–88], is currently
essentially unconstrained. This is because the lack of a
direct detection of the tensor spectrum makes it difficult to
constrain the PGWs propagation with high precision.
Nevertheless, any deviation from a constant cT ¼ 1 would
imply new physics beyond GR, so constraining the
propagating speed of PGWs and its time dependence
means to test gravity literally at the earliest moments of
time when inflation takes place and the primordial tensor
modes are generated by the quantum inflationary fluctua-
tions. Using an effective field theory approach, we intro-
duce a generic time-dependent propagating speed cTðtÞ
and, under the assumption of slow roll inflation, we show
that also small deviations from the GR condition cT ¼ 1
can leave testable consequences in the inflationary param-
eters. In particular, such models may lead to blue tilted
tensor spectrum and affect the small scale behavior of
tensor anisotropies. In the following, we derive a set of
equations that relate the propagating speed to the infla-
tionary parameters and that generalize the usual slow roll
consistency relations that are, in fact, recovered when the
GR prescription cT ¼ 1 is restored. Imposing the new
generalized consistency relations and combining the CMB
data together with the small scales data on the stochastic
background of gravitational waves, we are able to provide
model-independent constraints on the inflationary param-
eters. The paper is organized as follows: in Sec. II we

review the theory of the tensor inflationary fluctuations
allowing the possibility to have a nontrivial time-dependent
propagating speed cTðtÞ during the inflation. In Sec. III we
investigate the consequences of the nontrivial propagating
speed on the inflationary parameters. We derive a set of
equations that generalize the usual slow roll consistency
relations and that relate cTðtÞ to the tensor spectral
parameters. The modified consistency relations provide a
powerful method to constrain the propagating speed and its
time dependence allowing us to test gravity on the infla-
tionary energy scales. In Sec. IV, imposing the generalized
consistency relations, we first derive some constraints using
the most recent CMB data. Then we derive other con-
straints from small scale experiments on gravitational
waves. Finally we combine the CMB and the small scale
constraints improving the final results. In Sec. V we present
our conclusions.

II. THEORY

In this section we briefly review the theory of the
primordial tensor perturbations during inflation [9,89–94]
introducing a nontrivial propagating speed cTðtÞ. We per-
form an approach based on the effective field theory of
inflation (EFT): the action for the single field inflation in the
unitary gauge is [94–97]

S ¼ M2
p

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
R − c1ðtÞ − c2ðtÞg00

−
�
1 −

1

c2TðtÞ
�
ðδKμνδKμν − δK2Þ

�
; ð4Þ

where M2
p ¼ 1

8πG, c1ðtÞ ¼ 2ð _H þ 3H2Þ, c2ðtÞ ¼ −2 _H, and
Kμν is the extrinsic curvature of the spatial slices. Here a dot
denotes the derivative with respect to the cosmic time
_x≡ dx=dt. Note that in the standard slow roll case
(cT ¼ 1) the part of the action involving the extrinsic
curvature vanishes, and we recover the standard action in
the unitary gauge. Moreover a nontrivial propagating speed
cTðtÞ does not affect the spectrum of the scalar perturbation.
Therefore we can consider only the tensor perturbations
whose quadratic action reads

Sð2Þγ ¼ M2
p

8

Z
dτ d3x

a2

c2TðtÞ
��

dγij
dτ

�
2

− c2TðtÞð∇⃗γijÞ2
�
; ð5Þ

where aðtÞ is the scale factor, dτ ¼ dt=aðtÞ is the conformal
time, and γij is transverse and traceless: γii ¼ 0 and
∂iγij ¼ 0. We expand γij in the Fourier series:

γijðτ;xÞ ¼
Z

d3k
ð2πÞ3 e

−ik·x
X

p¼þ;×

γpðτ; kÞaðpÞðkÞλðpÞij ðkÞ

þ H:c:; ð6Þ
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where the sum is over the polarization statesp ¼ ðþ;×Þ and
the polarization tensor λpijðkÞ satisfies the usual conditions

kjλ
ðpÞ
ij ðkÞ ¼ 0; ð7Þ

λðpÞii ðkÞ ¼ 0; ð8Þ

λðpÞij ðkÞλ�ðp0Þ
ij ðkÞ ¼ δpp0 ; ð9Þ

λ�ðpÞij ðkÞ ¼ λ�ðpÞij ð−kÞ; ð10Þ

as well as the creation and annihilation operators satisfy

½aðpÞðkÞ; a†ðp0Þðk0Þ� ¼ δpp0δ3ðk − k0Þ: ð11Þ

It is trivial to check that, defining the fields

uðτ; kÞ ≐ γðpÞðτ; kÞzT; zT ≐
Mp

2

�
a

cTðtÞ
�
; ð12Þ

the equation of motion reads

d2u
dτ2

þ
�
c2Tk

2 −
1

zT

d2zT
dτ2

�
u ¼ 0: ð13Þ

In what follows we work under the following conditions.
First of all we fix a background slow roll dynamics requiring
that j _Hj ≪ H2. So we define the slow roll parameters

ϵ1 ≐ −
_H
H2

; ð14Þ

ϵi>1 ≐
d log ϵi−1
d log k

≃
_ϵi
Hϵi

; ð15Þ

with 0 < ϵ1 ≪ 1 in such away that the null energy condition
(NEC) is preserved and jϵi>1j ≪ 1. Moreover, we also
assume the variation of the propagating speed per Hubble
time to be small, defining the similar parameters

ϵT1 ≐
_cTðtÞ
HcTðtÞ

; ð16Þ

ϵTi>1 ≐
d log ϵTi−1
d log k

≃
_ϵTi−1
HϵTi−1

; ð17Þ

with jϵT1 j ≪ 1 and jϵTi>1j ≪ 1. In this way one can show that

1

zT

d2zT
dτ2

≃
1

a
d2a
dτ2

≃
2

τ2
ð18Þ

at least corrections of order ϵ (see Appendix A for further
details).Moreover, it is also easy to check that one can define
a new wave vector k̃ ≐ cTðtÞk that can be regarded as

constant in the conformal time since its derivative is of order
ϵT1 . At the end of the game, unless corrections of order ϵ, we
can write our equation as

d2u
dτ2

þ
�
k̃2 −

2

τ2

�
u ¼ 0 ð19Þ

with the solution (obtained fixing the Bunch-Davies
vacuum)

uðτ; k̃Þ ¼ e−ik̃τffiffiffiffiffi
2k̃

p
�
1 −

i

k̃τ

�
: ð20Þ

A more detailed derivation of this solution is given in
Appendix A. Interestingly, this is exactly the standard
solution with k → k̃ ≐ cTðtÞk; therefore, in the presence
of a nontrivial propagating speed cT, the primordial tensor
and scalar spectra at a given scale k are written as [9,86,97]

PTðkÞ ¼
2

M2
pπ

2

H2

cT

�
cTk
aH

�
−2ϵ1−ϵT1

; ð21Þ

PSðkÞ ¼
1

8π2M2
p

H2

ϵ1

�
k
aH

�
−2ϵ1−ϵ2

: ð22Þ

III. GENERALIZED CONSISTENCY RELATIONS

In this section we are going to derive some consistency
relations among the inflationary parameters and the propa-
gating speed cT. It is well-known that the standard slow roll
paradigm of inflation predicts a set of consistency relations
that relate the scalar and tensor parameters [48]. As we are
going to see, the effects of a nontrivial propagating speed
during inflation are encoded in the inflationary parameters
and translated into different consistency relations with
respect to the standard case. Future detection of the tensor
spectrum and a consequent test of these consistency
relations can therefore be used to constrain the propagating
speed cT testing possible deviations from GR on the
inflationary energy scales.
Because of the propagating speed cT, the scalar and

tensor perturbations now exit the horizon at different scales.
In fact, the tensor perturbation will cross the horizon at
cTk ¼ aH while the scalar perturbation will cross the
horizon4 at k ¼ aH. Deriving the primordial spectra, we
can compute the scalar and tensor tilts:

nS − 1 ≐
d logPS

d log k

����
k¼k�

¼ −2ϵ1 − ϵ2 þOðϵ2Þ; ð23Þ

nT ≐
d logPT

d log k

����
k¼k�

¼ −2ϵ1 − ϵT1 þOðϵ2Þ; ð24Þ

4We are considering the case of a scalar speed cS ¼ 1.

WILLIAM GIARÈ and FABRIZIO RENZI PHYS. REV. D 102, 083530 (2020)

083530-4



where k� is the pivot scale and the expressions above hold
both for k� ¼ aH and for k� ¼ aH

cT
at least of corrections of

order Oðϵ2Þ and therefore negligible.
As concerns the scalar and tensor amplitudes, also in this

case they do not depend drastically on the pivot scale, in
fact,

PTjk�¼aH
cT
¼ 2

M2
pπ

2

H2

cT
≃

2H2

M2
pπ

2
ðcTÞnT−1 ¼ PTjk�¼aH; ð25Þ

PSjk�¼aH
cT
¼ ðcTÞ1−nS

8π2M2
p

H2

ϵ1
≃

1

8π2M2
p

H2

ϵ1
¼ PSjk�¼aH; ð26Þ

and so the tensor-to-scalar ratio r ≐ PTðk�Þ
PSðk�Þ,

rjk�¼aH
cT
¼ 16ϵ1ðcTÞnS−2 ≃

16ϵ1
cT

≃ 16ϵ1ðcTÞnT−1 ¼ rjk�¼aH:

ð27Þ

In the equations above we have used the fact that we
measure nS ≃ 0.96 [17] and we expect jnTj ≪ 1. Note also
that we are not interested in a large deviation from the
standard GR prescription cT=c ¼ 1 and that the same
results should be obtained computing the scalar and tensor
spectra at their respective (different) exit scales. Since we
proved that the choice of the pivot scale is not crucial, in
this work we will adopt the conventional pivot scale k� ¼
aH ¼ 0.05 Mpc−1 unless specified differently.
A first obvious consequence of a nontrivial propagating

speed is that the amplitude of the tensor spectrum does not
fix anymore the energy scale of inflation directly. In fact, in
the standard case PT ∝ H2 ∝ ρinf while from Eq. (25) we
see that PT ∝ H2

cT
.

A more interesting effect of a (slightly) time-dependent
propagating speed is that the expression for the tensor tilt
nT acquires a term ϵT1 with respect to the standard case. The
sign of nT now depends on the parameter ϵT1 that quantifies
the variation of cT in a Hubble time. In fact, if we consider
Eq. (24), we see that5 if during the inflation the propagating
speed increases or remains constant in time (ϵT1 ≥ 0), the
tensor tilt is red (nT < 0). If instead the propagating speed
reduces in time (ϵT1 < 0), the sign of nT depends on the
magnitude of ϵT1 . For −2ϵ1 < ϵT1 < 0 the dismissing is
small enough to ensure a negative tensor tilt while for
ϵT1 < −2ϵ1 the dismissing is translated into a blue tensor tilt
nT > 0. As we will discuss in Sec. IV, a positive tensor tilt
would amplify the PGWs production on small scales, and
this is why we can use small scale experiments (such as
LIGO and VIRGO) to constrain the propagating speed.
Moreover, as one can see from (24) and (27), also the

usual consistency relation r ¼ −8nT is violated in the

presence of a nontrivial propagating speed. In practice,
however, there are many ways to violate the consistency
relation between r and nT that do not imply a deviation
form GR. This means that, if a violation of the consistency
relation r ¼ −8nT is observed, we need a way to recognize
if such a violation is due to a nontrivial tensor propagating
speed during inflation or not.
As we are going to show we can derive a set of

consistency relations among the inflationary parameters
and the propagating speed cTðtÞ. For simplicity we suppose
that, during inflation, cT increases or decreases linearly
with time, so that

c̈TðtÞ ≃ 0: ð28Þ

In other words, we take into account only the linear term in
the Taylor expansion of cTðtÞ. This (reasonable) approxi-
mation is not crucial for our results, but simplifies the
relations we are going to derive (we discuss scenarios
beyond the assumption of linear time evolution for the
tensor propagating speed in Appendix B).
To relate the propagating speed cT to the inflationary

parameters we introduce the scalar and tensor runnings

αS ≐
dnS

d log k

����
k¼k�

¼ −2ϵ1ϵ2 − ϵ2ϵ3; ð29Þ

αT ≐
dnT

d log k

����
k¼k�

¼ −2ϵ1ϵ2 − ϵT1ϵ
T
2 ð30Þ

because of (28), ϵT2 can be calculated from its definition
(17)

ϵT2 ≐
_ϵT1
HϵT1

¼ 1

HϵT1

d
dt

_cT
HcT

¼ 1

HϵT1

�
ϵ1

_cT
cT

−
_c2T
Hc2T

�
¼ ϵ1 − ϵT1

ð31Þ

that gives for αT

αT ¼ −2ϵ1ϵ2 − ϵT1 ðϵ1 − ϵT1 Þ: ð32Þ

Equations (23), (24), (27), (29), and (32) can be reversed
together to obtain

ϵ1 ¼
1

16
ðrcTÞ; ð33Þ

ϵT1 ¼ −nT −
1

8
ðrcTÞ; ð34Þ

ϵ2 ¼ 1 − nS −
1

8
ðrcTÞ; ð35Þ

ϵ3 ¼
αS

nS − 1þ 1=8ðrcTÞ
−
1

8
ðrcTÞ: ð36Þ

5Remember that ϵ1 > 0 to ensure the null energy condition.
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Using the above equations in αT one obtains

αT ¼ n2T þ
5

128
ðrcTÞ2 þ

1

8
ðrcTÞ

�
ðnS − 1Þ þ 5

2
nT

�
: ð37Þ

Equation (37) is a consistency relation between nS, nT, αT
and cT that generalizes the usual slow roll relation. Note
that we can obtain as many relations as we want; for
example, considering also the running of running βT

βT ≐
dαT
d logk

����
k¼k�

¼−2ϵ1ϵ22−2ϵ1ϵ2ϵ3− ϵT1 ½ðϵ1− ϵT1 Þ2þ ϵ1ϵ2− ϵT1 ðϵ1− ϵT1 Þ�;
ð38Þ

it is easy to see that, using (33), (34), (35), (36) and solving
Eq. (37) for cT, one obtains a consistency relation βT ¼
βTðnS;αS; r; nT; αTÞ. This can be trivial generalized to all
orders following the procedure described in [48] for the
standard case. It is, however, more interesting to study
some limits of Eq. (37).

A. The limit ϵT1 → 0 (i.e., cT = const)

The limit ϵT1 ¼ 0 describes a constant propagating speed
not necessarily equal to the speed of light. Because of (34)
we have

cT ¼ −8nT
r

: ð39Þ
Using Eq. (39) in the consistency relations (37) we obtain

αT ¼ n2T − nTðnS − 1Þ: ð40Þ
That is the same consistency relation among nT, αT, and nS
than in the standard slow roll case [48]. Similarly the
equation for βT

βT ¼ nTðαT − αSÞ þ
α2T
nT

ð41Þ

is the same as the standard slow roll. This mean that if
during inflation cT ¼ const ≠ 1, the consistency relation
between r and nT will be violated but all the other
consistency relations will be preserved. If together with
ϵT1 ¼ 0 we fix also cT ¼ 1 (recovering the standard GR
prescriptions) the relation r ¼ −8nT as well as all the other
standard slow roll results will be restored.

B. Limit cT → 1 at the end of inflation

For completeness we briefly discuss another interesting
case in which at the horizon crossing the propagating speed
reaches the value cT ≃ 1 even with a nonvanishing ϵT1 ≠ 0.6

In this case we have to simply put cT ¼ 1 in Eq. (37)
obtaining

αT ¼ n2T þ
5

128
r2 þ r

8

�
ðnS − 1Þ þ 5

2
nT

�
ð42Þ

that is different from the standard slow roll relation (40). In
fact, being ϵT1 ≠ 0 because of Eq. (34) also nT ≠ −r

8
. This

means that a time variation of cT can leave a trace even if at
the horizon exit the usual GR condition cT ¼ c ¼ 1 is
restored. We conclude that, together with the propagating
speed cT, another interesting parameter to analyze is ϵT1 .

IV. CONSTRAINTS

So far we have derived a set of consistency relations that
generalize the standard slow roll relations introducing a
nontrivial tensor propagating speed cTðtÞ. We have shown
that the propagating speed can be related to the inflationary
parameters which means that they can be used to constrain
the propagating speed itself and to test possible deviations
from GR at the high energy scales of inflation.
In this section, we discuss the constraints coming from

present cosmological data and imposing the generalized
consistency relations that we have derived in Sec. III. The
theoretical model is calculated using the latest version of
the Boltzmann code CAMB [98,99], and we use the PYTHON

sampler Cobaya [100] to extract cosmological constraints.
The posteriors of our parameter space have been explored
using the Monte Carlo Markov chain (MCMC) sampler
developed for CosmoMC [101,102] and tailored for param-
eter spaces with a speed hierarchy which also implements
the “fast dragging” procedure described in [103]. The
convergence of the chains obtained with this procedure
is tested using the Gelman-Rubin criterion [104], and we
choose as a threshold for chain convergence R − 1≲ 0.01.
To compare current data with our theoretical model, we
employ Planck’s 2018 temperature and polarization like-
lihood which also includes low multipole data (l < 30)
[105] combined with the lensing likelihood of Planck’s
2018 data release based on temperature and polarization
lensing reconstruction [106] and the CMB power spectrum
likelihood of Bicep2/Keck Array X (BK15) [18]. We report
the results coming from our MCMC sampling in Sec. IVA.
In Sec. IV B we will instead focus on the constraints

from small scale experiments (namely the LIGO/VIRGO
upper limit on the stochastic gravitation waves background
that we denote with LV). In fact, for a blue tilted spectrum,
the stochastic background of primordial gravitational
waves ΩGW can be strongly amplified on small scales,
and we can use the small scales experiment data on the
stochastic background to constrain the propagating speed
and its time variation. Finally in Sec. IV C, we combine the
CMB data and the LIGO/VIRGO bound on the stochastic
background to improve the final constraints on the infla-
tionary parameters.

6This is possible if, for example, the initial propagating speed
was smaller than the speed of light and, at some point, it starts
constantly increasing (ϵT1 > 0) to reach the value cT ≃ 1 at the
horizon exit.
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A. Constraints from CMB

In this subsection we present the results of our MCMC
analysis. Let us start by noting that the Boltzmann
integrator CAMB [98,99] employs the standard power-law
parametrization of the primordial scalar and tensor power
spectra, i.e.,

PCAMB
S ðkÞ ¼ ACAMB

S

�
k

k⋆;S

�
nS−1þ1

2
αS logðk=k⋆;SÞ

; ð43Þ

PCAMB
T ðkÞ ¼ ACAMB

T

�
k

k⋆;T

�
nTþ1

2
αT logðk=k⋆;TÞ

; ð44Þ

where k⋆;T and k⋆;S are the tensor and scalar pivot scale
and the tensor-to-scalar ratio is defined as rCAMB ¼
PCAMB

T ðk⋆;TÞ=PCAMB
S ðk⋆;SÞ. While the inclusion of a non-

trivial tensor propagating speed leaves unchanged the
scalar spectrum, it impacts the tensor spectrum by rescaling
its amplitude of a factor cnT−1T . We therefore modify CAMB
in order to include this correction by rescaling rCAMB

accordingly (i.e., r ¼ r0.05 ¼ rCAMBcnT−1T ) and calculating
the amplitude of the spectra at the same pivot scale
k⋆;T ¼ k⋆;S ¼ aH ¼ 0.05 Mpc−1. This choice ensures that
r is calculated to a well-defined scale and allows our
constraints to be directly compared with the results reported
by the Planck Collaboration [17,107]. In our MCMC
analysis we consider the six parameters of the standard
ΛCDM model, i.e., the baryon ωb ≐ Ωbh2 and cold dark
matter ωc ≐ Ωch2 energy densities, the angular size of the
horizon at the last scattering surface θMC, the optical depth
τ, the amplitude of primordial scalar perturbation
logð1010ASÞ, and the scalar spectral index nS. As discussed
in the Introduction, the inclusion of the tensor and scalar
runnings may significantly enhance the constraints on the
parameters describing tensor spectra from current data.
Therefore, along with the six standard ΛCDM parameters,
we also include in our analysis the scalar running αS,
the tensor-to-scalar ratio r, the tensor spectral index nT, the
tensor running αT, the propagating speed cT, and the
parameter ϵT1 that quantifies its time variation per Hubble
time. Instead of directly sampling these parameters (as it is
commonly done; see, e.g., [17,107]), we choose to do the
MCMC sampling using, along with the standard ΛCDM
parameters, the following four fcT; 16ϵ1; ϵT1 ; ϵ3g and to
derive the value of the tensor and scalar runnings from the
generalized consistency relations introduced in Sec. III.
The flat priors7 on our parameter space are reported in
Table I.
In Table II we show the constraints on the parameters

from the combination of Planck and Biceps/Keck data

while in Fig. 2 we report their 68% and 95% contour plots.
A first aspect we would like to stress is that our results
confirm that a nontrivial time-dependent propagating speed
does not alter the constraints on the scalar parameters from
the Planck data (which assumes cT ¼ 1) as expected from
our theoretical discussion.
As concerns the inflationary tensor parameters, the tensor

propagating speed cT is only weakly constrained with the
95%C.L. contours showing a preference for cT ≳ 0.18. This
is expected since the CMBdata only constrain the amplitude
of tensor perturbations AT ¼ rAS ¼ 16ϵ1ASc

nT−1
T . Then

Planck data are only able to bound the product ϵ1=cT,
and since they prefer a tensor amplitude consistent with
zero, this leads to a weakly constrained propagating speed
of tensor perturbations; only an upper bound can be placed
on the tensor-to-scalar ratio r < 0.096 at 95% C.L.

TABLE I. List of the parameters used in the MCMC sampling
and their external flat priors assumed in Sec. IVA. In Sec. IV C
we sampled the same parameters with the same external priors
except for ϵT1 on which we also impose a half-Gaussian prior to
include LIGO/VIRGO data on the stochastic background [36,37].

Parameter Prior

Ωbh2 [0.005, 0.1]
Ωch2 [0.001, 0.99]
100θMC [0.5, 10]
τ [0.01, 0.8]
logð1010ASÞ 1.61, 3.91]
nS [0.8, 1.2]
cT [0.01, 1]
16ϵ1 [0, 1]
ϵT1 ½−0.5; 0.5�
ϵ3 ½−0.5; 1�

TABLE II. Constraints on parameters are at 1σ level (68% C.L.)
while upper bounds are at 2σ (95% C.L.) for the full Planck 2018
likelihood [105,106] and Biceps/Keck 2015 B mode [18] like-
lihood with and without the inclusion of the prior on ϵT1 coming
from LIGO/VIRGO data [108].

P18þ BK15 P18þ BK15þ LV

Ωbh2 0.02242� 0.00015 0.02241� 0.00015
Ωch2 0.1200� 0.0012 0.1200� 0.0012
τ 0.0566� 0.0076 0.0564� 0.0079
lnð1010ASÞ 3.051� 0.015 3.050� 0.016
r <0.0961 <0.0599
nS 0.9645� 0.0044 0.9646� 0.0044
αS −0.0067� 0.0067 −0.0069� 0.0069
nT 0.20þ0.27

−0.13 −0.084þ0.10
−0.047

αT 0.087þ0.049
−0.098 0.0141þ0.0035

−0.021
cT >0.178 >0.219
ϵT1 <0.203 0.082þ0.047

−0.11
χ2 3530 3530

7Note that in our MCMC sampling we are considering only the
parameter space of subluminal velocities. We discuss super-
luminal velocities in Appendix C.
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Nevertheless we can derive the upper bound ϵT1 < 0.203 at
95% C.L. on the parameter that quantifies the time depend-
ence of cT. The fact that the region ϵT1 < 0 is essentially
unconstrained from the Planck data is translated into the fact
that the tensor tilt can assume large positive values as well as
the tensor running αT.
We note that the bound we derive on the tensor-to-scalar

ratio is ∼60% worse with respect to the results obtained
from a combination of Planck and Biceps data without
considering the runnings of the tensor spectrum.
Conversely, the bound on the tensor spectral index nT is
significantly improved. In particular, −0.23 ≤ nT ≤ 0.54 at
95% C.L. showing an improvement of a factor of 2 in the
negative tail and a factor of 5 improvement in the positive
tail in place of the Planck results of −0.55 ≤ nT ≤ 2.54.
This situation is again a direct consequence of consider-
ing a nonvanishing tensor running and imposing the

generalized consistency relation (37). When αT is nonzero,
the tensor spectrum acquires a term ∼αT log2 k leading to a
growth on small scales (high k). The freedom in nT is so
partially transferred to αT that it results to be almost the
same order of magnitude as nT. Moreover, from Eq. (38)
one can also derive a constraint on the second-order tensor
running βT that we found to be βT ¼ 0.060þ0.046

−0.093 at
68% C.L. (i.e., again of almost the same order as nT and
αT).

8 This shows that the constraints from the CMB data can
also be sensitive to the higher-order terms in the primordial
spectra, enforcing the importance of a proper parametriza-
tion to correctly describe their small scale behavior. Indeed,
such large positive values of nT (and its runnings) would

FIG. 2. Marginalized 2D and 1D posteriors for the combination of Planck 2018 [105,106] and Biceps/Keck 2015 [18] data for the
parameters of the tensor spectrum and their combination with the LIGO/VIRGO upper limit on the stochastic background amplitude
[36,37] (P18þ BK15þ LV).

8These results are consistent with the relation βT≃2n3T≃2α3=2T ,
discussed in Sec. IV B.
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amplify the production of PGWs at small scales and
possibly lead to an amplitude ΩGW higher than the current
LIGO/VIRGO bound at kLV. As we describe in detail in the
following section, the LIGO/VIRGO constraints on the
stochastic background can be used to put tight constraints
on the small scale behavior of the tensor spectrum.
For completeness we also report the bound on the

standard slow roll parameters that can be derived accord-
ingly to the consistency relation derived in Sec. III. We
obtain the following constraints from the combination
P18þ BK15:

ϵ1 < 0.0046 ð95% C:L:Þ; ð45Þ

ϵ2 ¼ 0.0334� 0.0046 ð68% C:L:Þ; ð46Þ

ϵ3 ¼ 0.22� 0.23 ð68% C:L:Þ; ð47Þ

in very good agreement with the results of the Planck
Collaboration [107]. We show the 2D marginalized contour
plots and 1D marginalized posterior distributions of these
parameters in Fig. 3.

B. Constraints from small scale experiments on
gravitational waves

In this subsection, we are going to derive constraints on
the inflationary parameters discussed in this work from
small scales data. If during inflation the propagating speed
of gravitational waves decreases enough (i.e., if ϵT1 is
negative enough), the tensor tilt can become blue amplify-
ing the primordial gravitational waves production on small
scales. As we stated in the Introduction, small scale experi-
ments on gravitational waves, such as LIGO/VIRGO and, in
the future, LISA and Einstein Telescope (ET), are sensitive
to the stochastic background, ΩGW, and can be used to
improve the constraints on the inflationary parameters. In
particular, Eq. (3) provides a rough estimation of the upper
bounds we can set on the blue tensor tilt from small scale
experiments; see Fig. 1. However, Eq. (3) has been derived
assuming that the power-law expansion holds from the
CMB scales all the way up to the small scales probed by the
ground-based interferometers that are separated from the
CMB scales by a factor of 1018 in k. We have already said
that on such small scales the higher-order corrections due to
the tensor runnings can be non-negligible and that should be

FIG. 3. Marginalized 2D and 1D posteriors for the combination of Planck 2018 [105,106] and Biceps/Keck 2015 [18] data
(P18þ BK15) for the first and second-order slow parameters and their combination with the LIGO/VIRGO upper limit on the stochastic
background amplitude [36,37] (P18þ BK15þ LV).
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included in the analysis [31]. Therefore in this subsection
we generalize the parametrization of the primordial tensor
spectrum to the following expansion [48,50]:

PTðkÞ ¼ rAS

�
k
k�

�
nTðk�Þþ

P
∞
n¼1

αTn ðk�Þ
ðnþ1Þ!½logð k

k�Þ�n
: ð48Þ

We recall that the amplitude of the primordial scalar
spectrum is measured to be As ≡ Psðk�Þ ≃ 2 × 10−9 [17].
Here we adopt the notation9

αTnðk�Þ ≐
�

d
d log k

�
n
nTðkÞjk¼k� ð49Þ

for the n-order tensor running.10

In order to estimate the higher-order contributions given
by the sum (48), we work under the following assumption:
we consider the tensor parameters dominated by the time
variation of the propagation speed through the parameter ϵT1
in such a way that

nT ¼ −2ϵ1 − ϵT1 ≃ −ϵT1 ; ð50Þ

and consequently because of Eq. (31)

αTn ≐
�

d
d log k

�
n
nT ≃ n!ð−ϵT1 Þnþ1 ≃ n!ðnTÞnþ1: ð51Þ

This approximation is in great accordance with the results
derived in the previous section as it is possible to see from
Fig. 4. In the left panel we plot the constraints in the plane
(nT, ϵT1 ) while in the middle and right panels of the same
figure we plot the constraints on the first two runnings (i.e.,
αT1 ≡ αT and αT2 ≡ βT) in the planes (nT, αT) and (nT, βT),
respectively. As one can see from the left panel the linear

relation (50) between nT and ϵT1 is confirmed and the impact
of the parameter ϵ1 is, in fact, negligible. The middle and
right panels instead validate the relation (51) between the
runnings and the tensor tilt (or equivalently between the
runnings and ϵT1 ). In fact, we see that αT ≃ ðnTÞ2 ≃ ðϵT1 Þ2
while βT ≃ 2ðnTÞ3 ≃ 2ð−ϵT1 Þ3, which is exactly what we
expect from Eq. (51). Therefore when ϵT1 is negative, not
only is the tensor tilt blue but also the runnings are positive.
This amplifies the PGWs production on small scales
allowing us to further improve the constraints on the
inflationary parameters.
At the end of this section we will come back to further

discuss the validity of our approximation.
Since we are going to constrain the region of the

parameter space ϵT1 <0 it is convenient to use −ϵT1 ¼jϵT1 j.
Putting (50) and (51) into (48), we can estimate the
sum

ΩGWðkÞ ¼
rAS

24zeq

�
k
k�

�
−
log ð1−jϵT

1
j logð kk�ÞÞ

logð kk�Þ : ð52Þ

Asone can see fromEq. (52), on the generic ultrahigh k̃ ≫ k�
the spectrum is well-defined if jϵT1 j≲ 1= logðk̃=k�Þ. More
precisely if jϵT1 j ≪ 1= logðk̃=k�Þ, the spectrum is essentially
flat ΩGW ≃ rAs=24zeq, while if jϵT1 j ≃ 1= logðk̃=k�Þ, the
spectrum is still flat for k < k̃, but it exponentially grows
at k ∼ k̃.
Here we derive a cutoff on ϵT1 simply demanding

the spectrum to be well-defined at least from the
CMB scales all the way up to the ultrahigh k probed by
gravitational detectors and matching the LIGO/VIRGO
constraints. In fact, we recall that in the frequency range
f ∈ ð20 − 85.8Þ Hz, which corresponds to the wave-
number range kLV ∈ ð1.3− 5.5Þ× 1016 Mpc−1, the LIGO
and VIRGO data set an upper bound on the stochastic
background given by Eq. (1). Interestingly, reversing
Eq. (52)

FIG. 4. Marginalized 2D posterior in the planes (nT; r) and (αT; r). The blue contours are derived from the combination of Planck 2018
[105,106] and Biceps/Keck 2015 [18] data (see Sec. IVA) while the red contours include also the LIGO/VIRGO data on the stochastic
background [36,37] (see Sec. IV C). The yellow dashed lines represent the relations (50) and (51) we used to derive the small scale
constraints in Sec. IV B.

9In this notation αT ≡ αT1 and βT ≡ αT2 .10In what follows we will avoid specifying that the spectral tilt
and the runnings are computed on the pivot scale k� and,
simplifying the notation, we will only write nT and αTn .
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jϵT1 j ¼
1 − rAS

24zeqΩGWðkÞ
logð kk�Þ

; ð53Þ

the LIGO/VIRGO limit on the stochastic background can
be translated into a lower bound on ϵT1

ϵT1 ≥ −
1 − rAS

24zeqΩGWðkLVÞ
logðkLVk� Þ

≃ −0.0249þ ð3.5 × 10−9Þr ð54Þ

that is almost insensitive to the value of the tensor-to-scalar
ratio r. Equivalently Eq. (54) puts a stringent upper limit on
the blue tensor tilt

nT ≲ 0.025: ð55Þ

We plotted the LIGO/VIRGO limit on ϵT1 in Fig. 5. As one
can see comparing the upper bound (55) with that plotted in
Fig. 1, once that higher-order corrections (i.e., the tensor
runnings) are included in the analysis we can improve the
final constraints ofmore than 1 order ofmagnitude.Note also
that the constraints on ϵT1 can be translated into constraints on
cT since ϵT1 quantifies how the propagating speed changes
with respect to the scale. To see this, since here we are
focusing only on the linear terms assuming that c̈T ≃ 0, we
can consider a simple toymodelwhere the propagating speed
constantly decreases for almost all the e-folds of inflation in
such a way that the equation of motion reads

cTðtÞ−cTðtiÞ≐
Z

t

ti

_cTdt¼ _cTðt− tiÞ¼ ϵT1cTðtÞΔN; ð56Þ

whereΔN ¼ HΔt is the total number of e-folds between the
initial time ti (when cT starts to decrease) and the time t. In
this case cT is given by

cT ¼ cTðtiÞ
1 − ϵT1ΔN

: ð57Þ

Assuming cTðtiÞ ¼ 1 and ΔN ≃ 60, the LIGO/VIRGO
constraint on ϵT1 implies11

cT ≳ 0.4 ð58Þ
that is consistent with the 2D marginalized posteriors shown
in Fig. 2 where values of cT smaller than 0.4 times the speed
of light seem to be disfavored, at least within the 68% C.L.
contours.

As concerns the next generation of gravitational waves
experiments, LISA and ET are expected to have a sensi-
tivity to the stochastic background ΩGWðkLisaÞ ≃ 1 × 10−12

on scales kLisa ≈ 1 × 1013 Mpc−1 [40] and ΩGWðkETÞ≃
3 × 10−13 on scales kET ≈ 5 × 1015 Mpc−1 [44], respec-
tively. Considering the higher-order corrections in PTðkÞ,
we see that the improvement in sensitivity expected from
LISA and ET is not translated into constraining power on ϵT1
and consequently on the tensor tilt at the CMB scales.12

This result seems to contradict the common intuition but
the key aspect here is scale dependence. Assuming the
generalized tensor spectrum of Eq. (48), we can define a
scale-dependent tensor tilt nTðkÞ,

nTðkÞ ≐ nTðk�Þ þ
X∞
n¼1

αTn
ðnþ 1Þ! ½logðk=k�Þ�

n

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≐SðkÞ

; ð59Þ

in such a way that we can always derive constraints by
ΩGW, trivially generalizing Eq. (3) for the scale-dependent
case as

nTðkÞ <
ln
	
24zeqΩGWðkÞ

rPSðk�Þ



lnð kk�Þ
ð60Þ

FIG. 5. Marginalized 2D posterior for the combination of
Planck 2018 [105,106] and Biceps/Keck 2015 [18] data in the
plane (r; ϵT1 ). The red region is excluded by the LIGO/VIRGO
data on the stochastic background of GWs (see Sec. IV B).

11We want to stress that this example is used to show that
constraints on ϵT1 can be translated into constraints on cT
assuming that we know how the tensor speed evolves during
inflation. However, to derive our final results (shown in Table II)
we did not assume any specific evolution. Note also that in
Appendix D we discuss the consistency between our final results
and the current small scale measurement of cT.

12In this model, the constraints on nTðk�Þ expected by future
experiments are nTðk�Þ≲ 0.032 for LISA and nTðk�Þ≲ 0.025
for ET.
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with nTðkÞ given by (59). Note that the improvement in the
sensitivity expected by LISA and ET is again translated
into an improvement in the constraint on nTðkÞ (the same
improvement shown in Fig. 1), but now these constraints
must be referred to the tensor tilt evaluated at different
scales k: nTðkETÞ≲ nTðkLISAÞ < nTðkLVÞ.
Therefore the improvement in the constraints expected

from LISA and ET is not trivially translated into an
improvement in the constraints on the tensor tilt on the
CMB scales. In fact, the constraints on a given scale k are
related to the constraints on the CMB scales k� through
the sum SðkÞ that carries information about the scale
dependence of the specific model.13 In the inflationary
model considered here, the constraints on nTðk�Þ remain
almost the same for the three experiments. Indeed,
while nTðkETÞ≲ nTðkLISAÞ < nTðkLVÞ, it is also true that
SðkLVÞ > SðkETÞ > SðkLISAÞ and the two terms in Eq. (59)
compensate each other, leaving almost the same freedom
on the CMB scales for nTðk�Þ.
Before concluding this section, we want to briefly come

back on the approximations (50) and (51) on which our
results are based. Even if we have already shown that the
analysis performed in the previous section confirms their
validity, it is worthwhile to additionally prove their robust-
ness. The shape of the tensor tilt plotted in Fig. 4 and, in
general, the validity of our approximation can be further
understood as follows: using Eq. (27), we see that the value
of ϵ1 is fixed by the value of cT and r:

ϵ1 ¼
r
16

cT ≲ r
16

; ð61Þ

where in the last inequality we have used that cT ≲ 1.
From the CMB data we know that r is constrained to be
very small. If, for example, we fix the tensor-to-scalar
ratio to r ∼ 10−2, we immediately see that ϵ1 ∼ 10−4 and14

ϵ2 ∼ 10−2. So for jϵT1 j ∼ 10−2 (i.e., the order of the limit we
derived from the LIGO and VIRGO data), comparing the
terms involved in the generic n order running,

jϵT1 jðϵ1Þn ∼ ϵ2ðϵ1Þn ∼ 10−2ð2nþ1Þ; ð62Þ

ϵ1ðϵ2Þn ∼ ϵ1ðjϵT1 jÞn ∼ 10−2ðnþ2Þ; ð63Þ

ðjϵT1 jÞnþ1 ∼ 10−2ðnþ1Þ; ð64Þ

we find that αTn ≃ n!ð−ϵT1 Þnþ1 unless corrections are at least
2 orders of magnitude smaller. The approximation is even
better for smaller rwhile it is trivial to see that it is still valid
for the whole range of r explored in our MCMC analysis as

Fig. 4 confirms. This proves the robustness of our results,
definitively.

C. Combined constraints from CMB
and small scale experiments

As we discussed in Sec. IVA, the LIGO/VIRGO limit on
the stochastic background amplitude reduces significantly
the allowed parameter space for ϵT1 (see also Fig. 5).
Therefore, it is worth combining this small scale bound
(54) with CMB data. We include the LIGO/VIRGO
upper bound as a half-Gaussian prior on ϵT1 , and we sample
the same parameter space using the same method and the
same priors as those considered in Sec. IVA. In Table II we
give the constraints on the parameters from a combination
of Planck and Biceps/Keck with the LIGO/VIRGO con-
straints, while in Fig. 2 we report their 68% and 95% C.L.
contour plots. As one can see, neither the inclusion of the
small scale data is enough to derive precise constraints on
the primordial tensor speed that we found to be cT > 0.22
at 95% C.L. Nevertheless, a proper parametrization of the
small scale behavior of the tensor spectrum allows us to set
tight constraints on its time dependence parameter ϵT1 ¼
0.082þ0.047

−0.11 at 68% C.L. and consequently on the other
inflationary parameters. In particular, we constrain the
tensor-to-scalar ratio r < 0.0599 at 95% C.L., which is
in perfect agreement with the constraints derived by the
Planck Collaboration [17]. We also constrain the tensor tilt
to be nT ¼ −0.084þ0.10

−0.047 at 68% C.L. and its running αT ¼
0.0141þ0.0035

−0.022 always at 68% C.L. These constraints show
an improvement of more than an order of magnitude with
respect to those derived in Sec. IVA only from the Planck
and Biceps/Keck data. Moreover, using (38) we can obtain
derived constraints on the second-order running βT, namely
βT ¼ −0.0061þ0.011

−0.0027 at 68% C.L., again 1 order of magni-
tude better than our estimation provided in Sec. IVA.
For completeness we report also the constraints on the
other slow roll parameters that can be derived according
to the consistency relation discussed in Sec. III. We
obtain the following constraints from the combination
P18þ BK15þ LV:

ϵ1 < 0.00276 ð95% C:L:Þ; ð65Þ

ϵ2 ¼ 0.0347� 0.0046 ð68% C:L:Þ; ð66Þ

ϵ3 ¼ 0.21� 0.22 ð68% C:L:Þ: ð67Þ

Our almost model-independent constraints15 on the infla-
tionary parameters reduce significantly the parameter space
allowed for models of inflation with nontrivial tensor speed.
Indeed, the positive (negative) values of nT (αT) are now13The scale dependence is encoded in the runnings fαTng that

define the shape of nTðkÞ relating its value on the CMB scales
with its value on the generic scale k by Eq. (59).

14Using Eq. (23) and the fact that ns ≃ 0.96 [17].

15We remember that we have only assumed slow roll inflation
and a possible slow time variation of the primordial tensor speed.
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very tightly constrained (see also Fig. 6). This means that a
future detection of a large positive (negative) tensor tilt
(running), allowed by the present bounds once the gener-
alized consistency relations are relaxed, cannot be brought
back to a time variation of the primordial tensor speed, as
our results proved. Besides, thanks to the great improve-
ment in the constraints derived combining the CMB and
small scales data, one can better test gravity on the infla-
tionary energy scale. We would like to stress that the
generalized consistency relations obtained in Sec. III and
assumed in our MCMC analysis, generalize the standard
slow roll relations that we prove to be recovered when the
GR prescriptions cT ¼ 1 and ϵT1 ¼ 0 are restored. As any
departure from these prescriptions would imply physics
beyond GR on the inflationary energy scales, it is important
to check the consistency between the constraints and the
standard slow roll predictions in the GR framework. Let us
start noting that the condition ϵT1 ¼ 0 that ensures a constant
propagating speed cT is consistent with our constraints
within 1 standard deviation. Moreover, in Fig. 6 we plot the
2D marginalized contours at 68% and 95% C.L. in the
planes ðnT; rÞ and ðαT; rÞ. The standard consistency rela-
tions, yellow dashed lines in the figure, are consistent with
our constraints and, above all when the small scale limit (1)
is included, no significant deviations are observed.
We can, therefore, conclude that our results, even not

strong enough to definitively exclude departures from GR
on the inflationary energy scales, set interesting constraints
on the inflationary models with nontrivial tensor speed,
significantly reducing the allowed parameter space for such
models. Moreover, they show remarkable accordance
between the current data and the standard predictions
expected in a GR slow roll scenario. In particular, only
deviations from GR of the order of few × 10−1 are allowed
to combine large and small scale data for models with
nontrivial tensor speed (see Fig. 6).

V. CONCLUSION

In general relativity the propagating speed of gravita-
tional waves is predicted to be equal to the speed of light,
and the ground-based interferometers have measured it to
be consistent with the GR prediction within a good level of
precision on the astrophysical scales [76–78]. Nevertheless,
the propagating speed of the so-called primordial gravita-
tional waves (i.e., the tensor modes sourced by the quantum
inflationary fluctuations) are still essentially unconstrained
[80–86]. Albeit a direct detection of PGWs is still missing,
the CMB data constrain their amplitude to be much smaller
with respect to the primordial scalar perturbations, and
constraints on the inflationary parameters can be derived
[17]. Moreover, also small scale experiments on gravita-
tional waves, being sensitive to the stochastic background
[17,36,37], can be used together with the CMB data to
improve these constraints. As any deviation from a constant
cT ¼ c would imply physics beyond GR, constraining the
propagating speed of PGWs and its time dependence means
to test gravity literally at the earliest moments when the
inflation takes place. Using an effective field theory
approach we, therefore, introduced a time-dependent pri-
mordial propagating speed cTðtÞ during inflation, studying
its impact on the inflationary parameters. In Sec. III, under
the assumption of slow roll inflation, we derived a set of
equations that relate the propagating speed cTðtÞ and its
time dependence to the inflationary parameters. These
relations generalize the usual consistency relations that
are recovered when the GR prescription cT ¼ c is restored.
Imposing the above mentioned generalized consistency
relations we derived some model-independent constraints
on the inflationary parameters. In particular, we performed
an MCMC analysis to compare current data with our
theoretical model. In Sec. IVA we first derived some
constraints from the Planck’s 2018 temperature and polari-
zation likelihood (which also includes the low multipoles

FIG. 6. Marginalized 2D posterior in the planes (nT; r) and (αT; r). The blue contours are derived from the combination of Planck 2018
[105,106] and Biceps/Keck 2015 [18] data (see Sec. IVA) while the red contours take into account the LIGO/VIRGO data on the
stochastic background [36,37] (see Sec. IV C). The yellow dashed lines represent the standard slow roll relations in the GR limit, i.e.,
cT ¼ 1 and ϵT1 ¼ 0.
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data l < 30) [105] combined with the lensing likelihood of
Planck’s 2018 data release based on temperature and
polarization lensing reconstruction [106] and the CMB
power spectrum likelihood of Bicep2/Keck Array (BK15)
[18]. We report the results obtained from our MCMC
sampling in Table II. The CMB data alone are not sensitive
enough to the primordial propagating speed cT to set a
stringent constraint, but they put an upper bound on its time
variation per Hubble time ϵT1 < 0.203 at 95% C.L. defined
by Eq. (16). The fact that the CMB data only set an upper
bound on ϵT1 is translated into the fact that large positive
values of the tensor tilt nT ¼ 0.20þ0.27

−0.13 at 68% C.L. and
its runnings αT ¼ 0.087þ0.049

−0.098 at 68% C.L. are allowed.
Nevertheless, as we discussed in the Introduction, this
region of the parameter space can be more tightly con-
strained at shorter wavelengths as those probed by ground-
based interferometers. In Fig. 1 we plot the constraints from
small scale experiments in the plane (r, nT) derived under
the assumption that the power-law expansion holds from
the CMB scales up to such small scales. However, due to
the huge difference in the scales proved by CMB and GW
data, nonlinearities may significantly affect the shape of the
primordial spectrum possibly breaking the power-law
assumption and the higher-order terms (i.e., the tensor
runnings) can lead to non-negligible corrections. This is
why in Sec. IV B we generalized the tensor spectrum
parametrization to Eq. (48) including the runnings at any
order. As our analysis in Sec. IV B proved, positive tensor
tilt and positive runnings would strongly amplify the
primordial gravitational waves production on small scales
as those probed by LIGO and VIRGO. Therefore we used
the LIGO/VIRGO upper limit on the stochastic background
Eq. (1) to derive a tight lower bound ϵT1 ≳ −0.025 that is
translated into the upper bound nT ≲ 0.025 for the tensor
tilt. We also used the limit on ϵT1 to derive a lower bound for
the propagating speed cT. In fact, excluding superluminal
velocities and assuming a linear dismissing of the tensor
speed for the whole ΔN ≃ 60 e-folds of inflation we find
cT ≳ 0.4c. This result is consistent with the 2D margin-
alized posteriors shown in Fig. 2 that at least within the
68% C.L. contours seem to prefer values of cT larger than
0.4 times the speed of light. As shown in Fig. 5, once the
small scale constraints are considered, a large range of the
parameter space allowed by the CMB data now becomes
excluded. Therefore in Sec. IV C we decided to combine
the constraints on small scales with the constraints from the
CMB performing a new MCMC sampling. To include the
small scale bounds derived in Sec IV B, we introduced a
half-Gaussian prior to the parameter ϵT1. The results
obtained combining the CMB data and the LIGO/
VIRGO data via the half-Gaussian prior on ϵT1 are given
in Table II. Even if the inclusion of the small scale
data is not enough to derive precise constraints on the
primordial tensor speed—that we found to be cT > 0.22 at
95% C.L.—we set tight constraints on its time dependence

parameter ϵT1 ¼ 0.082þ0.047
−0.11 at 68% C.L. and consequently

on the other inflationary parameters. In particular, we
constrain the tensor-to-scalar ratio at the pivot scale k� ¼
0.05 Mpc−1 to be r < 0.0599 at 95% C.L., which is in
perfect agreement with the result derived by the Planck
Collaboration [17]. Moreover, we constrain the tensor
tilt to be nT ¼ −0.084þ0.10

−0.047 at 68% C.L., its running αT ¼
0.0141þ0.0035

−0.021 at 68% C.L., and its running of running βT ¼
−0.0061þ0.011

−0.0027 at 68% C.L. These constraints show an
improvement of more than an order of magnitude with
respect to those derived in Sec. IVA considering only the
Planck and Biceps/Keck data. The constraints we derived in
this paper on the inflationary parameters reduce signifi-
cantly the parameter space allowed for models of inflation
with nontrivial tensor speed. Being the positive (negative)
values of nT (αT) very tightly constrained (see also Fig. 6)
a future detection of a large positive (negative) tensor tilt
(running)—allowed by the present bounds once the gen-
eralized consistency relations are relaxed—cannot be
brought back to a time variation of the primordial tensor
speed. Moreover, this improvement in constraints derived
combining the CMB and small scale data allows us to better
test gravity on the inflationary energy scale: we have
checked the consistency between our constraints and the
standard slow roll predictions in the GR framework. The
GR prescription ϵT1 ¼ 0 that ensures a constant propagating
speed cT is consistent with our results within 1 standard
deviation. Moreover, also the standard consistency rela-
tions are perfectly consistent with our constraints, above all
when the small scale bounds are included (see also Fig. 6).
Since no significant deviations from the standard slow roll
predictions are observed, we conclude that even if our
results cannot exclude departures from GR on the infla-
tionary energy scales, they significantly constrain models
with nontrivial primordial tensor speed, showing good
accordance with the predictions excepted in a standard
(GR) slow roll scenario. In the upcoming decade, a new
generation of CMB experiments (e.g., BICEP3 [20],
CLASS [21], SPT-3G [22], Advanced ACTPol [23],
LBIRD [24], and CMB-S4 [25]) is expected to bring the
sensitivity to the amplitude of tensor perturbations down to
r ∼ 0.01–0.001 improving the current Planck upper limit
around an order of magnitude and possibly leading to the
first detection of primordial gravitational waves. If so,
the generalized consistency relations we derived and the
analysis we performed in this paper can be used to
definitively check the slow roll predictions and to precisely
test gravity on the inflationary energy scales.

ACKNOWLEDGMENTS

W. G. is supported by Theoretical Astroparticle Physics
(TASP), iniziativa specifica INFN. F. R. acknowledges
support from the NWO and the Dutch Ministry of
Education, Culture and Science (OCW), and from the
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APPENDIX A: DETAILED DERIVATION OF PT
WITH A TIME-DEPENDENT cTðtÞ

For completeness in this appendix we review in more
details the computation of the primordial tensor spectrum
with a nontrivial time-dependent tensor speed cT, showing
that under the assumptions jϵT1 j ≪ 1, the solution of (13) is
given by Eq. (20). First of all, keeping in mind that

daðtÞ
dτ

≐ aðtÞ daðtÞ
dt

¼ a2ðtÞH; ðA1Þ

da2ðtÞ
dτ

¼ 2a3ðtÞH2 þOðϵ1Þ; ðA2Þ

we see that for zTðtÞ defined in Eq. (12) we have

dzTðtÞ
dτ

¼ Mp

2
aðtÞ d

dt
½aðtÞc−1T � ðA3Þ

¼ Mp

2
aðtÞ½ _aðtÞc−1T − aðtÞ_cTc−2T � ðA4Þ

¼ Mp

2
aðtÞ

�
aðtÞHc−1T − aðtÞHc−1T

�
_cT
HcT

��
ðA5Þ

¼ Mp

2
aðtÞ2Hc−1T ½1 − ϵT1 � ðA6Þ

¼ Mp

2

daðtÞ
dτ

c−1T ½1 − ϵT1 � ðA7Þ

≃
Mp

2

daðtÞ
dτ

c−1T ðA8Þ

and

d2zTðtÞ
dτ2

≃
Mp

2

�
d2aðtÞ
dτ2

c−1T þ daðtÞ
dτ

aðtÞ d
dt

c−1T

�
ðA9Þ

≃
Mp

2

�
d2aðtÞ
dτ2

c−1T − ϵTa3ðtÞH2c−1T

�
ðA10Þ

≃
Mp

2
c−1T

d2aðtÞ
dτ2

�
1 −

ϵT1
2

�
ðA11Þ

≃
Mp

2
c−1T

d2aðtÞ
dτ2

: ðA12Þ

Therefore the equation of motion (13) is equivalent to (19)
unless corrections of order jϵT1 j ≪ 1. Now we want to prove
that uðτ; k̃Þ given by Eq. (20) correctly solves Eq. (19). First
of all, remembering that k̃ðtÞ ≐ cTðtÞk, it is worth deriving
the following relations:

dk̃
dτ

¼ −ϵT1
k̃
τ
; ðA13Þ

dðk̃τÞ
dτ

¼ k̃ð1 − ϵT1 Þ ≃ k̃; ðA14Þ

d
dτ

�
e−ik̃τffiffiffiffiffi
2k̃

p
�
≃
e−ik̃τffiffiffiffiffi
2k̃

p
�
−ik̃þ 1

4

ϵT1
τ

�
; ðA15Þ

where in (A13) we have used that in the de Sitter spacetime
τ ≃ −ðaHÞ−1. Now we take the following derivatives:

du
dτ

¼ e−ik̃τffiffiffiffiffi
2k̃

p
�
−ik̃−

1

τ

�
1−

1

4
ϵT1

�
þ i

k̃τ2

�
1−

1

4
ϵT1

��
ðA16Þ

≃
e−ik̃τffiffiffiffiffi
2k̃

p
�
−ik̃ −

1

τ
þ i

k̃τ2

�
; ðA17Þ

and finally

d2u
dτ2

≃
e−ik̃τffiffiffiffiffi
2k̃

p
�
−k̃2 þ ik̃

τ

�
1þ 3

4
ϵT1

�

þ 2

τ2

�
1 −

1

8
ϵT1

�
−

2i

k̃τ3

�
1 −

1

8
ϵT1

��
ðA18Þ

≃
e−ik̃τffiffiffiffiffi
2k̃

p
�
−k̃2 þ ik̃

τ
þ 2

τ2
−

2i

k̃τ3

�
ðA19Þ

≃
e−ik̃τffiffiffiffiffi
2k̃

p
�
1 −

i

k̃τ

�
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

uðτ;k̃Þ

�
2

τ2
− k̃2

�
ðA20Þ

≃ −
�
k̃2 −

2

τ2

�
uðτ; k̃Þ ðA21Þ

that is nothing other than Eq. (19). Therefore, now that we
have proved that (20) is the correct solution, the derivation
of the primordial spectra is trivial: it is sufficient to follow
the standard procedure (see, e.g., [9,97]) with k → k̃ that
leads us to (25).
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APPENDIX B: BEYOND THE LINEAR
ORDER IN cTðtÞ

In this paper we have derived some equations that relate
the tensor propagating speed cT to the inflationary param-
eters under the assumption that the second-order time
derivative c̈T ≃ 0. In other words, expanding the propagat-
ing speed cTðtÞ we have taken into account only the linear
term. For completeness, we would like to briefly discuss
slightly more complicated scenarios in which we consider
also the higher-order terms in the Taylor expansion.
Let us see what happens including also the quadratic

term c̈T: the relation (31) is modified as follows:

ϵT2 ≐
_ϵT1
HϵT1

¼ ϵ1 − ϵT1 þ ηT; ðB1Þ

where we have to introduce the new parameter

ηT ≐
c̈T
H _cT

: ðB2Þ

Neglecting the third-order time derivative ⃛cT ≃ 0 we find

dηT
d log k

¼ 1

H
d
dt

�
c̈T
H _cT

�
¼ ηTðϵ1 − ηTÞ; ðB3Þ

and αT and βT now will read

αT ¼ −2ϵ1ϵ2 − ϵT1 ðϵ1 − ϵT1 þ ηTÞ; ðB4Þ

βT ¼ −2ϵ1ϵ22 − 2ϵ1ϵ2ϵ3 − ϵT1 ½ðϵ1 − ϵT1 þ ηTÞ2 þ ϵ1ϵ2

− ϵT1ðϵ1 − ϵT1 þ ηTÞ þ ηTðϵ1 − ηTÞ�: ðB5Þ

Note that considering the second-order derivative of cT
with respect to time provides a correction only to the
runnings and not to the spectral tilt that, in fact, is always
given by Eq. (24). Moreover, even considering the new
term ηT a set of consistency relations can always be derived.
Indeed, reversing (B4)

ηT ¼ ðϵ1 − ϵT1 Þ þ
αT þ 2ϵ1ϵ2

ϵT1
ðB6Þ

and using Eqs. (33), (34), (35), (36), and (B6), it is easy
to see that Eq. (B5) still provides a consistency relation
for the propagating speed cT and the inflationary param-
eters. However, in this case the relation will be cubic in the
slow roll parameters and will involve also the scalar
running αs and the tensor running of running βT that are
not involved in the respective quadratic relation in the slow
roll parameter (37) derived under the linear order expansion
of cT.
This procedure can be generalized at any order: if we

expand cTðtÞ taking all the terms up to the order n and

assuming that ðddtÞnþ1cT ≃ 0, we can always find a con-
sistency relation between cT and the inflationary parame-
ters. This relation will include the scalar runnings up to
αSn−1 and the tensor runnings up to αTn .
Clearly, to test the time dependence of cT beyond the

linear expansion, we need an accuracy that we do not have
at present. We conclude that the choice to adopt the simply
linear approximation for cTðtÞ is reasonable because it
allows us to test its time dependence without complicating
the equations or introducing higher-order parameters that
will be difficult to constrain with the current cosmological
data. We plan to do this in future work.

APPENDIX C: SUPERLUMINAL PROPAGATION

In our MCMC sampling we have restricted our attention
to the parameter space cT < 1 excluding the superluminal
propagation. One may ask if such an artificial exclusion
leads to a biased conclusion and, in general, what happens
including superluminal velocities. In this appendix we want
to clarify some aspects about superluminal velocities and
motivate our decision to impose a prior cT < 1 in our
MCMC sampling.
First of all we want to stress that we have carefully

checked that our constraints were not biased by our choice
of not exploring superluminal velocities. As a matter of
fact, the constraints on cT are almost uncorrelated with the
constraints on the other parameters and, even extending our
MCMC prior to cT > 1, we will end up with almost the
same results; see Fig. 7.
We also would like to point out that our theoretical

framework holds for both subluminal and superluminal
velocities indifferently and that we excluded the super-
luminal propagation only in our MCMC analysis. This is
crucial since from a theoretical point of view imposing
subluminal propagation is not as safe an assumption as one
may think. In fact, as shown in [113,114], depending on the
model, it can be possible to perform a change of frame so
that in the new frame the tensor speed is c, but the speed
of the other massless particles is greater than c ending up
with a situation where we have actually constrained the
speed of normal species to be superluminal, in tension with
causality.
However, we decided to exclude superluminal velocities

from our MCMC analysis for the following reason: as one
can see from Eq. (27), superluminal velocities will suppress
the amplitude of tensor perturbations leading to a com-
pletely different phenomenology with respect to sublumi-
nal velocities. In fact, when cT < 1 the amplitude of the
tensor spectrum grows, eventually becoming greater than
the Planck experimental error and allowing us to provide a
well-defined lower bound on the tensor speed. Conversely
when cT > 1 the amplitude of the tensor spectrum
decreases and the effect of cT on the primordial spectrum
is buried in the experimental error, preventing us from
achieving a well-defined upper bound. In other words when
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the MCMC prior on cT is extended to superluminal
velocities, since the Planck data prefer a vanishing r, the
posterior distribution of the propagating speed is pushed to
cT ≫ 1 and the upper bound on cT is completely dominated
by the a priori imposed prior; see Fig, 7.
Furthermore when the prior on the tensor speed is

extended to cT > 1 most of the area of the posterior
distribution is found for values of cT close to the upper
limit of the prior. Specifically enlarging the prior on cT by a
factor of 5 we now get a lower limit cT > 0.92c (pushed

forward by the same amount with respect to the sublumi-
nal case).
This is clearly a biased result which stems from the fact

that we are unable to place an upper bound on the
propagating tensor speed with the theoretical framework
presented in the paper. The reason behind this is that the
MCMC samples accumulate at the higher edge of the
imposed range for cT leading to exclude values of cT much
smaller than the upper limit at more than 2 standard
deviations resulting in a biased lower bound for the tensor

FIG. 7. Marginalized 2D and 1D posteriors for the combination of Planck 2018 [105,106] and Biceps/Keck 2015 [18] data for the
parameters of the tensor spectrum. The blue contours are those obtained exploring only subluminal velocities while the green contours
are obtained extending the prior to superluminal velocities cT < 5. As one can see, the choice of exploring only subluminal velocities
does not lead to significant bias on the inflationary parameters. Nevertheless, once the superluminal velocities are considered, since the
Planck data prefer a vanishing tensor amplitude, the posterior of cT is pushed to cT ≫ 1 leading to a prior dependent upper (and lower)
bound.
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speed. Note that this example is merely to show that even
pushing the prior on cT to cT ≫ 1 only the posterior of the
tensor speed is affected while all other parameters are
almost unaffected.
It is also worth noting that to correctly analyze the region

cT > 1, along with the consistency relation we found, one
has to consider also the different phenomenology induced
by superluminal propagation. For example, a tensor speed
different from unity will generate non-Gaussian features in
the primordial perturbations fNL∼1−c2T [81,88]. Of course,
this (and other) information can be used to place an upper
bound on cT > 1, but constraining the superluminal part of
cT goes outside the aim of this paper since here we are
mainly interested in constraining the shape and amplitude
of the tensor spectrum in nonstandard theories of inflation
with a scale-dependent propagating speed. We plan to
tackle down the issue of superluminal velocities in a
subsequent work.

APPENDIX D: EXTRAPOLATING SMALL
SCALE CONSTRAINTS ON cT

Even if the main goal of this work was to constrain the
shape and the amplitude of the tensor two-point function in a
nontrivial theory of inflation, in Sec. IV C we have derived
constraints on the propagating speed cT that clearly refer to its
value on theCMBscales,with Eqs. (25) and (26) evaluated at
the horizon crossing. In this appendix, wewant to discuss the
accordance between our results and the current measurement
cT ≃ c provided by gravitational experiments. Let us stress
that the current observed value cT ∼ c refers to the propa-
gating speed of the astrophysical gravitational waves mea-
sured by the gravitational detectors on astrophysical scales
k ∼ kLV and not to the propagating speed of primordial tensor
perturbations that are instead generated during the infla-
tionary epoch at energies that can be extremely larger. We
have several observational pieces of evidence that Einstein’s
theory of general relativity works appropriately on the
astrophysical energy scales, but theoretical arguments sug-
gest that itmay need to bemodified at high energies and some
well-motivated extended theories predict a nonunitary propa-
gating speed [51–75]. In our work we have used an effective
field theory approach (that, by definition, provides an
approximate description of an underlying physical theory
at a specific energy scale) to show that if the inflationary
energy scale is sufficiently high, high-energy deviations
fromGR could leave signatures during the inflationary epoch
and primordial tensor perturbations could provide a unique
observational window to probe gravity at those energy
scales. However, in a consistent theory of gravity, GR has
to emerge in the low energies limit in such a way that all the
observational evidences for GR (including the observed
value cT ∼ c on the astrophysical scales) can remain con-
sistent through the evolution of the universe. Therefore it is
worth showing that our constraints on cTðk�Þ are not in
conflict with those derived by gravitational detectors.

Considering the expansion of log cTðkÞ we can write

cTðkÞ ¼ cTðk�Þ
�
k
k�

�
γðkÞ

; ðD1Þ

where

γðkÞ ¼
X∞
n¼0

��
d

d log k

�
n
ϵT1

�
k¼k�

lognð kk�Þ
ðnþ 1Þ! : ðD2Þ

Because of the discussion provided in Sec. IV B, we can
estimate the derivatives of ϵT1 as

�
d

d log k

�
n
ϵT1 ¼ ð−1Þnn!ðϵT1 Þnþ1 ðD3Þ

that gives for γ

γ ¼ −ϵT1
logð1 − fðkÞÞ

fðkÞ ; ðD4Þ

where fðkÞ ¼ −ϵT1 logðk=k�Þ. As one can see, the value of
the propagating speed at the generic scale k depends on
both cTðk�Þ and ϵT1 . Interestingly, using the value derived
for ϵT1 ≃ 0.082, the lower bound for cT ≳ 0.22 on the CMB
scale is translated into the constraints plotted in Fig. 8 at
the generic scale k. Even on ultrahigh k the power low
expansion (D1) provides reasonable values remarkably
close to cT ¼ c. In particular, on the LIGO/VIRGO scales
we have cTðkLVÞ≳ 0.94c that is in very good agreement
with the constraints on the propagating speed of gravita-
tional waves derived on astrophysical scales [76–78]. We
therefore conclude that our results are not in conflict with
those of gravitational experiments.

FIG. 8. Constraints on the propagating speed cT at the generic
scale k extrapolate from the constraints on the CMB scales fixing
ϵT1 ¼ 0.082 and cTðk�Þ > 0.2. Remarkably on the LIGO/VIRGO
scales we can extrapolate the lower limit cTðkLVÞ≳ 0.94, in
perfect agreement with the constraints on the astrophysics GWs.
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