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ABSTRACT

We discuss the challenge of comparing three gene prioritization methods: network propa-
gation, integer linear programming rank aggregation (RA), and statistical RA. These
methods are based on different biological categories and estimate disease–gene association.
Previously proposed comparison schemes are based on three measures of performance:
receiver operating curve, area under the curve, and median rank ratio. Although they may
capture important aspects of gene prioritization performance, they may fail to capture
important differences in the rankings of individual genes. We suggest that comparison
schemes could be improved by also considering recently proposed measures of similarity
between gene rankings. We tested this suggestion on comparison schemes for prioritizations
of genes associated with autism that were obtained using brain- and tissue-specific data. Our
results show the effectiveness of our measures of similarity in clustering brain regions based
on their relevance to autism.

Keywords: autism, comparative analysis, disease–gene association, gene prioritization.

1. INTRODUCTION

Gene prioritization refers to the problem of identifying genes that are implicated in a disease.

Experimental approaches, such as large scale sequence experiments (Krishnan et al., 2016; Yuen et al.,

2017), are the ultimate way to address this problem, but they tend to be costly and often time consuming.

Complementary to experimental sequencing approaches, computational approaches exploit existing

knowledge about causal genes for a specific disease to predict risk genes from a pool of test genes. Thus,

computational tools help narrow down the set of prospect genes for further validation.

Most of the gene prediction methods are based on the premise that similarity in terms of biological

features of the test genes to known causal genes, often called seed genes, corresponds to functional

similarity and to similar roles in a disease. Existing methods use various types of biological data and

annotations gathered from public websites as well as from new experiments: from expression profiles, to

interaction data, to gene ontology (GO).
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A recent survey reviews the goals and challenges of the computational aspects of gene prioritization

(Moreau and Tranchevent, 2012). Other surveys examine a small number of the existing computational

tools, discussing their availability at public web sites, ease of use, requirements in terms of input data, and

their various advantages/disadvantages (Nivit et al., 2014; Zolotareva and Kleine, 2019). The variety of

data sources and the lack of an established gold standard render the task of evaluating and comparing the

different computational tools rather complex.

In this study, we provide a framework for the comparison of different approaches in predicting genes

associated with a disease. We consider two classes of approaches widely used in biological applications and

specifically in gene prioritization studies: rank aggregation (RA) and network propagation (NP).

Commonly used measures of performance of prediction methods, receiver operating curve (ROC), area

under the curve (AUC), and median rank ratio (MRR; Börnigen et al., 2012), are effective in assessing the

ability of a prediction tool in retrieving known causal autism genes from a pool of candidates. These

measures generally provide the basis for a comparison of computational tools. However, they do not take

into account the identity of genes, that is, which genes have a given rank in the outputs of two methods. To

account for that in evaluating the similarity of two gene rankings, we propose to use the Jaccard index and

the L1 distance, Drank, which, as far as we know, have never been used in this context.

We show that, all together, the mentioned measures, AUC, MRR, Jaccard index, and L1, contribute to

quantitatively analyze how the result of gene prioritization is influenced by the choice of the data categories

and the choice and implementation of a computational method.

We use as a case study the challenge of discovering the genes implicated in autism. Autism spectrum

disorders (ASDs) refer to a wide range of disorders, from mild to severe, mostly affecting interpersonal

relations. This disorder has a significant genetic component. A large number of genes may be implicated in

ASDs, but currently strong evidence exists only for *100 genes, although many more may have a role

(Banerjee-Basu and Packer, 2010).

We report on three sets of experiments: (1) we ran RA and NP in the same experimental setting with the

same biological data categories; (2) we ran the same method, say RA, applied to different data categories;

(3) we ran RA and NP on the whole brain, and on tissue-specific data.

As inputs, we use brain-specific data: gene expression profiles from Brainspan (Miller et al., 2014) and

multiple input categories from ToppGene (Chen et al., 2009).

From these experiments, we conclude that (1) network-based propagation generally outperforms RA; (2)

the impact of the different data categories is statistically significant; in fact, the similarity of the lists of

prioritized genes produced by an algorithm applied to different data categories is not higher than that

expected by chance; (3) all measures indicate a better performance on some tissues than on the whole brain,

highlighting the importance of those tissues for ASDs; and (4) the L1 distance of prioritized lists of genes

between tissues provides the basis for a valid clustering of the brain tissues based on their involvement in

autism.

The article is organized as follows. In Section 2, we review the computational methods of RA and NP. In

Sections 3 and 4, we present the data sets used in our experiments and the performance measures. The

results on the whole brain are presented in Section 5, whereas those on tissue-specific data are presented in

Section 7.

2. COMPUTATIONAL APPROACHES

The computational approaches considered here, RA and NP, are not tailored to specific data categories

and do not heavily rely on big data. The software can be downloaded or easily reproduced, or the results on

new candidate genes can be obtained from a public website. A description of both methods follows.

2.1. Rank aggregation

RA has been often proposed as a way to solve the gene prediction problem (Adle et al., 2009; Chen et al.,

2009; Kumar and Vassilvitskii, 2010; Kolde et al., 2012; Minji et al., 2015; Li and Milenkovic, 2017). It takes

in input several rankings on the same set of genes and produces a single average ranking that best summarizes

them. A ranking may be viewed as a permutation on the integers f1‚ 2‚ � � � ‚ ng, n being the number of genes,

with the integers corresponding to some lexicographical sorting of the genes. Thus this approach deals with

permutations, that is, arrangements of the same set of genes, and takes advantage of the vast prior art on
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distance of permutations and their ‘‘average’’ to tackle the gene prioritization problem. The fundamental

questions in RA are (1) how to define the average ranking and (2) how to compute it efficiently.

There are two main families of approaches to RA: combinatorial and statistical. For our analysis, we

select a representative for each family. The combinatorial method uses rankings as inputs and is framed as

an optimization problem; the statistical method uses ratings, that is, rankings with scores, and the well-

established Fisher inverse v2 method.

2.1.1. A combinatorial approach. An approach to RA is to define a suitable distance between

rankings and seek the ranking that minimizes the sum of its distances to all input rankings. This distance

can be chosen among the plethora of distances introduced in the literature on permutations, including the

Kendall’s distance, the Spearman’s distance, and the Hamming distance. Here, we consider the most

common one, the Kendall’s distance. It counts the number of pairs of genes that appear in opposite order in

two rankings.

Given a set of rankings P on n genes, the RA is solved as an optimization problem:

s� = min
s2Sn

X

p2P

d(s‚ p)‚ (1)

where d is the Kendall distance and Sn is the set of all n! permutations of n symbols. It is known that this

optimization problem is NP-complete (Dwork et al., 2001).

An exact solution to problem (1) can be obtained by integer linear programming (ILP) as proposed in

Conitzer and Sandholm (2006) and Schalekampf and von Zuylen (2009). We refer to this approach as

RA-ILP.

Even though much faster approaches to RA exist (Dwork et al., 2001) and provide good approximate

solutions, we opted for the mentioned approach, implemented by means of the Gurobi solver (Optimiza-

tion, 2020), because we wanted the exact solution for our comparison.

2.1.2. A statistical approach. Some approaches to the integration of heterogeneous information

rely not only on rankings but also on a score associated with each gene in a ranking, often a p value

(Chen et al., 2009; Minji et al., 2015). Integrating scored rankings can be done using a variety of

statistical techniques.

The statistical approach considered in our comparative analysis is ToppGene (Chen et al., 2009), which

is based on the Fisher inverse v2 method under the hypothesis of independent ratings. It establishes

similarity between a set of test genes and the seed genes using as many as 14 categories including GO:

molecular function, GO: biological process, GO: cellular component, human phenotype, mouse phenotype,

pathway, PubMed, disease. For a given category, a similarity score is computed for every pair of test and

seed genes along with its p value. The computed p values induce a ranking of the test genes according to a

specific category, resulting in as many as 14 scored rankings, one for each category.

Then, ToppGene integrates such scored rankings using Fisher’s inverse v2 result stating that

- 2
Pm

j = 1 log p(j)! v2(2m), where m is the number of annotations and v2(2m) is the v2 distribution with

2m degrees of freedom.

2.2. Network propagation

Network-based methods have gained popularity in the past decade as a powerful tool in a variety of

domains including biology, where they have been used to determine subnetworks corresponding to func-

tional modules (Mitra et al., 2013), to find conserved subnetworks in different species (Ciriello et al.,

2012), and in drug discovery (Csermely et al., 2013). Studies on network-based propagation for gene

prioritization include RA et al. (2006), Vanunu et al. (2010), Lee et al. (2011), Sinan et al. (2011), Magger

et al. (2012), Guala et al. (2014), Shim et al. (2015), Wong et al. (2015), and Jingchao Ni et al.( 2016). A

survey by Cowan et al. (2017) provides a good introduction and a description of various applications in

biology. A recent survey (Guala and Sonnhammer, 2017) reviews NP for gene prioritization and uses GO

terms as validation.

Molecular networks most often used in gene prioritization are protein–protein interaction networks,

representing physical binding of proteins and gene coexpression networks, where edges are labeled with

coexpression values of genes.
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The idea underlying all these approaches is that topological proximity of proteins or genes implies a

higher likelihood to be involved in the same disease. In a network-based propagation process, the infor-

mation flows from a node to its neighboring nodes, and from these to their neighbors and so on, with an

iterative process that stops either after a fixed number of steps or upon convergence. Among the variants of

this basic strategy, random walk with restart (RWR) seems to be the popular choice (Guala and Sonn-

hammer, 2017). It allows at each step to restart a random walk from the initial seeds with a given

probability, thus taking into account both local and global topology of the network.

We selected, as a representative of the network-based class of algorithms, the NP-RWR approach and we

used the tool DADA (Sinan et al., 2011) to generate the lists of predicted genes. DADA is based on RWR

and employs statistical methods to correct a common drawback of such methods, that is, that they penalize

loosely connected nodes in favor of highly connected nodes, or hubs. DADA was run on coexpression

networks as inputs.

3. DATA

Two sets of genes are typically considered in the computational prediction of disease genes: (1) seed

genes, for which there is a strong evidence of association with autism and (2) test genes, among which to

identify the ASD-risk genes. The test set may consist of the entire set of human genes, but most often is

restricted to a much smaller set. For the purpose of the evaluation, the set of test genes is considered to be

divided into two subsets: candidate and random genes. The candidate set consists of genes that have some

ties to the specific disease but need further validation, and the random set contains genes for which no

functional association exists in the brain regions.

3.1. Data sources

In our experiments, autism genes are obtained from the Simons Foundation Autism Research Initiative

(SFARI) Gene database (Banerjee-Basu and Packer, 2010), Genecards (Stelzer et al., 2016), and pre-

viously published articles. SFARI assigns genes to different categories depending on the evidence that

exists of their association with autism, category 1 being the one with strongest evidence. The complete

list of input genes used in our experiments is given in Tables 4–7 of the Supplementary Material. It

includes 10 seed nodes (Willsey et al., 2013). Most of the candidate genes are from SFARI categories 1

and 2. They are included in the sets SF-cat1 (i.e., SFARI genes falling in the phenotypic profile 1) and

SF-cat2 (i.e., SFARI genes falling in the phenotypic profile 2). Genes not present in SFARI are ASD-risk

genes with sequence-level mutations from experimental studies reported in Yuen et al. (2017). At the

time of the publication (Yuen et al., 2017), such genes had not previously been reported in the literature.

This set consisting of 18 genes is called Y-set. The set ALL includes all the 124 candidate genes

belonging to SF-cat1, SF-cat2 and Y-set. A set of 137 random genes were selected from the list in

Krishnan et al. (2016).

From the BrainSpan website (Miller et al., 2014), we downloaded spatiotemporal expression values of

all genes originating from 16 brain regions and at 15 different developmental stages (Kang et al., 2011).

Coexpression values for a pair of genes were computed as the correlation coefficient of their spatiotemporal

expression profiles and were mapped into the interval [0,1] (Zhang and Horvath, 2005).

We opted for an input list of modest length because of the high computational demands of RA-ILP.

4. PERFORMANCE MEASURES

We evaluate the comparison schemes on the entire set of test genes as well as on partial sets of

candidates using the following measures of performance:

� ROC. It is a common measure of performance, plotting the false positive rate (FPR) versus the true

positive rate. The label true positive (TP) is assigned to candidate genes that are ranked above a given

rank threshold and false positive (FP) to random genes above the same threshold. The AUC is a

synthetic measure, one single value, of performance.
� MRR. It gives an indication on how highly the candidate genes are placed in the output. It is defined as

the median rank of the candidate genes normalized by the length of the list of all test genes (candidate

and random; Börnigen et al., 2012; Guala and Sonnhammer, 2017).
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The mentioned two measures, computed separately for each prediction tool, are concerned with the ranks

of test genes but do not consider the identity of the genes, in other words which genes have a specific rank.

By contrast, the following are pairwise similarity/distance measures of predictive tools that look at the

individual genes to establish their closeness in two prioritized list of genes. To the best of our knowledge,

they have not been used so far to compare prediction tools.

� Drank and NDrank. They are based on the differences in ranks of all candidate genes in two complete

output rankings (which include all test genes). Precisely, given two rankings p and q of the entire set of

test genes, their distance Drank is the L1 distance defined as the sum over all candidate genes of the

absolute values of the difference in rank of the genes in p and q:

Drank =
X

g
jrankp(g) - rankq(g)j‚

where rankp(g) represents the rank of candidate gene g in p. Note that the ranks of random genes are not

considered in the mentioned definition since they are not relevant for the analysis. NDrank is the normalized

value of Drank, that is, it is equal to Drank divided by the length of the list of the test genes.

We use a permutation test to establish the significance of the Drank value by estimating a p value. The test

is done on a large number of possible rankings of the candidate genes. It is computed as the fraction of

times the distance between one ranking, say p, and q0, which is obtained by randomly permuting q, is

smaller than or equal to the observed distance.

� Jaccard index. As a measure of similarity, we compute the Jaccard index of the sets of TPs in the two

ranked lists of genes. Given the tools A and B and the sets of TP(A) and TP(B), the Jaccard index is

given by the size of the intersection of two sets divided by the size of their union:

Jaccardindex =
jTP(A) \ TP(B)j
jTP(A) [ TP(B)j :

We determine the significance of the Jaccard index by using the bootstrap procedure in Chung et al.

(2019) on binary vectors whose size is the number of candidates; a 1 is assigned to elements of the vector

corresponding to TPs and 0 to FPs. The p value is computed as the number of times the Jaccard index is

below the observed value.

5. RESULTS

In this section, we provide comparisons of the computational approaches already presented: RA-ILP,

ToppGene (Chen et al., 2009), and NP-RWR ( Jingchao Ni et al., 2016).

5.1. NP-RWR versus RA-ILP on coexpression values data

We run RA-ILP and NP-RWR utilizing the same biological data, that is, coexpression values of the seeds

with the test genes. Thus a comparison of their results will assess the relative merits of the two compu-

tational approaches under similar experimental settings. Precisely, RA-ILP has in input 10 rankings of the

test genes; each ranking is induced by the coexpression values of the test genes with a seed. NP-RWR has

in input a complete network with nodes corresponding to all genes, that is, seed, candidate and random

genes, and edges connecting all pairs of genes; the edges are labeled with the coexpression of the corre-

sponding genes.

The ROCs and AUC values representing the global performance of the methods are shown in Figure 1.

Overall, NP-RWR has a better performance than RA-ILP in terms of AUC (0.79 vs. 0.75). This difference

becomes less pronounced when limiting the curves to partial data with FPR <0.2 (Fig. 2).

The values of the MRR for the four subsets of candidate genes (Table 1) show almost no difference

between the methods, except for the set SF-cat2. The higher MRR value of Y-set than of SF-cat1 confirms

that those 18 genes have less support when their prediction is based on prior knowledge and not on
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experimental genomic evidence. All the mentioned measures indicate that NP-RWR outperforms RA-ILP,

although the differences in the parameters are relatively small.

The Jaccard index of 0.71 ( p < 0.01) computed for the two sets of TP reveals a somewhat different

scenario. Although, as the p value indicates, this value is higher than the one that would be expected by

chance, it is still true that 30% of genes reported as TP in one output are not TP in the other. Not

surprisingly, the Jaccard index for the TP in the top 20% ranks is even lower (0.45).

5.2. ToppGene versus RA-ILP on multiple input categories

RA-ILP and ToppGene are both based on the aggregation of input rankings. They differ not only in their

computational approach (combinatorial vs. statistical) but also in their input data types and categories.

Although ToppGene takes into account scores ( p values) associated with all genes, RA-ILP only considers

their ranks. Furthermore, Toppgene has input rankings induced by various biological categories rather than

coexpression values only. Thus a comparison of the performance of ToppGene with respect to RA-ILP is

not indicative of the effectiveness of its computational process. To partially address this issue, we ran RA-

ILP on the same input rankings as ToppGene. The set of candidate genes in this experiment does not

include the following genes since they are missing from the ToppGene website: FAM47A, MSNP1, UBN2,

GNAS-AS1, and GRIA1. They are not in the set SF-cat1.

According to the ROCs and AUC values (Fig. 2), ToppGene has a slightly better performance than RA-

ILP (0.69 vs. 0.66). The same is true if we consider the partial AUC (0.06 vs. 0.05). The values of the MRR

are somewhat mixed, but in both cases the MRR of the Y-set is about the same as that of a set of random

genes of the same size.

FIG. 1. The ROCs and corresponding AUC values of each of the considered approaches. AUC, area under the curve;

NP-RWR, network propagation using random walk with restart; RA-ILP, rank aggregation with integer linear pro-

gramming; ROCs, receiver operating curves.
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6. DISCUSSION

We cannot draw definitive conclusions about the various approaches due to the obvious limitation in the

experiments. However, based on our results and performance measures, we can observe the following

trends.

� With coexpression data as input, the NP method achieves the best performance in terms of both

AUC and MRR although only marginally. For instance, the difference in MRR between NP-RWR and

FIG. 2. The partial ROCs and corresponding AUC values of each of the considered approaches. Only values of false

positive rate below or equal to 0.2 are displayed.

Table 1. The Median Rank Ratio of the Candidate Genes of the Sets ALL, SF-cat1, SF-cat2,

and Y-Set for Each of the Computational Methods and Data Type Considered

MRR

Coexpression values Multiple categories

NP-RWR RA-ILP ToppGene* RA-ILP*

ALL 0.31 0.31 0.35 0.37

SF-cat1 0.20 0.20 0.25 0.40

SF-cat2 0.38 0.34 0.35 0.33

Y-set 0.26 0.27 0.55 0.52

The MRR values corresponding to the methods marked with an asterisk have a different normalization factor due to the different

size of the test data. MRR, median rank ratio; NP-RWR, network propagation using random walk with restart; RA-ILP, rank

aggregation with integer linear programming; SF-cat1, SFARI genes falling in the phenotypic profile 1; SF-cat2, SFARI genes falling

in the phenotypic profile 2; Y-set, ASD-risk genes with sequence-level mutations from experimental studies reported in Yuen et al. (2017)

and not considered in the SFARI gene database; ALL, including all the 124 candidate genes belonging to SF-cat1, SF-cat2 and Y-set.
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RA-ILP is 0 when the analysis focuses on the genes with strong prior evidence of association with

autism, as those in SF-cat1.
� A good practical strategy to increase the reliability of the prediction of disease genes is to combine the

outputs of two or more tools and focus on the shared top-most ranked genes. This is illustrated by the

fact that, when the difference in AUC and MRR values is negligible, the set of genes that are reported

as TP may show remarkable differences. Based on the Jaccard index, we can conclude that the dif-

ference among the outputs is larger than the other parameters AUC and MRR seem to suggest.
� A larger difference in performance appears when a computational method is applied to different

inputs, that is, coexpression values and multiple categories. This is already evident from the partial

ROCs (Fig. 2). Although this is not surprising and has been observed before, the extent of it can be

better appreciated by considering the following measures.

The Jaccard index of the sets of TPs of RA-ILP using coexpression values and multiple ToppGene

categories is 0.4 ( p = 0.89) no larger than that expected by chance.

Although the MRR values of the set of all candidates are only slightly different, those of the sets SF-cat1

and of Y-set are remarkably different (Table 1, columns 3 and 5).

The NDrank distances on all pairs of approaches along with the permutation-based p values (Table 2)

confirm the strong impact of data inputs on the results. In particular, the Drank distance of the ranked lists of

RA-ILP on different inputs is no smaller than that expected by chance.

Furthermore, for the Y-set, all NDrank distances are much larger than for the set ALL, that is, for those

genes there is much less agreement among the various outputs. This suggests that with the existing

biological knowledge and the selection of seed genes, the genes of the Y-set, identified by sequence

experiments, likely would not be predicted.

The analysis so far has focused on the accuracy of the results. The time performance is also very im-

portant since it affects the amount of data that can be prioritized. The running times of RA are few orders of

magnitude higher than those of network-based propagation. In fact, tools based on RA can only deal with

partial lists of genes, whereas others are able to process the entire genome. This may be a heavy limitation

since in high-throughput sequence experiments, it is useful to rely on promising genes selected from the

whole genome. More practical approaches to RA exist that generate approximate solutions with a bounded

error rate; however, we considered here the exact version of the optimization process for better accuracy.

In conclusion, although the standard measures ROC, AUC, and MRR may indicate minor differences in

performance of the various approaches, measures that look at individual genes, such as Jaccard index and

Drank, or measures computed on subsets of genes (SF-cat1, Y-set), may signal major differences in the

predicted genes. We argue that a comparative analysis should take that into consideration.

Table 2. The ND
rank

Distance of the Ranked Lists of Candidate Genes of All Pairs of Approaches

NDrank of ALL

Coexpression values Multiple categories

NP-RWR RA-ILP ToppGene RA-ILP

NP-RWR 16.1 ( p < 0.01) 37.4 ( p = 0.746) 37.6 ( p = 0.902)

RA-ILP 42 ( p = 0.952) 42 ( p = 0.952)

ToppGene 10.8 ( p < 0.01)

NDrank of Y-set

Coexpression values Multiple categories

NP-RWR RA-ILP ToppGene RA-ILP

NP-RWR 32.7 ( p < 0.01) 80 ( p = 0.4) 76 ( p = 0.34)

RA-ILP 85 ( p = 0.79) 89.1 ( p = 0.88)

ToppGene 13.7 ( p < 0.01)

p Values are in parentheses. The top table shows the NDrank values over all candidates, the table at the bottom shows the NDrank

values over the genes of the Y-set.
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7. APPROACHES USING TISSUE-SPECIFIC DATA

Much work on disease–gene associations has relied on the same data irrespective of the specific disease,

cancer, or diabetes, etc., and of the fact that a given disease may manifest itself only in specific organs and

specific tissues. For instance, when studying autism, expression values of the whole brain or even of the

entire organism were considered even though the functions of gene products may be dependent on the

specific regions of the brain where they are performed. Only recently some studies focused on tissue-

specific data (Kang et al., 2011; Magger et al., 2012; Antanaviciute et al., 2015; Greene et al., 2015;

Krishnan et al., 2016). As a result, most of the benchmarks on gene prioritization lack tissue-specificity

analysis.

In this study, we assess the performance of prediction tools applied to tissue-specific coexpression data.

Furthermore, we show that the distance Drank between the predicted rankings of the candidate genes in two

regions can provide an effective basis for clustering brain regions in accordance with their role in ASDs.

In our comparative analysis, we only consider NP-RWR and RA-ILP since the data categories of

ToppGene are not tissue specific.

7.1. NP-RWR versus RA-ILP

Brainspan (Miller et al., 2014) provides tissue-specific temporal data from 16 brain regions for 15 time

periods. In the analysis, we associated 16 profiles with each gene, one for each region, consisting of all the

gene expression values in that region over the entire time span. We also conducted the same investigation

by limiting the gene profiles to the time periods 3–7 corresponding to the prenatal stages. Coexpression

values of gene pairs were computed as correlations of those profiles. We constructed 16 coexpression

networks, one for each region, and used them as inputs to NP-RWR, thus obtaining multiple outputs.

Similarly, we applied RA-ILP to each separate region.

Our results show that NP-RWR outperforms RA-ILP in terms of both AUC and MRR in the majority of

tissues. Furthermore, for each region we observe a stronger agreement between the outputs of the two

methods, NP-RWR and RA-ILP, measured by the Jaccard index and the Drank, than when the methods are

applied to the whole brain. This indicates a more reliable identification of prioritized genes based on tissue-

specific data.

Details of the analysis along with ROCs, MRR, and Drank values are given in Section 1 of the Sup-

plementary Material.

The considered methods succeed in highlighting specific regions that appear relevant to ASDs. Based on

the performance measures, the region S1C primary somatosensory cortex and striatum stand out as im-

portant, testifying of the role of these tissues in the disease and consistent with known results (Fuccillo,

2016; Balasco et al., 2020).

7.2. Clustering of brain tissues

In this study, we show that the distance Drank introduced in this study may serve as a basis for clustering

brain tissues according to their association with known causal ASD genes. Specifically, given the priori-

tized lists of genes obtained by an algorithm on two tissues, the distance between two tissues is defined as

the Drank distance of such lists. Thus, this measure takes into account the difference among tissues in the

ranks of individual candidate genes.

We used the prioritized lists of genes obtained as outputs of NP-RWR and hierarchical clustering to

generate the clusters reported in Fig. 3. As it can be observed, the clusters accurately separate the regions of

the prefrontal cortex from those of the primary motor-somatosensory cortex.

A comparison with other studies based on brain- and tissue-specific data shows the effectiveness of this

clustering approach.

Based on Brainspan data (Willsey et al., 2013), clusters of brain regions with high transcriptional

similarity during the fetal developmental stage were identified. They were obtained by calculating pairwise

Pearson correlation coefficients between each of 9 seed genes and 16,947 genes from the exon array data

set. The main difference with our results is in the primary motor-somatosensory cortex that in Willsey et al.

(2013) is split across two clusters: {M1C, S1C, VFC, MFC, DFC, OFC} (prefrontal and primary motor-

somatosensory cortex) and {V1C, ITC, IPC, A1C, STC}.

GENE PRIORITIZATION 9
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The Drank distance is able to produce clusters that are as accurate as previous methods by only con-

sidering a small set of test genes rather than the entire genome.

As a last note, the clusters generated starting from the outputs of RA-ILP did not match previously

identified clusters and were difficult to interpret (not reported here).

8. CONCLUSIONS

We conducted a systematic comparison of two main computational approaches to gene prioritization. We

evaluated the approaches on a small set of test genes including high-confidence ASD genes to validate their

association with autism. The comparison was done separately on data of the whole brain and on 16 distinct

brain regions. For a more thorough comparison, in addition to standard measures of performance (i.e.,

ROC, AUC, and MRR), we proposed the use of the Jaccard index and of the Drank distance. Such distances

take into consideration the ranks that each individual gene has in the prioritized lists by different methods

and different input data types. Moreover, they allow to quantitatively evaluate the impact of the data

categories on a given computational approach.

Overall, based on all the mentioned measures, the results of our experiments clearly show that the

network-based propagation approach outperforms the RA approach. We observed that, although parameters

such as AUC and MRR show minor differences in performance between the two methods on the entire set

of test genes, they signal a remarkably different behavior when focusing on small subsets of test genes such

as SF-cat1, SF-cat2, and Y-set.

On tissue-specific data, all performance parameters suggested a more important role of some regions in

ASDs. Furthermore, we found that the distance Drank was effective in identifying meaningful clusters of

brain regions.
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Csermely, P., Korcsmáros, T., Kiss, H.J., et al. 2013. Structure and dynamics of molecular networks: A novel paradigm

of drug discovery: A comprehensive review. Pharmaco. Ther. 138, 333–408.

Dwork, C., Kumar, R., Naor, M., et al. 2001. Rank aggregation methods for the web. Proceedings of the 10th

International Conference on World Wide Web, Hong Kong, pp. 613–622.

Fuccillo, M.V. 2016. Striatal circuits as a common node for autism pathophysiology. Front. Neurosci. 10, 27.

Greene, C., Krishnan, A., Wong, A., et al. 2015. Understanding multicellular function and disease with human tissue-

specific networks. Nat. Genet. 47, 569–576.

Guala, D., Sjölund, L., and Sonnhammer, E. 2014. Maxlink: Network-based prioritization of genes tightly linked to a

disease seed set. Bioinformatics. 30, 2689–2690.

Guala, D., and Sonnhammer, E. 2017. A large-scale benchmark of gene prioritization methods. Sci. Rep. 7, 1–10.

Jingchao Ni, J., Koyuturk, M., Tong, H., et al. 2016. Disease gene prioritization by integrating tissue-specific molecular

networks using a robust multi-network model. BMC Bioinformatics. 17, 453.

Kang, H.J., Kawasawa, Y.I., Cheng, F., et al. 2011. Spatio-temporal transcriptome of the human brain. Nature. 478,

483–489.

Kolde, R., Laur, S., Adler, P., et al. 2012. Robust rank aggregation for gene list integration and meta-analysis.

Bioinformatics. 28, 573–580.

Krishnan, A., Zhang, R., Yao, V., et al. 2016. Genome-wide prediction and functional characterization of the genetic

basis of autism spectrum disorder. Nat. Neurosci. 19, 1454–1462.

Kumar, R., and Vassilvitskii, S. 2010. Generalized distances between rankings. Proceedings of the 2010 International

World Wide Web Conference, Raleigh, NC, USA, pp. 571–580.

Lee, I., Blom, U., Wang, P., et al. 2011. Prioritizing candidate disease genes by network-based boosting of genome-

wide association data. Genome Res. 21, 1109–1121.

Li, P., and Milenkovic, O. 2017. Multiclass minmax rank aggregation. 2017 IEEE International Symposium on

Information Theory (ISIT), Aachen, Germany, pp. 3000–3004.

Magger, O., Waldman, Y., Ruppin, E., et al. 2012. Enhancing the prioritization of disease-causing genes through tissue

specific protein interaction networks. PLoS Comput. Biol. 8, e1002690.

Miller, J.A., Ding, S.L., Sunkin, S.M., et al. 2014. Transcriptional landscape of the prenatal human brain. Nature. 508,

199–206.

Minji, K., Farnoud, F., and Milenkovic, O. 2015. Hydra: Gene prioritization via hybrid distance-score rank aggregation.

Bioinformatics. 31, 1034–1043.

Mitra, K., Carvunis, A., Ramesh, S.K., et al. 2013. Integrative approaches for finding modular structure in biological

networks. Nat. Rev. Genet. 14, 719–732.

Moreau, Y., and Tranchevent, L. 2012. Computational tools for prioritizing candidate genes: Boosting disease gene

discovery. Nat. Rev. Genet. 13, 523–526.

Nivit, G., Singh, S., and Aseri, T.C. 2014. Computational disease gene prioritization: An appraisal. J. Comput. Biol. 21,

456–465.

Optimization. Inc., ‘‘gurobi optimizer reference manual,’’ 2020. Available at: https://www.gurobi.com/documentation/

9.0/refman/index.html. Last viewed on May 25, 2019.

Ra, G., Liu, J., Feng, L., et al. 2006. Analysis of protein sequence and interaction data for candidate disease gene

prediction. Nucleic Acids Res. 34, 313–323.

Schalekampf, F., and von Zuylen, A. 2009. Rank aggregation: Together we’re strong. Proceedings of the 11th SIAM

Workshop on Algorithm Engineering and Experiments (ALENEX), New York, NY, USA, pp. 38–51.

12 GUERRA ET AL.

D
ow

nl
oa

de
d 

by
 A

U
T

 U
N

IV
E

R
SI

T
Y

 (
A

uc
kl

an
d 

U
ni

ve
rs

ity
 o

f 
T

ec
h)

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
1/

04
/2

0.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 

https://www.gurobi.com/documentation/9.0/refman/index.html
https://www.gurobi.com/documentation/9.0/refman/index.html


Shim, J., Hwang, S., and Lee, I. 2015. Pathway-dependent effectiveness of network algorithms for gene prioritization.

PLoS One. 10, e0130589.

Sinan, E., Bebek, G., Ewing, R.M., et al. 2011. DADA: Degree-aware algorithms for network-based disease gene

prioritization. BioData Mining. 4, 19.

Stelzer, G., Rosen, N., Plaschkes, I., et al. 2016. The GeneCards suite: From gene data mining to disease genome

sequence analyses. Curr. Protoc. Bioinformatics. 54, 1–30.

Vanunu, O., Magger, O., Ruppin, E., et al. 2010. Associating genes and protein complexes with disease via network

propagation. PLoS Comput. Biol. 6, e1000641.

Willsey, A.J., Sanders, S.J., Li, M., et al. 2013. Coexpression networks implicate human midfetal deep cortical

projection neurons in the pathogenesis of autism. Cell. 155, 997–1007.

Wong, A., Krishnan, A., Yao, V., et al. 2015. Imp 2.0: A multi-species functional genomics portal for integration,

visualization and prediction of protein functions and networks. Nucleic Acids Res. 43, W128–W133.

Yuen, C., Merico, R., Bookman, D., et al. 2017. Whole genome sequencing resource identifies 18 new candidate genes

for autism spectrum disorder. Nat. Neurosci. 20, 602–611.

Zhang, B., and Horvath, S. 2005. A general framework for weighted gene co-expression network analysis. Stat. Appl.

Genet. Molec. Biol. 4, 17.

Zolotareva, O., and Kleine, M. 2019. A survey of gene prioritization tools for mendelian and complex human diseases.

J. Integr. Bioinform. 16, 20180069.

Address correspondence to:

Dr. Concettina Guerra

Georgia Institute of Technology College of Computing

School of Interactive Computing

85 5th Street NW

Atlanta, GA 30308

USA

E-mail: guerra@cc.gatech.edu

GENE PRIORITIZATION 13

D
ow

nl
oa

de
d 

by
 A

U
T

 U
N

IV
E

R
SI

T
Y

 (
A

uc
kl

an
d 

U
ni

ve
rs

ity
 o

f 
T

ec
h)

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
1/

04
/2

0.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 


