Taylor & Francis
[y Taylor & Francis Group

neruamar | Scandinavian Actuarial Journal

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/sact20

An application of parametric quantile regression
to extend the two-stage quantile regression for
ratemaking

Fabio Baione & Davide Biancalana

To cite this article: Fabio Baione & Davide Biancalana (2020): An application of parametric
quantile regression to extend the two-stage quantile regression for ratemaking, Scandinavian
Actuarial Journal, DOI: 10.1080/03461238.2020.1820372

To link to this article: https://doi.org/10.1080/03461238.2020.1820372

ﬁ Published online: 21 Sep 2020.

N
CJ/ Submit your article to this journal &

||I| Article views: 30

A
& View related articles &'

p

(&) View Crossmark data &

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=sact20


https://www.tandfonline.com/action/journalInformation?journalCode=sact20
https://www.tandfonline.com/loi/sact20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/03461238.2020.1820372
https://doi.org/10.1080/03461238.2020.1820372
https://www.tandfonline.com/action/authorSubmission?journalCode=sact20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=sact20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/03461238.2020.1820372
https://www.tandfonline.com/doi/mlt/10.1080/03461238.2020.1820372
http://crossmark.crossref.org/dialog/?doi=10.1080/03461238.2020.1820372&domain=pdf&date_stamp=2020-09-21
http://crossmark.crossref.org/dialog/?doi=10.1080/03461238.2020.1820372&domain=pdf&date_stamp=2020-09-21

SCANDINAVIAN ACTUARIAL JOURNAL IalonFr & Francis
https://doi.org/10.1080/03461238.2020.1820372 aylor & Francis Group

’ W) Check for updates |

An application of parametric quantile regression to extend the
two-stage quantile regression for ratemaking

Fabio Baione ©2 and Davide Biancalana @P

aDepartment of Statistics, Sapienza University of Rome, Rome, Italy; P Department of Methods and Models for
Economy Finance and Territory, Sapienza University of Rome, Rome, Italy

ABSTRACT ARTICLE HISTORY

This paper deals with the use of parametric quantile regression for the cal- Received 12 January 2020
culation of a loaded premium, based on a quantile measure, corresponding Accepted 3 September 2020
to individual insurance risk. Heras et al. have recently introduced a ratemak- KEYWORDS

ing process based on a two-stage quantile regression model. In the first Quantile regression;
stage, a probability to have at least one claim is estimated by a GLM logit, premium principles; risk
whereas in the second stage several quantile regressions are necessary for margin; ratemaking; quantile
the estimate of the severity component. The number of quantile regres- regression coefficients
sions to be performed is equal to the number of risk classes selected for modeling

ratemaking. In the actuarial context, when a large number of risk classes

are considered (e.g. in Motor Third Party Liability), such approach can imply

an over-parameterization and time-consuming. To this aim, in the sec-

ond stage, we suggest to apply a more parsimonious approach based on

Parametric Quantile Regression as introduced by Frumento and Bottai and

never used in the actuarial context. This more conservative approach allows

you not to lose efficiency in the estimation of premiums compared to the

traditional Quantile Regression.

1. Introduction

The interest in the application of quantile regression (QR) in actuarial sciences is growing rapidly. To
the best of our knowledge, QR applications in the field of insurance may be found in Pitselis (2009),
where it is applied in the measurement of the adequacy of own funds a company requires in order to
remain healthy and avoid insolvency in a Solvency 2 context. Dong et al. (2015) use a parametric and
a non-parametric QR model in order to derive risk margin for loss reserves and to evaluate solvency
capital requirement in non-life insurance applications. Portnoy (2003) applied QR to mortality table
rates, whereas Pitt (2006) used censored QR to estimate claim early termination rates for income pro-
tection insurance. However, the broader application of QR in the actuarial context refers to insurance
ratemaking, which has been firstly discussed by Kudryavtsev (2009) and then used in the working
paper of Wolny-Dominiak et al. (2012). Fuzi et al. (2016) apply a Bayesian QR model for claim count
data in motor insurance to study the effects of change in the estimates of rating factors on the magni-
tude of the response variable. More recently, an extension of the original approach of Kudryavtsev has
been proposed in this journal by Heras et al. (2018) where an application of a Two-Stage QR (TSQR
henceforth) is considered. A similar approach has been introduced by Biancalana (2017) and Baione
& Biancalana (2019). Another contribution to QR in insurance is found in Baione et al. (2019), where
a study of the diversification effect involved in a portfolio of non-life insurance is computed when
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Rome, Italy
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individual loaded premiums are calculated via QR. All the previously mentioned insurance ratemak-
ing papers suggest to estimate the quantiles of aggregate claim amount distributions by decomposing
the cost of a claim between a binary variable that indicates whether the policy has claimed, and a
continuous variable showing the aggregate claim amount. In actuarial literature such decomposition
method is commonly called Two-Part model (Frees 2010, Frees et al. 2013). Anyway, compared to the
traditional Two-Part model, the use of QR allows a direct estimate of the loaded premium, i.e. includ-
ing the safety loading. However, all the previously stated models for insurance ratemaking drive some
practical drawbacks:

e Kudryavtsev (2009) does not consider a different claim frequency for each risk class, but it
is assumed constant for each insured individual. This is the significant issue because, as well
known, the probability of having claims is considerably affected by the features of each insured
individual.

e Herasetal. (2018) solve the previous issue by introducing a TSQR model; the first stage involves
fitting a logistic regression to estimate, for every policy, the probability of submitting at least
one claim, then a QR is used to estimate the individual aggregate claim amount. The approach
is used for the application of a Quantile Premium Principle (henceforth QPP), where the pre-
mium safety loading is assessed for each risk class using a single probability level of the aggregate
claim amount. However, this approach, although if theoretically correct, is questionable from
a practical point of view. Its application requires the calibration of a number of QRs on differ-
ent probability levels equal to the number of risk classes used for the frequency model which,
in large portfolios, could be equal to thousands or even millions. Therefore, this approach
may be too onerous in terms of model validation, as well as an over parameterization, hence
computationally demanding.

e Baione & Biancalana (2019) have suggested an alternative TSQR premium model where the
safety loading is calculated on the claim severity. The calibration of the premium safety load-
ing is assessed by means of a quantile approach using a single probability level for each risk
class. Thereby, the need to calibrate different QRs is prevented avoiding the subsequent over-
parameterization. However, by fixing a single probability level on the claim severity it is not
possible to obtain a unique probability level of the aggregate claim amount for each risk class
as in Heras et al.

The aim of the present work is to introduce a new approach that extends the framework introduced
by Heras et al. in order to provide a parsimonious model to calculate the QPP. For this purpose, we
suggest to adopt a parametric model of quantile regression (PQR henceforth) recently introduced
by Frumento & Bottai (2016), also referred to by the authors as quantile regression coefficients mod-
eling (gqrem); we name this approach as Two Stage Parametric Quantile Regression model (TSPQR
henceforth). Compared to the traditional QR, where quantiles are estimated one at a time, PQR
describes the functional form of the regression coefficients parametrically depending on the order
of the quantile. Therefore, this approach introduces a new class of estimators that can be applied
to relevant practical problems. As declared by Frumento and Bottai, PQR facilitates estimation and
inference, simplifies the interpretation of the results, and generates more efficient estimators. PQR
introduces direct modeling of the coefficients function that has never been discussed in literature
and enriches the traditional QR theory with a new class of estimators that may have advantages in
terms of parsimony, efficiency, and may expand the potential of statistical modeling. This technique
is relatively recent and its application is limited in the field of medicine, but as far as we know, it has
never been discussed in actuarial and financial fields. The PQR has also been extended to censored
and truncated data in Frumento & Bottai (2017). The described estimator has been implemented in
the R package grem (Frumento 2017).

The rest of the paper is arranged as follows. Section 2 provides a brief description of the standard
quantile regression model. Section 3 describes the parametric modeling of the quantile regression,
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which was introduced by Frumento and Bottai and the mathematical details of TSPQR. A numeri-
cal application of TSPQR for Quantile Premium Principle (QPP) is discussed in Section 4. Finally,
Section 5 provides the conclusion of this paper.

2. Premium estimation via parametric quantile regression
2.1. Basic elements of quantile regression

Quantile regression techniques (Koenker & Bassett 1978) enable us to define the statistical relation-
ship between the conditional quantile of a response variable Y and a row-vector of independent
covariates, X; = (Xj1,. .., Xim); 1 < i < 1. According to Koenker & Bassett (1978), Koenker & Hal-
lock (2001), and Koenker (2005), the relationships between the 6-quantile of the outcome and a set
of explanatory variables is given by

Qo [YIxi] = Qo [Yil = x! Bo = Bog + Bro - Xi1 + - + Bmg - Xim> (1)

where By is the corresponding column-vector of regression parameters estimated related to the
selected 6th quantile. In statistical practice, the distribution-free approach is often used for estimation
(see Koenker & Bassett 1978, Koenker & Hallock 2001, Koenker 2005). In this framework, the esti-
mator By, of vector By from Equation (1) could be obtained by solving the following minimization
problem:

min £ > Olyi—xipo|+ > 1—0)|yi—xips|{. )

BoeR™ | .
iyi>xiBo k:yi<xiBp

Alternatively, the minimization of (2) can be performed using an equivalent linear program (Hao &
Naiman 2007), whereas the confidence intervals for Sy can be obtained using the bootstrap method.
QR can be easily fitted using the ‘R’ package quantreg (Koenker 2015). It is worth noting
that the estimate of the conditional 6th quantile of the outcome variable is based on the estimation
of the vector of coeflicients By depending on the order of the quantile being estimated. For example,
the coeflicients for the 50th quantile (median) are generally different from those of the 75th quantile
(third quartile). This implies that if we want to investigate the density of the response variable, it is
necessary to run several times the QR with reference to each element of a quantile level vector, depen-
dent on the granularity of the analysis required (e.g. using 99 centiles 6 = 0.01,0.02, .. .,0.99). Such
valuation is also relevant in order to discuss the change in the behavior of the regression parameters
with respect to a change in the probability level.

To this aim, Figure 1 shows an example taken from Baione & Biancalana (2019) based on a real
database from an Australian automobile insurance company (De Jong & Heller 2008), which we will
use in the following section for a numerical application. The graph represents the male gender regres-
sion parameter which is always positive and shows an increasing trend with the order of the quantile.
This means that the estimated conditional quantile for males is greater than that of females; the latter
is considered as being base level. Such difference increases as the probability level increases. Any-
way, as observable, the underlying trend is not smoothed and it is not uniquely justifiable by random
variability.

For example, as observable in Figure 1(a), the estimated difference between females and males is
3.6% at the 62th centile; the value increases to a peak of 9.6% at the 72th centile (orange point) and
drops down to 5.4% at the 73th centile.

This means that we have an increasing and significant difference between the two genders at the
72th centile, but not at the 73th with a drop by about 43.8% compared to the previous value, as shown
in Figure 1(b).
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Figure 1. QR parameter estimate f. (a) Coefficient. (b) % of variation.

2.2, Anintroduction to parametric quantile regression

To overcome the aforementioned drawbacks, it is possible to adopt a parametric approach for the
quantile regression coefficients modeling introduced by Frumento & Bottai (2016). The proposed
approach allows to model the regression coefficients as parametric functions of the order of the
quantile 0, that depends on a finite-dimensional parameter y of the form:

Bi©,vi) = vjo+ ¥j1 - b1(O) + -+ Yju - bu(0), 0=<j=m, 3)

where by () - - - b, (0) are known functions of 6 and by(0) is usually set equal to 1. It is worth noting
that the model coefficients B;(6, y;) describe the effect of covariates on the 6 th quantile of the response
variable. A linear model similar to the Equation (1) is used to express the conditional quantile function
as follows:

Qo [Y [, T =xTb(0) = Bo(6,v0) + B1(6:11) - X1 + -+ + Bu(6: Vim) - Xim. (4)

Therefore, the entire conditional quantile function Qg[Y|x;, I'] is described by a m x n matrix I" of
parameters.

Then, a relevant aspect for ratemaking purposes is that such a technique enables the estimation of
the conditional quantile of the response variable, given a set of covariates, for each probability level
0 € (0,1) in a single run.

By way of example, assuming the univariate model:

o QlYIx;, '] = Bo(0,v0) + B1(O, Y1) - xin
assuming:
- Bo(0,v0) = yoo + o1 - 26,
- B1(8,v1) = y10 + y11 - 20,

then by(0) = 1,b1(0) =20 and " = [;‘fg m ]

In this example, the conditional quantile of the response variable, for each § € (0, 1), is completely
defined by the estimate of 2 x 2 matrix I.

In practice, several sets of b(6) functions could be used (e.g. polynomials, trigonometric, splines),
with the only requirement that their combination must induce a 8-monotonically increasing quantile
function Qg[Y|x;, I'] for some I'.

For example, b(#) cannot be formed by a single non-monotonic function like b; (9) = sin(2w0),
because this would cause Qg[Y|x;, I'] to be a non-monotonic function of § at any I'.
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However, the combination by(6) = 1, b1 () = sin(270), b2(0) = 6 is an eligible basis, since

QYlyl=vo+y1-sin@2rf) +y,-0 (5)

is a well-defined monotonic quantile function for y, > 2m|y;|. The parameter space will always be a
subset of R™*", even in very simple models.

The estimate of 6th parametric quantile regression coefficients under model (4) is similar to the
standard quantile regression and requires the minimization of the following loss function:

I

LO.m =1y [9 —1 (y,- <xITb (9))] : [y,- - x,.TFb(e)] . )

i=1

Instead of estimating a discrete set of quantiles, it is possible to estimate the entire quantile process in
one time. Following Frumento & Bottai (2016), the estimation of I" is obtained by the minimization
of the following integrated loss function:

1
L) = / L1(6,T) db. )
0

This approach is defined as integrated loss minimization (ILM). The idea behind ILM is that func-
tion (7) can be seen as an average loss function obtained by summing functions (6) by varying 6
over the interval (0, 1). The integrated loss (7) can be further generalized by including a nonconstant
weight w(0). For example, the integral can be calculated over (61, 6,) rather than in (0, 1) by setting
w(0) =1(0; <6 < 6,). Note that §; = 6, = 6 corresponds to ordinary quantile regression of order
0.

The ILM estimator I’ 1 that minimizes the integrated loss function (7), based on a sample of size I, is
unbiased. In addition, it has relevant asymptotic properties like consistency and asymptotic normality
depending on the structure of b(8). For instance, for the consistency, b(f) should induce a well-
defined monotonic quantile function as stated above; and guarantee that the inverse of the quantile
function (i.e. the cumulative distribution function) is a continuous function of I'. Some of the b(9)
may be unbounded at & = 0 or § = 1, but the functions B(f) = foe b(u)du and B = fol B(u)du
must be finite. Moreover, the first derivative of b(6) must be defined everywhere, although it might
be infinite in the extremes.

For instance, valid functions having the above-stated properties are of the form 69, log(0),log(1 —
6), 8%, the quantile function of any distribution with finite moments, splines, or a combination of
the above. For the asymptotic normality of the ILM estimator the reader can refer to Theorem 2 in
Frumento & Bottai (2016).

3. Two-stage quantile regression and two-stage paramteric quantile regressio model
for premium estimation

The Two-Stage Quantile Regression model, introduced by Heras et al. (2018), may be considered an
extension of the model proposed by Kudryavtsev (2009), who was the first to apply QR to ratemaking
in non-life insurance. The starting point is the decomposition of the total claim amount per insured S;
between a binary variable, which indicates whether the policy has at least one claim, and a continuous
variable representing the total amount of the claims. The former is an indicator random variable (r.v.)
Iy, indicating whether the ith insured has had at least one claim; it is generally assumed Bernoulli
(pi) distributed and independent from the second strictly positive truncated or conditional r.v. rep-
resenting the total loss per ith claimant or hereafter simply denoted as severity (S;|N; > 0) = S;. In
addition, the work of Heras et al. also proposes a premium principle based on QR, the so-called
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Quantile Premium Principle (QPP), to premium safety loading calculation. The QPP is defined as
follows:

Pi=a- QS+ (1 —a)-ES], 0<ac<l, (8)

where the individual premium is a weighted average of the expected value and the quantile to a level
6 of S;. The parameter 6 set the unique probability level to define the conditional quantile of the r.v.
total claim amount per insured individual. Hence, in order to apply QPP it is necessary to estimate
Qz[Sil.

Then, given an insurance portfolio containing I policyholders (i = 1,...,I) and a set of indepen-
dent covariates X; = (x;1, . .. Xin) for each i, the first stage consists in the estimate of p; = E[ly, =
0|x;], i.e. the probability that policy i makes no claims, by means of a logistic regression model with a
logit link function.

For the second stage, starting from the decomposition of the cumulative density function:

Fs; (Qg [Silxi]) = pi+ (1 —pi) - Fy, (Qg [SiIxi]) )

by setting 6 = ng(Qé [Silxi]), i = 1,...,1, as the probability level of the conditional severity S, we
obtain the following equation:

9_ .
gi*z—p‘, i=1,...,1L (10)
1—pi

Then from Equations (10) and (9) we have

Cre el — -1 0 —pi
Q@[Sz|xz]—F§i <1_Pi

xi> = Qo [Si1xi ] (11)

This is a very important relationship, as it permits to estimate the quantile of S;, working on the
continuous r.v. §;, simply changing the quantile level from 8 to 07, i =1,...,1.1

In a nutshell, the first stage is necessary to determine the I probability levels to be adopted in the
second stage for the estimation of the conditional quantiles of the severity.

In TSQR the second stage consists in the application of a traditional QR model. However, if we
assume that each insured i is characterized by a specific p;, to estimate the conditional quantile for each
i=1,...,1,itisnecessaryto run aset I of QR models (reduced to H for the allocation in homogenous
risk classes), with each one calibrated at a different probability level 6" associated with the relative
ith risk profile. Besides, in order to calibrate the TSQR, it is necessary to perform all the diagnostic
analyses to validate the model, such as the test for significance of covariates, the test on parameters,
the fitting analysis and other diagnostic measures. Furthermore, in the actuarial applications, the
ratemaking process involves a large number of rating factors and, as a consequence, a large number
of risk classes.

By way of example, assuming a dataset containing 10 dichotomous rating factors, the number of
risk classes is H = 20 = 1,024; hence, in order to apply the TSQR, it is necessary to calibrate 1, 024
quantile regressions, and then analyze the regression diagnostic of 11 - 1,024 = 11,264 parameters
estimated in total. For these reasons, in a real context, the use of the TSQR is questionable from a
practical point of view.

So, instead of performing 1, 024 QRs, we suggest to substitute the second stage of the TSQR with
a PQR approach, which we can define as Two-Stage Parametric Quantile Regression. Hence, we can

1 It is worth noting that depending on the set of covariates, it is possible to assign the single policyholder a specific risk class
generated by the combination of covariates levels.
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calculate the conditional quantile of the aggregate claim amount per the ith policy as follows:
QjSilxi] = Qg [Silxi] = x/ T b(6)"). (12)

In this way, assuming in the previous example by (6) = 1, b1 (0) = 26, the TSPQR requires a single
calibration with an estimate of 11 - 2 = 22 parameters in one shot, compared to the 11, 264 of the
TSQR approach in 1024 separate QRs. It is worth noting that this difference increases as the number
of risk classes increases.

4. Numerical investigation

In order to perform a comparison between the TSQR and the TSPQR, we apply the proposed
approaches to a real insurer database. Our aim is to estimate the loaded premium by QPP in
Equation (8), analyzing the ability of the TSPQR to predict the loaded premium compared to the
TSQR model.

4.1. Data set and notation

We set our model on a database from an Australian automobile insurance company (De Jong &
Heller 2008) between years 2004 and 2005. The same data set has been used in the numerical appli-
cations in Heras et al. (2018) and Baione & Biancalana (2019). The portfolio has I = 67, 856 policies,
with 4624 policies with at least one claim. The K = 5 rating factors in this data set are listed in Table 1,
where my indicates the number of levels for each rating factor.

Hereafter, we assume the following notation. Let:

e hindex the number of the H risk classes;

o 1= Zle g be the total number of policyholders where g;, denotes the number of policyhold-
ers belonging to hth risk class;

e ijj index the policyholder belonging to hth risk class;

e xy be the row vector of the design matrix, providing information about exposure rating factors
of the generic i, policyholder belonging to the same risk class A.

The loss generated by the ijth policyholder belonging to hth risk class is modeled by means of the
generic non-negative i.i.d. r.v. S; = Sj,. The total or aggregate loss of the portfolio is represented by
the r.v.:
H H & H
LZZLhZZZS"h:Zgh'Sh’ (13)
h=1 h=1 i=1 h=1
where Lj, the non-negative r.v. loss of the generic hth sub-portfolio.
Having the goal of a full ratemaking process, the number of potentially identifiable risk classes is
H =[]5_, m = 3744.

Table 1. Data set rating factors.

Rating Factors Levels Number of Levels
Age (band) of the driver 1 (youngest),2,3,4,5,6 6
Gender MandF 2
Area of residence A,B,C.D,EF 6
Vehicle age 1(new),2,3,4 4
Vehicle body type Bus, convertible, coupe, hatchback, hardtop,

motorized caravan-combi, minibus, panel van, 13

roadster, sedan, station wagon, truck, utility
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Table 2. Risk classes descriptive statistics.

h Risk class Number of policies gp Number of claims Total amount
1 1-F 3084.20 514 808,548.20
2 2-F 4740.18 822 1,374,829.90
3 3-F 5504.78 841 1,480,703.60
4 4-F 4625.44 655 1,244,667.40
5 1-M 2254.75 362 76,706.70
6 2-M 3183.50 532 1,111,387.20
7 3-M 403733 605 1,237,533.40
8 4-M 4370.64 606 1,310,228.10

Total 31,800.82 4937 9,314,603.60

Therefore, in order to apply the QR in the second stage one can request to run a QR 3744 times,
from which m =1+ Z,i:l(mk — 1) = 27 parameters are obtained, with a total of 101,088 (H x
m = 3,744 x 27) parameters.

Whereas, using the TSPQR model, assuming e.g. bp(0) = 1, b;(0) = 26 as in the previous exam-
ples (i.e. n = 2), we only need to estimate a single PQR in the second stage with 54 (n x m = 2 x 27)
parameters.

Therefore, in the following analysis, to simplify our figures and outcomes, we consider only two
rating factors: Vehicle Age (hereafter Veh_Age) and Gender; in this way, we reduce our analysis on
eight rating classes obtained by the combination of four levels (1,2, 3,4) and two levels (M, F) for
Veh_Age and Gender, respectively. In this way, the reduced data set allows us to investigate H = 8
risk classes and m = 5 parameters for each QR model.

In Table 2, we show some descriptive statistics of the reduced data set.

4.2. First stage: generalized linear models for probability on no claims estimate

The first step of the two proposed models concerns the estimate of the Pr[ly, = 0] = pp,. The latter is
performed by a Generalized Linear Model (GLM) assuming a binomial distribution for the response
variable and a Logit link function. The model leads to the following estimate of the conditional mean
of the frequency of having at least one claim:

exp (xZ - 1)

h=1—E[ly]=1— ——n 1
P [Nh] 1+exp(x}7;.n)

(14)

The parameters’ estimate for the Logit GLM used herein are obtained by using the Maximum Like-
lihood Estimation and are reported in Table 3. As one can observe, regression parameters Veh_ Age,
and Gender) show alow significance and levels could be aggregated to the base one. However, for our
analysis we leave the levels separated. Anyway, this is not relevant for the next steps requested by the
Quantile Premium Principle. For example, the exclusion of the Gender covariate from the frequency
model (i.e. using the same level of probability p, for Male and Females), only reduces the number
of QRs to be run, but does not exclude the Gender from the severity model at all. Indeed, in two-
part models the statistical significance of the rating factors is tested independently on each part. The
severity component of the QPP is computed by means of a Gamma GLM for the mean estimation and
a QR, or a PQR, for the quantiles estimation, respectively. The parameters” estimate of the Gamma
GLM model are reported in the Appendix. Hence, to remove completely a covariate, it must not be
statistically significant in all models.

Before starting the second stage, we shall firstly fix the probability level for the estimation of the
conditional quantile of the total claim amount S,; to this aim, we adopt a probability level § = 0.95 in
line with the assumption of Heras et al. Then, by means of Equation (10) we define the correspondent
6, probability levels for the r.v. S, whose values are reported in the Table 4 with the corresponding
values of the probability of no claim.
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4.3. Quantile estimation via quantile regression and parametric quantile regression

Once defined the probability levels 6 for the TSQR model we run eight QRs and we estimate 40
parameters consequently. In Tables 5 and 6, the parameter estimates (8y) and the corresponding
p-values of the Wald test are reported (for further details, see Koenker 2005), for each run QR.

Table 6 shows that regression parameters Genderys are not significant (i.e. p-values higher than
0.05) in each risk class h, whereas the regression parameters Veh_Age, are not significant for half of
the risk classes (bold values). Therefore, the latter risk factor shows an ambiguity on the statistical sig-
nificance. This ambiguity may arise using of the TSQR approach, as it requires to run H independent
QRs each one calibrated at a probability level 6, h = 1,..., H. Each QR produces a different set of
diagnostic outcomes, then it is necessary to test each run to conduct a full analysis.

It is worth noting that the ambiguity on Veh_Age, proves that a not statically significant p-value
of the same regression parameter in the GLM Logit (see Table 3), does not imply a no statistical sig-
nificance in the QRs. Indeed, the frequency and severity regression models refer to different response
variables, Iy, and Sy, respectively. The only relation between GLM Logit and QR models, is that the
QR probability level 6" depends on the estimates of p, by means of Equation (10).

In the following, we implement the PQR procedure. We first shall choose a function for b(9). To
this aim, we select the class of the Shifted Legendre polynomials (SLP). The SLP are a special class
of Legendre polynomials (P, (x)) and are defined as P,(x) = P,(2x — 1), implying that the P, (x) are

Table 3. Estimates of parameters for frequency model.

Parameter Value Std. error p-value
Intercept —1.689 0.040

Veh_Age; 0.026 0.049 0.590
Veh_Ages —0.099 0.048 0.039
Veh_Ages —0.200 0.049 <1073
Gendery —0.027 0.032 0.590

Table 4. Probability of no claim and probability level of the severity conditional quantile.

Risk class 1-F 2-F 3-F 4-F 1-M 2-M 3-M 4-M
Ph 0.844 0.841 0.857 0.869 0.848 0.844 0.860 0.872
0y 0.679 0.686 0.651 0.619 0.672 0.679 0.643 0.610

Table 5. Estimates of parameters for QRs.

9;‘ 0.679 0.686 0.651 0.619 0.672 0.679 0.643 0.610
Risk class 1-F 2-F 3-F 4-F 1-M 2-M 3-M 4-M
Intercept 7.116 7.130 7.027 6.920 7.079 7.116 6.998 6.872
Veh_Age; 0.132 0.137 0.155 0.144 0.157 0.132 0.153 0.166
Veh_Ages 0.241 0.260 0.178 0.182 0.258 0.240 0.176 0.205
Veh_Age, 0.382 0.400 0.332 0.320 0.391 0.379 0.307 0.330
Gendery 0.075 0.064 0.046 0.035 0.063 0.075 0.045 0.041

Table 6. p-values of parameters for QRs.

o 0.679 0.686 0.651 0.619 0.672 0.679 0.643 0.610
Risk class 1-F 2-F 3F 4F 1-M 2-M 3-M 4-M

Veh_Age; 0.099 0.086 0.034 0.074 0.036 0.099 0.046 0.046
Veh_Ages 0.006 0.004 0.025 0.020 0.002 0.007 0.027 0.008
Veh_Agey <1073 <1073 <1073 <1073 <1073 <1073 <1073 <1073

Gendery 0.207 0.275 0.398 0.537 0.270 0.207 0.413 0.468
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orthogonal on [0, 1]. An explicit expression for the SLP of degree # is given by

~ " k
Bu) = (-1" Y (Z) (”: )(—x)". (15)
k=0

To motivate our choice we observe that (i) in multiple linear regression the adoption of orthogonal
polynomial, like the SLP, allows to overcome multicollinearity problem characterizing the polynomial
regression; (ii) the estimation algorithm of PQR contained in the ‘R’ package igr isoptimized
for objects of the SLP class (see Frumento & Bottai 2016), which means that using SLP of degree k
instead of standard polynomials of the same degree will result in a quicker computation, even with
k = 1, with equivalent results.

Moreover, we have tested different functions based on the same number of parameters to cover a
reasonable range of possible choices; the SLP model generates the lowest value of Root Mean Square
Error (RMSE).

Therefore, in the following we have assumed a degree n = 3 for our analysis and the PQR
parameters are defined as follows:

B0, 7)) = vjo + vir - 20 = 1) + yjp - (66 — 66 + 1)
+ v - (2007 — 3002 +120 — 1), j=1,...,5. (16)

Then, in order to estimate the conditional quantile for all the 6 € (0, 1) by means of Equation (4) we
need to solve the minimization problem (7) and estimate the 5 x 4 = 20 parameters. Thus, reducing
the number of parameters to half the TSQR.

In Tables 7 and 8, we report the parameter estimates and p-values of Wald tests, respectively.

In Table 8, the p-values shown in Wald test for the rating factors can be interpreted as the signif-
icance of a test for a null effect of covariates. The second part of Table 8 shows the p-values for the
null hypothesis that the corresponding column of T" is 0 and represents the significance of the compo-
nents of b(0). It is important to note that all the parameters are significant and all tests are completely
performed with a single model.

Figure 2 shows the trend of the parameters g and B(6,I") over the entire range of probability
levels 6 calculated by QRs and PQR procedures, respectively. For the 8¢ parameters we have run 100

Table 7. " matrix of estimated parameters for PQR.

P00 = 5.019 P01 = 1.827 P02 = 0355 o3 = 0.145
P10 = 0.043 P11 = 0.103 P12 = 0.034 P13 = —0.026
Y20 = 0.078 Y21 =0.144 722 = 0.016 723 = —0.047
730 = 0.124 P31 = 0.190 732 = —0.037 733 = —0.127
Va0 = 0.005 P41 = 0.070 Va2 = 0.067 Va3 = 0.072

Table 8. Wald test p-values PQR.

Wald test for rating factors

Rating factors p-value

Veh_Age <1073

Gender 0.008
Wald test for b(0)

bo(0) <1073

b1(8) <1073

b2(0) <1073

b3(9) <1073
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Figure 2. QR and PQR parameter estimates.

times the QR respect to each element of a quantile level vector 6 = 0.01,0.02, . ..,0.99. Whereas for
the PQR it is sufficient to calculate 8(0,I") simply considering each element of the 6 vector as an
input of Equation (4).

In each graph, the central continuous line represents the parameter estimates 4(6, ") provided
by a single PQR, the external dashed lines represent the upper and lower confidence interval at level
95% estimated by a single PQR, the black dots are the parameter By estimates obtained by multiple
QRs for different probability levels. For example, in Figure 2(a), Intercept or base level is represented;
the green continuous line is obtained letting j = 0 in Equation (16). Obviously, the PQR and the QR
Intercept parameter increases as the probability level increases.

The second graph, represented in Figure 2(b), shows the Veh_Age, regression parameters. The
linear combination with the Intercept parameter allows the estimation of the conditional quantile of
the class 2-F ’. We can observe that QR parameters show a sort of S-shaped form with some hump
and pit with some noise; moreover, it shows an increasing trend until 0.9 and decreasing and more
noisy afterwards. A very similar behavior for QR is observed for Veh_Ages; (Figure 2(c)) with an
incremental trend until 0.8 and a slope afterwards. PQR parameters show a more smoothed trend, as
expected, but crossing the QR values. More similar behavior is observable respect to the Veh_Age,
and Gender)y. In particular, the latter in Figure 2(e) represents the same data shown in Figure 1 for
QR. As noticeable, PQR overcomes all the previously commented issues related to the strong variation
between neighboring quantiles estimated with QRs.

To better appreciate the differences between the two proposed approaches we show in Table 9 the
quantile estimates for each 67, Q5[Si].

As observable, the two estimates are very close to each other, indeed the differences are in the range
(—1.29%, 3.52%). In summary, it can be observed that these differences can be considered more or less
relevant depending on the purpose of the analysis which they are used in. Indeed, when the analysis
requires the estimate of a discrete set of quantiles, or the whole quantile process, PQR approach can
result in a correct combination of precision and parsimony.
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Table 9. Quantile estimates with § = 0.95.

Qz(Shl

h Risk class Exposure gp, 0y TSQR TSPQR A%
1 1-F 3084.20 0.679 1231.66 1237.68 —0.49%
2 2-F 4740.18 0.686 1432.45 1447.69 —1.05%
3 3-F 5504.78 0.651 1346.64 1364.18 —1.29%
4 4-F 4625.44 0.619 1393.34 1346.01 3.52%
5 1-M 2254.75 0.672 1264.11 1263.20 0.07%
6 2-M 3183.50 0.679 1515.65 1477.00 2.62%
7 3-M 4037.33 0.643 1366.28 1379.23 —0.94%
8 4-M 4370.64 0.610 1398.43 1351.43 3.48%

Table 10. Pure premium estimation.

h Risk class Exposure Ph E[Sh] E[Sh]

1 1-F 3084.20 0.844 1734.85 270.45

2 2-F 4740.18 0.841 1828.16 291.38

3 3-F 5504.78 0.857 1844.88 264.42

4 4-F 4625.44 0.869 1984.13 260.67

5 1-M 2254.75 0.848 2080.32 316.95

6 2-M 3183.50 0.844 2192.21 341.51

7 3-M 4037.33 0.860 2212.26 309.78

8 4-M 4370.64 0.872 2379.24 305.28

4.4. QPP estimate

The differences shown in Table 9 are negligible if we consider that the quantile values are used in a
ratemaking process to determine risk loading in the loaded premium in Equation (8). In order to apply
the QPP, we first estimate E[Sy,] by means of a Gamma GLM with log link function and consequently,
we obtain the estimate of the pure (or equivalence) premium E[S,] = (1 — py) - E [S,]. In Table 10, we
show the total claim amount (equivalence premium) per risk class. For further details on parameter
values and diagnostics the reader can refer to Baione & Biancalana (2019).

Once estimated E[S] and Qz[Sy], following (8) it is important to fix the « level to complete the
loaded premium estimate. The choice of the « is strategic and cannot be arbitrary. Following Baione
& Biancalana (2019), the basic idea is that the sum of all premiums covers the expected aggregate
amount of loss E[L] plus a risk margin value. The overall aggregate amount is generally selected by
insurance managers by looking at pricing or solvency conditions, using a functional 7 that assigns a
non-negative real number to random variables L. Hence, it is possible to calibrate the o level so that
the following balance equation is satisfied:

H H
w1 =) gn-Ph=)_ gn[e- QS+ 1 —a)-ES]]. (17)
h=1 h=1

Then

. m[L] — E[L] s
I gn - [QalSh] — ELS]]

In the following, according to the Solvency II standard formula for premium risk? in the Motor
Third Party Liability insurance (EIOPA 2009), we consider 7 [L] = E[L] - (1 + 3 - ¢) with o = 10%.

2 The standard formula implicitly assumes to measure the distance between the Value at Risk (VaR) at 99.5% confidence level and
the mean of the probability distribution of aggregate claims amount by using a fixed multiplier of the volatility equal to 3 for all
undertaking.
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In our application, this assumption leads to an aggregate amount of w[L] = 12,042,455 and a mean
value E[L] = 9,263,427.

Considering the differences between quantiles estimates obtained by means of the TSQR or
TSPQR (see Table 9), we obtain two different & levels, say &qor = 8.05% and &por = 8.13%.

In Table 11, the premium estimates are shown for both QRs and PQR procedure:

It is worth noting that the two estimates of QPP are very close, indeed the differences are reduced
in the range (—0.63%, 0.87%).

In order to demonstrate that these small differences are not occasional and related to our dataset,
we have also performed the TSPQR on the same data set used by Heras et al. (2018), where the authors
have used the ‘Age of the driver’ (Age_Cat) as rating factor instead of ‘Gender’. The Age_Cat has
six levels, then the number of rating classes as well as the number of parameters increase to H =
6 x 4 =24 and m = 9, respectively. The application of the TSQR requires to run 24 QRs, with a
total of 216 (H x m = 24 x 9) parameters to be tested. While assuming the same polynomial of the

Table 11. Quantile Premium Principle estimation.

Ph

h Risk class Exposure E[Sh] TSQRs TSPQR A%

1 1-F 3084.20 270.45 347.91 349.10 —0.34%
2 2-F 4740.18 291.38 383.33 385.41 —0.54%
3 3-F 5504.78 264.42 351.63 353.85 —0.63%
4 4-F 4625.44 260.67 351.94 348.92 0.87%
5 1-M 2254.75 316.95 393.27 393.89 —0.16%
6 2-M 3183.50 341.51 436.13 433.84 0.53%
7 3-M 4037.33 309.78 394.92 396.74 —0.46%
8 4-M 4370.64 305.28 393.37 390.35 0.77%

Table 12. TSQR vs. TSPQR: Quantile Premium Principle comparison in
the application of Heras et al. (2018).

Risk class Pp

h Veh_Age&Age_ Cat TSQR TSPQR A%

1 (2&1) 603.58 602.48 0.18%
2 (1&1) 546.10 549.97 —0.70%
3 (3&1) 557.49 562.12 —0.82%
4 (2&2) 396.55 396.59 —0.01%
5 (4&1) 564.30 569.59 —0.93%
6 (1&2) 361.42 363.08 —0.46%
7 (283) 339.93 339.75 0.05%
8 (1&3) 311.26 310.95 0.10%
9 (2&4) 327.66 329.25 —0.48%
10 (3&2) 369.33 367.74 0.43%
1 (1&4) 300.13 301.63 —0.50%
12 (3&3) 315.34 314.68 0.21%
13 (4&2) 373.96 371.19 0.75%
14 (3&4) 303.49 304.61 —0.37%
15 (4&3) 317.39 317.24 0.05%
16 (4&4) 306.72 306.89 —0.05%
17 (2&5) 239.91 238.85 0.44%
18 (2&6) 261.64 259.39 0.87%
19 (1&5) 218.81 219.19 —0.17%
20 (1&6) 238.55 238.12 0.18%
21 (3&5) 220.02 219.86 0.07%
22 (3&6) 240.95 239.11 0.77%
23 (4&5) 220.54 220.29 0.11%
24 (4&6) 242.18 239.75 1.01%
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third degree in (16) for the description parameters, the TSPQR model needs to estimate 36 (n x m =
4 x 9) parameters at once. In Table 12, we show a comparison of the estimates.

As in the previous case, the distance between the two estimates is very small as it ranges in
(—0.93%, 1.01%).

5. Conclusion

The paper deals with the assessment of the ratemaking on a portfolio of non-life policies, where the
loaded premium is individually calculated according to a quantile premium principle. To this aim, we
propose to change a two-part model introduced by Heras et al. (TSQR) (Heras et al. 2018) that, for the
estimate of the severity component, requests to perform a number of Quantile Regressions equal to
the number of the risk classes selected. Since, in actuarial practice, the ratemaking process can include
a remarkable number of risk classes (also in order of billions), this procedure could be onerous and
time-consuming; then, following Frumento & Bottai (2016), we introduce the parametric quantile
regression (PQR), in order to overcome these drawbacks and define a statistical structure (TSPQR)
for ratemaking, which is more parsimonious. The PQR, never applied in the actuarial context, enables
the estimate of conditioned quantiles of the severity component, for each probability level in a unique
run.

Furthermore, a numerical application to compare the two procedures is produced. TSQR and
TSPQR provide similar outcomes that are not too distant. Since this result is obtained by estimat-
ing half the number of parameters in the TSPQR case, and this implies a suitable performance of
TSPQR in terms of parsimony and efficiency.
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Appendix

The application of QPP requires the estimate of E [S(h)]. To this aim Gamma GLM with log link function is adopted.
The model leads to the parameter estimates reported in Table A1.

As observable, compared to the frequency model the Gendery, is statistically significant, whereas all the Veh_Age
regression parameters show a low significance and levels should be aggregate to the base one. Anyway, we have leaved
the levels separated.

Table A1. Estimates of parameter for claim severity conditional

mean.
Parameter Value Std. error p-value
Intercept 7.459 0.065

Veh_Age; 0.052 0.078 0.504
Veh_Ages 0.061 0.077 0.425
Veh_Agey 0.134 0.079 0.091

Gendery 0.182 0.052 0.000
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