
NATIONAL RESEARCH UNIVERSITY HIGHER SCHOOL OF ECONOMICS

as a manuscript

Nikita A. Kazeev

MACHINE LEARNING FOR PARTICLE IDENTIFICATION IN THE LHCB DETECTOR

PhD Dissertation

for the purpose of obtaining academic degree
Doctor of Philosophy in Computer Science

Academic Supervisors:
Candidate of Sciences Andrey Ustyuzhanin

Dr. Barbara Sciascia
Prof. Davide Pinci

Moscow – 2020

Федеральное государственное автономное образовательное учреждение высшего
образования«Национальный исследовательский университет«Высшая школа экономики»

На правах рукописи

Казеев Никита Алексадрович

ПРИМЕНЕНИЕ МЕТОДОВ МАШИННОГО ОБУЧЕНИЯ К ИДЕНТИФИКАЦИИ
ЧАСТИЦ В ДЕТЕКТОРЕ LHCB

ДИССЕРТАЦИЯ
на соискание ученой степени

кандидата компьютерных наук

Научные руководители:
кандидат физико-математических наук

Устюжанин Андрей Евгеньевич,
доктор философии Барбара Шаша,

профессор, доктор философии Давиде Пинчи

Москва – 2020

Machine Learning for particle identification in the
LHCb detector

Il Dottorato in Fisica

Dottorato di Ricerca in Fisica – XXXII Ciclo

Candidate

Nikita Kazeev
ID number 1834931

Thesis Advisors

Dr. Barbara Sciascia
Dr. Andrey Ustyuzhanin
Dr. Davide Pinci

2019/2020

Thesis defended on 21 October 2020
in front of a Board of Examiners composed by:

Prof. Alexey Naumov (chairman)
Prof. Domizia Orestano
Prof. Stefano Giagu
Prof. Vadim Strizhov

Machine Learning for particle identification in the LHCb detector
Ph.D. thesis. Sapienza – University of Rome

© 2020 Nikita Kazeev. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Author’s email: kazeevn@gmail.com

mailto:kazeevn@gmail.com

To my mother Inna

iii

Abstract

LHCb experiment is a specialised b-physics experiment at the Large Hadron Collider
at CERN. It has a broad physics program with the primary objective being the
search for CP violations that would explain the matter-antimatter asymmetry of
the Universe. LHCb studies very rare phenomena, making it necessary to process
millions of collision events per second to gather enough data in a reasonable time
frame. Thus software and data analysis tools are essential for the success of the
experiment.

Particle identification (PID) is a crucial ingredient of most of the LHCb results.
The quality of the particle identification depends a lot on the data processing algo-
rithms. This dissertation aims to leverage the recent advances in machine learning
field to improve the PID at LHCb.

The thesis contribution consists of four essential parts related to LHCb inter-
nal projects. Muon identification aims to quickly separate muons from the other
charged particles using only information from the Muon subsystem. The second
contribution is a method that takes into account a priori information on label noise
and improves the accuracy of a machine learning model for classification of this
data. Such data are common in high-energy physics and, in particular, is used to
develop the data-driven muon identification methods. Global PID combines infor-
mation from different subdetectors into a single set of PID variables. Cherenkov
detector fast simulation aims to improve the speed of the PID variables simulation
in Monte-Carlo.

iv

Acknowledgments

I want to thank my supervisor, Andrey Ustyuzhanin, for his unwavering support of
my research and character development. Without his leadership and insight, the
whole data science for physics collaboration would not have happened. I want to
thank my supervisor, Barbara Sciascia, for her compassion and dedication; she was
the relentless force behind actually writing the manuscript. A big thank to Denis
Derkach, whose high-energy-physics expertise has been essential to all of my work.

The projects would not have been possible without collaborators, to whom I am
perpetually grateful.

Patrizia De Simone developed the TMVA model for muon identification and
provided me with the 2012 dataset. Marco Santimaria assisted greatly with getting
the 2016 dataset from CERN GRID. Barbara Sciascia secured the approval for the
data release for IDAO. All of the above, with the addition of Matteo Palutan and
Ricardo Vazquez Gomez, provided invaluable consultations on the muon detector
physics and code. I am also thankful to Marco Cattaneo, Ben Couturier, Gerhard
Raven, Roel Aaij for their advice on LHCb software.

Machine learning with background subtraction was a collaboration with Maxim
Borisyak. He developed the Likelihood method and did the neural network exper-
iments. I am also thankful to Stanislav Kirillov for a consultation on CatBoost
code.

Mikhail Hushchyn developed the deep neural network-based model for global par-
ticle identification.

The models for the LHCb RICH fast simulation were trained by Artem Maevskiy
– using my FastDIRC pilot code. The LHCb RICH plots were produced by Artem
Maevskiy and Maxim Artemev, the high-level Lamarr plots by Lucio Anderlini.

Bruno Bauwens and Tatiana Makhalova reviewed the no free lunch theorem part.
I am broadly thankful to JustHeuristic for his machine learning insights, never-

ending optimism, and dedication for the pursuit of knowledge. Ekaterina Artemova
advised me about NLP. Mikhail Danilov taught me most of what I know of particle
physics.

Last but not least, I am eternally grateful to my parents, who brought me up,
and supported me with love and affection on my path through life.

1

Contents

Chapter 1 Introduction 4
1.1 New Physics and the LHCb Experiment in Search of It 4
1.2 Machine Learning . 6
1.3 My Contribution . 6

Chapter 2 Machine Learning 8
2.1 A Very Brief History of Artificial Intelligence 8
2.2 Machine Learning Formalism . 10

2.2.1 Model and Training . 11
2.2.2 Hyperparameters . 13

2.3 Measuring Model Quality . 13
2.3.1 Accuracy . 15
2.3.2 Mean Squared Error (MSE) 15
2.3.3 LogLoss . 16
2.3.4 Area Under the Receiver Operating Characteristic (ROC AUC) 16

2.4 No Free Lunch Theorem . 19
2.4.1 Formalism . 19
2.4.2 Example . 20
2.4.3 Implications . 21

2.5 Deep Learning . 22
2.5.1 Logistic Regression . 22
2.5.2 Deep Neural Networks . 24
2.5.3 Optimisation . 28
2.5.4 Training Deep Neural Networks 31
2.5.5 Designing Neural Networks 32
2.5.6 Implementing Neural Networks 33
2.5.7 Conclusion . 33

2.6 Gradient Boosting Decision Tree (GBDT) 33
2.6.1 Decision Tree . 34
2.6.2 Boosting . 38
2.6.3 Implementing GBDT . 41
2.6.4 Conclusion . 41

2.7 Generative models . 41
2.7.1 Generative Adversarial Network (GAN) 42
2.7.2 Wasserstein GAN . 44
2.7.3 Cramer (Energy) GAN . 46

2.8 Conclusion . 48

Contents 2

Chapter 3 Machine Learning in High-Energy Physics 49
3.1 Training and Validation . 50
3.2 HEP-specific Machine Learning . 51

3.2.1 Learning to Pivot with Adversarial Networks 52
3.2.2 Boosting to Uniformity . 53

3.3 Primary Applications . 55
3.3.1 Event Selection: Separating Signal and Background 55
3.3.2 Event Reconstruction . 55
3.3.3 Monitoring and Data Quality 56

3.4 Conclusion and Outlook . 58

Chapter 4 The LHCb experiment 59
4.1 The Large Hadron Collider (LHC) 59

4.1.1 The LHC Accelerator System 59
4.1.2 The Large Experiments at the LHC 60

4.2 The LHCb Detector . 61
4.2.1 Tracking . 61
4.2.2 Particle Identification . 64

4.3 LHCb Data Processing . 70
4.3.1 Hardware Trigger (L0) . 70
4.3.2 Software Trigger (HLT) . 74
4.3.3 Offline Data Processing . 81
4.3.4 Historical Perspective: Run 1 81
4.3.5 Upgrade Towards Run 3 . 82
4.3.6 HLT1 on GPU (Allen) . 83
4.3.7 Calibration Samples . 84
4.3.8 Machine Learning at LHCb 85

Chapter 5 Muon Identification 89
5.1 Muon Detector . 89
5.2 muDLL . 92
5.3 Correlated χ2 . 92
5.4 Machine learning for Run II . 94
5.5 Machine Learning Towards Run III 95
5.6 Algorithms Evaluation . 97
5.7 Data Analysis Olympiad (IDAO) . 100

5.7.1 Introduction . 100
5.7.2 Muon ID Competition . 101

5.8 Conclusion . 102

Chapter 6 Machine Learning on Data With sPlot Background
Subtraction 104

6.1 sPlot . 105
6.2 The Problem of Negative Weights . 106
6.3 Related Work . 107
6.4 Proposed Approaches . 107

6.4.1 sWeights Averaging (Constrained MSE) 107

Contents 3

6.4.2 Exact Maximum Likelihood 109
6.4.3 Classes with Separate Background 110

6.5 Experimental Evaluation . 110
6.5.1 UCI Higgs . 110
6.5.2 LHCb Muon Identification . 111

6.6 Conclusion . 114

Chapter 7 Global Charged Particle Identification 116
7.1 Objective and Formalisation of the Global PID 117
7.2 Adding Likelihoods . 121
7.3 Combining Information with Machine Learning 122
7.4 State-of-the-art Machine Learning 122
7.5 Performance . 123

7.5.1 Simulation . 124
7.5.2 Real Data: Calibration Samples 125

7.6 Conclusion . 127

Chapter 8 Fast Simulation of the Cherenkov Detector 130
8.1 The Role of Simulated Data in High-Energy Physics Experiments . . 130

8.1.1 Detector Design . 131
8.1.2 Data Analysis . 131

8.2 Simulation in LHCb . 131
8.2.1 Technical Improvements to Full Simulation 132

8.3 Fast Simulation . 133
8.3.1 ReDecay . 134
8.3.2 Parametrisation and Simplification 134
8.3.3 CaloGAN . 136

8.4 Pilot study: BaBar DIRC . 138
8.4.1 DIRC detector . 138
8.4.2 Our model . 139
8.4.3 Evaluation Results . 140

8.5 Fast Parametric Simulation at LHCb (Lamarr) 141
8.5.1 RICH Fast Simulation . 143
8.5.2 Preliminary Evaluations . 144
8.5.3 Future outlook . 145

8.6 Conclusion and outlook . 145

Chapter 9 Conclusion 152

Appendix A No Free Lunch Theorem Proof 154

Appendix B Global PID input variables 157
B.1 Used in ProbNN and our models . 157
B.2 Additional engineered features . 160

Bibliography 161

4

Chapter 1

Introduction

1.1 New Physics and the LHCb Experiment in Search
of It

The theory of strong and electroweak interactions, the so-called Standard Model
(SM) of particle physics, has achieved outstanding success. Its predictions have
been confirmed by all the experiments conducted so far. Yet there are unexplained
experimental phenomena, such as the nature of the dark matter, the origin of mass
of the neutrinos, the lack of explanation for the predominance of matter over anti-
matter in the universe. They suggest that the SM is only an effective theory at the
energies explored so far and that a more complete theory should exist.

A way to looking for New Physics is the study of fundamental properties within
the SM. One of the more appealing currently is the lepton universality which requires
equality of couplings between the gauge bosons and the three families of leptons.
Hints of lepton non-universal effects in B+ → K+e+e−, B+ → K+µ+µ− [1, 2]
decays have been reported. But there is no definitive observation of a deviation
yet. A large class of models that extend the SM contains additional interactions
involving enhanced couplings to the third-generation that would violate the lepton
universality principle [3]. Semileptonic decays of b hadrons to third-generation
leptons provide a sensitive probe for such effects. In particular, the presence of
additional charged Higgs bosons, which are often required in these models, can
have a significant effect on the rate of the semitauonic decays of b-quark hadron
b→ cτ+ντ [4].

When looking for more complete theories, the physics beyond the Standard
Model, one of the best places to start is where existing theory says an event is
not likely to happen: any deviations will be large compared to what we expect.
For example, on the one hand, the branching fractions BR(Bd,s → µ+µ−) are very
small in the SM and can be predicted with high accuracy. On the other hand, a
large class of theories that extend the Standard Model, like supersymmetry, allows
significant modifications to these branching fractions and therefore an observation
of any significant deviation from the SM prediction would indicate a discovery of
new effects.

These decays have been extensively studied, most recently at the LHC experi-
ments: LHCb [5, 6], CMS [7] and ATLAS [8]. There is also the combined analysis

1.1 New Physics and the LHCb Experiment in Search of It 5

of the two results from the joint efforts of LHCb and CMS collaborations [9]. Thus
far the decay Bs → µ+µ− has been observed, but only the upper limits on the
branching fraction of Bd → µ+µ− have been reported.

Finding and studying rare decays means pushing the frontiers of the experiment
design and data analysis. During its lifetime, the LHC provides an unprecedented,
but still finite number of collision events. And the rarer the process, the more is
required from the experimental hardware and software for the measurement to be
statistically significant. It is fundamental to develop selection criteria, muon iden-
tification, and background parametrisation to enable the discovery of Bd → µ+µ−,
and place even more stringent limits on supersymmetry and other new physics mod-
els.

The LHCb experiment [10] is designed to exploit the high pp → cc̄ and pp →
bb̄ cross-sections at the LHC in order to perform precision measurements of CP
violation and rare decays.

Physics analyses using data from the LHCb detector [11] rely on Particle Identi-
fication (PID) to separate charged tracks of different species: pions, kaons, protons,
electrons, and muons. PID is conceptually straightforward. Charged particles emit
Cherenkov light when traversing the Ring-Imaging Cherenkov detector (RICH). It
allows measuring the velocity, which, together with the momentum, allows to re-
construct the particle mass. Electrons are absorbed by the electronic calorimeter,
hadrons by the hadronic. Muons penetrate the detector and produce hits in the
muon chambers. PID relies on sophisticated algorithms to optimise its performance.
First, the raw information from each PID subdetector is processed into a handful of
high-level variables. Second, it is combined to make the final decision on the particle
type. Such setup allows us to take advantage of the fast analysis of the data from
muon and calorimeter subsystems to use them in the low-level trigger [12].

As of the moment, the LHCb experiment is undergoing an upgrade and is sched-
uled to start taking data in 2021. After the upgrade, the average number of visible
interactions will increase by more than a factor 5, complicating event reconstruc-
tion [13]. The role of the PID in achieving the physics goals of the upgraded exper-
iment will remain critical.

But processing experimental data is only half of the story. Simulation is of
major importance for the design and construction of an experiment, as well as the
development of the algorithms to analyse its data [14]. It comes with a price.
Monte-Carlo generation took around 75% of CPU time in the LHCb GRID in Run
2 [15]. With the planned luminosity increase, this cost will become unsustainable
and must be addressed [16].

An alluring alternative to using simulation for evaluation and development of
PID algorithms are data-driven methods. The PID responses are known to be
reproduced with an accuracy not sufficient for most of the analyses. The data-
driven methods are based on calibration samples: samples of charged tracks of
different species that have been selected without the use of PID response to the
track in question. Being a product of the real world, these calibration samples
come with a set of complications – the possible bias introduced by selection and
presence of background.

1.2 Machine Learning 6

1.2 Machine Learning
The idea of creating “intelligent” machines has been pursued since the inception of
modern computing in the 1950-s. The field has seen its ups and downs – cycles of
hope and disappointment. Now it is yet again hope. The currently most successful
paradigm of artificial intelligence is machine learning. In very broad terms, machine
learning allows a program to learn from provided examples, instead of having its
behaviour explicitly programmed by a human. Classic least squares curve fitting can
be viewed as the most primitive example. But the beauty and power of the machine
learning methods lie in their ability to handle data with a high number of dimensions
with little a priori knowledge about the problem. For example, classifying images
with a modest size of 256 × 256 pixels already presents a problem with 6.5 × 104

dimensions.
How to recognise whether there is a cat on an image? If you were in the 2000-s,

you would think of an algorithm. Find the legs, ears, check their shape, check for
whiskers’ presence. Things changed in 2012 when a machine-learning approach won
the ImageNet Large Scale Visual Recognition Challenge and cut the classification
error from 25% to 16% [17], and surpassed human-level performance in 2015 [18].

High-energy physics is a natural beneficiary from these advances. Its experi-
ments produce data at a rate of millions of events per second, necessitating the
development of algorithmic methods of data analysis and techniques for their val-
idation. These include reasonably accurate simulations that can serve to provide
training data for machine learning algorithms. This thesis is devoted to using state-
of-the-art machine learning methods to advance a key part of the LHCb experiment
– particle identification.

1.3 My Contribution
My work consists of four projects. Two of them are directly concerned with improv-
ing PID quality: Global PID and Muon ID. One improves the speed of Monte-Carlo
simulation of a Cherenkov detector. And one is a machine-learning technique that
allows dealing with background-subtracted samples (a case of noisy labels common
in high-energy physics); the need for it appeared during the work on data-driven
training of the Muon ID model.

Muon ID The objective of muon identification is to distinguish muons from the
rest of the particles using only information from the muon subdetector. Since the
algorithm is to be used early in the data selection pipeline, there are stringent
requirements on CPU time. Muon identification is essential for the LHCb physics
program, as muons are present in the final states of many decays sensitive to new
physics that are studied by the LHCb experiment [19, 5, 20]. My goal has been the
improvement of the muon identification quality. The project is described in chapter
5.

Machine learning on data with sPlot background subtraction Experimen-
tal data obtained in high energy physics experiments usually consists of contribu-

1.3 My Contribution 7

tions from different event sources. In LHCb most analyses and data-driven PID
development has to deal with a mixture of signal and background. A common way
of subtracting background, sPlot [21], introduces negative event weights. Training a
machine learning algorithm on a dataset with negative weights means dealing with
a loss that potentially has no lower bound and does not always converge. One of
the goals of the thesis has been developing a robust way to apply machine learning
to such data. In machine learning terms, this is a particular model of label noise.
For each example, we know the probability that its label has been flipped. The
distribution of flipping probabilities is independent of features’ distribution for each
class. The project is described in chapter 6.

Global PID PID subdetectors provide a wealth of information which must be
processed into the final decision on the particle type. The goal in this thesis has
been to use the state-of-the-art machine learning algorithms at the last step of PID
to improve the PID quality. The corresponding chapter is 7.

Fast simulation The RICH simulation takes around 30% of the CPU time [15].
At the same, some PID variables are not well enough described by the simulation
[22]. The objective of the project has been to develop fast data-driven simulation
of RICH detector. The project is described in chapter 8.

The thesis is organised in the following way. An overview of machine learning
is given in Chapter 2, while Chapter 3 is dedicated to the description of the use of
machine learning in high-energy physics. The following Chapter 4 introduces the
LHCb experiment, while the next four chapters describe my specific contributions
as detailed above.

8

Chapter 2

Machine Learning

2.1 A Very Brief History of Artificial Intelligence

Quoting Encyclopædia Britannica [23], Artificial intelligence (AI) is the ability of
a digital computer or computer-controlled robot to perform tasks commonly as-
sociated with intelligent beings. The term is frequently applied to the project of
developing systems endowed with the intellectual processes characteristic of humans,
such as the ability to reason, discover meaning, generalise, or learn from experience.
The idea of machines as intelligent as humans has been present at least from the
antiquity and, probably, prehistory. The Iliad, written around 850 B. C., codi-
fied what were most likely already ancient traditions – Hephaestus, the god of fire
and the divine smith, after being cast out of Olympus, forges intelligent automata
assistants [24, 25]. This dream became an ambition with the advent of modern
computing. Quoting the assertion of Dartmouth Conference of 1956: “every aspect
of learning or any other feature of intelligence can be so precisely described that a
machine can be made to simulate it” [26]. Very roughly, the most widely explored
paradigms that attempt to make a general, i. e. capable of all tasks a human can
do AI, can be categorised as “reasoning as search” and “reasoning as speech”.

Reasoning as search Define a problem as a game, where there are a goal and
actions (steps) that the program can take to reach it. The problem can be an actual
game, like chess, a formal logic reasoning task or an applied one, like controlling
a robot. The program would explore different paths through the actions graph to
reach a solution. The difficulty with this approach is the ”combinatorial explosion”
– the number of possible paths to take increases extremely rapidly with the problem
complexity. Practical applications used heuristics to select exploration paths that
are likely to lead to the solution [24, 27].

While impractical for early computers, this method achieved landmark success,
when IBM Deep Blue in 1997 defeated the reigning world chess champion. This
was made possible by a number of factors, among them a massively parallel system
with special-purpose hardware and a complex path evaluation function [28].

Modern paradigms like reinforcement learning can be seen as a logical develop-
ment of the reasoning as search approach. With one crucial difference – heuristics
that make exploring the search space tractable are not programmed explicitly but

2.1 A Very Brief History of Artificial Intelligence 9

are learned via trial-and-error by the program itself. In recent years, reinforcement
learning research resulted in several high-profile achievements where an AI was able
to achieve super-human performance: classic Atari games [29], Go [30], StarCraft
II [31].

Reasoning as speech One of the most widely-known definitions of a “thinking
machine” was proposed by computer science pioneer Alan Turing in 1950 [32]: “If
a machine could carry on a conversation (over a teleprinter) that was indistinguish-
able from a conversation with a human being, then it was reasonable to say that the
machine was thinking”. Until the 1980-s, processing of natural languages relied on
increasingly complex manually developed systems of grammar rules and conceptual
ontologies, which structured real-world information into computer-understandable
data. This approach ran into limitations. Hand-crafted rules and knowledge graphs
are expensive to create and maintain – and they still fail to capture the full com-
plexity of natural languages and the world.

Starting from the 1980-s, the availability of computing power made it possible
to use statistical approaches to learn some parts of the system from textual corpora.
This culminated in very recent deep learning approaches, where general end-to-end
sequence learning approaches were able to achieve the state-of-the-art performance
of such tasks as machine translation [33] and speech recognition [34].

Looking back into overall history, AI research has gone through three cycles
of optimism (1956–1974, 1980–1987, 2011–) and two of disappointment (1974–1980,
1987–1993). To quote a few of the first-generation optimists:

• 1958, H. A. Simon and A. Newell: ”within ten years a digital computer will
be the world’s chess champion” and ”within ten years a digital computer will
discover and prove an important new mathematical theorem.” [35]

• 1965, H. A. Simon: ”machines will be capable, within twenty years, of doing
any work a man can do.” [36]

• 1967, M. Minsky: ”Within a generation ... the problem of creating ’artificial
intelligence’ will substantially be solved.” [36]

Evidently, they failed to deliver on those promises. In retrospective, it seems that
the driving force was the lack of computing power – the world is simply too complex
to fit into 8.39 Megabytes and be processed by a single 80 MHz CPU (parameters
of Cray-1, a 1975 state-of-the-art supercomputer [37]) [27]. The funding agencies
noticed this failure. The most prominent example, the Lighthill report [38] result
”formed the basis for the decision by the British government to end support for AI
research in all but two universities” [27].

Despite the current failure to deliver a general AI, the methods that were
developed in the pursuit for it, foremost for computational statistics and solving
difficult multidimensional optimisation problems, have proven themselves quite ca-
pable when facing narrowly defined challenges. The resulting “applied AI” discipline
is known as machine learning, and it is covered in the next sections. Its success varies

2.2 Machine Learning Formalism 10

by field from non-existent to Nature [30] and Science [39] front covers (with results,
not promises).

2.2 Machine Learning Formalism
Machine Learning is a product of a marriage between statistics and algorithms.
Roughly speaking, it makes computers ”learn from example” and ”learn by experi-
ence”.

Let us define two domains, the features domain X and the target Y (also called
label). Let the features domain be a real vector space, so that we may call an object
belonging to that domain a vector of features1. Target domain can be either a real
vector space or a finite set. Call a 2-tuple with the first element from the features
domain and the second element from the target domain an example. Let us also
have a probability distribution over examples with the probability density p(x,y),
which is unknown to us. Let us have a sample from this unknown distribution – a
series of points in (x,y) (example) space, which we will call the training dataset2.
Sometimes, the dataset might be weighted. A common use case for this is correcting
a biased sampling procedure. If the dataset is sampled from distribution p̃(x,y),
than it can be weighted with w(x,y) = p(x,y)

p̃(x,y) to match the desired probability
density p(x,y). In most cases, the weights are non-negative, w ≥ 0. Negative
weights appearing in high-energy physics from the application of the sPlot [21]
method are in-depth discussed in chapter 6.

The objective of machine learning is to use the training dataset to build models
for different scenarios:

Classification Consider the case, where the target domain is a finite set, for
example, species of cats or particles in the LHCb detector. Let us enumerate the
target domain, and define γi as the i-th possible value. We say that an example
belongs to class i if its target value y equals to γi. A classification model is a function
that takes as its input a vector of features and outputs a vector of numbers, that are
estimates of the probabilities that an example with given features belongs to the i-th
class, P (y = γi|x) = p(γi,x)∑

j p(γj ,x)
, or some monotonic function of those probabilities.

Regression Consider the case, where the target domain is a real-valued vector
space. For example, the energy deposited in a calorimeter by a particle. A regression
model is a function from the features domain into the target domain. Its output is
an estimate of the expected value of the target y conditioned features value x [40]:

E[y|x] =
∫

y p(x,y)∫
p(x,y′)dy′dy. (2.1)

1There can also be features that have only a finite set of non-numeric possible values, such as
particle species. Such features are called categorical. They do not violate the proposed formalism,
as a finite set can always be mapped to a real space.

2With this definition, we omit sequence learning, reinforcement learning, and unsupervised
learning. They are fantastic but are not used in the dissertation.

2.2 Machine Learning Formalism 11

A Generative model describes how a dataset is generated, in terms of a prob-
abilistic model. By sampling from this model, we are able to generate new exam-
ples from the underlying distribution [41]. For example, when a particle reaches
a calorimeter, a highly complicated shower process occurs inside it, that results in
energy deposits in the calorimeter pixels. A generative model would allow sampling
from the distribution of those responses.

Mathematically, an unconditional generative model, can be defined as consisting
of two components. The first one is a probability distribution over real vectors, usu-
ally taken to be a simple one, like uniform or normal. The second component is a
function from the space of real vectors to the target domain. If a function’s input is
a random variable whose distribution is the first component of the model, the distri-
bution of the function value which is also a random variable is an approximation of
p(y)3. The definition is dictated by the computational side of machine learning. A
practical generative model usually consists of a (pseudo)random number generator
whose output serves as input to a deterministic computer program.

The generative model definition can naturally be extended to the conditional
case to sample from p(y|x). In this case, the model would still consist of two
components. The first one is a probability distribution, just like in an unconditional
model. The second component is a function of two arguments. The first argument
is from the space of real vectors. The second argument is from the features domain.
The function value is in the target domain. If a function’s first argument is a random
variable whose distribution is the first component of the model, and the second
argument equals to x, the distribution of the function value is an approximation of
p(y|x).

Density estimation model is a function from the domain of examples into real
numbers, which value is an estimate of the value of the probability density corre-
sponding to that example, p(y)4. The most basic example of such a model is a
histogram. In a sense, density estimation is similar to generative modelling, but
there is a considerable practical difference. A generative model does not provide
the explicit values of the probability density function, just a stream of examples.
Density estimation does not allow to produce a sample, only to evaluate the density
value on a sample given to it. Sometimes, density estimation and sampling are
deemed not separate classes of models, but subclasses of generative models.

2.2.1 Model and Training

The problem searching for the best model in the abstract function space, while
mathematically elegant, is not a convenient one for a computer. Therefore, a ma-
chine learning model is commonly defined as a parametric function f(x,θ), where x
is an element of the features domain and θ are the parameters of the model, and f is
fixed. Mathematically, θ can be different objects, but usually, it can be represented
as a real vector.

3There is no distinction between x and y for an unconditional model. We use y for the sake of
consistent terminology.

4See footnote 3

2.2 Machine Learning Formalism 12

The degree of correspondence between a model and data is defined in terms of
some error (loss) metric. The metric usually takes the form of a function of two
arguments from the target domain, L(ypredicted,ytrue), where ypredicted is the value
predicted by the model and ytrue is the true label. It is desirable to match the
loss function and the utility of the model for the purpose it is being created, such
as uncertainty of a branching fraction measurement. However, it is often difficult
to derive such direct relationship, and a proxy loss function is used. A common
example for regression is the l2 norm (or mean squared error) L(ypredicted,ytrue) =
|ytrue − ypredicted|2. The most used loses are discussed in subsection 2.3.

The grand objective of training is to find the parameters’ values that would
minimise the expected loss over all possible examples:

θ = argmin
θ

[
E(x,y)∼pL(f(x,θ),y)

]
. (2.2)

The expectation is estimated using the training dataset; this is called empirical risk
minimisation:

θ = argmin
θ

[
1

N

N∑
i=1

L(f(xi,θ),yi)

]
, (2.3)

where N is the number of examples in the training dataset and xi and yi are
examples’ from the training dataset features and labels, respectively. In the case of
weighted dataset:

θ = argmin
θ

[∑N
i=1wiL(f(xi,θ),yi)∑N

i=1wi

]
, (2.4)

where wi is the example weight.
Given a fixed dataset, for sufficiently flexible model classes, this can result in

yi ≈ f(xi,θ) for the training points – for example for a polynomial fit, where the
degree is equal to the number of data points. We are interested in the generalisation
power of the model – its performance on the examples it has never seen. The pre-
dictions for examples the model has never seen are almost always less accurate than
for examples used in training – and this gap tends to grow with model complexity.
See the example in figure 2.1. A model, that is too complex for the problem and
whose performance on the training dataset it much higher than on examples it has
never seen, is commonly called overfitted. A model that is is not flexible enough
for the problem performs similarly poorly on training, and new data is known as
underfitted.

A common way of dealing with the problem of overfitting is regularisation –
penalising model complexity:

θ = argmin
θ

[
1

N

N∑
i=1

L(f(xi,θ),yi) +R(θ)

]
, (2.5)

where R(θ) is a function penalising complex models, its form depending on the
model in question. A common example is l2 regularisation: R(θ) = ρ|θ|2, where
ρ ∈ [0,+∞) is a parameter defining the strength of the regularisation. It is used in
some experiments in chapter 6.

2.3 Measuring Model Quality 13

Figure 2.1. An example of underfitting and overfitting. The problem, both features x
and target y are real scalars. The polynomial of degree 1 is a case of underfitting, of
degree 15 – overfitting. MSE in the title refers to the mean squared error, MSE =∑N

i=1 (ypredicted − ytrue)
2
/N , where N is the number of test examples. Reproduced

from [42].

2.2.2 Hyperparameters

Usually, a machine learning model is a member of a specific parametric function
family. The parameters that define this particular model from its family, e. g. the
degree of a polynomial for polynomial regression, along with the parameters of the
optimisation procedure are commonly called hyperparameters. Hyperparameters
are not changed during model training. If there is an automated procedure for
finding the optimal value of hyperparameters, than from the point of view of that
procedure, they become just model parameters.

2.3 Measuring Model Quality
A machine learning model offers an imperfect approximation of the target distri-
bution. Thus, for practical applications, this imperfection must be measured and
accounted for.

A common way to do this is by splitting the dataset into a train and test
subsets. The model is trained on the training dataset, and the performance is
evaluated on the test dataset. The advantage of this approach is simplicity and
small computational cost. The disadvantage is data use inefficiency: both train and
test dataset sizes are reduced compared to the full dataset. Since model training
relies on empirical risk minimisation, the model quality usually increases with the
dataset size, and this method would result in underestimating performance. The
loss function value on the testing dataset is an estimation of the expected value with
a finite sample. Thus, a small testing sample leads to higher statistical uncertainty.

A commonly used method that helps to deal with the data inefficiency is cross-
validation illustrated in figure 2.2. The dataset is split into k subsets of equal size,
commonly called folds. Then the model is independently trained k times, using all
subsets, but the i-th, which is used for evaluation. Then the metric value over all

2.3 Measuring Model Quality 14

Va
lid

at
io

n

Fo
ld

 1

Va
lid

at
io

n

Fo
ld

 2

…

Va
lid

at
io

n

Fo
ld

 1
0

91%

89%

92%

Figure 2.2. Illustration of 10-fold cross-validation. The dataset is split into 10 parts, rep-
resented as the vertical rectangles. The train datasets are combined from 9 those parts
– 10 variants in total, 3 of which are represented as the horizontal stripes. Reproduced
from [42].

the subsets is averaged. Common values for k range from 3 to 10. The advantage
of cross-validation is that the train size is closer to the full size, and the full dataset
is used for testing. The disadvantage is the computational cost, as we have to train
the model k times.

The choice of the quality metric is important and non-trivial. Say, the true
target values are [1, 0, 0]. Which model is better, the one that predicts [0, 0, 0], or
[0.6, 0.4, 0.4]? Ideally, the quality metric is defined to correspond to the performance
of the whole data analysis system. For example, the Higgs Machine Learning Chal-
lenge [43] used the approximate median significance – an estimate of the significance
of the result of an analysis that uses the model. Yet, for a sufficiently complex data
analysis system, establishing a direct relationship between the model output and
the overall system performance and distilling it into a single number is borderline
impossible.

There are several general-purpose metrics that are commonly used by machine
learning practitioners, the most common of which we describe below.

2.3 Measuring Model Quality 15

2.3.1 Accuracy

For a classification problem, transform the model output into the definite class
labels. Compute the proportion of the correct predictions.

ypred
i = argmax

k
fki (2.6)

Accuracy =

∑N
i=1[y

pred
i = yi]

N
, (2.7)

where fki is the value of the model prediction of the k-th class for the i-th example, yi
is the true class label for the i-th example, N is the number of examples, [ypred

i = yi]

is an Iverson bracket that equals 1 if ypred
i = yi and 0 otherwise. In the case of a

weighted dataset:

Accuracy =

∑N
i=1wi[y

pred
i = yi]∑N

i=1wi

. (2.8)

While natural from a common-sense point of view, as a practical measure, accuracy
has three major drawbacks. First, it discards information, accuracy score of a
model that predicts 0.7 and 0.999 in a binary classification problem are the same.
Second, it is misleading in the case of one class being much more common than
the others. The accuracy score of a trivial model that always predicts the most
frequent class will be the fraction of said class in dataset. Third, its gradient with
the respect to prediction is zero almost everywhere, and thus accuracy can not
be used for training models, that rely on the differentiability of the loss, such as
gradient boosting decision trees (section 2.6) and neural networks (section 2.5).

Accuracy is sometimes used [44] for abstract comparison of machine learning
algorithms, due to its interpretability. This is especially relevant in the case of
more than two classes.

2.3.2 Mean Squared Error (MSE)

MSE =

∑N
i=1(fi − yi)2

N
, (2.9)

where fi is the model prediction for the i-th example. In the case of a weighted
dataset:

MSE =

∑N
i=1wi(fi − yi)2∑N

i=1wi

. (2.10)

MSE loss is one of the commonly used losses for training regression models, own-
ing to its mathematical convenience. For example, least-squares fitting is used in
track fitting at LHCb [45, 46], and, according to reference [47] in an overwhelming
majority of experimental implementations. A square root from MSE was the most
used regression metric at the data science competition platform Kaggle in 20155

[48]. From the probabilistic point of view, a least square estimate is the same as a
maximum likelihood estimate for a Gaussian model.

5Surprisingly, I could not find current statistics.

2.3 Measuring Model Quality 16

MSE weights already large errors more heavily than the small ones and is heavily
affected by outliers [49]. In case a dataset is contaminated by examples with large
mistakes in their target values, they might dominate the error.

2.3.3 LogLoss

Consider a classification problem. Let f (k)i be the predicted probability that example
i belongs to the class k. Note, that (k) here is not a power, but an index. Let
yi be the true class to which the i-th example belongs. Since the examples are
independently sampled, the probability of all predictions being correct is:

P (all predictions are correct) =
N∏
i=1

f
(yi)
i . (2.11)

To simplify the computation, take the negative logarithm:

LogLoss = −
N∑
i=1

ln
(
f
(yi)
i

)
. (2.12)

In the case of a weighted dataset:

LogLoss = −

∑N
i=1wi ln

(
f
(yi)
i

)
∑N

i=1wi

. (2.13)

Logloss is closely related to cross entropy from information theory [50], these terms
are sometimes used interchangeably in the context of machine learning. Logloss is
a common loss function used for classification. The optimal values for predictions
of a model trained with logloss are the supremely interpretable class probabilities.
It is differentiable. Its drawback is the lack of the upper bound, that might result
in unstable computation. A common method of addressing this is adding a small
constant to the logarithm argument. Also, the values obtained by the real-world
models are not always good probability estimates.

2.3.4 Area Under the Receiver Operating Characteristic (ROC
AUC)

Consider a binary classification problem: Y = {0, 1}. Let fi ∈ R be the model
output for i-th example, the greater it is, the more likely the example is class 1. If
we need to make a binary decision using this prediction, for example whether to keep
an event for further analysis, we define a threshold t and transform the continuous
values fi into the definite class labels ypred

i = [fi > t]. From a statistician’s point
of view, when classifying, we make a decision about the null hypothesis that the
example is class 1. The decisions that we reach will suffer from two kinds of errors:
false positive (or type 1), where we accept a background example, and false negative
(or type 2), where we reject a signal one. By varying the threshold, the trade-off
between the error types can be adjusted. The choice of the threshold (also called
a working point) depends on the problem for which the model is designed and the

2.3 Measuring Model Quality 17

costs of making the errors of different types. For example, in high-energy physics
event selection, the overall output rate is usually limited by computing constraints.

For each threshold value, we can compute the true positive rate (TPR) or, in
high-energy physics terms, the signal efficiency, and also known as sensitivity:

TPR =

∑
i[y

pred
i = 1]∑

i[yi = 1]
. (2.14)

We can also compute the false positive rate (FPR), in high-energy physics terms,
1− background rejection:

FPR =

∑
i[y

pred
i = 1]∑

i[yi = 0]
. (2.15)

TPR is the fraction of the signal examples, that pass the selection threshold. FPR
is a fraction of background examples that erroneously pass the selection threshold.
Note, that TPR and FPR are measured using different sets of examples.

In the case, where there is no a priori information that would allow choosing the
decision threshold, a common measure is to plot the TPR as a function of FPR.
While allowing for maximum flexibility of evaluation, a curve is not a convenient
scalar performance score. The commonly used summary statistic is the area under
the curve (AUC). AUC is the average value of TPR for all possible values of FPR.
An illustration of the relationship between TPR, FPR and AUC is presented in
figure 2.3. If some information about the desired threshold region is available, it
can be incorporated in the form of taking the area under a part of the ROC curve,
or just a point on the curve.

FP Rate

TP
 R

at
e

AUC

1 - AUC

Figure 2.3. An illustration of a receiver operating characteristic (ROC) and the area under
the curve (AUC). Source: Google Inc.

2.3 Measuring Model Quality 18

Another interpretation of ROC AUC is the fraction of correctly ordered pairs or
the Mann-Whitney U-statistic for comparing distributions of values from the two
samples [51]. Let S be the number of signal examples, B the number of background
examples, si – model prediction for the i-th signal example, bj – model prediction
for the j-th background example.

ψ(s, b) =


1 b < s
1
2 b = s

0 b > s

(2.16)

ROC AUC = ϑ =
1

SB

S∑
i=1

B∑
j=1

ψ(si, bj). (2.17)

ROC AUC has mathematical properties that make it attractive for a general-
propose metric for comparing classifiers. ROC AUC is finite and lies in a well-
defined interval. For a perfect classifier, all predicted values for signal examples are
greater than for all background examples, therefore ROC AUC = 1. For a totally
random classifier, the predictions are distributed equally for signal and background
examples, and the ROC curve is a straight line from (0, 0) to (1, 1) and ROC AUC =
0.5. The value of ROC AUC stays the same if any strictly monotonic transformation
is applied to the predictions, unlike the values of accuracy and logloss. Compared to
logloss, it is less sensitive to outliers. ROC AUC usage is ubiquitous in the machine
learning community.

ROC AUC is defined for binary classification. If we have several classes to dis-
tinguish, we can replace a single ROC AUC metric with a set of numbers. There
are two common ways to transform a n-class classification into sets of binary clas-
sification problems: one-vs-rest and one-vs-one. One-vs-rest reduces a multiclass
classification problem to n binary classification problems. For each class it consid-
ers the value of the metric, computed with the other classes collapsed into a single
virtual class. One-vs-one reduces a multiclass problem with n classes into a n(n−1)

2
binary classification problems where each class is pitted against every other class.

Note that the gradient of ROC AUC with respect to model prediction is zero
almost everywhere. Because of this, ROC AUC is rarely optimised directly by
machine learning models, despite being, probably, the most popular binary classifi-
cation metric.

Computation of the statistical uncertainty for the ROC AUC value is not trivial.
For a metric, that can be expressed as E(L(ypredicted, ytrue)), the mean is estimated
from a set of independent observations, which opens it to straightforward statistical
analysis. ROC AUC is computed over a whole dataset and can not be expressed as a
sum of some loss values L(ypredicted, ytrue) computed independently for each example.
The variables from which ROC AUC is estimated in equation 2.17, ψ(si, bj) are not
independent. References [51, 52] do the analysis of the problem, that leads to the
following expression for the variance of a ROC AUC estimate:

ξ10 = E[ψ(si, bj)ψ(si, bk]− ϑ2, j 6= k (2.18)
ξ01 = E[ψ(si, bj)ψ(sk, bj]− ϑ2, i 6= k (2.19)
ξ11 = E[ψ(si, bj)ψ(si, bj)]− ϑ2, (2.20)

2.4 No Free Lunch Theorem 19

then
var(ϑ̂) = (S − 1)ξ10 + (B − 1)ξ01 + ξ11

SB
. (2.21)

When the sample size is relatively small, e. g. less than 1000, variance might be a
relatively bad estimate for the confidence interval, as the distribution of the AUC
values is not Gaussian. For those cases, many different methods to estimate the
confidence interval have been proposed, they are summarised in reference [53]. I
have never encountered any of them in high-energy physics or machine learning
literature.

2.4 No Free Lunch Theorem
For a given finite sample, there is an infinite amount of probability distributions that
might have generated it. For machine learning, this means that in the absence of any
assumptions on the generating distribution p, all machine learning algorithms, no
matter how ridiculous, perform the same, when averaged over all possible datasets.
This conjecture is called the No Free Lunch theorem [54].

Before diving into the proof, let us outline the idea behind it on a simple example.
Consider the case of discrete x and binary classification (y ∈ {0, 1}). Let us have
a model and an example that was not used for training this model. The model
makes some prediction. And, since we don’t have any assumptions on p, with equal
probability we live in the world where the target value is either 0 or 1 – thus the
model is correct with 50% probability.

This section primary follows my rewrite [55] of the original paper [54].

2.4.1 Formalism

Let us consider the case of the feature and target domains being finite sets X and Y.
This does not rob the theorem of its value, as any practical problem deals with finite
numbers, that can be discretized – and indeed are, when processed as floating-point
numbers on a computer. A rigorous examination of the continuous case is available
in reference [56].

Call X the input set, Y the output set. Define a metric (loss function): L(y1, y2) ∈
R, y1, y2 ∈ Y. Introduce the target function f(x, y), x ∈ X, y ∈ Y. f(x, y) is an
X-conditioned distribution over Y, i. .e ∀x ∈ X,

∑
y f(x, y) = 1. Select a training

set d of m X−Y pairs, according to likelihood P (d|f). Let dX be its X component
and dY be the Y component. Select a test point q ∈ X, q /∈ dX – we are interested
in the generalisation power. Such selection is called off-training set (OTS). Take a
classifier, train it on d, use it to predict on q. Let yH be the prediction. Any clas-
sifier is completely described by its behaviour, P (yH |q, d). Also sample the target
distribution f at point q, let yF be the result. Define loss c = L(yH , yF).

In this section, we determine several averages of conditional probabilities for
loss values over all valid f . f is uniquely specified by an |X| × |Y| matrix of
real numbers, so we can write a multidimensional integral

∫
A(f)df and average

EfA(f) =
∫
A(f)df/

∫
1df . All integrals over targets f in this paper are implicitly

restricted to the valid X-conditioned distributions over Y. We do not evaluate the
integrals explicitly, but for the sake of clarity, it is worth to discuss them.

2.4 No Free Lunch Theorem 20

f is a probability distribution, therefore ∀x ∈ X,
∑

y f(x, y) = 1. This also
means, that f is a mapping from X to an |Y|-dimensional unit simplex, by definition
of a unit simplex. The integration volume F is a Cartesian product of unit simplices,
which can be expressed using a combination of Dirac delta functions and Heaviside
step functions.

In this section we consider homogeneous loss, meaning that

∃Λ[R→ R] : ∀c ∈ R,∀yH ∈ Y :
∑
yF∈Y

δ [c, L(yH , yF)] = Λ(c), (2.22)

where δ is the Kronecker delta function. Intuitively, such L have no a priori prefer-
ence for one Y value over another. For example, zero-one loss (L(a, b) = 1 if a 6= b, 0
otherwise) is homogeneous, and quadratic (L(a, b) = (a − b)2; a, b,∈ R) is not. A
weaker version of No Free Lunch Theorem still holds for non-homogeneous loss, it
is discussed in [57].

Likelihood P (d|f) determines how d was generated from f . It is vertical if P (d|f)
is independent of the values f(x, yF) for x /∈ dX . We do not require that the Y
components for the test and train sets are generated from the same distribution, but
they, of course, may. Verticality is needed to prevent leakage of the test set labels
into the train set. For example, the conventional procedure, where d is created by
repeatedly and independently choosing its X component dX by sampling some dis-
tribution π(x), and then choosing the associated dY value by sampling f (dx(i), y),
results in a vertical independent and identically distributed (IID) likelihood:

P (d|f) =
m∏
i=1

π(dX(i))f(dX(i), dY (i)). (2.23)

The No Free Lunch Theorem states, that the performance of an algorithm, when
averaged by all possible datasets, is equal to constant that is a function of the loss:

Ef [P (c|f,m)] = Λ(c)/r
∑

d:|d|=m

[∫
P (d|f) dfx∈dX∫

1dfx∈dX

]
= Λ(c)/r. (2.24)

The proof is available in appendix A.

2.4.2 Example

Let us illustrate the counter-intuitive idea of No Free Lunch with an example. Take
X = {0, 1, 2, 3, 4}, Y = {0, 1}, a uniform sampling distribution π(x), zero-one loss
L. For clarity we will consider only deterministic f , i. e. f : X ×Y → {0, 1}. Set
the number of distinct elements in the training set m′ = 4. Let algorithm A always
predict the label most popular in the training set, algorithm B the least popular.
In case the counts of labels of different classes in the training set are equal, the
algorithms choose randomly.

Let xi ∈ X be the feature vector and yi ∈ Y the label for i-th object. Let cA be
the loss on the test element for the algorithm A, cB for B. We show that Ef (c|f,m′)
is the same for A and B.

2.4 No Free Lunch Theorem 21

1. There is only one f for which for all X values, Y = 0. In this case algorithm
A works perfectly, cA = 0, algorithm B always misses, cB = 1.

2. There are C1
5 = 5 fs with only one y = 1, the rest being 0. For each such

f , the probability that the training set has all zeros is 0.2. For these training
sets, the true test label is 1, A predicts 0, B predicts one, cA = 1, cB = 0.
For the other 4 training sets, cA = 0, cB = 1. Therefore, the expected value
of EcA = 0.2× 1 + 0.8× 0 = 0.2 and EcB = 0.2× 0 + 0.8× 1 = 0.8

3. There are C2
5 = 10 fs with two yi = 1. There is a 0.4 probability, that the

training set has one 1. Therefore, the other 1 is in the test set, and cA = 1,
cB = 0. There is a 0.6 probability that the train set has two 1s. In that
case both algorithms guess randomly and EcA = EcB = 0.5. So for each f ,
EcA = 0.4× 1 + 0.6× 0.5 = 0.7, EcB = 0.4× 0 + 0.6× 0.5 = 0.3. Note that
B outperforms A.

4. The cases with three, four and five 1s are equivalent to the already described.

5. Averaging over f , we have

EfcA =
1× 0 + 5× 0.2 + 10× 0.7

1 + 5 + 10
= 0.5

EfcB =
1× 1 + 5× 0.8 + 10× 0.3

1 + 5 + 10
= 0.5

2.4.3 Implications

For learning theory, the No Free Lunch (NFL) theorems invalidate any formal per-
formance guarantees, that do not make a restriction on the problem class.

The NFL theorems also prove that performance on a “test” or “validation” set
T , commonly used in practice, is not an ultimate tool to compare algorithms. That
is if we are interested in the error for examples outside the train and test datasets
x /∈ {d ∪ T}, in absence of prior assumptions, the error on T is meaningless, no
matter how many elements there are in T .

The original paper [54] begins with a quote from David Hume: “Even after the
observation of the frequent conjunction of objects, we have no reason to draw any
inference concerning any object beyond those of which we have had experience.”
In some sense, the paper is a reformulation of this thesis in mathematical terms.
All our experiences, the training set, belong to the past. This includes any “prior
knowledge”—that targets tend to be smooth, the Occams’s razor, etc. The NFL
theorems state, that even if some knowledge and algorithms allowed you to gen-
eralise well in the past (your current training set), there are no formal guarantees
about its behaviour in the future. So, if we are to subscribe to strict empiricism and
do not make any assumptions about the world, we must accept that the world is
unknowable. On the other hand, if we are to claim the ability to predict the future,
we must also admit that this ability is based on some assumptions. And there are
infinitely many possible assumptions and the choice can not be based on anything
empirical as otherwise, it would fall under the prior knowledge.

2.5 Deep Learning 22

For machine learning methods to work, some insight into the target problem
is required. The power of machine learning is that these assumptions can be very
general. There is no need to suppose that the data distribution is, for example, a
mixture of Gaussian and exponential distributions. Most methods work under the
assumption that it is “smooth”6 – which seems to be the case for many real-world
problems. This is not universal, with the prime example being cryptography, where
a smallest change in input is designed to cause a complete change in the output.

2.5 Deep Learning
Deep learning is a particularly successful family of machine learning algorithms that
gained prominence in the recent 15 years. It is a combination of several powerful
ideas made feasible by the combination of huge amounts of data and computing
power to process it. This section serves as an introduction to deep learning and is
based on the classical textbooks [59, 60] and the Coursera ”Introduction to Deep
Learning” course that I coauthored [61].

2.5.1 Logistic Regression

Consider the problem of binary classification. Let xi ∈ RM be feature values for
the i-th training example, M the dimensionality of the feature space, yi ∈ {0, 1} be
the class label. Let us construct the simplest model to separate the classes – with
a hyperplane.

y(x) = wT · x + w0, (2.25)

where y(x) is the model decision function (y > 0 means the prediction is class 1,
y < 0 class 0); slope (or weight vector) w ∈ RM and intercept (or bias) w0 ∈ R
are model parameters. A geometric interpretation of such model is presented in the
figure 2.4.

This leaves the question of finding the optimal values of w and w0. Theoretically,
it is possible to use the formulation we have so far, and, for example, maximise the
number of correctly classified examples:

w, w0 = argmax
w,w0

 ∑
i:yi=1

H(y(xi)) +
∑
i:yi=0

H(−y(xi))

 , (2.26)

where H is the Heaviside step function.

H(n) =


0 n < 0
1
2 n = 0

1 n > 0.

(2.27)

6Unfortunately, for many modern machine learning algorithms that work extremely well in prac-
tice, theoretical analysis is lacking, so we can’t put a precise definition here. However, there are
theorems that prove that deep neural networks (covered in section 2.5) can, in principle, approxi-
mate any Lebesgue integrable function [58].

2.5 Deep Learning 23

Figure 2.4. Geometry of a linear classifier. The number of dimensions of the features
space is 2, in red is the decision surface, in green the vector of weights w, in blue an
example which is being classified. Its distance from the decision surface is given by
y(x)/‖w‖. Reproduced from [59].

The formulation in equation 2.26, however, is inconvenient to optimise, as no closed-
form solution is available and the gradient of expression inside argmax is zero almost
everywhere.

If a sigmoid function σ is applied to the model output, the output can be inter-
preted as the posterior probability of the example belong to the class 1:

fi = p(i-th example is class 1|xi,w, w0) = σ(y(xi)) =
(
1 + e−wT ·xi−w0

)−1
∈ (0, 1).

(2.28)
This model is called logistic regression, despite it being a classification model. To
find the parameters of the model we can use the maximum likelihood method.
The posterior probability that i-th example has been correctly classified can be
formulated as

p(example is correctly labelled|yi, fi) = fyii (1− fi)1−yi (2.29)

Since examples are sampled independently, the posterior probability is a product of
per-example probabilities:

L(w, w0) = p (all train examples are correctly labelled|w, w0) =
∏
i

fyii (1− fi)1−yi .

(2.30)
To simplify optimisation, define loss as the negative logarithm of the likelihood,
which leads to the cross-entropy error function:

L(w, w0) = − lnL (w, w0) = −
∑
i

[yi ln fi + (1− yi) ln(1− fi)] . (2.31)

This loss function has continuous gradients and thus can be optimised with gradient
descent algorithms that are covered in the section 2.5.3. N. B. Despite appearing
to be a simple problem, no general closed-form solution to find the optimal values
of the logistic regression parameters has been found [62].

2.5 Deep Learning 24

2.5.2 Deep Neural Networks

For many practical problems, linear models are not sufficient. A logical thing to do
is to transform the problem to an easier formulation – use feature engineering. An
example of such transformation simplifying classification is presented in figure 2.5.
By transforming a dataset from Cartesian coordinates to polar, we turn the classi-
fication task from impossible to trivial for a linear model. Until the Renaissance of

Figure 2.5. Example of a dataset in two representations: Cartesian and polar coordinates.
For a linear model, classification is impossible in the Cartesian coordinates but is trivial
in polar. Reproduced from [60].

deep learning, feature engineering was the way to go for computer vision tasks. It
is highly applicable for all cases where expert knowledge is available that can sim-
plify the problem. In a sense, event reconstruction in high-energy physics can be
viewed as feature engineering, as it transforms raw detector readout into a handful
of highly useful variables. But manual feature engineering relies on expensive ex-
pert work, and the quality of the result does not benefit much from data availability.
The idea of deep learning is to automatically learn a “deep” sequence of relatively
simple transformations. For some tasks, mostly related to images, the intermedi-
ate features learned by modern deep learning algorithms are human-interpretable.
An example of interpretable features produced by an image-classification model is
presented in figure 2.6.

Let us have two models. A feature extractor, that would take examples from the
dataset and apply some function h(x,θ2) to them, θ2 being the model parameters.
And a classification model, that would make predictions based on the output of
the feature extractor. The prediction of our model will be f(h(x,θ2),θ1). This
composite model scheme is graphically depicted in figure 2.7. The choice of the
models depends on the task in question. For tabular data (where there is no known
structure in the features), the most common choice is linear models with elementwise
nonlinear transformations between them, as a combination of just linear models will
itself be linear. For image data, the best results have been achieved by convolutional
transformations, which we will not cover here, as, in this thesis, we will deal only
with tabular data.

2.5 Deep Learning 25

Figure 2.6. Illustration of feature engineering happening inside a deep learning model.
The model does a sequence of transformations (hidden layers), developing features of
increasing complexity. Using the pixels, the first transformation identifies edges by
comparing the brightness of neighbouring pixels. Using the description of the edges,
the second transformation searches for corners and extended contours, which are recog-
nisable as collections of edges. Using the description of the image in terms of corners
and contours, the third transformation detects entire parts of specific objects, by find-
ing specific collections of contours and corners. Finally, this description of the image
in terms of the object parts it contains is used to recognise the objects present in the
image. Reproduced from [60].

The simplest “deep neural network” model is presented in figure 2.8. Its predic-
tion is

p(example is class 1|x) = σ
[
wT

o · σ (Wh · x + bh) + bo
]
, (2.32)

where Wh and bh are the parameters of the first linear model (feature transformer);
wo and bo are the parameters of the second model (logistic regression). W is a
N ×M matrix, where M is the dimensionality of x and N is the dimensionality of
the linear transformation output. It is trivial to construct a more expressive model,
by stacking more intermediate transformations.

Deep learning has its own terminology.

• It is called deep because it uses a ”deep” sequence of transformation.

• A model consisting of a sequence of linear transformations and elementwise
nonlinear transformation (e. g. the one in figure 2.8) is called a multilayer
perceptron (MLP) or a feedforward fully-connected neural network with a
single hidden layer.

2.5 Deep Learning 26

Figure 2.7. A scheme of a two-stage model with a feature extractor. Reproduced from
[61].

Figure 2.8. The simplest ”deep neural network” model. Reproduced from [61].

• The transformations inside a neural network (e. g. the blocks in figure 2.8)
are called layers. A linear transformation is a dense layer, as each output
element depends on each input element. The dimensionality of the linear
transformation output is called the number of neurons7.

• Transformations (e. g. σ in the figure 2.8) without learnable parameters are
called activation functions

• The first layer is called the input layer; the last layer is called the output layer

• All layers between the input and output, are called “hidden”

• And, finally, activation is the value of a layer output, for a particular input,
e.g. vector σ(h) in figure 2.8.

We used the sigmoid nonlinearity (σ, introduced in 2.28). It is by no means the
single possibility. The most common are presented in figure 2.9:

• ReLU(x) = max(0, x). It is zero for negative values of the argument and in-
creases linearly for the positive values. Quoting [60], this activation function
is the default activation function recommended for use with most feedforward
neural networks. Applying this function to the output of a linear transforma-
tion yields a nonlinear transformation. However, the function remains very
close to linear, in the sense that is a piecewise linear function with two linear
pieces. Because rectified linear units are nearly linear, they preserve many of
the properties that make linear models easy to optimise with gradient-based
methods. They also preserve many of the properties that make linear models

7Historically, artificial neural networks were, in part, inspired by the biological neural networks.
It is possible to build the same formalism using a graph of neurons with connections between
them and signals travelling from one to another. The term ”number of neurons” comes from this
interpretation. I believe that the presented approach with a sequence of transformations is easier
to digest for a mathematically-literate reader.

2.5 Deep Learning 27

4 2 0 2 4
x

1

0

1

2

3

4

5 ReLu
Leaky ReLu
Sigmoid

Figure 2.9. Common activation functions. sigmoid(x) = (1+ex)−1, ReLU(x) = max(0, x),
Leaky ReLU(x) = max(αx, x), α ∈ (0, 1).

generalise well. One drawback to rectified linear units is that they cannot
learn via gradient-based methods on examples for which their activation is
zero.

• LeakyReLU(x) = max(0, x)+αmin(0, x). The α value is usually around 0.01.
It is a piecewise linear function with a small slope for the negative argument
values and slope equal to 1 for positive. LeakyReLU was proposed in refer-
ence [63]. It alleviates the problems caused by the zero activation of ReLU.
While attractive on paper, LeakyReLU and its variants did not manage to
replace ReLU due to inconsistent gains [64].

• sigmoid(x) = (1+ ex)−1 nonlinearity is usually used as the last layer of a net-
work for binary classification. Its value lies in interval (0, 1). The value tends
to 0 as the argument approaches negative infinity and to 1 as the argument
approaches positive infinity. Its logarithm is always defined and finite, which
helps to alleviate the computational instability of the cross-entropy loss. Sig-
moid is a poor choice for activations of the hidden layers, as it suffers from
the dying gradients problem. The gradient of a sigmoid is always less than
one and tends to zero for high values of the argument.

• Other nonlinearities. The research is ongoing, and many other types of non-
linearities using different intuitions have been proposed. Yet no clear winner
emerged that can demonstrate a consistent performance advantage. The most

2.5 Deep Learning 28

convincing studies use automated very computationally expensive trial-and-
error search [64].

In case of a multiclass classification problem, a common activation function to
apply to the last layer is softmax. Unlike the other discussed activation functions, it
is not an elementwise transformation. Softmax ensures that all the outputs conform
to basic properties of probability: each of them lies in [0, 1] and the sum of all
outputs equals to 1.

ok =
e−ik∑
m e

−im
, (2.33)

where ok is the k-th component of the softmax output; ik is k-th component of the
softmax input.

2.5.3 Optimisation

In subsection 2.2.1 we define the problem of training a machine learning model as
an optimisation problem. Function optimisation is a well-developed area with many
methods proposed for different kinds of target functions [65, 66]. In general, the
more is known about the target, the faster and more robust the optimisation is.
The solution for the least-squares linear regression is available in the closed form.
Logistic regression can be approached by a plethora of methods, such as the classic
Newton’s and iterative least squares. On the other end of the spectrum, if nothing
is known about the function being optimised, than any algorithm is as good as
random search [67]. In this subsection, we describe a family of methods, that are
particularly suited for deep neural networks optimisation, as they strike a balance
between the convergence speed and the burden placed on the class of the optimised
function.

The idea of optimisation by gradient descent can be traced to a paper by Cauchy
in 1847 [68]. Its idea is simple. Given a function L(θ), its minimum will be at a
point where its gradient is zero. To arrive at such a point, iteratively follow the
inverse gradient:

θ(τ+1) = θ(τ) − η∇L
(
θ(τ)

)
, (2.34)

where τ is the iteration number and η > 0 is a parameter (learning rate).
In a machine learning setting, to compute the loss L(θ) and its gradient as a

function of the model parameters, we need to calculate the model prediction for
every example in the dataset. That can be prohibitively expensive. To address
the computational complexity, stochastic gradient descent (SGD) [69] is commonly
used. We describe it below.

For each optimisation iteration, SGD uses only a subset of the whole training
dataset. Usually, it is organised as follows. The dataset is shuffled and arranged into
a queue. For each iteration, a batch of examples is extracted from the queue and
used to compute the gradients. A pass over the whole dataset is called an epoch.
After an epoch, the dataset is reshuffled and processed again. Let us describe an
iteration of the algorithm. Let a batch have m examples. Let {x1, ...,xm} be their
features and yi the corresponding targets. Let f(xi,θ) be the model prediction for
i-th example. Let θ be the vector of all model parameters. Let L (f(xi,θ), yi) be

2.5 Deep Learning 29

the value of the loss function on the i-th example. Then, on each iteration, compute
the gradient of the loss over the model parameters using only the examples from
the batch; use the gradient to update the estimate of the model parameters:

θ(τ+1) = θ(τ) − η 1

m

m∑
i=1

∇θL
(
f(xi,θ

(τ)), yi

)
, (2.35)

For complex models, the optimisation problem is non-convex, and it is almost
certain that gradient descent would not lead to a global minimum. Whether this is a
problem, depends on the difference in the value at that local minimum and the global
one. It is possible to explicitly construct examples [70, 71, 72], where the difference
will be significant. Whether local minima are a problem in the practical application
of neural networks remains an open research question [60]. Many experts, however,
suspect, that for sufficiently large neural networks, local minima have a low loss
value and it is not essential to find the true global minimum [73, 74, 75].

Stochastic gradient descent follows noisy estimates of the true gradient. This
slows down convergence. The problem is illustrated in figure 2.10. Another com-
plexity is the selection of the learning rate. If it is too small, then the convergence
will be slow. If it is too large, the optimiser will overshoot and might diverge. This
problem of the optimiser taking a longer path is illustrated in figure 2.11.

Figure 2.10. Optimising a scalar function of two parameters with gradient descent and
stochastic gradient descent. The coloured contour lines represent function values. Re-
produced from [76].

There is a physics-inspired solution to both problems: adding momentum [78].
Let us modify the optimisation iteration 2.34 by adding ”velocity” v:

θ(τ+1) = θ(τ) + v (2.36)

v(τ+1) = αv(τ) − ε 1
m

∑
i

∇θL
(
f(xi,θ

(τ)), yi

)
, (2.37)

2.5 Deep Learning 30

Figure 2.11. Influence of the learning rate on the optimiser behaviour. Reproduced from
[77]

where α ∈ [0, 1) and ε are hyperparameters. The larger is α
ε , the more ”inertia”

there is, the more previous gradients affect the current direction.
There is another observation that leads to practically better optimisation. In

many real-world problems, the optimal learning rate varies with direction. To ac-
count for this, we can keep track of the running average of the gradient magnitude.
Then, when applying the parameters update, we normalise the gradient by this run-
ning average. This brings us to the algorithm called RMSProp (Root Mean Square
Propagation) [79], which is presented in Algorithm 1 below. It has been used for
training neural networks in chapter 8.

Algorithm 1 The RMSProp algorithm
Require: Global learning rate η
Require: Initial guess for parameters values θ
Require: Small constant δ, usually 10−6, used to stabilize division by small num-

bers
Initialize the gradients accumulation vector r = 0
while stopping criterion not met do

Sample a batch of m training examples {x1, ...,xm} along with the corre-
sponding targets yi

Compute gradient: g← 1
m

∑
i∇θL (f(xi,θ), yi)

Accumulate squared gradient: r← ρr + (1− ρ)g� g . By � we mean
elementwise multiplication

Apply parameters update: θ ← θ − ε√
δ+r � g

end while

Momentum can be combined with the adaptive learning rate idea. A popular
way to do that is Adam (”adaptive moments”) [80] presented in Algorithm 2. Like
RMSProp it maintains a running average, this time of gradient and its square. Like
the momentum methods, it uses for updates an accumulated values, not the gradient
value at the latest point. It has been used for training neural networks in chapter
6.

In this subsection, we discussed the idea of using gradients for optimising model

2.5 Deep Learning 31

Algorithm 2 The Adam algorithm
Require: Global learning rate ε (suggested default: 10−3)
Require: Hyperparameters ρ1, ρ2 ∈ [0, 1) – exponential decay rates for momentum

estimates (suggested defaults: 0.9 and 0.999 respectively)
Require: Small constant δ, suggested 10−8, used to stabilise division by small

numbers
Require: Initial guess for parameters values θ

Initialise the 1-st and 2-nd moment variables s = 0, r = 0
Initialise time step t = 0
while stopping criterion not met do

Sample a batch of m training examples {x1, ...,xm} along with the corre-
sponding targets yi

Compute gradient: g← 1
m

∑
i∇θL (f(xi,θ), yi)

t← t+ 1
Update biased first moment estimate: s← ρ1s + (1− ρ1)g
Update biased second moment estimate: r← ρ2r + (1− ρ2)g� g
Correct bias in the first moment: ŝ← s

1−ρt1
Correct bias in the second moment: r̂← r

1−ρt2

Apply parameters update: θ ← θ − ε ŝ√
r̂+δ

end while

parameters and introduced some of the most commonly used algorithms. In prac-
tical optimisation of neural networks, the presented algorithms perform fairly ro-
bustly, but choosing the best algorithms and values of its hyperparameters for a
particular model and dataset remains an open question [60]. The developers of the
Adam algorithm [80] show that its bias-correction helps Adam slightly outperform
RMSprop towards the end of optimisation as gradients become sparser.

2.5.4 Training Deep Neural Networks

Training a deep neural network is an optimisation problem. In principle, this opti-
misation can be approached by various methods, such as genetic algorithms [81] and
Alternating Direction Method of Multipliers [82]. In practice, most state-of-the-art
architectures use variants of stochastic gradient descent [60], as utilisation of the
gradient information speeds up convergence dramatically.

To use the gradient-based optimisation methods to train a model, we need to
know the gradient of the loss with respect to all parameters. A deep neural network
is just a composite function. Let f(x, θ) = f1(f2(...fk(x,θ(k)), ...,θ(2)),θ(1)) be the
prediction of the model, θ(i) the vector of parameters for the i-th layer, θ the vector
of all model parameters (a concatenation of θ(i) for all layers), L(f(x,θ),y) be the
loss function of the model with parameters θ on example with features x and target
value y.

L(f(x,θ),y) = L
[
f1(f2(...fk(x,θ(k)), ...,θ(2)),θ(1)),y

]
. (2.38)

We are interested in the gradient dL(f(x,θ),y)
dθ . To compute it for each component of

2.5 Deep Learning 32

θ, use the chain rule. dL
df1

can be computed directly. Then,

dL

dfi
=

dL

dfi−1
· dfi−1

dfi
(2.39)

dL

dθ(i)
=

dL

dfi
· dfi
dθ(i)

. (2.40)

Note that in the equation 2.40 we take a derivative of a vector by a vector. If
a = f(b) is an m-element vector, and b is an n-element vector, the derivative da

db is
the m× n Jacobian matrix [83]:

da
db =


da1
db1

da1
db2

da1
db3

. . . da1
dbn

da2
db1

da2
db2

da2
db3

. . . da2
dbn...

...
...

dam
db1

dam
db2

dam
db3

. . . dam
dbn

 (2.41)

The beauty of the chain rule is that it can be evaluated numerically. The chain
rule can be followed in stages, starting from f1 and θ(1). When applied to neural
networks, this is commonly called error backpropagation [84]. When training a
neural network, first, we do a so-called forward pass – starting from fk going to f1
compute the model output. Then we do a so-called backward pass – starting from
f1 (the output layer) we compute the chain of derivatives.

Backpropagation allows us to easily use arbitrary differentiable transformation
φ(x,θ) for layers. We need only to supply the algothm with three functions: φ(x,θ)
itself, dφ

dx (x,θ), and
dφ
dθ (x,θ).

2.5.5 Designing Neural Networks

With all the flexibility comes the natural question of designing the best neural
network for a given problem. The more data we have, the more parameters we can
afford without encountering catastrophic overfitting. If there is an insight into the
problem domain, and there is for images [17], text [85] and voice [86], architectures
that take it into account have superior performance. Otherwise, like many things in
machine learning, this is an open research question [60, 87, 88]. In practice, model
design is done by trial and error and iterating over previous works that proposed
models for a particular problem.

State-of-the-art approaches use machine learning to automate this trial and error
search [89, 90, 91]. Designing a neural network can be viewed as an optimisation
problem: finding the architecture, that would have the best performance on the
validation dataset. This main issue with this approach is the computational cost,
as training a single variant of neural network architecture can take days of GPU
time. Another aspect is the structure of the search space: neural networks are
complex objects with a varying number of parameters; they are not differentiable
with respect to parameters, such as the number of layers. To make the optimal
use of the computation time, in reference [89] they use the so-called reinforcement
learning approach. They build a machine learning model that tries to predict the
performance of architecture, given its description. It is used to choose the next
architecture to try. Architectures are represented as strings, and to work with them

2.6 Gradient Boosting Decision Tree (GBDT) 33

a special type of neural network is used, the so-called recurrent neural network
(RNN) [92, 93]. In reference [90] they propose to relax the search space to be
continuous, instead of searching over a discrete set of architectures. This allows
using gradient descent methods. They also propose not training each architecture
variant to convergence to speed up the search. In reference [91], the authors use
a discrete search space but propose an optimisation. By representing the search
space as a graph, and the network architectures as subgraphs, they allow different
models to share the weights. Although eschewing training from scratch reduces the
accuracy of estimating the performance of architecture, they demonstrate that it
remains acceptable, while allowing for a 1000x speed-up compared to the method
from reference [89].

2.5.6 Implementing Neural Networks

Deep neural networks benefit a lot from graphics processing units (GPUs) and
even more from the specialised hardware [94]. Compared to CPU, a GPU has two
defining features [95, 96]:

• Up to thousands of cores [97], allowing for more parallelism;

• A high memory bandwidth. As of the moment of writing, top-of-the-shelf
GPU allows up to 900 GB/s [98], CPU up to 141 Gb/s [99].

Matrix multiplication, the most expensive operation in MLP training, can take
advantage of the parallelism [100]. The memory bandwidth allows to efficiently
load the training data to be processed.

There are several competing modern frameworks with roughly similar function-
ality that make deep learning methods very easy to use. Prime examples are Tensor-
Flow [101] (used in chapters 8 and 6) and PyTorch [102]. The frameworks allow for
automatic computation of derivatives: the user only needs to specify the model as a
combination of operations, and the frameworks will compute the gradients needed
for optimisation. The frameworks also handle computation execution on GPUs and
multiple CPU cores transparently to the user.

2.5.7 Conclusion

The distinguishing feature of deep learning is its ability to profit from large amounts
of data. A combination of factors enables this. First, stochastic optimisation allows
it to utilise an infinite amount of data at a constant cost per optimisation iteration.
Second, the operations used by deep learning benefit tremendously from modern
hardware developments.

2.6 Gradient Boosting Decision Tree (GBDT)
In this section, we cover another family of machine learning algorithms. Unlike
the deep learning methods, they did not experience “revolutionary” bursts of ad-
vancement – but, for many problems with tabular features, they achieve the same
or better quality as the deep learning models. The section is based on lectures

2.6 Gradient Boosting Decision Tree (GBDT) 34

from the Machine Learning for High-Energy Physics summer school [103, 42] and
textbook [104].

2.6.1 Decision Tree

Tree-based methods partition the feature space into a set of rectangles, and then
fit a simple model (usually a constant) in each one [104]. From the perspective of
high-energy physics, they can be viewed as automated multilevel cut-based analy-
sis. Decision trees have been used in more-or-less current form as decision-support
tools since at least mid-XX century [105, 106]. An illustration of such a tree to
asses credit-worthiness is presented in figure 2.12. The idea of such hierarchical
representation of information can be traced to 3rd century CE Greek Neoplatonist
philosopher and logician Porphyry [107] – see also the discussion in reference [108].

Figure 2.12. An example of decision tree for deciding whether to grant a loan. Reproduced
from [103].

In this section, we consider binary trees, where at each point there are only
two alternatives. Having splits with more alternatives is, of course, possible, but
would complicate training and is not used in practice. A tree V is a tuple consisting
of internal nodes u, leafs v, predicates βu and leaf values cu ∈ Y. Y depends on
the problem. For a regression problem, it equals to the target domain Y. For a
classification problem, Y can be equal Y. In this case, the model will output just
the predicted class label, without any score that would indicate the uncertainty of a
prediction. It is more useful to make a tree output a vector of scores corresponding
to different classes: Y = R|Y| or Y = R|Y|−1 (to remove redundancy). An internal
node has two children, left and right, which can be either leaves or other internal
nodes. u0 is the root node. βu : X→ {0, 1} is a function from the features domain in
into {0, 1}. If its value for an example with features x is 0, the example is assumed
to fall into the left subtree, otherwise into the right. A leaf is an end node, where
a prediction is stored. A graph illustrating the relationship between the internal
nodes and leaves is presented in figure 2.13. A formal description of the procedure

2.6 Gradient Boosting Decision Tree (GBDT) 35

u0

u1

u2

v1 v2

v3

u3

v4 v5

Figure 2.13. Illustration of a generic decision tree. Reproduced from [103].

of making a prediction is presented in Algorithm 3.

Algorithm 3 Decision tree prediction algorithm
Require: A binary tree V
n← u0 . Begin traversal from the root node
while n is not a leaf do

b← βn(x)
if b = 0 then

n← LeftChild(n)
else

n← RightChild(n)
end if

end while
return cn

In principle, predicates βu can be any function. In practice, in state-of-the-art
machine learning algorithms, the predicates compare the value of some feature to
some threshold.

βu(x) = [xju < tu], (2.42)

where [xj < tu] is the Iverson bracket, ju is the index of the feature that is used for
the split, and tu is the threshold.

Constructing an optimal binary decision tree is an NP-complete [109] problem,
thus finding the exact solution requires superpolynomial8 time. A practical way,
used by the state-of-the-art machine learning algorithms [110, 44] to build a tree
is with a greedy algorithm. When training decision a decision tree in a greedy
fashion, an algorithm selects splits step-by-step, on each iteration choosing the split
that offers the most obvious immediate performance improvement. It doesn’t think
ahead about possible future splits. This approach requires three things: a loss
function to quantify the performance of s split, a stopping criterion and the leaf
value assignment procedure. The loss function Q(X, j, t) → R estimates how good
is a split of the dataset X by feature number j with threshold t. Leaf assignment
usually minimises some loss. A stopping criterion looks at the state of the algorithm

8Let n be the input size, t(n) be the number of operations needed to find the optimal tree, then
∀c ∈ R limn→∞

∣∣∣ t(n)
nc

∣∣∣ = ∞.

2.6 Gradient Boosting Decision Tree (GBDT) 36

Figure 2.14. Illustration of the purity maximisation idea. Reproduced form [111].

and decides whether the current node should be a leaf, or additional splits must be
made. We will cover the leaf value assignment and stopping criterion shortly. The
greedy training algorithm is presented in Algorithm 4.

Algorithm 4 Greedy tree learning for binary classification
Require: Training set X =

{
(xi,yi)

}
procedure MakeSplit(X`: dataset to be split)

j, t = argmin
(j,t)

Q(X`, j, t)

Create tree node u corresponding to predicate [xj < t]
if Stopping criterion is satisfied for u then

Declare u a leaf, set some value cu ∈ Y as prediction
else

R1(j, t) = {x ∈ X`|xj < t}
R2(j, t) = {x ∈ X`|xj > t}
MakeSplit(R1)
MakeSplit(R2)

end if
end procedure
MakeSplit(X)

There are multiple viable choices for loss function and the stopping criterion (as
for many things in machine learning). The idea of the loss function is to promote
splits that result in leaves with best purity – least variance of target value in the set
of examples that fall into the leaf after the split. The idea of a purity maximising
split for a 3-class classification problem is illustrated in figure 2.14. Let us define
the impurity criterion for the case, where Y = Y:

2.6 Gradient Boosting Decision Tree (GBDT) 37

H(R) = min
c∈Y

1

|R|
∑

(xi,yi)∈R

L(c,yi). (2.43)

It takes the loss function L(ypredicted, ytrue) (as introduced in 2.2) and finds the leaf
value c that would minimise the average loss for this set. The value of c in a leaf is
selected to minimise the impurity. If the problem is a regression, the usual loss to
use is the mean squared error and c = E (yi|yi ∈ R). For classification, the logical
choice for c is to be a vector of class probabilities, estimated as their frequencies in
the leaf:

ck =
1

|R|
∑

(xi,yi)∈R

[yi = γk], (2.44)

where [yi = γk] is the Iverson bracket that equals to 1, when i-th example belongs
to the k-th class and 0 otherwise. There are two primary choices for the loss function
to use: Gini index and cross-entropy.

Lcross-entropy = −
∑
k

ck ln ck. (2.45)

Cross-entropy loss here is directly derived from the logloss introduced in subsec-
tion 2.3.3: ck is both the fraction of examples belonging to the k-th class, and the
predicted probability of an example to belong to the k-th class.

LGini =
∑
k

ck(1− ck). (2.46)

Gini impurity9 [112] is defined as follows. Consider a leaf that has a set of exam-
ples. Randomly choose an example and randomly assign it a label according to the
distribution of labels in the leaf. Gini impurity is the probability that the example
is mislabeled. This way, if all the labels in the leaf are the same, the impurity would
equal to zero. If each label is unique, the impurity would equal to 1 − 1/n, where
n is the number of examples in the leaf. Having a loss function, we can use it to
define the loss function for a split:

Q(X`, j, t) = H(X`)− |R1|
|X`|

H(R1)−
|R2|
|X`|

H(R2), (2.47)

whereX` is the dataset that is being split, R1(j, t) = {x ∈ X`|xj < t} and R2(j, t) =
{x ∈ X`|xj > t} is the proposed split.

The stopping criterion has a large impact on model quality. Stop too early, and
the model is underfitted, stop too late, and the model is overfitted. Naturally, there
are quite a few choices:

• Maximum tree depth. Results in a computationally convenient uniform tree,
but disregards the variation among the leaves.

• Minimum number of objects in leaf. Much like for bin of a histogram, the
smaller is the leaf, the noisier would an estimate that is constructed from it.

9From the point of view of information theory, it corresponds to Tsallis Entropy with deformation
coefficient q = 2, which is a generalisation the standard Boltzmann–Gibbs entropy.

2.6 Gradient Boosting Decision Tree (GBDT) 38

• Maximum number of leaves in the tree.

• Stop when improvement gains drop below a certain threshold. The perfor-
mance on the test dataset is almost always worse than performance on the
training dataset. If an improvement from the proposed split is small on the
training dataset, it is even smaller on the testing dataset, or might even be
negative in case of overfitting.

In practice, trees usually have, in addition to the basic algorithm we out-
lined, various heuristics for preventing overfitting. A modern implementation can
be found, for example, in the scikit-learn library [113]. Decision trees are some-
times used raw, mostly for the reason that they are human-interpretable. However,
their performance is almost always inferior to the ensemble methods, the highest-
performing of which we will cover in the next subsection.

2.6.2 Boosting

The idea of boosting is to train many weak models sequentially so that each next
model corrects the error of the previously constructed. In principle, any models
can be used, in practice, decision trees usually are. There are, of course, works
that utilise different weak learners [114, 115, 116], but no method was able to
demonstrate consistently better performance compared to boosting decision trees.

Boosting relies on building a sequence of weak learners. Denote them formally
as a some set of predictors H = {hj : X→ Y}. Consider a regression problem with
a single-dimensional target domain, mean squared error loss, and a training dataset
(xi, yi) consisting of N examples. The naive boosting algorithm for this case is
presented in Algorithm 5. On each iteration we compute the differences between
the current model predictions and the true label values, fit a learner to correct these
differences, and add the learner to the model.

Algorithm 5 Naive boosting for regression
Require: Training dataset (xi, yi) consisting of N examples
Require: Mean squared error loss L(ypredicted, ytrue) = (ytrue − ypredicted)

2

Require: A family of weak learners H
Start with a trivial learner h0(x) = 1

N

∑N
i=1 yi

Start with model equal to the trivial learner ao(x) = h0(x)
t← 0
while stopping criterion is not met do

Compute residuals si ← yi − at(xi)
t← t+ 1
Train the next learner to predict the residuals: ht = argminH

∑N
i=1(si −

h(xi))
2

at ← at−1(x) + ht(x)
end while
return trained model a(x) =

∑t
n=0 hn(x)

Let us then generalise this idea for problems other than regression with the mean
squared error. For clarity consider the case where the model prediction is a scalar.

2.6 Gradient Boosting Decision Tree (GBDT) 39

Let at be the state of the model on iteration t. Let h ∈ H be the weak learner we
and add to the model on the iteration. The objective of the t-th boosting iteration
is to minimise the loss:

argmin
γ∈R,h∈H

t∑
i=1

L(at−1(xi) + γh(xi), yi). (2.48)

We can use gradient descent introduced in section 2.5.3 to do that. Instead of
residuals, compute

si = −
δL(ypredicted, yi)

δypredicted

∣∣∣∣∣
ypredicted=at−1(xi)

, (2.49)

train a weak learner to estimate si. This is called gradient boosting, first proposed
in [117]. The algorithm of gradient boosting is presented in Algorithm 6. Modern
implementations of gradient boosting [110, 118, 44] use many additional improve-
ments, some of which are listed below.

Algorithm 6 Gradient Boosting
Require: Train dataset (xi, yi) consisting of N examples
Require: Loss function L(ypredicted, ytrue) and its gradient δL

δypredicted
Require: A family of weak learners H

Start with a trivial learner h0(x) = 0
Start with model equal to the trivial learner ao(x) = h0(x)
t← 0
while stopping criterion is not met do

Compute the loss gradient si ← −
δL(yi,ypredicted)

δypredicted

∣∣∣∣∣
ypredicted=at(xi)

t← t+ 1
Train the next learner to predict residuals: ht = argminh∈H

∑N
i=1(si−h(xi))

2

γt ← argminγt∈R
∑N

i=1 L(at−1(xi) + γtht(xi), yi) . Gradient descent
at ← at−1(x) + γtht(x)

end while
return trained model a(x) =

∑t
n=0 γnhn(x)

Shrinkage. Gradient boosting is in its core a gradient descent algorithm and ben-
efits from using a learning rate to limit the steps it takes. Shrinkage is a technique,
when every next learner ht is added to the ensemble with coefficient η ∈ (0, 1]:

at(xi)← at−1(x) + ηγtht(x) (2.50)

2.6 Gradient Boosting Decision Tree (GBDT) 40

Use second-order derivative in gradient descent [110]:

si = −
δL(ypredicted, yi)

δypredicted

∣∣∣∣∣
ypredicted=at(xi)

(2.51)

ti = −
δ2L(ypredicted, yi)

δy2predicted

∣∣∣∣∣
ypredicted=at(xi)

(2.52)

h ← argmin
h∈H

N∑
i=0

(
−sih(xi) +

1

2
tih

2(xi)

)
(2.53)

The second order approximation better describes the loss function behaviour and
allows for faster convergence10.

Oblivious trees as weak learners [119, 120, 44]. A regular decision tree selects
each split to minimise the loss in the subtree. An oblivious decision tree adds a
constraint: the split criterion is the same on each level. The difference is illustrated
in figure 2.15. An oblivious decision tree is less expressive, but is a lot faster to
evaluate. In order to find the leaf that corresponds to a given example in an ordinary
tree, it is is necessary to traverse it node-by-node doing multiple conditional jumps.
If an oblivious tree is stored as a table, and it is possible to directly compute the
pointer to the correct leaf [121].

Decision Tree

F1>3

F2>3

F1>6

F2

F1

Oblivious Trees

F1>3

F2>3 F2>3

F2

F1

Figure 2.15. Oblivious vs classic decision trees. Reproduced from [122].

10If second-order approximation is better then why isn’t it used in deep learning? In gradient
boosting the second derivative computation means just calling a single function, which almost
always has negligible cost compared to the rest of the boosting algorithm. In deep learning we
would have to then backpropagate the Hessian through the layers, and this could easily become
the most expensive operation.

2.7 Generative models 41

2.6.3 Implementing GBDT

There are several competing state-of-the-art open-source packages implementing
GBDT: XGBoost [110], LightGBM [118], CatBoost [44] (I worked on it a little bit
during my tenure at Yandex [123]). In each, there are clever engineering, smart
algorithmic enhancements, and ingenious heuristic tricks. For most common tasks,
the difference in their performances is small from a practical point of view. All three
libraries support multithreading and training on GPU. Oblivious trees in CatBoost
make it several times faster to evaluate, compared to the other variants [124]. Cat-
Boost is used for global particle identification in chapter 7, muon identification in
chapter 5, and experiments in chapter 6.

2.6.4 Conclusion

Gradient Boosting Decision Tree (GBDT) is a powerful machine learning method,
widely used in the industry. It has quality competitive with deep learning on tabular
data, where there is no known structure in the features. In general11, there is a trend
that the smaller the dataset, the worse will a fully-connected neural network perform
compared to gradient boosting.

Depending on hardware and implementation, GBDT tends to have faster evalu-
ation times than deep neural networks. To predict with a neural network, we need
to use all of its parameters to compute the sequence of transformations in its lay-
ers. For a tree-based model, we use only a small part of the model: the thresholds
needed to find the correct leaf and the value in it.

2.7 Generative models
Generative models, introduced in section 2.2, solve a much harder task than the
regression and classification models we covered in the previous sections. This is not
only the case for artificial intelligence but also natural intelligence: recognising a
cat on a painting is much easier than creating the painting.

Early generative models constructed an unnormalised approximation of the
probability density function and then used Markov chain Monte Carlo to sam-
ple from it. One of the most successful examples of this approach is the restricted
Boltzman machines [127]. They face two significant difficulties. First, the likelihood
function is intractable, forcing the usage of computationally expensive inexact ap-
proximation of the likelihood for training. Second, the Markov chain presents the
problem of autocorrelation. The nearby samples are not independent of each other.
To acquire an approximation of a sample from the target distribution, only one in
n examples can be used.

11The opinion expressed in the text is primarily based on my conversations with machine learning
practitioners. Unfortunately, peer-reviewed literature comparing deep learning and GBDT perfor-
mance in a systematic way is scarce, most likely, due to the high computational and labour cost
of making a fair comparison with parameter tuning for each algorithm. Among the recent papers,
[125] mostly experimented with small datasets with fewer than 104 examples and lacks the crucial
analysis of performance as a function of dataset size, [126] limited consideration of neural networks
to ones with a single hidden layer.

2.7 Generative models 42

Those problems are resolved by the Generative Adversarial Networks (GAN),
the most prominent family of state-of-the-art generative models, that are introduced
in the next section.

2.7.1 Generative Adversarial Network (GAN)

The idea of Generative Adversarial Network (GAN) is to simultaneously train two
neural networks – one to generate examples and another to measure the perfor-
mance of the first. The architecture was first explicitly proposed in reference [128],
although the broader origins of the idea are disputed [129, 130]. The GAN idea
is broadly illustrated in figure 2.16. The generator produces a batch of examples,
the discriminator (detective on the picture) evaluates whether they are real or fake
(generated). The discriminator is trained as a classifier by using labelled real and
generated (fake) examples. The generator is trained to fool the discriminator. The
discriminator and generator are trained in alternating steps. By playing against
one another, they improve, hopefully to the level so that the objects forged by the
generator will be indistinguishable from the real ones.

Figure 2.16. A metaphor illustrating training of a GAN. Reproduced from [131].

The generator G is a feed-forward neural network, that maps from some latent
space Z to the example space X. During both training and inference, the network
is fed with random values z ∈ Z, that come from a pre-defined distribution, usually
a multivariate normal distribution. The discriminator D is a feed-forward neural
network, that maps from the example space X to [0, 1]. Training a GAN proceeds
in iterations. On each iteration, first, the discriminator is trained for several steps,
usually 1 – 20. It is fed batches of equal size of generated and real examples, that
are labelled as such. The gradient of the loss with respect to the discriminator
parameters is used to make the gradient descent steps. Second, the generator is
trained. A batch of examples is sampled from it, and the gradient of the negated
discriminator loss is backpropagated. A gradient descent step is made to optimise
the generator weights. Mathematically, this procedure searches for the minimum
with the respect to the generator parameters of a maximum with the respect to the

2.7 Generative models 43

Z

X
G

Latent space

loss

Real data

X
R

Generator

Discriminator

(a) Unconditional GAN

Z

Y
G

Latent space

loss

Real data

X’
R Y

R
X

R

Concatenate Concatenate

Generator

Discriminator

(b) Conditional GAN. Note the convention
collision, here the generated variable is
Y , and X is the input to the model.

Figure 2.17. Unconditional and conditional GANs

discriminator of a score function. It is also called a minimax optimisation problem:

min
G

max
D

V (D,G) = Ex∼p(x) [lnD(x)] + Ez∼p(z) [ln(1−D(G(z)))] . (2.54)

Reference [128] proves, that if the generator and discriminator have enough capac-
ity, and on each step the discriminator reaches its optimum, then the generated
distribution converges to the real one. While elegant, this theoretical proof has lim-
ited practical utility, as the preconditions are almost never satisfied for real-world
problems. In the case of conditional generation, the problem becomes [132]:

min
G

max
D

V (D,G) = Ex∼p(x) [lnD(y|x)] + Ez∼p(z) [ln(1−D(G(z|x)))] . (2.55)

Note, that we use a naming convention different from [132]: to stay consistent with
the previously covered classification and regression we call the conditions x and
the generated variables y. Conditional and unconditional GANs architectures are
illustrated in figure 2.17.

The first GAN faced practical challenges. In the case the discriminator is sig-
nificantly more powerful and better-trained, than the generator, it will be able to
separate the training dataset from the generated data, and its predictions will be
around 0 and 1, leading to near-zero gradients. If the system happens to reach this
state, it can not train further, as the discriminator is already as perfect as it can

2.7 Generative models 44

Figure 2.18. An illustration of the optimal transport for a single-dimensional case. The
distribution on the left is the source distribution, distribution to the right is the target
distribution. The source distribution is broken into chunks which are rearranged to
match the target distribution. Reproduced from [136].

get for the given generator, and the generator is stuck with zero gradients. In prac-
tice, GANs require delicate tuning of the generator, discriminator and the training
procedure for it to converge [133].

2.7.2 Wasserstein GAN

Since the publication of reference [128] in 2014, more than 500 papers proposing
improvements have been published. Many of them deal with specific imaging and
textual applications. One of the most significant fundamental developments was
the introduction of the Wasserstein GAN [134, 135]. It replaced the optimisation
problem 2.54 with a one better suited for stochastic numeric optimisation.

Training a GAN consists of measuring the discrepancy between the data and gen-
erated distributions – and minimising it. For an optimal discriminator, the formula
2.54 corresponds, up to a constant, to the so-called Jensen-Shannon divergence:

DJS(P‖Q) =
1

2

∫
p(x) ln

(
2p(x)

p(x) + q(x)

)
dx +

1

2

∫
q(x) ln

(
2q(x)

p(x) + q(x)

)
dx,

(2.56)
where P and Q are probability distributions over X, p(x) and q(x) are the corre-
sponding density functions. In a case of density functions with disjoint supports
(∀x ∈ X : p(x) · q(x) = 0), the expressions inside the logarithms are constant, and
the distance is equal to ln 2, a constant. The gradient is zero. In reference [134]
they propose training a GAN by optimising a different distance measure — the
Earth-Mover (EM) distance or Wasserstein-1:

DW(P‖Q) = inf
γ∈

∏
(P,Q)

E(x,x′)∼γ

[
||x− x′||

]
, (2.57)

where
∏
(P,Q) denotes the all joint distributions γ(x,x′), whose marginals are

respectively P and Q. Intuitively, γ(x,x′) indicates how much “mass” must be
moved from x to x′ to make the distributions match. The Earth-Mover (EM)
distance equals to the minimal amount of “work” that is needed to make this happen,
where “work” equals to “mass” times distance modulo. This optimal transport for a
single-dimensional case is illustrated in figure 2.18. Directly computing the optimal
value of γ ∈

∏
(P,Q) is a hard problem. The Kantorovich-Rubenshtein duality [137]

2.7 Generative models 45

can be used to transform it into an easier one:

DW(P‖Q) = sup
||f ||L≤1

[Ex∼P [f(x)]− Ex∼Q[f(x)]] , (2.58)

where ||f ||L ≤ 1 denotes that function f : X → R is 1-Lipschitz. A function
f : Rn → R is K-Lipschitz if

∀x1,x2 ∈ Rn : |f(x1)− f(x2)| ≤ K|x1 − x2|. (2.59)

This is illustrated in figure 2.19. Another important property of Lipschitz continuity

Figure 2.19. Illustration of the Lipschitz condition. The cone’s origin can be placed
anywhere on the function and the function graph is outside the code. Reproduced from
[138].

is that if a function is everywhere differentiable and its gradient is bound by some
constant than it is Lipschitz-continuous.

Wasserstein GAN uses a neural network to approximate the function f in for-
mula 2.58. To do this, we need to enforce the Lipschitz property on the network.
Reference [135] proposes bounding the gradient norm of f . To circumvent the
tractability issue, they propose a soft version of the constraint, with a penalty on
the gradient norm added to the loss. This results in the following expression for the
discriminator loss:

L = Ex∼p(x) [D(x)]− Ez∼p(z) [D(G(z))]︸ ︷︷ ︸
EMD estimate

+λEx̂∼p(x̂)
[
(‖∇x̂D(x̂)‖2 − 1)2

]︸ ︷︷ ︸
Gradient penalty

, (2.60)

where λ is a hyperparameter responsible for the penalty strength, typically around
10.

Enforcing the gradient penalty everywhere is intractable. The authors suggest
it is enough to define p(x̂) as uniform sampling along the lines connecting points
from the data and generated distributions, as the optimal critic contains straight

2.7 Generative models 46

lines with gradient norm 1 connecting coupled points from the data and generated
distributions.

Altogether, training of a Wassershtein GAN with gradient penalty is summarised
in the Algorithm 7. The crucial advantage of the Wassershtein GAN over the

Algorithm 7 Wasserstein GAN with gradient penalty (WGAN-GP). Suggested in
[135] default hyperparameters values: λ = 10, ncritic = 5, α = 10−4, β1 = 0, β2 = 0.9

Require: The gradient penalty coefficient λ
Require: The number of critic iterations per generator iteration, ncritic
Require: Batch size m
Require: Adam hyperparameters α, β1, β2
Require: Initial discriminator parameters w0

Require: Initial generator parameters θ0
while θ has not converged do

for t = 1, ..., ncritic do
for i = 1, ...,m do

Sample real data x ∼ p(x)
Sample the latent variable z ∼ p(x)
Sample a random number ε ∼ U [0, 1]
x̃← Gθ(z)
x̂← εx + (1− ε)x̃
L
(i)
D ← Dw(x̃)−Dw(x) + λ(‖∇x̂D(x̂)‖2 − 1)2

end for
w ← Adam

(
∇θ

1
m

∑m
i=1 L

(i)
D , θ, α, β1, β2

)
end for
Sample a batch of latent variables

{
z(i)
}m
i=1
∼ p(z)

LG ← −Dw(Gθ(z))
θ ← Adam

(
∇θ

1
m

∑m
i=1 L

(i)
G , θ, α, β1, β2

)
end while

original design is that its gradients do not vanish, even when the discriminator
is much better trained than the generator. This is illustrated in the figure 2.20.
In practice this means, that training is much more stable, as there is no need to
delicately balance the generator and discriminator strength.

2.7.3 Cramer (Energy) GAN

Most of the GAN advances discussed in literature concern images and use insights
specific to them to improve the performance. If we are to apply GANs to physics, as
we do in chapter 8, we are interested in more universal methods, that would improve
the quality of the distributions reconstruction. One of them is suggested in reference
[139]. The core insight is that an estimate of the gradient of the Wasserstein distance
on a finite sample is biased, and therefore using those estimates as inputs to a
gradient descent algorithm will not result in finding a true minimum. They propose
using the energy distance [140] as a replacement. It retains the desirable property of
Wasserstein distance – the non-vanishing gradients that lead to stable training, while

2.7 Generative models 47

Figure 2.20. Optimal GAN discriminator and WGAN critic (discriminator) when learning
to differentiate two Gaussians. The discriminator of a JS-GAN saturates and results in
vanishing gradients, while Wassershtein critic (discriminator) provides clear gradients
everywhere. Reproduced from [134]. Note: in this illustration the Lipsitz property is
enforced strictly, via clipping the neural network weights.

also providing unbiased sample gradients. Like before, let us have two probability
distributions P and Q over Rd and four independent random variables X,X ′ ∼ P
and Y, Y ′ ∼ Q. The energy distance will be:

DE(P,Q) = 2E‖X − Y ‖2 − E‖X −X ′‖2 − E‖Y − Y ′‖2, (2.61)

where ‖X‖2 =
√
x21 + ...+ x2d denotes the Euclidean norm. Energy distance can be

reformulated as a difference of expectations. Define

f?(x) = E‖x− Y ′‖2 − E‖x−X ′‖2, (2.62)

then
DE(P,Q) = Ef?(X)− Ef?(Y). (2.63)

Training a generator to directly optimise the energy distance in the example
space is problematic due to the curse of dimensionality. The authors propose using
a GAN setup, where the discriminator neural network D maps from the example
space to some latent space in which the energy distance is computed. The network
is regularised with the gradient penalty discussed in section 2.7.2. The generator G
is trained to minimise the distance, the discriminator – to maximise. Let us write
the expressions for the losses. Define a helper function:

f(x) = EY ′∼Q‖D(x)−D(Y ′)‖2 − EX′∼P ‖D(x−D(X ′)‖2. (2.64)

Then the generator loss will be

LG(P,Q) = Ex∼P [f(x)]− Ex′∼Q[f(x′)], (2.65)

2.8 Conclusion 48

and discriminator loss:

LD(P,Q) = −LG(P,Q) + λEx̂∼p(x̂)
[
(‖∇x̂D(x̂)‖2 − 1)2

]
, (2.66)

To estimate the gradient of the discriminator loss 2.66 with the respect to the
discriminator parameters, four independent samples are required: two from the
generator and two from the target distribution. In a situation, where we don’t have
access to two independent target samples, for example when learning conditional
densities, an approximation can be used. Assume D(x) ≈ 0 for x ∼ P , then:

fsurrogate(x) = EY∼Q‖D(x)−D(Y)‖2 − ‖D(x)‖2. (2.67)

Altogether, the training algorithm is the same as WAGN-GP algorithm (7) with
the exception of the loss computation, which is presented in Algorithm 8.

Algorithm 8 Cramer (energy) GAN losses
Require: The gradient penalty coefficient λ, 10 by default

Sample a real data sample xr ∼ P
Sample two independent generated samples xg,x′

g ∼ G(Z)
Sample ε ∼ U(0, 1)
x̂← εx + (1− ε)x̃
f(x) = ‖D(x−D(x′

g)‖2 − ‖D(x)‖2 . Define the helper function
LG ← f(xr)− f(xg) . Compute the surrogate generator loss
LD ← −LG + λ (|∇x̂f(x̂)‖2 − 1)2

2.8 Conclusion
Machine learning lies in the intersection of artificial intelligence, statistics, and
optimisation research. It enables a computer to automatically infer patterns from
the given training dataset and use them to make predictions for cases yet unseen.
Machine learning is not a silver bullet, and can not perform in the absolute absence
of a priory knowledge. Its strength, however, is that said knowledge can be very
general, but still, lead to superb results.

To successfully apply machine learning methods to a problem, several consider-
ations must be addressed. The problem must be self-contained; everything needed
for its solution must be present in the training data. The quality metric to evaluate
the proposed solution must be formalised. Black-box solutions must be acceptable.
Best-performing machine learning methods result in non-interpretable solutions.

There is no single best machine learning algorithm for all problems, and no
easy way to predict which algorithm will be the best one for a particular problem.
For most practical classification and regression problems on tabular data, the best
results are achieved with either deep neural networks or gradient boosting decision
trees. For the generative problems, methods based on deep neural networks are the
clear favourites with many competing approaches tailoring them for particular use
cases. Most of the state-of-the-art approaches for tabular and image data use the
adversarial training, where one network is generating examples, and the other tries
to distinguish between the real and generated examples.

49

Chapter 3

Machine Learning in
High-Energy Physics

Standard Model has had a resounding success, almost all physics phenomena en-
countered on Earth can, in principle, be derived from it. The nuance is that almost
all problems of interest are intractable if approached strictly ab initio. Even a seem-
ingly simple problem, like predicting the result of a proton-proton collision, to be
solved, has to be accompanied by a host of assumptions and simplifications [141,
142]. And for LHC experiments this complexity is multiplied by the complexity
of a building-sized particle detector. And then, physical considerations only allow
solving the “direct” problem: how will process X look in detector Y? In order to
draw conclusions from an experiment, an inverse problem must be solved: given
detector readout, what did occur inside it? Most of the utility of machine learning
for particle physics comes from being able to solve this inverse problem.

Compared to traditional, expert-designed algorithms, machine learning has two
primary advantages. First, empirically, for many problems, e. g. the ones listed
in section 3.3, it was able to deliver better quality. Second, machine learning saves
effort, by replacing manual algorithm design with an application of a general method
– piggybacking on AI research, instead of developing a HEP-specific solution for
every problem. The quality and convenience come at a cost. Most of the machine
learning algorithms are black boxes. The main problem is not simply the lack
human comprehension. Most machine learning algorithms work in quite specific
mathematical setting, most importantly that the training data is distributed the
same as the data to which the algorithm is to be applied. This is almost never
the case in practice. Machine learning methods provide little formal guarantees of
behaviour in a case of such data shift. For many non-scientific applications, this
does not matter much. But science asks for rigour. There are methods, that are
used to verify the data analysis techniques, both ML and not. Of course, they are
not able to provide anything close to a strict guarantee, requiring expert judgement
on a case-by-case basis.

In section 3.1 we discuss the typical approaches to training and validating ma-
chine learning algorithms; in section 3.2 some algorithms developed specifically for
high-energy physics application; in section 3.3 some of the most established areas
of application.

3.1 Training and Validation 50

3.1 Training and Validation
Almost all demonstrated successful applications of machine learning in high-energy
physics use the supervised learning approach. Training a supervised machine learn-
ing algorithm requires labelled data. Using simulated data is the most straightfor-
ward way for high-energy physics. They are by construction labelled and can be
produced to cover the whole phase space. The biggest problem of the approach
is the difference between real and simulated data, which limits the performance of
the resulting algorithms and requires careful evaluation of the produced systematic
uncertainty. Another concern is the computational power required to simulate a
sufficient amount of events.

Training machine learning algorithms on real data mitigates the problem of the
difference between simulation and data. But it faces a fundamental obstacle. To
train an algorithm, labelled data is required. If there is a way to label the data,
then what benefit can machine learning bring? For many practical applications, an
algorithm is created merely to emulate a human, and manual labelling presents an
obvious solution. But this is not the case for high-energy physics experiments.

For some problems, it is possible to label a part of the data with a method, that
is specific to that part, and does not work in general. Such data are sometimes
called a calibration sample. For example, in LHCb, J/ψ → µ+µ− decay can be
reconstructed without using the PID response to one of the muons – see subsec-
tion 4.3.7. Using calibration samples does not suffer from the problems caused by
imprecise simulation. But it is not without cons. Calibration samples do not al-
ways uniformly cover the whole phase space needed for the physics under study, the
calibration sample selection procedure may introduce bias and calibration samples
are often contaminated by background. These issues can be mitigated: phase space
coverage can somewhat be addressed by reweighting. Background contribution can
be accounted for using sideband subtraction and the methods discussed in reference
[143] or chapter 6.

A combined approach is sometimes used, where the signal is simulated and the
background comes from data. Background can either be selected in some expert-
driven way, e. g. as an invariant mass fit sidebands, or by using evens collected
under different experimental conditions. When machine learning is used in this
way, extra care is needed, as the algorithm will by design confound the difference
between signal and background and the difference between real and simulated data.

The available ways to train machine learning algorithms introduce bias due to
the difference between the data on which an algorithm is trained, and those on
which the same algorithm is applied. Conceptually, this is not unique to machine
learning. Since the reconstruction and selection problems are intractable ab initio,
some assumptions or heuristics are needed to solve them, with or without machine
learning. The same concerns apply to both traditional cut-based selections and
hand-designed reconstruction algorithms and machine learning-based ones. The
concern with machine learning is that, if it is applied blindly and thoroughly, its
potential to obtain a mathematically good, but physically meaningless solution
is infinite. A good illustration is the “Flavours of Physics: Finding τ → µµµ”
competition [144]. The objective for participants was to build an operator, that
would select τ → µµµ decays, one of the rarest process allowed in the SM with

3.2 HEP-specific Machine Learning 51

a branching fraction of the order of 10−40. In the dataset the background was
selected from real data side-bands obtained by cutting on the reconstructed invariant
mass, and the signal was simulated. The winning solution, that has almost perfect
validation score, reconstructs the invariant mass of the mother particle [145]. There
was a check to prevent this sort of behaviour, but it was not sufficient. The resulting
solution is not useful for physics. First, it provides little advantage over the mass
cut that was used to construct the training dataset. Second, even if it offers some
additional discriminating power, such selection makes it impossible to estimate the
amount of background passing the selection with the usual method of fitting the
signal and background invariant masses.

In general, HEP community approaches validation of machine-learning methods
in the same way, as validating all other data analysis methods. Case-by-case phys-
ical considerations are used at every stage of the problem solving to arrive at an
acceptable result:

1. Training data selection. The data must cover the whole desired phase space
and all the physical processes that we want to learn.

2. Features selection. Only the features, that correspond to the physics involved,
but not the bias in data selection/simulation are used. For example, when
using the J/ψ → µ+µ− calibration sample for training muon identification,
using muon detector occupancy as a feature would result in bias, as a muon
obtained from J/ψ → µ+µ− is always accompanied by another one, which
might not be the case for muons produced in other decays.

3. Validating on different data samples. For an algorithm trained on simulated
data, its performance on a calibration sample is checked, e. g. PID validation
is subsection 7.5.2. For an algorithm trained on a calibration sample, its
performance on a different calibration sample is checked, e. g. fast simulation
in 8.5.2.

4. Manual inspection of physically-meaningful distributions. E. g. it is expected,
that for a correctly selected and reconstructed J/ψ sample the invariant mass
distribution is a Gaussian with mean 3.1 GeV/c2, and this is monitored during
the LHCb data collection.

3.2 HEP-specific Machine Learning
As discussed in the previous section, incorporating machine learning algorithms
into a data analysis pipeline is a delicate affair. There are a few machine learning
algorithms developed specifically to take advantage of the common assumptions
used during high-energy physics data analysis – as opposed to the more common
modus operandi, where the rest of the analysis is twisted to accommodate an out-
of-the-box machine learning solution. It this section we cover two most established
such methods.

3.2 HEP-specific Machine Learning 52

3.2.1 Learning to Pivot with Adversarial Networks

The method is proposed by reference [146]. For some problems in high-energy
physics, the difference between the data used for training a model and the data
to which it is applied can be narrowed to a small number of nuisance parameters.
We assume that the data generation process is conditional on those parameters,
and the distribution of those for train and test data are different. For example,
reference [147] builds a jet substructure tagger, that is largely uncorrelated1 with
the jet mass.

The idea of the method builds on the adversarial training described in subsection
2.7.1 and the idea of a pivot – a quantity whose distribution is invariant with the
nuisance parameters. Formally, let p(x,y, z) be the probability density function,
where x are features, y – label, and z – the nuisance parameters. Consider a
classification or regression problem, where we learn a function f : (X,θf) → S,
where θf is the vector of the model parameters. θf are the model parameters, e.
g. neural network weights; S is the model output space. For regression, S = Y; for
classification S are the class scores, S = R|Y|.

To require robustness with respect to the nuisance parameter, the authors in-
troduce an additional objective:

∀z, z′ ∈ Z; ∀s ∈ S : x ∼ p(X, z),x′ ∼ p(X, z′), P (f(x,θf) = s) = P (f(x′,θf) = s).
(3.1)

In other words, they require that the output of the learned operator f(x,θf) and
the nuisance parameters are independent random variables.

This is achieved by an adversarial training setup illustrated in figure 3.1. Model
r is trained to predict the posterior probability pθr (z|f(X,θf) = s), where θr are its
parameters. If it is able to recover information about z, then model f is not robust
with the respect to nuisance parameters. Mathematically, the training procedure is

Figure 3.1. Sketch of the adversarial training mechanism. f is a binary classifier, Z are the
nuisance parameters. The adversary is trained to infer information about the nuisance
parameters from the classifier output. The classifier is trained to both classify and fool
the adversary. Reproduced from [146].

1Strictly speaking, “uncorrelated” means lack of a very specific linear relationship between
random variables. In the high-energy physics community, it is sometimes used as a soft synonym
to “independent”.

3.2 HEP-specific Machine Learning 53

a minimax problem:

E(θf ,θr) = Lf (θf)− λLr(θf ,θr), (3.2)

where Lf (θf) is the loss function for the original problem and Lr(θf ,θr) is the
loss function for the adversary and λ is a coefficient responsible for the trade-off
between the pivotal quantity and classification/regression performance. For a binary
classification problem, where f models P (y = 1|x), Lf (θf) and Lr(θf ,θr) are set,
respectively, to the expected value of the negative log-likelihood of y|x under f and
of z|f(X,θf) under r:

Lf (θf) = Ex,y[− log pθf
(y|x)] (3.3)

Lr(θf , θr) = Es∼f(X,θf),z∼Z|s[− log pθr(z|s)]. (3.4)

The training objective then is:

θf ,θr = argmin
θf

max
θr

E(θf ,θr). (3.5)

This is a very elegant result. Its practical utility for physics is limited by two
factors. First, as the authors write, the optimal classifier often does not have the
pivotal quantity, and instead of a well-defined solution, it is often desirable to find
some heuristic trade-off by varying the λ parameter. Second, consider this conun-
drum. If there is a dataset to evaluate an algorithm for the desired range of the
nuisance parameters, the dataset can also be used to train an optimal algorithm,
without a need to pivot. If there is no such dataset, the performance of the algorithm
can not be evaluated and it is difficult to use it in a scientific context.

An example where this method is useful is presented in reference [147]. The
authors create a model for jet classification. Since they lack the knowledge of
the true background model, they use a common experimentalist method for for
estimating the background count in the signal region. First, do a mass fit, second,
interpolate the background distribution from the sidebands into the signal region.
For this method to work for data selected by a classifier, the output of the classifier
must be flat with the respect to reconstructed mass. Such classifier is built with
the pivoting method.

3.2.2 Boosting to Uniformity

Consider a somewhat easier problem than in the previous section. First, instead
of requiring independence between the nuisance parameters and the model output,
require only that the classifier efficiency is uniform with the respect to them2. Sec-
ond, consider the situation, where the nuisance parameters are low-dimensional. It
is the case in many high-energy physics data analysis cases, where the nuisance
parameter is just an invariant mass, or two, in a case of a Dalitz plot. This allows
for avoiding the complexity of an adversarial setup. The idea was first proposed in
reference [148] and then later refined in [149].

2Maybe this simplification is not necessary and the algorithms described in this section also
theoretically provide independence. The references where they are proposed do not make any such
claim though.

3.2 HEP-specific Machine Learning 54

The authors propose to add to the loss function a component that would penalise
non-uniform efficiency. To do that, for each event find the group of events, that are
near it in the space of the nuisance parameters. This can be done either by binning
or by explicitly finding the closest events. Then, check whether the distribution of
the classifier response in each group is the same as the global response. There are
many possible measures to use, they are discussed in the appendix of reference [149].
The one that has the best performance in their test is based on the Kolmogorov–
Smirnov test. Consider two single-dimensional probability distributions defined by
their cumulative distribution functions F1(s) and F2(s). The Kolmogorov–Smirnov
statistic describing the difference between them would be:

DKS = sup
s
|F1(s)− F2(s)| . (3.6)

It is illustrated in figure 3.2.

Figure 3.2. Illustration of the Kolmogorov–Smirnov statistic. Red and blue lines are the
cumulative distribution functions. The black arrow is the KS statistic. Reproduced
from [150].

Optimising the Kolmogorov–Smirnov statistic as a flatness measure leads to in-
stability, as its gradient is zero for examples with responses s′ > argmaxs |F1(s)− F2(s)|.
The authors propose the following measure which does not suffer from this problem:

Dflat =

∫
|F1(s)− F2(s)|2 ds. (3.7)

The overall flatness loss would be

Lflat =
∑
b

∫
|Fb(s)− F (s)|2 ds, (3.8)

where b is the bin index, Fb(s) is the CDF of the classifier response in the b-th bin,
F (s) is the overall classifier response CDF. The total loss would be a sum of the
classification and flatness losses

L = Lclassification + λLflat, (3.9)

where λ is a heuristic parameter that governs the trade-off between flatness and
classification accuracy.

3.3 Primary Applications 55

The method addresses the same problem as the pivotal neural networks, namely
incompatibility of a straightforward application of machine learning with a heuristic
invariant mass fit. Compared to it, flatness loss is computationally easier – an
optimisation problem, instead of a minimax problem. Flatness loss also does not
impose the requirement, that the models are continuously differentiable, allowing
the usage of boosted decision trees. As a price, it does not scale to the case of
high-dimensional nuisance parameters – but this is not the case in the majority
of applications anyway. In reference [151] their performance is compared for a jet
tagging problem, with pivoting showing slightly better results.

Uniformity boosting has been used in several LHCb analyses, namely references
[152, 153].

3.3 Primary Applications

3.3.1 Event Selection: Separating Signal and Background

Selecting events that contain interesting processes is a fundamental requirement
of high-energy physics experiments and probably is the most established area of
application of machine learning in high-energy physics. Most analyses consist of
measuring the fraction of events that contain a specific decay channel. The usual
way of doing that consists of building an event selection algorithm, estimating its ef-
ficiency and background rejection and measuring the count of events passing it. The
traditional way of selection is the so-called cut-based selection, basically building a
decision tree described in subsection 2.6.1 manually, using either physical consider-
ations, Monte-Carlo simulation, or both. So it was only natural to automate this
procedure, the earliest reference goes at least to 1991 [154].

To train an event selection algorithm, one needs datasets with signal and back-
ground. The usual source is the simulation, e. g. ATLAS [155] and LHCb [156].
Sometimes the approach of combining the data and simulation is used. For example,
a Higgs search in ATLAS [157] uses training on simulated signal and real-data back-
ground selected as a mass fit sidebands. Another possibility is using an invariant
mass fit to obtain the probabilities that given examples are signal and use them to
train a machine learning algorithm. This approach has been applied to background
suppression in the measurement of the Υ polarization at CDF II [158]. Using the
invariant mass fits for the purposes of training classifiers is discussed in-depth in
chapter 6.

3.3.2 Event Reconstruction

Reconstruction is a process by which raw detector readout is transformed into
physically-meaningful objects, namely particle tracks, particle types, and vertices.
For ATLAS, CMS and LHCb experiments, this is separated into three distinct oper-
ations. First, the charged tracks are reconstructed using the input from the tracking
subsystem. Second, the information from the particle identification subsystems is
used to assign the particle types to the charged tracks. Third, the calorimeters are
used to find some of the neutral particles. Conceptually, reconstruction is the in-
verse problem for simulation. For the later we compute the detector response given

3.3 Primary Applications 56

the particles, for the former, we find the particles that have caused given detector
response.

Machine learning is a natural way to approach the problem, especially consid-
ering its purely algorithmic nature. The most straightforward way is to simulate
something, use the detector response as features for a machine learning algorithm,
and the Monte-Carlo truth as the labels. The most challenging aspects are al-
gorithmic. A high-energy physics event is a complex, structured object, detector
response even more so. Out-of-the-box machine learning algorithms are not good
at dealing with this kind of data. The usual approach is to use domain expertise to
program most of the reconstruction, augmented by machine learning, where some
subproblem can be formulated as a classic classification/regression problem.

Tracking. LHCb uses neural networks used to reject fake tracks and track seeds at
various stages of the reconstruction algorithm [159]. They are trained on simulation.
In ATLAS tracking neural networks are used to identify the merged clusters, that
appear when two tracks pass through the tracking station close together [160]. They
are also trained on simulation.

Jet tagging. Jets are very complex objects to simulate with high fidelity, and
even more so to classify without resorting to heuristic algorithms. And machine
learning is the pinnacle of heuristic algorithms. LHCb uses boosted decision trees
on top of expert-designed feature extraction for jet flavor classification [161, 162].
There is also a pilot study on using deep learning for jet flavour classification with
deep learning for a generic simplified detector [163].

Particle identification. It is a classification problem, so it yields naturally to
machine learning methods. Given a track and detector readout near it, what is the
likelihood that the particle was of the given type? In addition to my work on LHCb
described in chapters 7 and 5, neural networks have been used for LHCb charged
particle identification [10]. It uses neural networks on top of high-level expert-
generated features [164]. There is a work that proposes using boosted decision trees
applied to raw calorimeter readout [165] for neutral particle identification.

Identifying the flavour of B0 mesons at LHCb by using particles associated
with its production, the so-called same-side (SS) tagging [166]. The algorithms
exploit the charge correlation of pions and protons with B0 mesons. For the training
dataset, a real data sample of B0 mesons decaying into the flavour-specific final
states D−π+ and K+π− is selected by the final state. As features, they use high-
level kinematic observables along with particle type likelihoods.

3.3.3 Monitoring and Data Quality

High-energy physics detectors are very complex and sensitive machines. If even a
small part of a detector malfunctions, this has a potential to invalidate the col-
lected data. Therefore, all the detectors, and the LHC machine itself, are equipped
with sophisticated monitoring systems. They check that parameters on all levels

3.3 Primary Applications 57

of the data collection and processing lie within acceptable range: from voltages on
individual electronic components to reconstructed masses of particles from known
decays. A big challenge for the monitoring system is that it must be able to recognise
legitimate changes of data taking conditions from equipment malfunctions.

The LHCb data quality monitoring system operates by comparing different vari-
ables to references [167]. The variables that must be monitored are chosen by experts
and range from low-level, e. g. muon pads occupancies, to high-level, e. g. the re-
constructed J/ψ mass. The references are also provided by the relevant experts and
are updated as needed. The primary operation protocol of the monitoring system
is humans looking at histograms. If an observed variable distribution are different
from the corresponding reference, the operator investigates the discrepancy; if it
has not been flagged as addressed before, the incident is recorded and the relevant
expert is contacted.

The operator is assisted by a system of automatic alarms, that call his attention
to variables, where large differences between the reference and observed values is
being observed. Such automation system is susceptible both to false alarms and
missing anomalous data. False alarms occur when the reference is not updated in
time and the discrepancy is due to a legitimate change in data taking conditions.
Missing anomalous data occurs when an anomaly manifests itself in a shift in many
variables, that is small enough to pass below the alarm threshold for each variable
individually. In principle, machine learning can do well in addressing the second
issue, but it is not trivial to train such an algorithm. Since the anomalies in data
are, thankfully, rare, it is hard to build a training dataset. Also, since the references
change with time, training on old data must take that into account. And finally,
even if an algorithm successfully determines that data is anomalous, this information
per se is hard to act upon without knowing the part of the detector where the
malfunction is. Altogether, this means that the problem of data quality monitoring
is not a straightforward one to address with machine learning, and expert-written
algorithms and human operators are here to stay.

Reference [168] describes a machine learning solution for assisting the human op-
erator used at LHCb, called Roboshifter. As features, it uses Kolmogorov-Smirnov
distances between the histograms and the corresponding references. This allows the
Roboshifter to take into account the evolving nature of detector configuration. The
algorithm is trained on a database of historic LHCb data collection intervals (runs),
marked by experts as good or bad. Roboshifter uses boosted decision trees to predict
the probability that the current run is bad. It uses shallow trees of depth 1, so that
each tree makes a decision based on a single histogram. This way the contributions
of individual histograms to the final decision can be estimated and the suspicious
histograms reported to the user. I could not find a published peer-reviewed eval-
uation of Roboshifter quality, but it is deployed in the LHCb monitoring system.
Roboshifter makes the job of the operator easier – and makes him less likely to
miss an anomaly. The principal limitation is that it relies on expert-selected vari-
ables, expert-provided references, and expert-labelled training data, so roboshifter
is unlikely to detect a problem, that would have gone undetected by the manual
system.

3.4 Conclusion and Outlook 58

3.4 Conclusion and Outlook
For natural scientists, the utility of machine learning is tackling complex relation-
ships in the data, that are difficult to establish explicitly. Many analyses in high-
energy physics essentially count the density of events in a particular region of the
phase space. And most of the effort goes into defining said region and determining
which events fall into it. Machine learning allows to use simulated and, in some
cases, real data to automate the process, often leading to better quality results. For
example, for a Higgs search, the increase in sensitivity due to the use of machine
learning was equivalent to collecting 50% more data [155].

Machine learning has been used in high-energy physics since at least 1988 [169],
more or less keeping with the advancement in the field. There is a continuous
flow of works applying newly-developed machine learning methods to high-energy
physics. In addition to the established applications discussed in this chapter, there
is a host of potential areas being explored. Generative models application to simu-
lation is discussed in depth in chapter 8. As machine learning methods for handling
structured data advance, so are studies to applying them to high-energy physics.
References [170, 171] propose jet classification algorithms based on the similarity
between images and calorimeter responses. One of the most-funded and rapidly
developing areas of machine learning is natural language processing. And natural
languages are sequences. References [172, 173, 174] consider jet as a sequence of
particles and apply state-of-the-art sequence processing algorithms to them. Track-
ing is another area, where data can be interpreted as sequences. Reference [175]
explores machine-learning based approach to sequences for tracking. Graph neural
networks [176, 177, 178, 179, 180] allow using machine learning for the cases, where
an example can be represented as a graph. Tracking again provides a perspective
case, where hits are considered edges and close hits are connected with vertices
[181].

The trend is that machine learning applications for high energy physics grow
both in number and diversity of problems solved. ML can deliver a meaningful
improvement in terms of physics performance over the previously used methods.
Considering the AI winters, I will stay clear of making predictions. But the future
looks quite exciting for sure.

59

Chapter 4

The LHCb experiment

This chapter is a description of the LHCb experiment with a focus on the particle
identification-related areas, where this dissertation made contributions. As of the
moment (April 2020), the Large Hadron Collider (LHC) and the detectors on it are
being upgraded in preparation to Run 3 starting in 2021 [182, 13]. Unless otherwise
noted, the state for the LHC Run 2 (2015-2018) is described.

This chapter is structured as follows. In section 4.1, we introduce the Large
Hadron Collider. In section 4.2, we describe the hardware of the LHCb detector.
In section 4.3, we describe the data analysis software and algorithms at the LHCb
experiment.

4.1 The Large Hadron Collider (LHC)

Quoting the CERN website, the Large Hadron Collider (LHC) is the world’s largest
and most powerful particle accelerator. It consists of a 27-kilometre ring of super-
conducting magnets with several accelerating structures to boost the energy of the
particles along the way [183]. The purpose of the machine is to answer some of the
open questions in fundamental physics, such as the origin of mass, existence of dark
matter, baryonic asymmetry.

So far (April 2020), all the results obtained are consistent with the predictions
of the Standard Model of particle physics. They provide valuable limits for possible
theories extending it. At the same time, some observations testing lepton univer-
sality by LHCb and Belle experiments deviate from the Standard Model [4]. The
measurement uncertainty is too high to claim a discovery – but demands further
study.

4.1.1 The LHC Accelerator System

In order to accelerate protons to the energy of 6.5 TeV, a multiple-stage system is
used. It is depicted on figure 4.1. The first stage is a linear accelerator, LINAC2.
The second stage is the Proton Synchrotron Booster. The third stage is the Proton
Synchrotron (PS), which accelerates protons up to an energy of 25 GeV. The next
step is the Super Proton Synchrotron (SPS). It accelerates protons up to an energy
of 450 GeV. SPS has been used as collider on its own in the 1980-s and provided

4.1 The Large Hadron Collider (LHC) 60

Figure 4.1. The CERN accelerator complex. Reproduced from [184].

the data for the discovery of W and Z bosons. From SPS the protons are injected
into the LHC.

4.1.2 The Large Experiments at the LHC

Four large experiments study particle collisions at the LHC. Two of them use
general-purpose detectors; CMS (Compact Muon Solenoid) and ATLAS (A Toroidal
LHC ApparatuS). They have the same conceptual composition. Both detectors
consist of four concentric subsystems: an inner tracker, composed of semiconductor
chips, contained within a magnetic field; an electromagnetic calorimeter (ECAL); a
Hadronic calorimeter (HCAL), and a muon detector. True to being general-purpose
detectors, they serve an extensive physics program, searching for New Physics in
a broad range of phenomena. ATLAS [185] and CMS [186] are responsible for,
probably the most famous CERN discovery, that of Higgs boson in 2012.

ALICE (A Large Ion Collider Experiment) aims to study heavy-ion (Pb-Pb
nuclei) collisions. Its objectives are exploring the physics of strongly interacting
matter at extreme energy densities and investigating quark-gluon plasma.

The LHCb (Large Hadron Collider beauty) experiment studies b-physics. The
LHCb detector was designed with priority given to momentum resolution and par-
ticle identification precision. It is single-arm, not hermetic, and covers the pseudo-
rapidity range 2 < η < 5 (15 to 250 mrad of solid angle). The LHCb detector is
described in the next section.

4.2 The LHCb Detector 61

Figure 4.2. The layout of the LHCb detector, non-bending vertical plane. Illustration
source: LHCb collaboration.

4.2 The LHCb Detector

The detector consists of the vertex detector (VELO), the first Cerenkov detector
(RICH1), tracing stations (TT, Trigger Tracker, Tracker Turicensis), the magnet,
tracking stations (T1-T3), the second Cerenkov detector (RICH2), the electromag-
netic calorimeter (ECAL), the hadron calorimeter (HCAL), and the muon system
(M1-M5), the first station (M1) is located before the calorimeters and the rest –
after. M1 has already been removed during Long Shutdown 2 in view of the new
trigger approach adopted for Run 3. A scheme of the LHCb detector is presented
in figure 4.2.

4.2.1 Tracking

The LHCb uses several subsystems for track reconstruction [187]. A high-precision
silicon-strip vertex detector, VELO, surrounding the pp interaction region; a large-
area silicon-strip detector, TT, located upstream of the magnet; three stations of
silicon-strip detectors (Inner Tracker, IT) and straw drift tubes (Outer Tracker,
OT) placed downstream of the magnet, together called the T stations. The LHCb
collaboration classifies the tracks into several types, based on the subdetectors that
have hits that correspond to the track. An overview of the classification is presented
in figure 4.3. A long track has hits in all the subsystems; a downstream track only
in the TT and the T stations; an upstream track in the VELO and the TT; a VELO

4.2 The LHCb Detector 62

Figure 4.3. Track types in LHCb. Reproduced from [187].

track only in the VELO; and, finally, a T track only in the T stations.

4.2.1.1 Vertex locator (VELO)

The objective of the vertex locator is high-precision track reconstruction close to
the interaction region. Its sensors are placed only 7 mm from the LHC beams, and
the geometry is designed so that all tracks inside the nominal LHCb acceptance
cross at least three VELO stations[188]. This allows achieving high resolution of
the secondary vertices position, which is crucial for measuring the decay time of
weakly decaying particles. An overview of the VELO is presented in figure 4.4. The
VELO consists of silicon microstrips arranged along the beam direction. To allow
measurements close to the beamline, the subdetector consists of two retractable
halves that are closed at the beginning of each fill. There are 21 standard modules
in each VELO half.

4.2.1.2 Tracking stations

The main tracking system comprises four tracking stations: TT located between
RICH-1 and the magnet, and three stations (T1-T3) located 3 meters downstream
between after the magnet and before the RICH-2 (see figure 4.2).

A sketch of the layout of TT layers is shown in figure 4.5. The TT and IT
detectors use silicon microstrip sensors with a strip pitch of 183 µm and 198 µm,
respectively. The TT is about 150 cm wide and 130 cm high. The IT covers a 120 cm
wide and 40 cm high cross-shaped region in the centre of the three tracking stations
T1 – T3. Despite covering around 2% of the total area, it processes around 20%
of particle flux [190]. Each of the tracking stations has four detection layers in an
x−u−v−x arrangement with vertical strips in each of the two x layers, and strips
rotated by a stereo angle of −5◦ and +5◦ in the u and v layers, respectively [10].

OT uses cheaper straw-tube drift chambers. It consists of approximately 200

4.2 The LHCb Detector 63

Figure 4.4. (top left) The LHCb VELO vacuum tank. (top right) A photograph of one
side of the VELO during assembly showing the silicon sensors and the readout hybrids.
(bottom) Cross-section of the detector in the closed position in the xz plane at y = 0
of the sensors; and a view of the sensors in the xy plane. Reproduced from [189].

~30 cm

TTb

TTa

z
y

x

13
2.

4
cm

157.2 cm

13
2.

4
cm

138.6 cm

7.
4

cm

7.74 cm

Figure 4.5. Layout of TT layers. Reproduced from [191]

4.2 The LHCb Detector 64

modules. Each module contains two staggered layers of drift-tubes with an inner
diameter of 4.9 mm. A mixture of Argon (70%), CO2 (28.5%) and O2 (1.5%) is
chosen to guarantee a drift time below 50 ns and a spatial resolution of 200 µm. As
the T1-T3 stations, the OT has four layers arranged in an x−u−v−x geometry [10].

4.2.2 Particle Identification

Particle identification at LHCb relies on the Cherenkov detectors, calorimeters, and
the muon system. Overall they provide better particle identification, than in ATLAS
and CMS detectors, in particular because of the presence of the two RICHs.

This subsection describes some of the PID subsystems and the particle identifi-
cation algorithms specific to them. The Muon detector is described in the dedicated
chapter, section 5.1. In chapter 7 we describe how information from the subsystems
is combined to make the final decision about the particle type.

4.2.2.1 Ring-Imaging Cherenkov detector (RICH)

The Cherenkov detectors rely on the Cherenkov radiation – electromagnetic radia-
tion emitted when a charged particle passes through a dielectric medium at speed
greater than the phase velocity of light in that medium [192]. The emission angle θ
is defined by the equation:

cos θ = c

nv
, (4.1)

where c is the speed of light in vacuum, and n is the medium refractive index, v
is the particle velocity. Therefore, it is possible to find the particle velocity from
the emission angle, and, combining it with the known momentum, find the particle
mass.

The LHCb detector includes two RICH detectors. They are similar in construc-
tion and principle of operation; a sophisticated system of spherical and plane mirrors
which reflect Cherenkov light from the radiator to the photomultipliers (PMTs).

RICH1 (depicted on figure 4.6) is located upstream of the magnet and covers
the low momentum range (around 1 − 60 GeV/c) [11]. It covers the full LHCb
angular momentum acceptance range and uses a C4F10 radiator. The refractive
index depends on the wavelength, at λ = 400 nm, n = 1.0014.

RICH2 is located downstream of the magnet and is optimized for high-momentum
particles. It is depicted in figure 4.7. RICH2 uses a CF4 radiator with refractive
index n = 1.0005 at wavelength λ = 400. It covers the high momentum range, from
about 15 GeV/c up to and beyond 100 GeV/c [11].

A typical LHCb event in RICH1 is shown on figure 4.8. To identify particles,
the following procedure is used [194]:

1. Compute the emission angles for pairs of tracks and pixels.

2. Construct the likelihood for all photons, all tracks and all radiators at once:

L = −
∑

track j

µj +
∑

pixel i
ni ln

 ∑
track j

aij + bi

 , (4.2)

4.2 The LHCb Detector 65

Figure 4.6. RICH1 (a) Side view scheme, Run 2 configuration. (b) Cut-away 3D model,
to the left is the the VELO tank, Run 1 configuration. (c) Photo of the gas enclosure
containing the flat and spherical mirrors, Run 1 configuration. In (a) and (b) the
interaction point is on the left, in (c) it is on the right. Reproduced from [11, 193].

Figure 4.7. RICH2 in Run 1 configuration. (a) A top view schematic. (b) A 3D rendering
schematic. (c) A photograph with the entrance window removed. Reproduced from [11].

4.2 The LHCb Detector 66

where aij is the number of expected photons from track j in pixel i (for a given
PID hyposesis); bi is background in pixel i (without any associated track), ni
is the number of photons in pixel i, µj =

∑
aij is expected total number of

detected photons; ni ∈ {0, 1} is the digital readout.

3. Assume all PID hypotheses to be pions (or seed from previous reconstruction),
estimate the background parameters bi.

4. Calculate the likelihood of the observed pixel distribution.

5. Greedely maximize the likelihood. Iterate:

• Change PID hypothesis for one track at a time
• Recalculate likelihood
• Select the change with the biggest likelihood improvement
• Assign new PID to that track

The computed likelihoods for hypothesis h are expressed as delta-log-likelihoods
(DLL) relative to the pion hypothesis (the most abundant species):

DLL(track, h) = logL(track, h)− logL(track, π). (4.3)

The effective momentum range is primarily limited by the overlapping angle dis-
tributions for the mass hypotheses at high momentum and photon emission thresh-
old at low momentum. The distribution of the reconstructed Cherenkov angle as
a function of track momentum is presented on figure 4.9. The performance of the
RICH PID are presented in figures 4.10, 4.11, 4.12. In most analyses, the RICH
DLLs are not used directly, but as a component in a single particle identification
decision combining the information from all the subdetectcors. The algorithms for
this are described in chapter 7.

4.2.2.2 Calorimeters

The calorimeters at LHCb serve several objectives [190]. First, they are the only
subsystem that measures the energy and position of neutral particles. They separate
single photons and π0 decays, which is essential for flavour tagging and the study of
B-meson decays [11]. Second, the measured energies are used in selecting interesting
events in the trigger (see section 4.3). Third, the calorimeters help with particle
identification between electrons, photons and hadrons.

LHCb uses a classical structure with an electromagnetic calorimeter (ECAL)
followed by a hadron calorimeter (HCAL). Before the ECAL there is the Scintillator
Pad Detector (SPD), a 2.5 radiation lengths lead wall, and the Preshower (PS) [195].
Together, they allow for high-quality separation of neutral particles, electrons and
hadrons, as they deposit energy in different layers, as shown on figure 4.13.

All calorimeters follow the same basic principle: scintillation light is transmitted
to a Photo-Multiplier (PMT) by wavelength-shifting fibres. The hit density falls
drastically with the distance from the beam pipe. The calorimeters are therefore

4.2 The LHCb Detector 67

Figure 4.8. A typical LHCb event in RICH1. The circles correspond to the assigned
particles types, red dots to hits associated to tracks, and blue dots to hits not associated
to tracks (and thus considered noise). Reproduced from [11].

Figure 4.9. Reconstructed Cherenkov angle as a function of track momentum in RICH1
for isolated tracks selected in data (�2% of all tracks). Reproduced from [168].

4.2 The LHCb Detector 68

Figure 4.10. Kaon identification efficiency and pion misidentification rate measured on
data as a function of track momentum. The results obtained by using two different
DLL requirements are shown with open and filled markers. Reproduced from [168].

Figure 4.11. Proton identification efficiency and kaon misidentification rate measured on
data as a function of track momentum. The results obtained by using two different
DLL requirements are shown with open and filled markers. Reproduced from [168].

4.2 The LHCb Detector 69

Figure 4.12. Proton identification efficiency and pion misidentification rate measured on
data as a function of track momentum. The results obtained by using two different
DLL requirements are shown with open and filled markers. Reproduced from [168].

Figure 4.13. Signal deposited on the different parts of the calorimeter by an electron, a
hadron, and a photon. Reproduced from [195].

Figure 4.14. Lateral segmentation of the SPD/PS and ECAL (left) and the HCAL (right).
One quadrant of the detector front face is shown. In the left figure, the cell dimensions
are given for the ECAL. Reproduced from [11].

4.3 LHCb Data Processing 70

subdivided into inner, middle and outer sections with appropriate cell size [11]; this
is depicted in figure 4.14.

The SPD and PS are two almost identical planes of scintillator pads separated
by a lead 12 mm thick sheet [195]. The sensitive area of the detector is 7.6 m
wide and 6.2 m high. Due to the projectivity requirements, all dimensions of the
SPD plane are smaller than those of the PS by �0.45% [11]. The e/π separation
performance of the PS prototype was measured in the X7 test beam. Pion rejection
factors of 99.6%, 99.6% and 99.7% with electron retention factors of 91%, 92% and
97% are achieved for 10, 20 and 50 GeV/c particle momentum, respectively [11].

The ECAL uses shashlik (Russian: шашлык) scheme. It consists of layers
of scintillator and lead with readout by plastic WLS fibres. The design has the
advantages of fast time response, acceptable radiation resistance and reliability, at
the cost of modest energy resolution [11]. The energy resolution is

σE
E

=
10%√
E[GeV]

⊕
1%. (4.4)

It allows for B mass resolution of 65 MeV/c2 for the B → K?γ penguin decay with
a high-ET photon. For the B → ρπ decay the π0 mass resolution around 8 MeV/c2
which translates into 75 MeV/c2 B mass resolution [11].

The HCAL is a sampling device made from an iron absorber and scintillating
tiles. Unlike ECAL, the HCAL scintillating tiles run parallel to the beam axis. This
can be used to obtain a better angular resolution. The trigger requirements on the
HCAL resolution do not impose a stringent hadronic shower containment condition.
Its thickness is therefore set to 5.6 interaction lengths due to space limitations [11].

The observables provided by the calorimeters are listed in B.1.

4.3 LHCb Data Processing
This section describes the process by which the raw LHCb data becomes published
articles. The section is primarily based on references [196, 11]. Unless otherwise
noted, the state for Run 2 is described.

LHCb detector observes hadronic collisions at high energies, thus events in it
have a high level of background present. For LHC Run 1 and Run 2 the luminos-
ity was levelled so that, on average, each event contained a single proton-proton
collision. For Run 3, the luminosity will be increased fivefold, making event re-
construction even more challenging. To deal with the data flow under budgetary
constraints, a sophisticated trigger system is used. A broad overview of it is pre-
sented in figure 4.15, and a more detailed in the subsections that follow.

4.3.1 Hardware Trigger (L0)

During normal operations, the LHCb bunch crossing frequency is 40 MHz. The
maximum rate, at which all the LHCb subdetectors can be read out is 1 MHz. It
is imposed by the bandwidth and frequency of the front-end electronics. The first
level of trigger, L0, is designed to bring the event rate down to 1MHz. The trigger

4.3 LHCb Data Processing 71

40 MHz bunch crossing rate

450 kHz
h±

400 kHz
µ/µµ

150 kHz
e/γ

L0 Hardware Trigger : 1 MHz
readout, high ET/PT signatures

Software High Level Trigger

29000 Logical CPU cores

Offline reconstruction tuned to trigger
time constraints

Mixture of exclusive and inclusive
selection algorithms

5 kHz (0.3 GB/s) to storage

Defer 20% to disk

LHCb 2012 Trigger Diagram

(a) Run 1 trigger architec-
ture

40 MHz bunch crossing rate

450 kHz
h±

400 kHz
µ/µµ

150 kHz
e/γ

L0 Hardware Trigger : 1 MHz
readout, high ET/PT signatures

Software High Level Trigger

12.5 kHz (0.6 GB/s) to storage

Partial event reconstruction, select
displaced tracks/vertices and dimuons

Buffer events to disk, perform online
detector calibration and alignment

Full offline-like event selection, mixture
of inclusive and exclusive triggers

LHCb 2015 Trigger Diagram

(b) Run 2 trigger architec-
ture

30 MHz inelastic event rate
(full rate event building)

Software High Level Trigger

2-5 GB/s to storage

Full event reconstruction, inclusive and
exclusive kinematic/geometric selections

Add offline precision particle identification
and track quality information to selections

Output full event information for inclusive
triggers, trigger candidates and related
primary vertices for exclusive triggers

LHCb Upgrade Trigger Diagram

Buffer events to disk, perform online
detector calibration and alignment

(c) Planned Run 3 trigger ar-
chitecture – a single fully-
software layer of process-
ing.

Figure 4.15. Schematic representations of the LHCb trigger. Run 2 setup is described
through the section unless otherwise noted, Run 1 in subsection 4.3.4, Run 3 in subsec-
tion 4.3.5. Reproduced from [197].

is implemented using field-programmable gate arrays (FPGA) and operates in real
time, the latency does not depend on the detector occupancy.

The trigger overview is presented in figure 4.16. The trigger combines the infor-
mation from the pile-up system in VELO, the calorimeters and the muon system.
The main idea is to look for muons with large transverse momentum (pT) and parti-
cles with high transverse energy (ET), as those are commonly produced in B-meson
decays. The L0 trigger performance is shown on figures 4.17, 4.18.

The pile-up system aids in the determination of the luminosity. It consists of
two silicon planes placed downstream of the VELO detector. By tracing tracks
through the hits in the planes, it can estimate the number of primary vertices in an
event.

The Calorimeter trigger computes the transverse energy deposited in clusters
of 2× 2 cells [199]. Transverse energy is defined as follows:

ET =

4∑
i=1

Ei sin θi, (4.5)

where Ei is the energy deposited in the i-th cell, and θi is the angle between the
z-axis and a virtual track connecting the cell centre to the centre of the interaction
envelope. The trigger computes the transverse energy for three types of candi-
dates [199]:

4.3 LHCb Data Processing 72

Figure 4.16. A scheme of the L0 hardware trigger. The numbers on the picture are the
numbers of the readout channels. Reproduced from [11].

• L0Hadron: the HCAL cluster with the highest ET . If there is a highest ET

ECAL cluster in front of the HCAL cluster, the output is the sum of their
energies.

• L0Photon: the ECAL cluster with the highest ET with 1 or 2 PS hits in front
of it and no hits in the SPD cells corresponding to the PS cells. In the inner
zone of the ECAL, an ECAL cluster with 3 or 4 PS cells hit in front of it is
also accepted as a photon.

• L0Electron: the same requirements as for a photon candidate, with also at
least one SPD cell hit in front of the PS cells.

The computed transverse energies are compared to a threshold. L0 retains events
containing at least one candidate above the threshold.

The Muon trigger tries to identify the muon tracks with the largest and the
second-largest transverse (z) momentum in each x-y quadrant. The trigger sets a
single threshold either on the largest pT among the eight candidates (L0Muon line),
or a threshold on the largest and the second largest (L0DiMuon line) [199]. Each
quadrant of the muon detector is connected to a separate L0 processor. There is
no exchange of information between them. Muons traversing quadrant boundaries
between the stations are not reconstructed in the trigger. An overview of the muon
L0 trigger is presented in figure 4.19.

Removal of L0 for Run 3. According to reference [197], the L0 part is the most
limiting part of the trigger; by removing this bottleneck and reading the full detector

4.3 LHCb Data Processing 73

Figure 4.17. Efficiencies of the L0 trigger in Run 2 data for b-hadron decays. The left
plot shows the efficiency as a function of the hadron transverse momentum (pT). The
right plot shows the evolution of the efficiency as a function of the different trigger
configurations used during data taking. Reproduced from [198]

Figure 4.18. Efficiencies of the L0 trigger in Run 2 data for c-hadron decays. The left
plot shows the efficiency as a function of the hadron transverse momentum (pT). The
right plot shows the evolution of the efficiency as a function of the different trigger
configurations used during data taking. Reproduced from [198].

4.3 LHCb Data Processing 74

Figure 4.19. A schematic overview of the L0 muon trigger. Reproduced from [11].

at 30 MHz, physics performance will be significantly improved. Reference [200]
estimated that the removal of the hardware trigger would increase by a factor two
the trigger efficiency for most of the physics programme.

In the context of the thesis, the move to the full software trigger provides flexibil-
ity, that would allow benefiting even more from the developed advanced algorithms
for muon identification.

4.3.2 Software Trigger (HLT)

Software trigger is designed to reduce the event rate to a rate that can be sent to
permanent offline storage. It increased with the computing resources available, from
3.5 kHz at the beginning of Run 1 to 12.5 kHz at the end of Run 2.

The software trigger runs on the Event Filter Farm (EFF). The EFF consists of
approximately 1700 nodes, 800 of which were added for Run 2, with 27000 physical
cores. The EFF can accommodate around 50000 single-threaded processes using
the hyper-threading technology [198].

The trigger consists of two stages, that are run sequentially: HLT1 and HLT2.
The first stage performs a fast partial event reconstruction and rough selections
based on it. The second stage uses all available information and does a full recon-
struction.

4.3.2.1 HLT1

HLT1 reconstructs long tracks (ones that have hits in all the tracking subsystems)
and the precise position of the primary vertex (PV). And it runs a fast version of
the muon identification algorithm.

The tracking sequence is outlined in figure 4.21. First, the hits in the VELO
subdetector are searched for combinations that match straight lines loosely pointing

4.3 LHCb Data Processing 75

towards the beamline. Then, tracks are extrapolated into the TT. Tracks falling
outside of the TT acceptance are passed. For tracks inside the TT acceptance, at
least three matching TT hits are required. TT is located in in the fringe field of the
magnet. This allows making a rough estimate of momentum with the resolution
of around 20%. The tracks with low transverse momentum (pT) are then rejected.
Then the tracks are matched with hits in the IT and OT. The tracks are fitted with
a Kalman filter.

In 2016, an artificial neural network was implemented in HLT1 to filter out fake
tracks [159, 201]. During Run I it was available only offline, then a speed-up by a
factor of ∼ 90 allowed for its inclusion in HLT2 and, subsequently HLT1. The main
improvements were

• Switching from tanhx activation to x/
√
1 + x2,

• Using input variables that are already available and do not require additional
computations

• Manual code optimisation.

The neural network has a fully-connected architecture with 21 input variables and
a single hidden layer with 26 neurons. Its input variables are the overall χ2 of the
Kalman filter, the χ2 values of the fits for the different track segments, the numbers
of hits in the different tracking detectors, and the pT of the track. The model
was trained using the Caffe library [202]. It was trained on simulated data. The
performance is shown in figure 4.20.

efficiency
0 0.5 1

fa
ke

 tr
ac

k
re

je
ct

io
n

0.4

0.5

0.6

0.7

0.8

0.9

1

run 2 ghost probability

/ndf2χtrack fit

run 1 ghost probability

LHCb
preliminary

Figure 4.20. ROC curves for fake track rejection using for Run II. “Ghost probability”
refers to the output of the neural network. Reproduced from [159].

The tracks are used to select b and c– hadron decays, the performance is pre-
sented in figure 4.22.

For muon identification, HLT1 implements an algorithm called IsMuon. It ex-
trapolates the tracks into the muon subsystem and searches for the hits around the
track extrapolation inside a momentum-dependent Field of Interest (FOI). The FOI
is determined from the analytical approximation of multiple scattering [203]. If and
only if there are hits in enough stations, IsMuon considers the particle a muon [19].

4.3 LHCb Data Processing 76

Figure 4.21. A sketch of the HLT1 track and vertex reconstruction. Reproduced
from [198].

Figure 4.22. The trigger efficiency as a function of the trigger configurations used during
the data taking for c-hadrons (left) and b-hadrons (right). The three clusters sepa-
rated by the vertical gaps correspond to the three years of data taking (2015 – 2017).
Reproduced from [198].

4.3 LHCb Data Processing 77

The stations requirement is a function of track momentum and is presented in table
4.1.

Momentum range Muon stations
3 GeV/c < p < 6 GeV/c M2 and M3
6 GeV/c < p < 10 GeV/c M2 and M3 and (M4 or M5)

p > 10 GeV/c M2 and M3 and M4 and M5
Table 4.1. Muon stations requirements of IsMuon

There is a variant of IsMuon, called IsMuonLoose. It imposes looser stations
requirement that is presented in table 4.2.

Momentum range Muon stations
3 GeV/c < p < 6 GeV/c at least one hit in at least two stations among M2, M3, M4

p > 6 GeV/c at least one hit in at least three stations among M2, M3, M4, M5
Table 4.2. Muon stations requirements of IsMuonLoose

The procedure that is used in HLT1 for muon identification is presented in fig-
ure 4.23. For tracks with pT > 500 MeV/c, the reconstruction described in the
previous paragraph is used. For tracks with pT < 500 MeV/c, the full track re-
construction is not run due to timing constraints. The TT track segments are ex-
trapolated directly to the MUON stations. The algorithm searches for hits around
the extrapolations. The fields of interest are larger than those used for otherwise-
reconstructed long tracks. If hits are found in the muon system, the VELO-TT
segment is extrapolated through the magnetic field using the momentum estimate
and matched to hits not already used in the HLT1 long-track reconstruction. This
allows to identify muon tracks with pT starting from 80 MeV/c. Performance of
HLT1 muon identification is presented in figures 4.24 and 4.25.

4.3.2.2 HLT2

The second stage of the software trigger runs full event reconstruction. It consists
of three main steps: reconstruction of charged particle tracks, reconstruction of
neutral particles and particle identification (PID).

An overview of the HLT2 tracking procedure is presented in figure 4.26. The
first step is a repeat of the HLT1 track reconstruction. The second step is the
reconstruction of the lower-momentum tracks, that were previously discarded due
to the kinematic thresholds. Then, the tracks that do not originate from inside the
VELO are reconstructed from the T-station segments. A machine learning model is
used to identify and reject the ghost T-tracks [206]. It was trained on a simulated
sample containing signal B → J/ψK0

s events. The model was trained using the
XGBoost [110] library. It uses the following features:

• χ2/ndf of the T track,

• Momentum,

4.3 LHCb Data Processing 78

Figure 4.23. HLT1 muon identification algorithm. Reproduced from [204].

Figure 4.24. The efficiency of the HLT1 muon trigger lines as a function of the b-hadron
pT (left) and the average B+ decay time (right). The times are plotted in the units
of the B+ lifetime in its rest frame. The efficiency of the inclusive single-track HLT1
trigger is plotted for reference. Reproduced from [198].

4.3 LHCb Data Processing 79

Figure 4.25. HLT1 muon identification efficiency for muons from J/ψ → µ+µ− decays
(left) and pions from D0 → K−π+ decays (right). Green circles show only the identifi-
cation efficiency (HLT1 Muon ID). The red squares show the efficiency of the additional
trigger line (named HLT1TrackMuon), that has reduced (transverse) momentum re-
quirements, and relaxed track quality cuts [205]. Reproduced from [198].

• Transverse momentum,

• The number of hits contributing to a given T track,

• The |x| and |y| coordinates absolute values of the T track’s first state,

• The distance from the beamline to the track’s first state,

• The absolute values of the slope of the track in x–z and y–z planes,

• Pseudorapidity.

The T-stations segments are extrapolated backwards through the magnetic field
and combined with hits in the TT. The track candidates are again filtered with the
help of machine learning [206]. A fully connected neural network is utilised. It has
a single hidden layer with 15 nodes and is implemented with the TMVA framework
[207]. The network uses the ReLu activation function for the hidden layer and the
sigmoid activation for the output layer. The features are the following:

• ln(χ2/ndf) of the track candidate,

• Momentum and transverse momentum logarithms,

• The difference between the momentum estimate of the T track and the down-
stream track candidate,

• Logarithm of the x displacement with respect to the point in the magnet after
the fit,

• Logarithm of the distance of the hits with respect to the initial track estimate,

• Logarithm of the absolute x and y positions at z = 0,

• The number of layers in the TT with hits associated with the track.

4.3 LHCb Data Processing 80

Figure 4.26. HLT2 track reconstruction procedure. Reproduced from [198].

The network was train on simulated D?+ → D0
(
→ K0

SK
+K−)π+ decays.

The next stage is the filtering of fake tracks. First, all tracks are fitted using
the same Kalman filter. Second, the same neural network as in HLT1, is applied.

The final operation of the track reconstruction is the removal of the so-called
clones. Tracks are defined as clones if they share enough hits in each subdetector.
The track with more hits in total is kept, and the other is discarded.

For muon identification, the same algorithm as in HLT1 is used, IsMuon. It
is described in the subsection 4.3.2.1. The algorithm is applied to all the tracks
available after the HLT2 reconstruction.

The RICH detectors are the primary tool for discrimination between deuterons,
kaons, pions, and protons. For each mass hypotheses, the photon yields expected
Cherenkov angles, and estimates of the per-track Cherenkov angle resolution are
computed. The reconstruction algorithm considers all tracks and all photons in
both RICH1 and RICH2 simultaneously. For each mass hypothesis, the likelihood
is calculated. A more detailed description of the RICH PID algorithm is in the
subsection 4.2.2.1.

The calorimeters perform the reconstruction of electromagnetic particles (pho-
tons, electrons, and π0 mesons). A cellular automaton algorithm builds clusters
from the energy deposits in the different calorimeter subsystems [208]. It works as
following. First, it finds the local maximums – the cells with larger energy deposit,
than their neighbours. Those cells are tagged. The second step is to process the
rest of the cells according to the following rules:

4.3 LHCb Data Processing 81

• A tagged cell does not change;

• A non-tagged cell is processed:

– If none of its neighbours is tagged, no action;
– If all the neighbours that are tagged are tagged with one unique tag,

assign the same tag;
– If neighbours are tagged with different tags, the cell is identified as being

shared by several clusters, and the tag numbers are stored.

The second step is repeated for all cells until no change occurs. The clusters are
then associated with the reconstructed tracks. Neutral particles are identified as
clusters that do not correspond to any reconstructed charged track. Electrons are
identified by combining the information from the isolation of clusters in the ECAL,
the presence of clusters in the PS, the energy deposited in the HCAL, and the
position of possible Bremsstrahlung photons. High-ET π0 mesons and photons are
indistinguishable at the trigger level.

Events that pass the HLT2 selection are written to disk and subjected to offline
processing.

4.3.3 Offline Data Processing

Offline, the events are organised into the so-called streams. Each stream has a
number of selections associated with it and retains the events that pass them. De-
pending on the stream, a different portion of event information is retained. For the
so-called Turbo stream (described in subsection 4.3.4), only the reconstructed signal
candidates are retained. The events in the Turbo stream are ready to be analysed.
For the rest of the events, the full raw event is stored, and there is an additional
processing step, called stripping. The events are reconstructed once again offline
profiting of more relaxed time constraints, and tight selections, called stripping
lines, are applied. The events are then grouped into streams and made available for
user analysis.

LHCb software allows only sequential access to the events. A typical user job
only requires 1–2% of the whole data, but has to read the entire stream – and
thus spends time on the unnecessary disk reads [209]. Streams are a way to reduce
this overhead so that a job only has to read the events in a single stream, not all
of them. This approach introduces information duplication – if multiple streams
select an event, it is stored multiple times. In reference [209] I propose a method to
find the optimal stream composition for different speed/space trade-off values.

4.3.4 Historical Perspective: Run 1

All the results in the thesis have been obtained using the Run 2 data and simulation.
This subsection describes the difference between Run 1 (2010–2012) and Run 2 data
collection.

Run 1 had the collisions at centre-of-mass energies of 7 and 8 TeV, which was
increased to 13 TeV for Run 2. Higher energy means higher production cross-

4.3 LHCb Data Processing 82

sections. This means more interesting processes per bunch crossing, but also higher
detector occupancy and more difficult reconstruction.

L0 trigger functioned similarly in Run 1 and Run 2, reducing the event rate to
1 MHz at which the LHCb detector can be read out. The software trigger output
rate increased 3.5 kHz at the beginning of Run 1 to 12.5 kHz at the end of Run 2.

During Run 1, 20% of the data, that passed the hardware trigger, was buffered
to disk, and the rest passed to the software trigger for near-real-time processing.
The buffered data was processed during periods when there were no collisions. For
Run 2, HLT1 and HLT2 were explicitly separated. All events passing L0 were
immediately processed by HLT1 and then buffered to disk to be processed by HLT2
as soon as all the calibration and alignment constants were ready. The difference
in the trigger schemes is illustrated in figure 4.15.

The critical difference between Run 1 and Run 2 is the online detector calibration
and alignment. It allowed the online reconstruction in HLT2 to reach identical
quality to offline reconstruction. This paved the way for the Turbo stream [210].
For Run 1, the events, that had passed the trigger, were fully written to disk and
subjected to offline reconstruction. Turbo stream is an approach introduced during
Run 2, where only the information about the reconstructed signal candidates is
written to disk, not the full event data. This allows reducing the event size by
an order of magnitude. Turbo stream is expected to become the dominant data
processing model for Run 3.

4.3.5 Upgrade Towards Run 3

Run 3 will see a five-fold increase in luminosity, with a corresponding increase of the
signal rate (good) and overall occupancy and reconstruction difficulty (bad). There
will be a number of hardware and software changes to accommodate [211].

4.3.5.1 Detector Hardware

The major change is the readout electronics, which is upgraded for all the subdetec-
tors to provide detector readout at 40 MHz to manage the 30 MHz bunch crossing
rate expected in LHCb.

Tracking. VELO will move from silicon microstrips technology to pixel technol-
ogy which will allow to avoid an explosion of ghost crossings with the increase in
luminosity. The detector will be closer to the beam axis, 5.1 mm compared to
8.4 mm for Run 2. Overall, the impact parameter resolution will be improved by
a factor of around 40%. The tracking detector before the magnet (the Upstream
Tracker, UT) will be composed of new, high-granularity silicon micro-strip planes
with improved coverage of the LHCb acceptance. Behind the magnet, a Scintillat-
ing Fibre Tracker will be built, which is composed of 2.5 m long fibres read out by
silicon photomultipliers at the edge of the acceptance [212].

RICH1 will be modified to handle the much higher particle occupancy of the
upgrade conditions. In particular, the focal length of the mirrors will be increased
by a factor

√
2 thus halving the occupancy [211].

4.3 LHCb Data Processing 83

Muon subsystem will see M1 removed.

Calorimeters will see little change, apart from the electronics.

4.3.5.2 Software

The evolution of the trigger is presented in figure 4.15. Run 1 featured a mono-
lithic software trigger. Full information from the events passing the trigger was
stored. The stored events were additionally reconstructed and filtered offline. This
approach provided maximal flexibility and allowed to take advantage of the evolu-
tion of the reconstruction software by reprocessing older data with newer versions
of the reconstruction hardware.

Run 2 saw an explicit separation of the software trigger into HLT1 and HLT2
and the alignment of offline and online reconstruction. To take advantage of this,
Turbo stream was introduced, which persisted only the signal parts of events and
made them available for user analysis without a need for further processing.

In Run 3, the Turbo approach is further refined into the so-called real-time
analysis1. The format will allow selective persistence – saving a portion of an event,
striking a balance between disk usage and analysis flexibility. It is illustrated in
figure 4.27.

It is also planned to forbid individual users from sending jobs in favour of
centrally-managed productions [200] to reduce the load on computing resources.

4.3.6 HLT1 on GPU (Allen)

Graphics processing units (GPUs) are designed for massively parallel data process-
ing, with up to 5000 cores on a 2019 chip [98]. Events are processed in the HLT1
independently from each other. With the average event size of 100 kB, several
thousands of events can fit into a GPU memory. There is also a possibility for
intra-event parallelism. The LHCb collaboration has developed a prototype appli-
cation for GPU-based HLT1, called Allen [214, 215, 216].

Allen processes several thousands of events in parallel. Typically, the raw input
is segmented by the readout unit, for example, a module of the vertex detector, and
decoding is parallelised. During the tracking, many combinations of hits are tested
in parallel; track fit is applied to every track in parallel; extrapolating tracks from
one subdetector to the next is executed in parallel. Finally, combinations of tracks
are built when finding vertices, and those are treated in parallel.

As a part of HLT1, Allen does muon identification. It features the IsMuon algo-
rithm described in subsection 4.3.2.1 and CatBoost trained for Run 2 configuration
described in section 5.4. Sergei Popov, a student I supervised, wrote the code for
predicting using CatBoost trees on CUDA kernels during his MSc studies.

The evaluation shows that Allen covers the majority of the LHCb physics pro-
gramme with satisfactory performance in terms of track and vertex reconstruction,
momentum resolution, and muon identification. It would require around 500 of
GPUs to run the full HLT1 sequence, for RTX 2080 Ti, V100 or Quadro RTX 6000

1“real time” refers the interval between a collision occurring and the point at which the corre-
sponding event must be either discarded forever or sent offline for permanent storage [213]

4.3 LHCb Data Processing 84

Nvidia cards. In May 2020 the LHCb Collaboration decided to use Allen for Run 3
trigger.

4.3.7 Calibration Samples

Given the computational expense [217] and the imperfect accuracy [22] of simula-
tion, it is desirable to use data-driven methods for design and evaluation of data
analysis algorithms. This section describes the approach developed by the LHCb
collaboration for development and evaluation of particle identification. It primarily
follows [218, 219].

The calibration samples are datasets, where the decay candidates have a kine-
matic structure that allows unambiguous identification of one of the daughters,
without the use of any information about the PID response to the daughters track
in question. There are such datasets for the five most common charged particle
species that interact with the LHCb detector: protons, kaons, pions, muons and
electrons [219]. The list of the decays is presented in table 4.3.

Species Low momentum High momentum
e± B+ → (J/ψ → e+e−)K+

µ± B+ → (J/ψ → µ+µ−)K+ J/ψ → µ+µ−

π± K0
s → π+π− D?+ → (D0 → K−π+)π+

K± D+
s → (φ→ K+K−)π+ D?+ → (D0 → K−π+)π+

pp̄ Λ0 → pπ− Λ0 → pπ−; Λ+
c → pK−π+

Table 4.3. Decay modes that are used to select calibration samples. In case of ambiguity,
the used daughters are underlined.

The calibration sample selection is complicated by the fact that the hardware
trigger (described in the subsection 4.3.1) sometimes uses the PID systems (namely,
MUON and CALO) to make its decision which events to keep. To avoid the bias, the
selection strategy of the calibration samples requires that either the trigger did not
use the PID information, or used it only for particles that are not being considered
for the calibration sample.

Some of the selections are implemented using the so-called tag-and-probe method
[220]. For example, take the J/ψ → µ+µ− decay. First, a list of well-identified tag
muons is compiled. Second, a list of probe particles with the opposite charges is made
without using the PID information. Then, the tag and probe tracks are combined
to form muon pairs with invariant-mass consistent with the J/ψ mass. Finally, the
pairs are filtered based on the quality of the fit of the decay vertex.

The residual background that remains is subtracted with the sPlot method [21].
A fit to the invariant mass of the decaying particle is performed, resulting in prob-
abilities of each track to be signal. In several cases, two-dimensional fits are per-
formed to better account for the complex background. sPlot uses the fit-derived
signal probabilities to assign each event a signed weight (sWeight). If a sample is
weighted with the sWeights, the distribution of the variables that are independent
of mass will be an unbiased estimate of the variables’ distribution in a purely sig-
nal sample. Some of the sWeights are negative. This complicates using machine

4.3 LHCb Data Processing 85

learning methods on such data – in more details, the problem and my solution are
covered in chapter 6.

The distributions of the invariant mass and fit results for some of the calibration
decays are shown in the figure 4.28.

To use the calibration samples to compute the PID efficiency, it is usually as-
sumed that the PID variables can be parametrised by a small set of variables, such
as the track momentum, pseudorapidity, and the total number of tracks in the event
(track multiplicity). For computing the PID efficiency on a sample other than the
calibration sample (reference sample), the calibration sample is weighted, so that
the distribution of the parameterising variables matches the distribution in the ref-
erence sample. An estimate of the probability density ratios is required for the
weighting:

w(x) = preference(x)
pcalibration(x)

, (4.6)

where x is a vector of the parametrising variables. Typically, in LHCb, a low-
dimensional (2 to 3) parametrisation is used, and the probability density ratio is
estimated by histograms or kernel density estimation2 [221]. For the work on muon
identification described in chapter 5, I used a calibrated classifier, as it allows for
a more fine-grained probability estimate. The reweighted sample can be used to
compute the efficiency of a PID selection:

ε =

∫
dxε(x)preference(x)

=

∫
dxε(x)w(x)pcalibration(x)

≈
∑

iwiIi∑
iwi

,

(4.7)

where ε(x) is the selection efficiency for the tracks with parameters x; Ii is the
indicator whether the i-th track passes the calibration requirements.

The calibration samples play an important role in the LHCb experiment. They
are used to measure the PID performance, to correct the simulated samples, and
to monitor the detector performance during the data-taking [218]. In the context
of the thesis, calibration samples are used for global PID algorithms evaluation in
chapter 7; for muon identification model training and evaluation in chapter 5. The
parametric fast simulation approach in chapter 8 is a logical extension of the PID
calibration and uses the calibration samples for data-driven training. The technique
proposed in chapter 6 was developed with the LHCb PID samples as the primary
use case.

4.3.8 Machine Learning at LHCb

Machine learning is used through the LHCb data processing. Machine learning
usage for tracking is described in subsection 4.3.2.1; for event selection in HLT2 in

2Kernel density estimation works by modelling the probability density function as a sum of sim-
ple functions centred on the data points, called kernels. Common choices for kernels are Gaussians
or parabolas.

4.3 LHCb Data Processing 86

subsection 3.3.1; for charged particles identification in chapters 7 and 5; for neutral
particles identification in subsection 3.3.1; for simulation in chapter 8; for detector
monitoring in subsection 3.3.3.

4.3 LHCb Data Processing 87

HLT2
candidate

PV
D0

π+
K−PV

PV
D0

π+
K−PV

PV
D0

π+
K−PV

. . .RICHVELORaw banks: ECAL . . .

In
cr

ea
sin

g
pe

rs
ist

ed
ev

en
ts

iz
e

D
ec

re
as

in
g

in
fo

rm
at

io
n

Figure 4.27. A cartoon of the same reconstructed event with varying levels of object
persistence: Turbo (top); selective persistence (middle); and complete reconstruction
persistence (bottom). Solid objects are those persisted in each case. A trigger selection
may also ask for one or more sub-detector raw banks to also be stored, shown as solid
rectangles. Reproduced from [213].

4.3 LHCb Data Processing 88

Figure 4.28. On the left, mass distributions of the decaying particles with the results
of the fit superimposed; signal contributions are shown by the red dashed curves, and
the total fit functions including background contributions are shown by the blue solid
curves. On the right, the background-subtracted distributions of the calibration samples
for electrons, muons, pions, kaons and protons as a function of the track pseudorapidity
(η) and momentum (p). The colour scale units are arbitrary. Reproduced from [218].

89

Chapter 5

Muon Identification

Muons are present in the final states of many decays sensitive to new physics that
are studied by the LHCb experiment [19, 5, 20]. Efficient and precise muon identi-
fication is of paramount importance for the LHCb. There are two main sources of
misidentification. The first is combinatorial – when unrelated hits align by chance
with the track. The second is decays in flight for pions and kaons.

My contribution towards it is a machine learning model based on gradient boost-
ing. For Run II, it shows the best discrimination quality among all proposed algo-
rithms. It is also 3 times faster than the other considered machine learning approach
based on TMVA [207]. I have integrated the model into the LHCb software, and
its output is available for analysis of the data taken in 2018. I’ve also investigated
the feasibility of the machine learning approach for high-occupancy data, and show
that it outperforms the other considered alternative (χ2

CORR). The work has been
submitted to proceedings of the ACAT 2019 conference and is included in the LHCb
(as of April 2020, internal) note [222]. A journal paper is under review. I had also
prepared muon identification as a problem for a data analysis competition [223].

The LHCb muon detector is described in section 5.1. The fast muon identi-
fication algorithms that were run online in the trigger during the LHC Run 2 are
described in subsections 4.3.1 (L0, hardware trigger), 4.3.2.1 (IsMuon, runs in HLT1,
the first level of the software trigger). This chapter takes on from there and contin-
ues with the HLT2 and offline selections that were used for Run 2 is section 5.2).
The advancement of those methods is presented in section 5.3. My contribution to
Run II is presented in section 5.4 and towards Run III in section 5.5. In section 5.7
we discuss a data science competition organised on the muon identification data.

5.1 Muon Detector
The main idea behind the muon identification is to utilise the unique penetration
power of muons. A charged particle that was able to pass through the calorimeters
and the iron shields is highly likely a muon. The schematic view of the LHCb Muon
subdetector is presented in figure 5.1. It consists of 5 sensitive planes (M1-M5)
placed perpendicular to the beam axis. The muon detector is placed downstream of
the rest of the detector, except for M1, which is in front of the calorimeters. Stations
M2 to M5 are placed downstream the calorimeters and are interleaved with 80-cm

5.1 Muon Detector 90

thick iron absorbers. The minimum momentum of a muon to cross the five stations
is approximately 6 GeV/c [11].

The stations are divided into 4 regions with increasing distance from the beam
axis. The regions’ size is chosen, so that particle flux is roughly the same over all
the regions. All stations, except the innermost region (R1) of M1, are equipped
with multi-wire proportional chambers (MWPCs). M1R1 has to face the highest
particle flux and thus is equipped with more resilient with gas electron multiplier
(GEM) detectors.

For the detector to meet the physics requirements, the stations’ efficiency must
be at least 99% in a time window smaller than 25 ns [220]. The performance is
achieved with an optimized charge-collection geometry and using a fast gas mixture;
Ar/CO2/CF4 ≈ 40/55/5 for the MWPCs and 45/15/40 for the GEM chambers. An
overview of MWPC is presented in figure 5.2a and overview of GEM in figure 5.2b.
In stations M2–M5 the MWPCs are composed of four gas gaps arranged in two
sensitive layers with independent readout. In station M1 the chambers have only
two gas gaps to minimise the material in front of the electromagnetic calorimeter. In
the region M1R1, two superimposed GEM chambers connected in OR are used [11].

16
m

rad

258 m
rad

M
uon filter

1

R2

R3

R4

R1

M
uon filter 4

M
uon filter

3

M
uon filter

2

C
ALO

R
IM

ETER
S

M1 M2 M3 M4 M5

y

z
1m

1m

be
am

 p
ip

e

side C side Ay

x
R4 R2R3 R1 R4R3R2

(a) (b)

R1

Figure 5.1. Side (a) and front (b) views of the LHCb Muon system. Reproduced from
[220]

.

(Un)crossed hits. The requirements of spatial resolution and rate capability vary
strongly over the muon system. To satisfy them, MWPC readout is implemented
differently in different stations and regions [11]. All the chambers are segmented
into physical pads: anode wire pads or cathode pads in the MWPCs and anode pads
in the GEM chambers. In the outer region, R4, the spatial resolution requirements
allow for directly using groups of adjacent wires connected to the same electronics
channel as physical pads. The size of these pads is used as the pad size for the
identification algorithms. In inner regions, however, this approach can not be used,

5.1 Muon Detector 91

(a) A cross-section view of a four-gap multi-
wire proportional chamber used in M2-
M5. Reproduced from [11].

(b) A schematic cross section of a gas elec-
tron multiplier (GEM) chamber used in
M1R1. Reproduced from [11].

as the required pads are too small to be practically built. The logical pas is defined as
an intersection of the horizontal and vertical physical pads. If there is a simultaneous
readout in both physical pads, a hit to the logical pad is recorded. If there is no
simultaneous readout, a hit is still recorded, but the pad size of the physical pads is
used, which is much larger in one of the directions. Single hits given by the physical
pads are called uncrossed hits, and by the logical pads are called crossed hits. The
difference is illustrated in figure 5.3.

Changes for the Run III. Following [224, 225]:

• M1 station has been removed. It was used only to provide an adequate muon
momentum resolution in the L0 trigger. The luminosity increase would make a
correct association of M1 hits to the muon track segments virtually impossible.

• Additional shielding (30 cm tungsten) is being installed (as of April 2020)
in front of M2R1 to mitigate the higher rates of the innermost regions. The
expected rate reduction expected from the simulations is around 25%.

• Additional shielding (Pb) has been installed behind M5 to reduce back-scattered
particles from LHC magnets since at least November 2015.

Muon identification algorithms, that were run in the trigger during Run 2 are
described in the sections 4.3.1 and 4.3.2.1. The advanced algorithms that were used
for offline reconstruction and are being developed for use at Run 3 (including my
contribution) are described in the next section of this chapter.

5.2 muDLL 92

Figure 5.3. Illustration of crossed and uncrossed hits. A hit is considered a crossed hit if
it is registered both by horizontal vertical strips. If a hit is only seen by one of them,
it is considered uncrossed. Uncrossed hits have, by construction, much larger pad sizes
in one of the dimensions. Reproduced from [204].

5.2 muDLL
muDLL is the oldest second-stage muon ID algorithm. A likelihood discriminant
between muons and background is computed as the cumulative probability distri-
bution of the average squared distance significance D2 of the hits in the muon
chambers with respect to the linear extrapolation of the tracks from the tracking
system [19, 203].

D2 =
1

N

N∑
i=0

{(
xiclosest − xtrack

dxi

)2

+

(
yiclosest − ytrack

dyi

)2
}
, (5.1)

where N is the number of stations containing hits within the momentum-dependent
Field of Interest (FOI). The same FOI is used in IsMuon. The FOI is determined
from the analytical approximation of multiple scattering [203]. {x, y}closest are the
coordinates of the hit closest to the track extrapolation; {x, y}track are the coor-
dinates of the track extrapolation to the muon stations and d

{x,y}
i are the muon

pad sizes for the i-th hits that determine the hit coordinates uncertainties. The
D2 distribution for both signal and background depends on multiple scattering –
and thus on track momentum and polar angle. To avoid biasing the calibration
to kinematic parameters of particular calibration samples, calibration is performed
separately in momentum bins and muon detector regions.

5.3 Correlated χ2

Correlated χ2 is a logical development of the muDLL approach that takes into
account the correlations between the hit residuals in different stations. It has been
developed for some time during Run 2; its current form has been finalised at the
beginning of 2019.

The idea behind the correlated χ2 is illustrated on figure 5.4. When the trajec-
tory of a muon changes due to multiple scattering in an early part of the detector,
the readings in all the later parts are affected in a correlated fashion.

5.3 Correlated χ2 93

Figure 5.4. Two combinations of muon with the same MuonDLL value. A clear muon
pattern (left), and a combinatorial background event (right). Reproduced from [222].

For a given collection of hits (one per station), the variable is defined as follows:

χ2
CORR = δxTV −1

x δx + δyTV −1
y δy, (5.2)

where δx and δy are the vectors with distances, in the x and y directions, between
the track extrapolation points and the hit position in the M2-M5 stations. Vx and
Vy are the covariance matrices, defined as a sum of two parts: V RES and V MS.
V RES is a diagonal matrix, computed separately for x and y direction, that takes
into account the spatial resolution of the muon stations:

V RES
jj =

d2j
12

(5.3)

V RES
jk = 0 for j 6= k, (5.4)

where dj is the x or y pad size corresponding to the muon hit. V MS accounts for
the uncertainty introduced by multiple scattering (MS):

V MS
jk =

∑
zi<zj ,zk

(zj − zi)(zk − zi)σ2MS,i. (5.5)

σ2MS,i is estimated as [226, 222]:

σ2MS,i =
13.6MeV
βcp

q

√
zi
X0

[1 + 0.038 ln(zi/X0)] ≈
13.6MeV
βcp

q

√
zi
X0

, (5.6)

where p is the particle’s momentum, βc the velocity, and q the charge; zi/X0 is the
thickness of the scattering medium in units of radiation length. The position along

5.4 Machine learning for Run II 94

the z−axis and the thickness of the considered scattering centres are presented in
the table 5.1.

MS contribution z position (m) zi/X0

ECAL+SPD+PS 12.8 28
HCAL 14.3 53

M23 filter 15.8 47.5
M34 filter 17.1 47.5
M45 filter 18.3 47.5

Table 5.1. Position and thickness in units of radiation length for the scattering media
contributing to the multiple scattering experienced by particles traversing the muon
system. Reproduced from [222].

Choice of the hits In principle, the true track trajectory does not have to cor-
respond to the closest hits to the track extrapolation, as the track might have been
affected early by multiple scattering. Two approaches have been explored [222]: the
one which would minimise the χ2

CORR, and the one using the closest hits. Min-
imising the χ2

CORR has been found to give negligible improvement while requiring
significantly more computation time. Therefore, the closest hits are used.

Momentum dependence The probability of a muon to reach a given muon
station depends on its momentum [227]. For a low-momentum particle, hits in the
farthest stations are likely to be combinatorial background. Therefore, for low-
momentum particles (p < 6 GeV/c), only M2 and M3 stations are used, while for
particles with p ≥ 6 GeV/c all stations are used. The 6 GeV/c threshold coincides
with one of the used in IsMuon, around 90% of muons with this momentum reach
M5.

5.4 Machine learning for Run II
The muon system provides valuable information besides hit coordinates. The num-
ber of views (as defined in 5.1) is useful, as noise or spillover hits typically have one
single view in contrast to two views for signals hits. For hits with two views, the
time difference between the hits is available. Machine learning also allows catch-
ing the fine details of the real-world detector behaviour, as it does not correspond
precisely to the approximations used in muDLL and χ2

CORR.
We trained machine learning algorithms using the following features, per closest

hit in each station:

• space residuals in x, y.

x residual = xclosest − xtrack

dx/
√
12 +MSerror

, (5.7)

where MSerror is the track extrapolation error estimated from multiple scat-
tering; dx is the pad x size. For y dimension the formula is the same.

5.5 Machine Learning Towards Run III 95

• hit time

• whether the hit is crossed (as defined in 5.1)

• dT: difference of the hit time read by the vertical and horizontal strips

To train the models, we used calibration samples [228] taken from pp-collision
data collected in 2012, where the particle species is determined from the two decays:

• for muons: J/ψ → µ+µ−, 4 · 105 tracks

• for pions: D∗+ → D0(→ K−π+)π+, 2 · 105 tracks

The IsMuon selection is already applied to these samples. In the training data, the
background sample were weighted to match the signal (p, pT) spectrum.

We used the same data set to train two algorithms. AdaBoost [229] from
TMVA [207] is the most widely used in the HEP community implementation of
the classic decision tree boosting algorithm. CatBoost [44] is a modern gradient
boosting toolkit that uses ordered boosting, a permutation-driven alternative to
the classic algorithm, along with several heuristics to achieve state-of-the-art per-
formance. It is based on oblivious decision trees (described in subsection 2.6.2) that
allow for better evaluation speed compared to regular trees [124], which is important
to meet the time budget of the trigger.

5.5 Machine Learning Towards Run III
The main challenge for Run III is the five-fold occupancy increase. The hardware
trigger will be removed in favour of a more flexible, fully software approach. The
muon identification procedure has not yet been finalised. Still, it most likely will
consist of two stages: fast rough selection with IsMuon combined with a second more
accurate and computationally expensive step [222]. The second step will provide a
continuous decision variable, instead of binary selection – so it may be tuned for
conditions of individual analyses, and provide more information for the global PID
algorithm.

During Run II, a Global Event Cut was used in the L0 trigger to remove highly
occupied events, that are expensive to reconstruct in terms of computing power.
Together with the lower Run II luminosity, this means, that there is not enough
data in the calibration samples with a high number of primary vertices (nPVs) to
accurately emulate the situation after the LHCb Upgrade. As a compromise, to
tilt the algorithm towards the high-occupancy conditions, we used a weighting that
adds more emphasis on high-nPVs events while retaining reasonable statistics. The
distributions are shown in figure 5.5.

For training the classifier, we used the following data calibration samples col-
lected in 2016 pp collisions to which the IsMuon selection is applied:

• muons: J/ψ → µ+µ−, 8 · 106 tracks

• pions: D∗ → D0+(→ K−π+)π−, 4 · 105 tracks

• protons: Λ0 → pπ−, 3 · 105 tracks

5.5 Machine Learning Towards Run III 96

2 4 6 8 10 12 14
nPVs

0.0

0.1

0.2

0.3

0.4

0.5
W

ei
gh

t f
ra

ct
io

n
Typical distribution at Run II
Expected distribution at Run III
Reweighted signal
Reweighted background

Figure 5.5. The Run II data was weighted to put more emphasis on events with multiple
primary vertices.

The background sample was weighted to match the signal (p, pT) spectrum. Both
signal and background were weighted by nPVs. The choice of the background sam-
ples was determined by two considerations. First, by including both protons and
pions, we train the algorithm to distinguish both the combinatorial background,
and, to some extent, decays in flight. Second, the background samples momentum
coverage matches the muon signal momentum range, as illustrated in figure 5.6.
Since we are interested in a classifier that is not biased towards the kinematic dis-
tribution of the calibrations samples, it is important to ensure that the momentum
distributions of signal and background training samples match. Reweighting can
correct the distributions’ shape, but it can not make the tracks appear in the phase
space regions where there are none. Therefore it is important that the supports of
the signal and background kinematic distributions match.

The calibration samples use the sPlot [21] method to subtract the background
contribution. sPlot works by assigning weights to examples, and some of the weights
are by design negative. Negative weights are not expected by machine learning
algorithms and might cause issues from performance drop up to divergent training,
depending on the algorithm and dataset in question. We have developed a method
to include the results of sPlot into the training; it is described in chapter 6.

The set of training features was expanded compared to Run II to include the
output of the χ2

CORR algorithm. The features list is:

• Information about the closest hits in each station: space residuals, hit time,
hit delta time, whether the hit is crossed

• χ2
CORR

• Track momentum and transverse momentum

We also trained the algorithm without including χ2
CORR as a feature to understand

their relative performance better.

5.6 Algorithms Evaluation 97

3.5 4.0 4.5 5.0 5.5
log10(P)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

p

(a) Momentum

2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2
log10(PT)

0

1

2

3

4
p

(b) Transverse momentum

Figure 5.6. Kinematic variables distributions for the samples used for classifier training.
The plot is made without the momentum and nPVs reweighing, but uses the sWeights.

5.6 Algorithms Evaluation

We evaluated the algorithms on the 2016 calibration data [219]. For the models
trained on these data, we used the cross-validation method (described in the sec-
tion 2.3). We split the data into 5 folds. Then, to obtain the predictions for events
in each fold, we trained on the rest four.

The results obtained on the Run II calibration samples without additional
weighting are presented in figures 5.7 and 5.8; with weighting by nPVs, momen-
tum and transverse momentum in figures 5.9 and 5.10. CatBoost with χ2

CORR as
a feature has the best performance, closely followed by CatBoost without χ2

CORR,
the χ2

CORR itself, and the legacy algorithms. The most significant improvement is
observed in the low-momentum region. Low-momentum particles are more suscep-
tible to multiple scattering and do not usually penetrate the whole detector, thus
leaving fewer hits to work with. By using the advanced algorithms and including
the hit timing information, those difficulties can be addressed. A study of CatBoost
timing is ongoing. Preliminary testing shows that CatBoost evaluation takes less
than 1% of HLT2 time in Run III conditions, and is an order of magnitude slower
than χ2

CORR.

5.6 Algorithms Evaluation 98

Figure 5.7. Muon efficiency versus pion rejection after applying IsMuon selection, no
kinematic weighting using 2016 calibration data. “χ2 2/4 closest hits” is described in
section 5.3. “Run II Catboost” and “Run II TMVA” are described in section 5.4. “Dev
Catboost” are the models trained on data weighted to emphasize the high nPVs events
as described in section 5.5. “Dev Catboost, with χ2” uses χ2

CORR as a feature, “Dev
Catboost, no χ2” does not.

Figure 5.8. Muon efficiency versus proton rejection after applying IsMuon selection, no
kinematic weighting using 2016 calibration data. “χ2 2/4 closest hits” is described in
section 5.3. “Run II Catboost” and “Run II TMVA” are described in section 5.4. “Dev
Catboost” are the models trained on data weighted to emphasize the high nPVs events
as described in section 5.5. “Dev Catboost, with χ2” uses χ2

CORR as a feature, “Dev
Catboost, no χ2” does not.

5.6 Algorithms Evaluation 99

Figure 5.9. Muon efficiency versus pion rejection after applying IsMuon selection using
2016 calibration data that is weighted in momentum and nPVs. “χ2 2/4 closest hits”
is described in section 5.3. “Run II Catboost” and “Run II TMVA” are described in
section 5.4. “Dev Catboost” are the models trained on data weighted to emphasize the
high nPVs events as described in section 5.5. “Dev Catboost, with χ2” uses χ2

CORR as
a feature, “Dev Catboost, no χ2” does not.

Figure 5.10. Muon efficiency versus proton rejection after applying IsMuon selection using
2016 calibration data that is weighted in momentum and nPVs. “χ2 2/4 closest hits”
is described in section 5.3. “Run II Catboost” and “Run II TMVA” are described in
section 5.4. “Dev Catboost” are the models trained on data weighted to emphasize the
high nPVs events as described in section 5.5. “Dev Catboost, with χ2” uses χ2

CORR as
a feature, “Dev Catboost, no χ2” does not. 2

5.7 Data Analysis Olympiad (IDAO) 100

5.7 Data Analysis Olympiad (IDAO)

5.7.1 Introduction

The muon identification problem, as presented in section 5.5, was given as a problem
for the International Data Analysis Olympiad [223] organised by the Higher School
of Economics and Yandex LLC in winter-spring 2019.

The idea of outsourcing a challenging scientific problem to the general public is
old. For example, a series of awards for a practical method of determining longitude
has been offered by Spain (1567, 1598) and England (1714) [230]. Modern data
science competition took its form in 2006 when Netflix, an online DVD-rental and
video streaming service, offered US$1M in a competition to create an algorithm for
predicting user ratings for films [231]. Since then, machine learning competitions
have become somewhat ubiquitous.

A “classic” competition consists of a supervised learning problem. The partici-
pants are provided with a training dataset, both features and labels; the test dataset
consisting only of features. The competitors train a model, make a prediction on
the test dataset, submit this prediction to the organisers. The organisers evaluate
those predictions on the part of the test dataset, called public, and publish the
score. This way, there is a public ranking, that allows the participants to compare
their solution to the other solutions. Its purpose is to maintain the ardour among
the competitors. The rest of the test dataset, the so-called private test, is used
at the end of the competition to make a final evaluation of the solutions for prize
awards. To claim the prize, the winner typically has to provide the organiser with
source code of the solution.

It is hard to estimate the impact of such competitions. Many organisations that
run the competitions are commercial companies that are understandably hushed
about their operations. When the organisers do publish something, the people doing
that are usually the ones who have organised the competition and are incentivised
to inflate its achievements. I am not aware of a systematic study of data science
competitions.

The winning solutions are usually over-engineered, which means that implement-
ing them requires substantial effort and computation cost, which are not always
warranted by the increased prediction quality compared to out-of-the-box machine
learning [232, 233]. In many cases, the most difficult part is the formulation of the
problem in terms of machine learning, e. g. the discussion for high-energy physics
in chapter 3. This is not to say that data science competitions can never produce a
valuable result. For example, reference [233] describes a competition, where the al-
gorithm produced by a winning team increased precision from 70% to 90% without
decreasing recall for the problem of recognising ships on satellite images. But they
didn’t claim the baseline solution to be state-of-the-art.

While the effect of an individual competition on the machine learning community
might be small, they serve an important role of an arena, where new ideas and
techniques are tried, refined, and shared with the world. For example, the XGBoost
rise to ubiquity is credited to a data science competition, the Higgs Boson Challenge
[234].

One undoubted success of some competitions is the outreach effect. The prime

5.7 Data Analysis Olympiad (IDAO) 101

example is the aforementioned Higgs Boson Challenge by the ATLAS collaboration.
It attracted 1785 teams (1942 people) who uploaded 35772 solutions, making it the
largest ever competition at the time on the most popular competition platform
Kaggle [235].

Data science competitions are uniquely useful to organisations that lack in-
house expertise in machine learning [236]. A competition allows the organiser to
get a reasonable estimate of the capabilities of state-of-the-art machine learning
methods to solve their problem – at a comparatively low cost, as there is no need to
hire a team of experts. An additional benefit is the establishment of contacts with
the participants, who might be contracted to implement the solution, should it be
deemed satisfying.

Due to confrontational nature of a competition, it imposes a burden on the
organiser to ensure that it is not possible to “hack” a competition – produce a so-
lution that performs well according to the validation metric but is fundamentally
flawed. The most basic example is when the competition data, including the test
part, turns out to be available elsewhere. Or when the features contain the informa-
tion, that will not be available when making real-world predictions. For example,
there was a dataset used to predict whether a patient had prostate cancer, which
had feature telling whether the patient had received prostate surgery [237]. A more
sophisticated example involving particle physics is described in section 3.1.

A sensitive issue is opening the data for the competitions. The data can represent
a competitive advantage for a commercial company. If the data is about humans,
publishing it might violate their privacy, e. g. Netflix was hit with a lawsuit for
its competition, even though the data they published had been anonymised [238].
Big CERN experiments have committed themselves to release their data – but only
after an embargo period, that would allow extracting most of the scientific value
[239, 240, 241, 242].

5.7.2 Muon ID Competition

The problem offered to competitors was the one presented in section 5.5. The train-
ing dataset consisted of 2·107; the public test of 2.7·106 examples; the private test of
1 ·107 examples. The dataset contained muon, pion and proton calibration samples,
weighted by nPVs, momentum and transverse momentum as described in section
5.5. The features were track momentum, transverse momentum, extrapolation co-
ordinates, hits in the FOI around the track, and the set of hits, that provided the
minimal χ2

CORR value. muDLL and χ2
CORR values were not provided. Since the

number of FOI hits is different from event to event, without additional preprocess-
ing, the competition could not be addressed by the majority out-of-the-box machine
learning algorithms. Another interesting aspect was the negative example weights
used to subtract the background; they are covered in chapter 6.

Deriving a single metric to compare solutions is complicated. If one solution
performs better than the other across the momentum spectrum for all decision
thresholds, like χ2

CORR compared to muDLL in figures 5.8 and 5.7, we can be con-
fident that it is better. In all other cases, there is a potential trade-off: there might
be usage cases, for which each of the algorithms beats the other, e.g. in some mo-
mentum regions, or some efficiency thresholds. But a competition requires a single

5.8 Conclusion 102

number to rank the submissions. Thus, the competition metric was the background
rejection at 90% signal efficiency.

The competition offered two lanes1. On the first one, solutions were ranked
only by the quality of signal/background classification. This type of competition
is the most straightforward from the participants’ point of view, as they only need
to submit the predictions. The drawback is that the complexity of the solutions is
not restricted – while in real life the classification quality must be balanced by the
computational cost. Hence, the participants had to send the algorithm code for the
second lane to comply with the execution time limit, which was set to twice the Run
2 software trigger requirements and only then ranked them by classification quality.
This imposes an additional burden on the competitors who must ensure that their
code runs in the competition server environment.

Unfortunately, we struggled to use the competition to improve the algorithms
used at LHCb. The winning solutions for both lanes mostly replicated the current
approach, where the closest hits coordinates, residuals and physics-derived variables
(muDLL) are used as features for off-the-shelf machine learning algorithms. The
winning solutions also use as features a large number of various coordinates’ differ-
ences, angles, and vector norms. The winner of the first lane used an average of
XGBoost and CatBoost [243], the winner of the second lane used CatBoost [244].
To handle the negative sWeights, one of the solutions discarded the events with
negative weights, and the other used the absolute value of the weights. It can be
shown that both these approaches are mathematically unsound and lead to biasing
the resulting classifier as it is not trained to separate muons vs non-muons, but some
variant of muons plus the background vs non-muons plus the background. One of
the leading teams described their solution in a blog post [245] (in Russian). The
overall improvement over straightforward CatBoost training was marginal and very
limited due to high generalisation error.

The primary benefit was outreach. 1287 teams from 78 countries registered for
participation, and there have been around 10 publications in Russian mass media
about the Olympiad [223]. We hope that exposing machine learning practitioners
to a (subjectively interesting) problem from the field of high-energy physics might
result in more collaboration (like this thesis).

5.8 Conclusion
Machine learning allows gaining significant improvement of muon identification
with the muon subsystem at LHCb. On Run II calibration samples, background
passthrough at 90% signal efficiency is reduced by a third in the crucial low mo-
mentum region compared to the next best algorithm (χ2

CORR). This gain stays true
when the data are reweighted to emphasise events with multiple primary vertices.

We have integrated the Run 2 model into the LHCb software, and its output is
available for analysis of the data taken in 2016 – 2018 [246].

For Run 2, using CatBoost improves the evaluation speed by a factor of 3 com-
pared to TMVA BDT while giving higher discriminating power. Thus, it led to

1On the website the lanes are called tracks. I use a different term in the thesis to avoid possible
confusion with the particle tracks.

5.8 Conclusion 103

discontinuation the development of the TMVA-based algorithm.
The design of the Run 3 muon identification procedure will depend on two things,

which are not available at the moment of writing this thesis. First, the trigger time
budget distribution – whether the performance gains are worth the computational
cost. Second, the performance of the algorithms on the Monte-Carlo simulation of
Run 3 conditions.

104

Chapter 6

Machine Learning on Data
With sPlot Background
Subtraction

Experimental data obtained in high energy physics experiments usually consists
of contributions from different processes. A large part of a typical data analysis
consists of selecting the target decay from all collected data. A common technique
used as a part of this process is sideband subtraction. It requires a signal-enriched
and a signal-poor phase-space regions be identified (usually by an invariant mass
fit). A commonly used method is sPlot [21]. It assigns weights (sWeights) to events,
some of them negative. This does not present a problem if the next analysis steps
use simple single-dimensional tools, like histograms, but is an obstacle for some
multivariate machine learning methods. In this chapter, we prose a mathematically
rigorous way of training machine learning algorithms on such data.

In machine learning terms, we are dealing with a particular model of label noise
coupled with prior knowledge. For each example, we know the probability that its
label has been flipped. The flipping probabilities are not constant but are sampled
from some distribution independently of the features’ distribution. As an example,
consider the case where you have a dataset of with stars labelled from telescope
observations. The observations were taken in different atmospheric conditions. For
each observation the atmospheric conditions are known; the probability of misclas-
sifying a star is a known function of atmospheric conditions.

This chapter is structured as follows. In section 6.1 we introduce the sPlot
technique. In section 6.2 we discuss the implications of negative event weights
on training of machine learning algorithms. In section 6.3 we review the existing
approaches to machine learning on data weighted with the sPlot. In section 6.4 we
propose methods to robustly training of machine learning models. In section 6.5 we
present experimental results that demonstrate practical viability of the proposed
method for synthetic problem constructed from the Higgs dataset and the LHCb
muon identification problem.

The method presented in this chapter has been used to train the high-occupancy
muon identification models described in section 5.5.

6.1 sPlot 105

6.1 sPlot
sPlot is a method for background subtraction widely used in high-energy physics,
particularly in B-physics [247]; reference [21] has over 1460 citations. In addition to
analyses, sPlot is used at LHCb for subtracting background in the LHCb calibration
samples described in subsection 4.3.7.

Take a dataset populated by events fromNs sources. Assume that distribution of
some variables is known for each source, call these variables discriminative. Usually,
the discriminative variable is the reconstructed invariant mass, and the probability
densities are estimated by a maximum likelihood fit. sPlot is a statistical technique
that reconstructs the distributions of the rest of the variables (call them control),
provided they are independent of the discriminative variables for each event source.

Let pk(m) be probability density function of the discriminative variable m of
the k-th species, Nk be the number of events expected on the average for the k-th
species, N be the total number of events, me be the value of m for the e-th event.
Compute the covariance matrix of the signal and background probability density
functions V: (

V−1
)
nj

=
N∑
e=1

pn(me)pj(me)(∑Ns
k=1Nkpk(me)

)2 (6.1)

The sWeight for the e-th event corresponding to the n-the species is obtained using
the following transformation:

sWeightn(me) =

∑Ns
j=1 Vnjpj(me)∑Ns
k=1Nkpk(me)

(6.2)

If the dataset is weighted with sWeights, the distribution of the control variables
will be an unbiased estimate of the corresponding pure species. In the rest of the
chapter we deal with the two species scenario, named signal and background. An
example of sPlot application is presented on figure 6.1. The proof is available in
reference [21].

0 2 4 6 8 10
m

0.00

0.05

0.10

0.15

0.20

0.25 signal
background
mixed data

6 4 2 0 2 4 6
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6 real signal distribution
observed dataset
reconstructed with sWeights

Figure 6.1. An example of sPlot application. To the left: the known distributions of the
discriminative variable m. To the right: the observed mixture and the reconstructed
with sPlot signal distribution of the control variable x.

6.2 The Problem of Negative Weights 106

6.2 The Problem of Negative Weights
Let us consider an event with positive signal weight ws > 0 and negative background
weight wb < 0 and the classic cross-entropy loss function (equation 2.31):

L = −ws log(ps)− wb log(1− ps), (6.3)

where ps is the model output – the predicted probability of this event being signal.

lim
ps→1

L = − (−|wb|) lim
ps→1

log(1− ps) = −∞. (6.4)

Thus, directly incorporating sWeights into the cross-entropy loss causes it to lose the
lower bound. The same holds for the mean squared error and other losses without
an upper bound in the unweighted case. Training most machine learning algorithms
is an optimization problem (see sections 2.5, 2.6), and, for some algorithms, such
as a large-capacity fully-connected neural network, negative event weights make
this optimization problem ill-defined, as the underlying optimization target loses
the lower bound as well. An example illustrating diverging training is presented in
figure 6.2. The model training using the sWeights as event weights quickly diverges
in contrast to the same model training using the true labels or our losses. The
model trained on true labels does not even start to overfit – the test score keeps
climbing, while the test score of the model trained with sWeights as event weights
drops dramatically. As expected, the test ROC AUC for the model that was trained
using the true labels is the best among all methods.

0 20 40 60
Epoch

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

Tr
ai

n
Lo

gL
os

s,
tra

in
in

g
on

 tr
ue

 la
be

ls

0 20 40 60
Epoch

0.72

0.74

0.76

0.78

0.80

0.82

0.84

Te
st

 sc
or

e,
 R

OC
 A

UC

sWeight
True labels
Constrained MSE
Likelihood
CWoLa-2e+02

-2e+02

-2e+02

-1e+02

-5e+01

0e+00

5e+01

1e+02

Tr
ai

n
Lo

gL
os

s,
tra

in
in

g
on

 sW
ei

gh
tssWeight

True labels

Figure 6.2. Learning curves of a neural network trained on the Higgs dataset using the
true labels and the artificially introduced sWeights. Likelihood and Constrained MSE
methods are described in section 6.4, CWoLa in [143], the dataset in section 6.5, and
the network in subsection 6.5.1.

However, most machine learning algorithms do not blindly minimize the loss
value on the training dataset, as this is highly likely to lead to overfitting. They add
various regularization terms to the optimized functional that, in general, penalize
model complexity or overconfidence (equation 2.5). We are not aware of peer-
reviewed literature exploring the impact of regularization on learning with negative
weights. One such technique appears in discussions within the High Energy Physics

6.3 Related Work 107

community [248]. They propose avoiding the unbounded loss by requiring leaves of
decision tree to have positive total weight. It is also possible to regularize neural
networks into having bounded loss. For example, use the L2 regularization on
weights and take the root of the degree equal to the number of layers plus one from
the cross-entropy loss.

6.3 Related Work
The practical viability of using machine learning methods on data weighted with
sPlot is demonstrated in references [249, 250, 251, 207, 158]. They propose a training
procedure for the case where a classifier is desired to separate the same signal and
background that are defined by the sPlot. Take each event twice, once as signal, once
as background with the corresponding sWeights, then train the classifier as usual,
in case of splitting the dataset (e. g. for cross-validation), take care to include both
event and its mirror match in the same fold. The papers, however, do not attempt
to analyze the core issue of negative weights impact on machine learning algorithms,
limiting themselves to requiring that the classifier supports negative weights.

Another possible approach is suggested by [143] – classification without labels
(CWoLa). Take a binary classification problem, where the true labels are not known,
but there are two datasets for which is known they contain the classes in different
proportion. They also require that events with the same label are independently
sampled from the same distribution. The authors prove that the optimal classifier
for those two datasets is also optimal for separating the classes. It is possible to
use the discriminative variable to define regions with different signal/background
proportions. This method ignores the per-event probability information. In our
experiments (presented in section 6.5), CWoLa has shown worse quality on a real
finite dataset than the methods that use this information.

6.4 Proposed Approaches

6.4.1 sWeights Averaging (Constrained MSE)

Let m be the variable that was used to compute the sWeights, x is the rest of
variables. Let psignal(x) be the probability density function of signal, pmix(x) be the
probability function of the signal and background mixture from which the data were
sampled. It is possible to weight the dataset, so distribution of x will be that of the
signal component with positive weights equal to class probabilitiesW (x) =

psignal(x)
pmix(x)

.
The data weighted with the sWeights achieve the same distribution. Therefore the
signal probability for an example with features x will be the average of the sWeights
over examples with features x:

Em [w(m) | x] =
psignal(x)

pmix(x)
. (6.5)

6.4 Proposed Approaches 108

To prove formally. Let m be the variable that was used to compute the sWeigths,
x be the rest of variables and f(x) is any smooth function of x.

Ex∼psig(f(x)) =

∫
dxf(x)psig(x). (6.6)

Define
W (x) =

psig(x)

pmix(x)
. (6.7)

Then
Ex∼psig(f(x)) =

∫
dxf(x)W (x)pmix(x) (6.8)

By definition of sWeights:

Ex∼psig(f(x)) =

∫
dxdm · w(m)f(x)pmix(x,m), (6.9)

where w(m) is the sWeight.

Ex∼psig(f(x)) =

∫
dxdm · w(m)f(x)pmix(x)pmix(m|x) (6.10)

Rearrange the multipliers in the double integral:

Ex∼psig(f(x)) =

∫
dxf(x)pmix(x)

∫
dmw(m)pmix(m|x) (6.11)

From equation 6.8,∫
dxf(x)W (x)pmix(x) =

∫
dxf(x)pmix(x)

∫
dmw(m)pmix(m|x). (6.12)

An obvious solution to this equation is W (x) equal to the second integral:

W (x) =

∫
dmw(m)pmix(m|x) = Em(sWeight(x,m)) (6.13)

Notice, that the left-hand side of (6.13) is the optimal output of a classifier, while
the right-hand side can be estimated by a regression model. Our first proposed
approach is to perform mean-square regression directly on sWeights. Since the
optimal output lies in [0, 1], one can easily avoid a priori incorrect solutions by, for
example, applying the sigmoid function to the model output. The resulting loss
function is the following:

L =
∑
i

(
wi −

efθ(xi)

1 + efθ(xi)

)2

, (6.14)

where wi is the sWeight and fθ(xi) is the model output. We have implemented this
loss for the CatBoost machine learning library [44] and the source code is available
on GitHub.1

1https://github.com/kazeevn/catboost/tree/constrained_regression

https://github.com/kazeevn/catboost/tree/constrained_regression

6.4 Proposed Approaches 109

6.4.2 Exact Maximum Likelihood

Alternatively, one can invoke Maximum Likelihood principle and avoid the sPlot
technique altogether. Let us denote signal and background classes as S and B,
model parameters as θ. By definition of the log-likelihood l(θ):

l(θ) =
∑
i

log [p(xi,mi,S | θ) + p(xi,mi, B | θ)] =∑
i

log [p(xi,mi | θ, S)P (S | θ) + p(xi,mi | θ,B)P (B | θ)] . (6.15)

Since xi and mi are assumed to be independent within individual classes, expression
(6.15) can be simplified further:

l(θ) =
∑
i

log
∑

C∈{S,B}

p(xi | θ,C)p(mi | C, θ)P (C | θ) (6.16)

Using the Bayes theorem, we expand the conditional probabilities:

l(θ) =
∑
i

log
∑

C∈{S,B}

P (C | xi, θ)p(xi | θ)
P (C | θ)

p(mi | C, θ)P (C | θ) (6.17)

After simplification we get:

l(θ) =
∑
i

log
∑

C∈{S,B}

P (C | xi, θ)p(xi | θ)p(mi | C, θ)

=
∑
i

log p(xi | θ)
∑

C∈{S,B}

P (C | xi, θ)p(mi | C, θ)

=
∑
i

log p(xi | θ) +
∑
i

log
∑

C∈{S,B}

P (C | xi, θ)p(mi | C, θ)

(6.18)

Since both summands are independent, they can be maximised independently. Since
we are not interested in modelling p(x | θ), we can omit it from further analysis:

max
θ
l(θ) = max

θ

∑
i

log [P (S | xi, θ)p(mi | S, θ) + P (B | xi, θ)p(mi | B, θ)]+const.

(6.19)

We know the true values of p(mi | S) from the problem setup (they are used to
compute the sWeights), and choose p(mi | S, θ) = p(mi | S). The final loss function
is the following:

L(θ) = −
∑
i

log
[
fθ(xi)psignal(mi) + (1− fθ(xi))pbackground(mi)

]
, (6.20)

where fθ(xi) is the output of the model, psignal(mi) and pbackground(mi) are the
probability densities of the signal and background m distributions.

Note, that by substituting psignal(mi) and pbackground(mi) by the class indicator
(0 or 1) in loss (6.20), it becomes conventional cross-entropy loss (2.31).

6.5 Experimental Evaluation 110

6.4.3 Classes with Separate Background

Our approach trivially extends to the case where there are several classes, each with
its own background defined by a separate set of sWeights. Labels are available that
say to which class signal/background mixture each example belongs. This problem
naturally arises in the context of particle identification as selections of calibration
samples for each particles species are different.

For simplicity, consider the case of two classes. We want to train a model
that would be optimal for separating the signal parts of the dataset, ignoring both
backgrounds. A loss function of a machine learning model is the expected value of
the per-example loss function. In order to ignore the backgrounds, we can use the
sWeights when calculating the expectations:

L = Ex,y (Em [w1(m) | x]) y log f(x) + (Em [w1(m) | x]) (1− y) log(1− f(x)) ≈
N∑
i=1

yip1(xi) log(f(xi)) + (1− yi)p2(xi) log(1− f(xi)), (6.21)

where w1(m) is the sWeight value corresponding to class 1 (signal) and p1(x), p2(x)
are the probabilities that given example is signal estimated by applying our methods
from sections 6.4.1 and 6.4.2 to portion of the dataset selected by label y.

6.5 Experimental Evaluation

We tested the methods on two datasets. The UCI Higgs dataset [252, 253] and
the LHCb muon identification dataset (which was used for the IDAO competition
described in section 5.7).

6.5.1 UCI Higgs

This is the largest open dataset from the field of High-Energy Physics. It has 28
tabular features. We split it into a train and a test parts containing 8.8 · 106 (80%
of the total) and 2.2 · 106 (20%) events respectively. The dataset is labelled and it
does not feature sWeights, so we introduced them artificially. For both signal and
background events, we added a virtual “mass” distributed as shown in figure 6.1
and used it to compute sWeights. We also compared with the CWoLa method [143]
by splitting the data into a signal-majority and a background-majority regions. The
signal region was chosen with centre at m = 4 (centre of the signal m distribution)
and width so that it would include half of the events. We used neural network and
gradient boosting models described in the following subsections.

6.5.1.1 Neural Networks

For the experiments with fully-connected neural networks we use networks with 3
hidden layers: 128, 64, 32 neurons for the experiments with 8.8 · 106 and 8.8 · 105
samples in the training sets, and 64, 32, 16 neurons in cases of 8.8 · 104 and 8.8 · 103
training samples. Model capacity varies to adjust for the low sample sizes.

6.5 Experimental Evaluation 111

All networks use leaky ReLu (0.05) activation function. Networks are optimised
by Adam [80] algorithm with learning rate 2 · 10−4, β1 = 0.9, β2 = 0.999 for
2.2 · 106 steps (32 full “passes” over the original training sample) with batch size
128. Learning rate is set to the value lower than commonly used ones due to high
variance of the gradients for CWoLa.

Each experiment is repeated five times with varying training dataset (if subsam-
pled) and initial weights. However, within each experiment networks for different
methods have identical conditions: they share initial weights, are trained in the
same subsample and use an identical sequence of batches.

Due to the presence of logarithm, loss function (6.20) might become computa-
tionally unstable for networks with large weights. For the experiments with 8.8 ·104
training samples, l2 regularisation is introduced to the exact maximum likelihood
loss function. This regularisation does not affect results in any significant way,
besides limiting network weights to computationally stable values.

6.5.1.2 CatBoost

We use CatBoost with the following parameters: 1000 trees, leaf_estimation_method=”Gra-
dient”, version 0.10.2 with our losses added and check for negative weights removed,
source code is available 2. Each experiment is repeated 10 times with varying train-
ing dataset (if subsampled).

6.5.1.3 Results

The results are presented in figures 6.2 and 6.3.

For neural networks, using sWeights as event weights for neural network leads
to divergent training. As illustrated in figure 6.2, after the 20-th epoch, training
loss oscillates with a high magnitude and the test score decreases. Training on
true labels gives the best performance, which is expected. All methods, besides
directly using the sWeights, converge to the same quality as the size of the training
dataset increases. Constrained MSE and Likelihood loss functions show the same
performance, both methods outperform CWoLa.

For CatBoost, directly using sWeights as event weights results in stable training
and the same performance as for our methods. Training on true labels again gives
the best performance, CWoLa the worst. The code of the experiments is available
on GitHub3.

6.5.2 LHCb Muon Identification

We evaluate the proposed methods on the problem of LHCb muon identification.
To our knowledge, this is the only open dataset [223] that has sWeights. The
dataset contains different particle species obtained from different calibration decays
[218] and is labelled. Each species has its own background that is subtracted with a

2https://github.com/kazeevn/catboost/tree/constrained_regression
3https://github.com/yandexdataschool/ML-sWeights-experiments

https://github.com/kazeevn/catboost/tree/constrained_regression
https://github.com/yandexdataschool/ML-sWeights-experiments

6.5 Experimental Evaluation 112

103 104 105 106 107

Train size

0.55

0.60

0.65

0.70

0.75

0.80

0.85
RO

C
AU

C

sWeight
True labels
Constrained MSE
Likelihood
CWoLa

(a) CatBoost

103 104 105 106 107

Train size

0.55

0.60

0.65

0.70

0.75

0.80

0.85

RO
C

AU
C

True labels
Constrained MSE
Likelihood
CWoLa

(b) Neural network

Figure 6.3. Experimental evaluation of performance of different loss functions on the
Higgs dataset as a function of train dataset size. sWeight – cross-entropy weighted with
sWeights, it is not reported for the neural network due to divergence of optimization
and, hence, highly stochastic nature of the results; True labels – logloss using the true
labels; Constrained MSE – our loss function defined by (6.14); Likelihood – our loss
function defined by (6.20); CWoLa – method from [143]

separate application of the sPlot method. For simplicity, for study in this subsection,
we use only pion and muon species and ignore the kinematic weights. We split the
dataset into train and test parts containing 2 · 106 and 6 · 105 examples respectively.
For each train dataset size, the classifier was fitted 10 times to estimate the standard
deviation of the scores.

The results are in figure 6.4. Direct application of sWeights statistically signifi-
cantly loses to our approach. The gap decreases with the training set size increase.
However, ignoring the sWeights during training also yields good results, so it seems
that the impact of sWeights on the problem is limited. While this is a good thing
for LHCb muon identification, this limits the utility of the data set with respect
to evaluating the methods for training machine learning algorithms on data with
background subtraction.

So we did an additional test, where we discarded the original sWeights and con-
structed our own in such a way as to maximize their impact on the classification
problem. The idea of the procedure is to artificially introduce a very muon-like com-
ponent into the pionic background. Such background will greatly affect a “naive”
classifier, that disregards the information provided by the sPlot. The procedure is
the following:

1. Train a CatBoost classifier to separate signal and background using the method
from subsection 6.4.1.

2. Use its predictions as event weights to train a classifier to separate muons and
pions as proposed in section 6.4.3

6.5 Experimental Evaluation 113

103 104 105 106

Train size

0.70

0.75

0.80

0.85

RO
C

AU
C

Ignoring
sWeight
Constrained MSE

Figure 6.4. Experimental evaluation of CatBoost with on the MuID dataset. sWeights –
using sWeights directly as weights for logloss; Constrained MSE – our regression (6.14)
used to transform the sWeights, the result used as weights for classification; Ignoring
weight – training ignoring the sWeights.

3. Select 30% of the examples with muon ground truth label with the highest
muon classification scores and mark them as pionic background

4. Take the signal probabilities obtained from the first step and assign deter-
ministic signal and background labels by cutting on its output. At this stage,
the dataset is fully labelled – for each example there is a label whether it is
considered ”muon signal”, ”muon background”, ”pion signal” or ”pion back-
ground”.

5. Generate “pseudomass” for both muon and pion samples (distributions are on
figure 6.5), used it to compute the new sWeights

After generating the artificial sWeights, we evaluated different classification
methods on the dataset. The results are presented in figure 6.6. As expected from
the experiment design, the performance of a classifier that ignores the sWeights is
significantly lower compared to the rest. Using the sWeights as example weights
has the worst performance among the methods that account for the sWeights, with
a surprising exception of CatBoost with train size equal to 2 · 103. For CatBoost
both our methods show the same performance. For neural networks, Constrained
MSE beats the Likelihood.

The models’ parameters are:

• Fully-connected neural networks (NN): 4 layers, 512, 256, 128 neurons in
the first three layers and either 1 or 2 neurons in the last one, leaky ReLu
(0.05), optimised by Adam [80] algorithm with learning rate 2 ·10−4, β1 = 0.9,
β2 = 0.999, trained for 32 epochs. Regressors and classifiers use the same
architecture;

6.6 Conclusion 114

0 2 4 6 8 10 12 14
m

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40 signal
 background
 signal
 background

Figure 6.5. Discriminative variable distributions used to regenerate the sWeights for the
additional test.

• Catboost: 500 trees, leaf_estimation_method=”Gradient”, version 0.10.2 with
our losses added and check for negative weights removed.

6.6 Conclusion

Training machine learning models on real experimental data (as opposed to Monte-
Carlo) is very desirable, as it allows the model avoid bias caused by imperfection
of the simulation. One of the obstacles is that real data often come contaminated
with some sort of background. A common way of dealing with it, the sPlot method,
introduces negative event weights. Training a machine learning algorithm on a
dataset with negative weights means coping with a loss that potentially has no lower
bound. The implications depend on the algorithm in question. In our experiments,
neural network training diverges, while gradient boosting oblivious decision tree
does not.

Our contribution is two loss functions that allow a machine-learning algorithm
to obtain class probabilities from background-subtracted data without encountering
negative event weight at all. The probability of an event with given control variables
values to be signal is the expected sWeight, that can be estimated by a regression
with the corresponding loss function (6.4.1). We invoke the Maximum Likelihood
principle to construct a loss function that avoids the sPlot technique and therefore
doesn’t face the issue of negative event weights (6.4.2).

Our work paves a rigorous way to use any machine learning methods on data
with sPlot-based background subtraction. The Constrained MSE method has been

6.6 Conclusion 115

103 104 105 106

Train size

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90
RO

C
AU

C

Ignoring
sWeight
Constrained MSE
Likelihood

(a) Catboost

103 104 105 106

Train size

0.65

0.70

0.75

0.80

0.85

0.90

RO
C

AU
C

Ignoring
sWeights
Constrained MSE
Likelihood

(b) Deep Neural Network

Figure 6.6. Experimental evaluation of our loss functions on the MuID dataset with arti-
ficial sWeights. sWeights – using sWeights directly as weights for logloss; Constrained
MSE – our regression (6.14) used to transform the sWeights, the result used as weights
for classification; Likelihood – our likelihood (6.20) for the transformation; Ignoring
weight – training ignoring the sWeights.

used to train the high-occupancy models described in section 5.5.

116

Chapter 7

Global Charged Particle
Identification

The LHCb detector consists of a number of different subdetectors that do the
particle identification (PID): Ring-Imaging Cherenkov detectors (described in sub-
section 4.2.2.1), calorimeters (subsection 4.2.2.2), and the muon subsystem (sec-
tion 5.1). The basic physics behind the particle identification in LHCb is illustrated
in figure 7.1. The tracking system reconstructs charged particles tracks. Momentum
is measured from the track bent in the magnet. Particles, that fall into the RICH
momentum acceptance range, emit Cherenkov photons. Electrons are absorbed
by the electromagnetic calorimeter (ECAL), hadrons by the hadronic calorimeter
(HCAL). The calorimeters measure the deposited energy. Muons pass through the
detector and leave hits in the muon chambers. For each track, there is a variety
of variables that are associated with it and may aid in determining the particle
type. They are described in detail in appendix B.1. There are dedicated algorithms

Figure 7.1. A sketch of the responses of the different LHCb particle identification subde-
tectors to different charged particles. Reproduced from [254].

7.1 Objective and Formalisation of the Global PID 117

for each subdetector that process the subdetectors’ response and estimate differ-
ent variables for each charged tracks. For physics analysis, we need to aggregate
this information into a single decision about particle type. In the context of this
chapter, we call this aggregation global particle identification, in contrast to “local”
PID, that is based on a single subdetector.

In this chapter, we describe how global particle identification works at the LHCb.
In section 7.1 we discuss the mathematical formalism of the PID objective. In sec-
tion 7.2 we describe the baseline approach, where for each subdetector explicit parti-
cle type hypotheses likelihoods are computed. In section 7.3 we provide the holistic
approach based on machine learning that leads to a better result. In section 7.4
we describe the machine learning algorithms that we evaluate – state-of-the-art
gradient Gradient Boosting Decision Trees (GBDT) and deep neural networks. In
section 7.5 we evaluate the performance of those approaches.

My contribution to global particle identification is design and implementation
of machine learning algorithm based on gradient boosting. Its error, as measured
by 1-vs-all 1 − ROC AUC (area over the ROC curve) score, is 18%-54% lower
compared to the baseline solution on simulated data. The work has been published
in [255], and the algorithms have been implemented in the LHCb software [256].

7.1 Objective and Formalisation of the Global PID
PID algorithm assigns each charged track in the detector the scores of it corre-
sponding to a particular particle type: electron, muon, pion, kaon, proton and
ghost (reconstruction error). It can be viewed as a summary statistic, that col-
lapses the raw detector readout into a small set of variables. PID is an intermediate
step in the LHCb data processing. In principle, it is not necessary to designate it
as a separate step, as signal selection can be made to use the raw detector response
directly. But having PID as a single distinct step offers important benefits:

• Labour and expertise division. Separate teams produce the PID variables that
are then reused in multiple analyses.

• Computational efficiency. Processing the information from the PID detectors
can be quite expensive, with a single set of variables, this has to be done only
once.

One would want to determine the types of particles in the detector precisely. In
the real world, absolute certainty is impossible – and the goal of the PID becomes
fuzzy. A good way to see the difficulty is figure 4.9. If a particle has momentum
and Cherenkov angle in a region, where the bands for muons and pions intersect,
what PID hypothesis should be assigned to it? There are several reasonable ways
to answer this question:

1. Posterior probabilities, that are the best possible estimate of the particle type
for each track, taking into account the full event information. The estimate
incorporates the knowledge of both the distribution of the parameters of the
p− p collision products and the detector response.

7.1 Objective and Formalisation of the Global PID 118

2. Optimal from the point of view of important analyses. Not all tracks are
equally important for the physics goals of LHCb. If we specify the target de-
cays, PID can be tuned to optimally separate those important decays, without
regard to performance in the other cases.

3. “Agnostic” PID. Compute posterior probabilities, but instead of the real dis-
tribution of the p− p collision products kinematics and types, use some arbi-
trary distributions.

Computing the true posterior probabilities of particles types conditioned on the
full detector readout is appealing from the mathematical point of view. However,
this imposes a fundamental challenge. The PID variables computed in such a fashion
would depend on the quantities that we try to measure. If some decay never occurs
in the SM, the “true posterior” PID variables will make sure it is never observed in
the real detector.

Producing PID variables, that are optimised for the needs of the analyses is
the most sensible choice from the point of view of the physics goals. PID variables
have no utility on its own; they only matter as an intermediate step. There are
two primary complications with this approach. First, analyses are complex, not
fully formalised and automated. In order to produce the optimal PID, they must
be formalised and automated. There is ongoing research into designing optimal
summary statistics [257], but it is yet to demonstrate feasibility for a large high-
energy physics experiment. Second, it is desirable to have a single set of PID
variables, that can be utilised in centralised selections. There are many analyses in
LHCb, and an analysis-aware PID will have to take into account all of them.

“Agnostic” PID provides the absolute certainty of the independence of its output
from the physical parameters of interest. The main drawback for this approach is
an inherently inferior performance when applied in analyses. There are two main
reasons for this. First, there are many particles in an event – and the responses of
the PID detectors depend on all of them together. If particles are generated from
simple artificial distributions, these occupancy effects will be modelled incorrectly.
Second, the distributions of the kinematic variables for different particle types, that
is assumed during the model training is different from the one observed in the real
detector.

An important conclusion to draw here is that a single set of PID variables
can’t be optimal for every use case and at the same time be independent of the
physics parameters of interest. An algorithm that is optimal for a given distribution
of the kinematic variables will be suboptimal for another decay with a different
distribution.

The LHCb collaboration uses a variation of the second option. It is not for-
malised, relies on proxy metrics for quality and physics considerations for ensuring
independence from the physical quantities of interest. It is used to produce an
overwhelming majority of the published LHCb results. The training procedure and
assumptions behind it have not been published in a peer-reviewed publication; its
performance studies have been published [10].

The training dataset consists of a series of MC samples, that include some of
the most important decays for LHCb. The training uses all the tracks in the events.
The independence of the PID from the physical parameters of interest is ensured

7.1 Objective and Formalisation of the Global PID 119

through the selection of features. Each track is considered independently, and the
variables are supposed to correspond to the detector response to this particular
track in isolation.

Mathematically speaking, define a track as tuple containing the kinematic pa-
rameters k (momentum, transverse momentum, origin vertex) and species s. A
physical event E is a set of tracks. The raw response of the LHCb detector to the
event is R. This response is a random variable, which is defined by some probability
distribution P (R,E). These and other notations are summarised in table 7.1. The
goal of the LHCb experiment as a whole is to estimate

P (E) =

∫
dRP (R,E), (7.1)

with E restricted to a region of the phase space, that corresponds to the LHCb
physics program.

Variable Definition
k kinematic parameters of a track
s particle species of a track
E physical event, a set of tracks
R raw response of the LHCb detector to an event
v PID variables associated to a track, reconstructed from R and k
V set of the PID variables of all tracks in an event

Table 7.1. Notation used in section 7.1

Monte-Carlo simulation allows to approximate P (R,E) – given a model of
physics, compute the distribution of long-lived tracks inside the detector, and the
detector response to them. This presents a conceptual problem, introduced in the
“true posterior” paragraph – without further assumptions, we can not estimate the
true P (E). The precise assumptions are many, formulating and justifying them is
the most laborious part of a physics analysis.

In the case of the global PID, the core assumption we make is that the unknown
physics parameters are contained only in the distribution of the tracks P (E) — and
their interaction with the detector is governed by the physics assumed known. While
this seems obvious, it is easy to construct an example, where this does not hold.
Consider the measurement of the muon lifetime. The detector response – whether
the particles in question reach the muon chambers – depends wholly on the lifetime.
In LHCb, we assume, that the properties of the relatively stable particles that reach
the PID subdetectors are known. In principle, this already allows us to resolve the
core problem:

P (E) =
P (R)P (E|R)
P (R|E)

, (7.2)

P (R) can be estimated from the experimental detector response, by assumption, the
conditional probability P (R|E) can be estimated from MC and its inverse P (E|R)
using machine learning. However, computationally, this is not an easily tractable
problem. An event is a very complex object and training a machine learning algo-
rithm to estimate P (E|R) would require an impractically large amount of data and
computing power.

7.1 Objective and Formalisation of the Global PID 120

Therefore, for PID, we enter the second and third assumptions. The tracks are
independent random variables. Let v be the PID variables that correspond to a
track and V be the set of all PID variables in an event. V is reconstructed from R.
We assume that the PID variables for different tracks are also independent random
variables:

P (R,E) ≈ P (V,E) =
∏
e∈E

P (v|e)P (e). (7.3)

This allows to finally formulate the PID problem:

P (s|v, k) = P (s, v, k)

P (v, k)
=
P (v|s, k)P (s, k)
P (v|k)P (k)

=
P (v|s, k)P (s|k)P (k)

P (v|k)P (k)
=
P (v|s, k)P (s|k)

P (v|k)
(7.4)

If we specify the P (s, k), an MC simulation allows to sample from P (v, s, k), and
a machine learning algorithm can learn P (s|v, k). The learned distribution depends
on the P (s, k) distribution – so the result, strictly speaking, will be wrong, if the
model is applied to a sample with a different P (s, k). To illustrate, imagine a decay,
that produces muons always with momentum in the range [1.1, 1.2] GeV and pions
in the range [2.1, 2.2]. In this setting, muons and the pions can be fully separated,
P (s|v, k) ∈ {0, 1}. However, a PID model trained over a more broad dataset, will
not be able to reproduce this certainty, as, in general, muons and pions are not
separated by momentum – just like a model trained using this decay will fail in the
general case.

This is an unavoidable limitation of having a single set of PID variables. But
they are still useful. Finding physics beyond SM means finding events, that occur
with different frequency in the real world and SM. Ideally, we just want to take a
process of interest, count the fraction of events, where it occurs and compare the
result to the SM prediction. The problem is that we can’t observe the process of
interest directly, only its imprint on the detector. Therefore, we design a selection
based on the observed data, R. We want it to select all the events, that contain
the process of interest, and only them. But even if it is not perfect, a discovery
can still be made, it would just require more data. If it is built upon suboptimal
PID variables than it would be suboptimal, but still perfectly useful. On the other
hand, the more precise those variables are, the easier it is to use them to construct
a more sensitive selection operator.

On the other hand, equation 7.4 opens a way to adjust the PID to a different
sample. Let this sample be drawn from a different distribution Q(v, s, k):

Q(s|v, k) = Q(v|s, k)Q(s, k)

Q(v, k)
= P (s|v, k)Q(v|s, k)

P (v|s, k)
Q(s, k)

P (s, k)

P (v, k)

Q(v, k)
. (7.5)

Q(v|s, k)
P (v|s, k)

= 1, (7.6)

as it is determined by the detector, which stays the same. Q(s,k)
P (s,k) can be estimated

by a classifier trained to classify the two MC samples, one from each distribution,
using (s, k) as features. P (v,k)

Q(v,k) can be estimated a classifier trained to classify the
two data samples, one from each distribution, using (v, k) as features. For this to

7.2 Adding Likelihoods 121

work, the kinematic coverage of the two samples must overlap, otherwise the ratios
can not be estimated by ML with any degree of certainty.

The alternative to this procedure is training an optimal PID operator directly
on MC for the second sample. The advantage of this procedure is that it does
not require simulation of the PID subsystems response – only a physics simulation
to obtain the (s, k) sample and a data sample of (v, k). Since MC does not fully
correspond to the data, it remains an open question that must be decided on a
case-by-case basis, whether they can be freely mixed like this.

The result of this procedure relies on the P (s|v, k), Q(s,k)
P (s,k) ,

P (v,k)
Q(v,k) estimates. The

quality of the estimates relies on the quality of machine learning – which is my
contribution.

7.2 Adding Likelihoods
Historically, the first way to combine the information from different subsystems was
adding the log-likelihoods. If we assume that the responses of different subsystems
are independent random variables, and the likelihoods are indeed the true likelihoods
derived from the same priors, the particle hypotheses’ likelihoods are the sum of
the likelihoods computed from the individual subsystems’ responses:

DLLspecies = DLLspecies
RICH +DLLspecies

CALO +DLLspecies
MUON. (7.7)

The performance improvement compared to using just the response of the “cor-
responding” detector is illustrated in figure 7.2. The improvement can be clearly
seen, for example at 90% electron identification efficiency the pion misidentification
rate drops from ∼ 6% to ∼ 0.6% [10].

0.70 0.75 0.80 0.85 0.90 0.95 1.00
e efficiency

10 3

10 2

10 1

100

 m
is-

ID
 ra

te

Combined likelihood
CALO only

Figure 7.2. Electron identification efficiency versus pion misidentification rate. Data from
[10].

Another example of the advantage of the combined likelihood over the per-
subsystem is also presented in reference [10]. It refers to one of the most prominent
LHCb results, a search for the rare decays B0

s → µ+µ− and B0 → µ+µ−, which

7.3 Combining Information with Machine Learning 122

deeply relies on muon identification [258]. Decays modes B0
(s) → h+h−, where

h ∈ {K,π}, fake signal, if one or both hadrons are misidentified as muons. This
misidentification probability has been evaluated using the D0 → Kπ and D?+ →
D0π+ calibration samples in bins of p and pt matched to the kinematic spectrum
of the simulated B0

(s) → h+h− decays. When the muon candidate tracks are also
required to satisfy a criterion on the combined likelihoods, DLLK < 10 and DLLµ >
−5, the background rejection is improved by a factor of 6 at the price of 3% signal
efficiency reduction.

The DLL addition approach does not allow to realise the full potential of the
LHCb particle identification [259]. Conceptually, just adding log-likelihood disre-
gards potential correlations between the underlying variables. Practically, adding
log-likelihoods relies on them being mathematically well defined (i.e. logarithm of
the product of probability values) and correspond to the same prior distribution,
which is hard to achieve. An additional issue is the difficulty of building likelihoods,
that would include all the information from subsystems, including the acceptance
flags and such.

7.3 Combining Information with Machine Learning
Machine learning is a logical way to combine the various variables into a decision
on particle type. It does not rely on the variables to have a particular form. From
the point of machine learning, this is a 6-class multiclassification problem on tabu-
lar data. Within LHCb this approach has been floated since at least 2001, as per
references [260, 261], although, from the subsequent performance report [262] it ap-
pears that the proposed algorithms did not leave the prototype stage. The approach
commonly used by the LHCb experiment during Run 2 is called ProbNN [10, 263].
ProbNN consists of separate neural networks for each particle type (electron, muon,
pion, kaon, proton and ghost) and track type (long, downstream and upstream) –
6× 3 = 18 models in total. It uses different subsets of features for different particle
types. Those are selected by physical considerations, and the number of features
ranges from 18 to 49. The full feature list is provided in the appendix B.1. The
model uses fully-connected neural networks with a single hidden layer. The number
of neurons in the first layer is equal to the number of features, the number of neu-
rons in the hidden layer is 1.4 the number of features, the output layer has a single
neuron.

The improved quality of particle identification for µ-vs-π and p-vs-π is illustrated
in figure 7.3. A more detailed study of ProbNN performance can be found in
reference [10].

7.4 State-of-the-art Machine Learning
The quality of the approach described in the previous section is limited by the
simplicity of the machine learning model. To test the hypothesis whether better
PID can be obtained using the same data, we built models for long tracks using
feature engineering and several state-of-the-art machine learning algorithms. We
evaluated two top approaches, introduced in chapter 2: gradient boosting decision

7.5 Performance 123

Figure 7.3. Background misidentification rates versus muon (left) and proton (right)
identification efficiency, as measured in the Σ+ → pµ+µ− decay study. The momentum
range is 5–10 GeV/c for muons and 5–50 GeV/c for protons. Data sidebands are used
for backgrounds and Monte Carlo simulation for the signal. Reproduced from [10].

trees (as implemented by CatBoost [44]) and a dense deep neural network (Deep
NN). The new ML approaches reuse the ProbNN training datasets and variables,
but exchange the machine learning algorithms for better ones.

For CatBoost, we train a model for each track type in one-vs-rest fashion as
is in ProbNN as this approach has shown slightly superior performance compared
to a single multiclassification model. The parameters of the CatBoost model were
optimised. To do this, we used the random search method. For the parameters,
that affect the result in the most, reasonable distributions were chosen, based on
the recommendations from CatBoost developers [264]. Those distributions were
sampled, and each sampled combination of the parameters was evaluated via cross-
validation. The choice of the optimisation method was dictated by the availability
of the proprietary Nirvana [265] computing system at Yandex, that allows for easy
execution of a massive number of embarrassingly-parallel tasks.

The deep neural network has 5 layers with 60, 300, 300, 400 and 6 neurons
correspondingly, and with ReLU activation function. The last layer uses the softmax
activation, to ensure that the network outputs satisfy basic properties of probability:
each of them lies in [0, 1] and their sum equals 1. Each of the outputs of the neural
network corresponds to the probability of the track to be of a type. Like in ProbNN,
to improve convergence and ensure equal treatment of all features, the input features
are scaled, so that they lie in the interval [−1, 1].

The models were trained on a simulated dataset with 106 examples per particle
type of the same nature, that was used for ProbNN training.

7.5 Performance
As discussed in section 7.1, the performance of a PID algorithm varies with the
distribution of the kinematics distribution of the particles it is applied to. We did
the following tests:

• On the simulated data, generated in the same way as the training dataset.
This provides a way to assess the performance over a broad kinematic spec-
trum, the one the LHCb collaboration settled on as having sufficient coverage.

7.5 Performance 124

• On the calibration samples. They contain real data, but their kinematic spec-
trum is determined by what is available, and they are not representative of
the overall needs of the LHCb analyses.

7.5.1 Simulation

For evaluating the models we used a simulated test dataset with 106 examples
per particle type, that was not used in model training, but produced using the
same procedure. The following figures display the performance of different models
measured in different ways:

1. One-vs-rest ROC curves in figure 7.4

2. One-vs-rest ROC AUC scores in table 7.2

3. Relative improvement of the one-vs-rest 1 − AUC scores compared to the
baseline (ProbNN) in table 7.3

4. One-vs-one ROC AUC scores for 6 particularly important for analysis pairs
in table 7.4

5. One-vs-one ROC curves in figure 7.5.

Model ghost electron muon pion kaon proton
ProbNN 0.9484 0.9855 0.9844 0.9346 0.9148 0.9178
Deep NN 0.9632 0.9915 0.9925 0.9587 0.9320 0.9319

CatBoost 0.9664 0.9917 0.9929 0.9586 0.9322 0.9323
Table 7.2. One-vs-rest ROC AUC scores for different models on simulated data. All the

differences are statistically significant with p-value less than 10−6 as estimated by the
method from reference [52].

Model ghost electron muon pion kaon proton
Deep NN −29% −41% −52% −37% −20% −17%
CatBoost −30% −43% −54% −32% −20% −18%

Table 7.3. Relative increase of the one-vs-rest 1 − AUC scores compared to the baseline
(ProbNN) for different particles species and ghosts (lower is better) on simulated data.
The statistical uncertainty is lower than 1%

Model µ-vs-π K-vs-π p-vs-π p-vs-K e-vs-π e-vs-K
ProbNN 0.9763 0.9298 0.9295 0.7450 0.9888 0.9935
Deep NN 0.9869 0.9399 0.9456 0.7633 0.9941 0.9965
CatBoost 0.9878 0.9406 0.9418 0.7716 0.9945 0.9969

Table 7.4. One-vs-one ROC AUC scores for different models on simulated data. The
uncertainty is less than 0.0003.

7.5 Performance 125

Figure 7.4. Performance of the models in terms of one-vs-rest ROC curves. Reproduced
from [266].

Both of our models show noticeable improvement compared to ProbNN. Almost
everywhere, CatBoost has a slight, but statistically significant lead over the deep
neural network. Nevertheless, the performance of both methods, despite their very
different nature, is extremely close. This allows us to speculate that this is the limit
achievable with the current state of machine learning research for these data and
problem formulation.

7.5.2 Real Data: Calibration Samples

We studied the operators’ performance using the high-momentum calibration sam-
ples described in subsection 4.3.7. The performance of the different models in terms
of one-vs-one ROC curves for select pairs is presented in figure 7.6, in terms of one-
vs-one ROC AUC scores in table 7.5. For all pairs, except for K-vs-π, CatBoost
shows the best performance.

To study the lower performance in the K-vs-π separation, we additionally mea-
sured the performance using samples coming from different decays: KS → ππ and
DS → φ(KK)π [267]. The momentum and transverse momentum distributions of
the particles in these calibration decays are closer to the ones in the MC sample
used for training. This provides for a way to understand whether the performance

7.5 Performance 126

Figure 7.5. One-vs-one ROC curves for select particle pairs obtained on simulated samples.
Private run. Reproduced from [266].

gap is due to more powerful models overfitting to the peculiarities of MC, or due to
unavoidable limitation of a single set of momentum-dependent PID variables. The
datasets used in the study are:

• The MC samples, generated similarly to the one used for training ProbNN
and our models

• Calibration data samples, D? → D0(Kπ)π

• Calibration MC samples, D? → D0(Kπ)π

• Calibration data samples in the low momentum region, KS → ππ and DS →
φ(KK)π

The momentum and transverse momentum distributions are shown in figure 7.7.
We did a series of tests comparing performances of different algorithms:

• On the high-momentum calibration sample and the simulation of the same
decays. The result is presented in figure 7.8. The ordering of the algorithms
in terms of performance is the same. The performance on MC is slightly better
than the performance on data.

7.6 Conclusion 127

Figure 7.6. One-vs-one ROC curves for select particle pairs obtained on 2016 calibration
samples. Private run. Reproduced from [266].

• On the low-momentum calibration sample. The result is presented in figure
7.9. Like when using the MC data, CatBoost has the best performance.

As a final test, we measured the algorithms’ performance as a function of the mo-
mentum and transverse momentum. The result is presented in figure 7.10.

7.6 Conclusion
Using state-of-the-art machine learning methods allows for significant improvement
of Global PID performance across the board. The new methods have been evaluated
on both simulated and real data. Different algorithms show the best performance
on the low- and high-momentum calibration datasets, with comparable performance
gap between the algorithms. This suggests that the evaluated methods push to its
limit the current approach with having a single set of PID variables trained on MC.
There are two possible venues for future improvement. The first is closing the gap
between the simulated and real data – by improving the simulation quality or incor-
porating the calibration samples. The second is meticulously building the training
dataset as a composition of datasets with the numbers of events proportional to
their importance to the LHCb physics program.

7.6 Conclusion 128

Model µ-vs-π K-vs-π p-vs-π p-vs-K e-vs-π e-vs-K
ProbNN 0.9353 0.9830 0.9846 0.9067 0.9944 0.9980
Deep NN 0.9308 0.9649 0.9772 0.9303 0.9957 0.9986
CatBoost 0.9372 0.9734 0.9847 0.9571 0.9980 0.9992

Table 7.5. One-vs-one ROC AUC scores for different models on 2016 calibration data.
The uncertainty is less than 0.0003.

Figure 7.7. Momentum (upper panels) and transverse momentum (lower panels) distri-
butions. Train MC is the simulated dataset used for PID training; Calib Data dataset
is the high-momentum calibration dataset; Calib MC is the simulated high-momentum
calibration dataset; Calib Low P is the low-momentum calibration dataset

(a) High-momentum calibration dataset (b) High-momentum calibration MC dataset

Figure 7.8. ROC curves for different algorithms. Reproduced from [267]. Private run.

7.6 Conclusion 129

0.85 0.90 0.95 1.00
Kaon efficiency

0.5

0.6

0.7

0.8

0.9

1.0
P
io

n
 r

e
je

ct
io

n
LHCb Data Low P, preliminary

ProbNN, 0.988

Deep NN, 0.988
CatBoost, 0.992

Figure 7.9. ROC curves for different algorithms for the low-momentum calibration sample.
Reproduced from [267]. Private run.

Low statistics

(a) ROC AUC values as a function of mo-
mentum for different PID algorithms on
the high-momentum calibration sample.
Reproduced from [267]. Private run.

Low statistics

(b) ROC AUC values as a function of trans-
verse momentum for different PID algo-
rithms on the high-momentum calibra-
tion sample. Reproduced from [267].
Private run.

Low statistics

(c) ROC AUC values as a function of mo-
mentum for different PID algorithms on
the low-momentum calibration sample.
Reproduced from [267]. Private run.

Low statistics

(d) ROC AUC values as a function of trans-
verse momentum for different PID algo-
rithms on the low-momentum calibration
sample. Reproduced from [267]. Private
run.

Figure 7.10. ROC AUC values as a function of momentum and transverse momentum.

130

Chapter 8

Fast Simulation of the
Cherenkov Detector

New runs of the Large Hadron Collider and the next generation of colliding experi-
ments with increased luminosity will require an unprecedented amount of simulated
events to be produced. This would bring an extreme challenge to the computing
resources. Thus new approaches to events generation and simulation of detector
responses are needed. Cherenkov detectors, being relatively slow to simulate, are
well suited for applying recent approaches to fast simulation.

In section 8.1 we discuss the applications of simulation of physics experiments.
In section 8.2 on overview of the LHCb simulation methods is presented. In section
8.3 we review existing techniques of improving the simulation speed. In section 8.4
we present my pilot study on using machine learning to build a fast simulation of
the BaBar Cherenkov detector. In section 8.5 we present the framework that the
LHCb experiment is developing for fast simulation.

8.1 The Role of Simulated Data in High-Energy Physics
Experiments

Conducting a scientific experiment usually means testing a hypothesis. To do so,
we must construct an experiment and formulate what would its results look like
if the hypothesis is true and if it is not true. For simple enough experiments,
that can be done analytically. For example, the groundbreaking Davisson–Germer
experiment proving electron diffraction, required checking whether the resulting
pattern confirms to the formula derived from the Bragg’s law.

Measuring more fine effects requires more sophisticated experiments, and, at
some point, it becomes impossible to define how the results should look like, using
only hand-derived mathematical formulas. The prime examples of this trend are
the high-energy physics experiments at CERN. In their case, computed simulation
must be used to establish a link between the physical processes of interest hap-
pening inside the detector and its response. The situation is complicated further
by the objectively random nature of quantum mechanics. The applications of the
simulation methods can be broadly categorised into two groups: detector design
and data analysis.

8.2 Simulation in LHCb 131

8.1.1 Detector Design

Not all experiments are born equally sensitive to new physics. In order to create
a sensitive installation, a good understanding and validation of its properties are
required. For a modern complex instrument, the only way to acquire that under-
standing is simulating it. Practically every part of the LHCb experiment has been
simulated prior to commissioning [11].

8.1.2 Data Analysis

A typical analysis in high-energy physics is the measure of some signal yields. The
most effort goes into designing a procedure to select the relevant signal, applying it
to the data gathered by the detector, and estimating the precision of the selection.

The selection procedure can be separated into two stages: the common recon-
struction and the signal selection. Reconstruction transforms the raw detector read-
out into the tracks and vertices and labels the particle types. Simulated data is used
to train some of the algorithms at this stage, for example, see LHCb tracking in
subsection 4.2.1 and LHCb particle identification in chapter 7. Simulated data are
also used for measuring the performance of the various aspects of reconstruction
[11, 268].

Signal selection algorithms use the reconstructed events and decide whether they
contain the signal of interest. Simulated data is foremost used to study the signal
efficiency and the background rejection of the selection. Simulation is essential
for modelling the background for the cases where data-driven selections are not
available (for example, combinatorial background in [190]). If machine learning is
used for building the selection operator, it is typically trained using the simulated
signal, for example, see the cases in chapter 3.

A large amount of simulated data is needed due to two factors. First, the
simulated data needed for signal selection is generally unique per analysis. Second,
the limited number of simulated events translates into systematic uncertainty of
any result obtained from them. For example, the statistical uncertainty of signal
efficiency estimation will directly become systematic uncertainty of the measured
branching fraction. Therefore, in most cases, it is desirable to have at least the
same number of simulated signal events as there are real data.

8.2 Simulation in LHCb

Simulation at LHCb is implemented in the Gauss package [14]. The structure of
the Gauss software is presented in figure 8.1. The simulation consists of two major
steps [269]:

1. Simulation of the processes occurring in the proton-proton collision, until all
products are stable/quasi-stable particles. It is typically split into phases:
matrix elements calculation, parton shower, and hadronisation. LHCb uses
Pythia [142] for this purpose. Being a b-physics experiment, LHCb needs a
very detailed simulation of B decays. For this purpose, LHCb uses EvtGen
[141] for simulating time evolution of the produced particles. EvtGen was

8.2 Simulation in LHCb 132

Figure 8.1. The scheme of the Gauss software. Reproduced from [270].

originally developed for the BaBar experiment and then further customised
to handle incoherent B0 and B0

s production. At this stage, a sample gener-
ation tool is employed. It checks whether the produced event adheres to the
specified requirements. There are several categories of events, depending on
the simulation objective [270]:

• Minimum bias events do not impose any additional requirements.
• Inclusive: events containing at least one particle from the specified list.

The most common case is to check for beauty and charm hadrons.
• Signal: events containing at least one signal particle. At least one of

the signal particle is forced to decay to a predefined decay mode. For
rare signal hadrons, for example, B0

s compared to B+, the following
technique is used: when an event containing a b-quark is obtained, it is
re-hadronised until the desired B-meson is produced

• Special: events defined with special generator settings, usually containing
processes with very low cross-sections, such as Z0 production.

2. Simulation of the interaction of the produced particles with the detector is
handled by Geant4 [271]. It propagates the particles and outputs hits in the
sensitive parts on the detector along with the Monte-Carlo truth information
about the particles.

The simulated data is then processed through the same reconstruction and selection
pipeline as the real data.

8.2.1 Technical Improvements to Full Simulation

The Gauss framework was written 15 years ago and processes the events in a single
thread. The parallelism is achieved by launching multiple copies of the application

8.3 Fast Simulation 133

as different processes. Nowadays, this is not sustainable, as the number of CPU
cores is growing more rapidly than the available memory. For example, when the
LHCb trigger farm is used for Monte-Carlo production, it is not possible to utilise all
the available CPU cores [272]. To resolve this, the LHCb collaboration is moving
to multithreaded event processing. It allows to reduce the memory footprint by
not duplicating in RAM the data, that is common to multiple events, such as the
detector geometry.

8.3 Fast Simulation

During the LHC Run II approximately 75% [273] to 90% [274] of the offline com-
puting resources of the LHCb collaboration were used for Monte Carlo simulations.
This is also the case for many other high-energy physics experiments [275]. Despite
the dedicated resources, an insufficient amount of simulated data is a major source
of systematic uncertainty [276]. The planned trigger purity increase and a five-fold
luminosity increase for the LHCb Run III are not accompanied by a corresponding
increase in the computing budget. Therefore, to continue to have the number of
simulated events comparable to the number of real data events, faster simulation
methods are needed. The projected CPU requirements and the pledged resources
are presented in figure 8.2.

Figure 8.2. Projected LHCb computing needs breakdown by category. If the full simula-
tion is utilised, the MC requirements (green bars) are several times the pledged resources
(red line). Fast simulation, if aggressively adopted, will allow fitting into the budget
(dashed magenta line). Reproduced from [277].

Simulating the interaction of the particles with the detector takes 95% – 99%
of the total computation time [272] and scales linearly with the event multiplicity.
In some cases, the simulation precision requirements can be relaxed: evaluating
systematic uncertainties, detector prototyping, phase space scans. In some analysis,
it can be acceptable to use a rough model to model some samples, e. g. [278, 279].
For these applications, the simulation speed can be increased at the price of reduced

8.3 Fast Simulation 134

fidelity.

8.3.1 ReDecay

When a signal MC event is generated the most, and sometimes the only, interesting
particles are the ones belonging to the signal decay. This opens a way towards
optimisation. Naively, we might simply generate only the signal decay, without
bothering with the rest of the event. While this provides a dramatic speed-up, it
disregards the occupancy effects and overestimates the efficiencies. A development
of this intuition is the ReDecay method [272].

1. A full Monte Carlo event, including the signal decay, is generated

2. After generating the particles (Pyhtia+EvtGen stage), but before simulat-
ing the detector interaction (Geant4 stage), the signal particle and its decay
products are removed from the event. The kinematic parameters of the signal
particle are stored.

3. The rest of the event (ROE) is simulated, the information about the true
particles and the detector energy deposits is stored.

4. The following is repeated several times:

(a) Some decay of the signal particle with the stored kinematics is simulated
(b) The detector energy deposits for the ROE and signal decays are merged

This approach provides resolutions and efficiencies equal to a normal simulation.
The main difficulty is that it violates the commonly used property, that the events
are independent of each other. The effect of these correlations depends on the stud-
ied observables. In the case of a significant impact, analysis is greatly complicated,
and the analysts must either use some sort of parametrisation of the correlation
effect or have to resort to full simulation.

The ReDecay approach improves the simulation speed by a factor of 20-50 while
providing high-fidelity signal simulation. It has been widely adopted in the LHCb
collaboration, see the figure 8.3.

8.3.2 Parametrisation and Simplification

Since the most expensive part of the simulation is the computation of the particles’
interaction with the detector, a natural thing is to try simplifying the model and
replacing ab initio calculations with parametric estimates. This can be done at
different levels, depending on the accuracy and timing requirements. To achieve
the optimal result, extensive knowledge of the detector and the desired use cases is
required.

8.3.2.1 CMS Fast Simulation

A prime example of this approach is CMS fast simulation [280, 281, 282]. It provides
speed up by two orders of magnitude compared to the full simulation. Its main
trade-offs are:

8.3 Fast Simulation 135

Figure 8.3. ReDecay adoption an LHCb. Reproduced from [277].

• simplified geometry;

• material layers thickness is neglected, the difference of the simulated material
thickness is presented in figure 8.4 for the tracker;

• material interaction is parametrised by analytical formulas;

• simplified tracker emulation.

Figure 8.4. A radiography of a quarter of the simulated CMS tracker geometry in the fast
(left) and full (right) simulation. Reproduced from [283].

The fast simulation is used for a “simplified model scan” [284] signal in most
of the CMS supersymmetry (SUSY) searches. It is also used for evaluating the
systematic uncertainties by producing samples with varying parameters of tt, single
top, W+ jets, Z+ jets [283].

8.3 Fast Simulation 136

8.3.3 CaloGAN

One of the first applications of machine learning for simulating a high-energy physics
detector was the calorimeter simulation proposed in references [285, 286]. High-
fidelity simulation of the interaction of a high-energy particle with a calorimeter
requires simulating the evolution of particle showers. This can be computationally
expensive [287, 283].

The objective of CaloGAN is to simulate the component readouts in an elec-
tromagnetic calorimeter conditioned on the incident particle type and energy. The
authors consider a simplified 3-layer model of a calorimeter, that is presented in fig-
ure 8.5. The authors use a complicated architecture to provide internally-consistent

Figure 8.5. Tree-dimensional representation of a 10 GeV e+ incident perpendicular to the
centre of the detector. Not-to-scale separation among the longitudinal layers is added
for visualisation purposes. Reproduced from [285].

three-dimensional output. While individual simulated events look realistic, the
overall model fidelity is lacking, when considering the reproduction of distributions
of high-level physically-meaningful quantities [285]. As of the moment of writing
(April 2020), I am not aware of GAN-based calorimeter simulation being used for
physics analysis. There is work in this direction in the ATLAS [288], CMS [289],
and LHCb [290] experiments.

8.3 Fast Simulation 137

8.3.3.1 Fully Parametric Simulation

CMS fast simulation reduces the cost of detector simulation from 8x the cost of
reconstruction to 0.3x [283]. Therefore, if further speed-up is required, the recon-
struction must also be included. This leads to a fully parametrised simulation.
Its main idea is mapping from the particle-level simulation directly to high-level
observables, bypassing the energy deposits in the detector and the reconstruction
algorithms. A prime example is Delphes [291], which we briefly describe next.

Delphes simulates track propagation in a magnetic field, electromagnetic (ECAL)
and hadron (HCAL) calorimeters, and a muon identification subsystem. It outputs
the tracks and calorimeters energy deposits, along with the high-level observables,
such as isolated electrons, jets, taus, and missing energy. It can handle the pile-up.

The particles, whose lifetime allows them to reach the detector, are propagated
through the magnetic field, which is assumed to be parallel to the beam direction
and localised in the inner tracker volume. The charged tracks are reconstructed with
the user-specified efficiency. Smearing on the norm of the transverse momentum is
applied. The resolution is user-specified.

Then the particles reach the calorimeters. The calorimeters have a finite segmen-
tation in pseudorapidity and azimuthal angle. The cell size is again user-specified.
The particles deposit a fixed fraction of energy in the ECAL and HCAL. The
calorimeters’ resolutions are parametrised by a simple analytical function of the
energy and pseudorapidity. The energy deposits are smeared by a log-normal dis-
tribution.

Particle identification is likewise parametrised:

• Muons are reconstructed with some efficiency. The efficiency tends to zero
outside the tracker acceptance and for momentum below some threshold. The
final muon 4-momentum is smeared by a Gaussian distribution with a user-
supplied resolution.

• Electrons are recognised with efficiency, that is a function of the energy and
pseudorapidity. As with muons, the efficiency vanishes outside the tracker
acceptance and below some energy.

• Photons reconstruction relies on ECAL. True photons and electrons with
no reconstructed track that reach the ECAL are reconstructed as photons in
Delphes.

The LHCb collaboration began adapting Delphes to its needs, but in 2019 two
things became evident. First, only a small fraction of Delphes package was really
useful for the LHCb purposes. Second, the person-power needed to interface and
maintain the joint LHCb-Delphes codebase was high. For these reasons, an in-
house parametrisation tool has been developed, called Lamarr [277]. It is described
in section 8.5.

A parametric simulation is only as good as the parametrisations inside it. In
principle, full simulation allows creating arbitrarily detailed parametrisation, as it
gives access to all the variables. The limiting factor is the multivariate analysis.
Simple analytical formulas and histograms do not scale well beyond 2 dimensions.
They are not applicable, if, for example, we want to model the particle identification

8.4 Pilot study: BaBar DIRC 138

variables, one for each particle type. Machine learning-based models described in
section 2.7 offer a promising way to address these concerns. In the next sections,
I describe a pilot work I did on machine learning-based parametric simulation of
a high-energy physics detector and the proposed model to be integrated into the
LHCb data processing.

8.4 Pilot study: BaBar DIRC

8.4.1 DIRC detector

Cherenkov detectors present a ripe target for parametric simulation. Propagating
photons through media requires expensive computation. Simulating the Cherenkov
detectors takes estimated 30% of the total event simulation computing time at LHCb
[15]. For a pilot study, we used Generative Adversarial Networks to simulate the
BaBar DIRC (Detection of Internally Reflected Cherenkov light) [292]. The choice
was dictated by the availability of the open-source FastDIRC software [293], which
allowed generating private Monte-Carlo in a resource-efficient way.

The overview of the BaBar detector is presented in figure 8.6. It consists of a
magnet, trackers, a calorimeter, Instrumented Flux Return (IFR), and the DIRC.
The DIRC detector and its operating principles are described in figure 8.7.

Figure 8.6. An overview of the BaBar detector. Reproduced from [294].

To generate the event samples for model training and validation, we used the
open-source FastDIRC [293] software. The generation has two stages. First, for

8.4 Pilot study: BaBar DIRC 139

Figure 8.7. The DIRC detector consists of fused silica bars arranged in a 12-sided polygon
barrel-like formation around the interaction region. This figure presents a transverse
view of one side of the barrel. Cherenkov light is emitted by the charged particle
traversing it and is transferred to the water tank via total internal reflection. The light
is then observed by an array of photomultiplier tubes (PMT). Reproduced from [295].

the given particle parameters, a large amount of the photons for each particle type
hypothesis is generated. The detector responses are fitted with kernel density esti-
mation to produce the probability density functions corresponding to different par-
ticle types. Second, a realistic number of photons with parameters corresponding
to the true particle type is generated, and the previously stored probability density
functions are used to compute the likelihoods of different particle type hypotheses.

The tracks have a flat distribution in pseudorapidity between −1.5 and 1.5,
and a Gaussian distribution in energy (mean 6 GeV, width 2 GeV). There is an
additional cut that excludes the tracks with energy less than 2.5 GeV. We simulate
two-particle events. For one of the particles, which we call signal, we run the PID
computation procedure described in the previous paragraph. The second particle,
which we call background, serves to add the noise photos that spoil the accuracy
of PID for the signal particle. In its base version FastDirc only simulates a single
track, we modified it to support multiple-track events.

8.4.2 Our model

The objective of the parametric simulation is a model, that would simulate the re-
sponse of the DIRC detector to a given particle. Its inputs are the signal particle

8.4 Pilot study: BaBar DIRC 140

type and the energies, pseudorapidities and the transverse coordinates of both par-
ticles in the event — 7 variables in total. Its outputs are the delta log-likelihoods
with pion hypothesis for the electron, kaon, muon, proton and “beyond threshold”
particle type hypotheses — 5 variables.

The number of dimensions (7 input and 5 output) makes the typically used
parametrisation methods, such as the histograms and kernel density, unfeasible. To
parametrise the distribution, we used the Cramer (energy) Generative Adversarial
Networks introduces in the section 2.7. The number of input observables and the
architecture of the neural network was optimised to obtain a sub per cent quality
of the prediction. The final architecture design uses fully connected neural net-
works with 10 layers, each containing 128 neurons with ReLu activation for both
generator and discriminator. We trained a separate model for each signal particle
type. Each model was trained using 1 million generated events. We transformed
each observable distribution into a Gaussian using quantile transformation before
passing them to the neural network. We started with traditional Jensen-Shannon
GAN, then switched to Wasserstein GAN with gradient penalty, as it provides sta-
ble training largely irrespective of the hyperparameters. Finally, we switched to the
Cramer (energy) GAN; this allowed for a small increase in precision, likely due to
the unbiased gradients estimates advertised in the original paper [139].

8.4.3 Evaluation Results

We first check that the predictions are consistent with our expectations for one parti-
cle tests: we check one- and multidimensional distributions of the output likelihoods
in order to understand whether they are consistent with the output of FastDIRC.
We find the histograms to be in good agreement. The plots are shown in figure 8.8.

20 10 0 10 200.00

0.05

0.10

0.15

0.20

0.25

true pions, FastDIRC kaon DLL
true pions, GAN kaon DLL
true kaons, FastDIRC kaon DLL
true kaons, GAN kaon DLL

2 0 2 4
FastDIRC DLL Kaon

20

10

0

10

20

Fa
st

DI
RC

 D
LL

 P
ro

to
n

2 0 2 4
GAN DLL Kaon

20

10

0

10

20

GA
N

DL
L

Pr
ot

on

Figure 8.8. Left: An example of 1D projection to kaon delta log-likelihood observables
for FastDIRC and GAN simulation for samples consisting true pions (blue) and true
kaons (brown). Center and right: An example of 2D projection to kaon and proton
delta log-likelihood observables for FastDIRC (left) and GAN (right) simulation of a
pion sample. First published in [296].

One of the issues of high-level observable generation is the influence of other
particles in an event. The issue is not especially severe, as general occupancy effects
are implicitly factored into the probability distributions. But it might come up
in the case of a signal signature containing particles with close tracks which will

8.5 Fast Parametric Simulation at LHCb (Lamarr) 141

interfere with the detector readings of each other. We investigate the ability of a
parametric simulation to model these effects. To do so, we add the information
about the kinematics of the background particle into input observables list. A
parametric model that successfully models the interference effects should preserve
the dependency of the PID variables on the background particle parameters. In
figure 8.9 we demonstrate this for the dependency of the ROC AUC between pions
and kaons on the pseudorapiditis.

-1.2 -0.6 -0.0 0.6 1.2

1, signal particle pseudorapidity

-1
.2

-0
.6

-0
.0

0
.6

1
.2

2
,

b
a
ck

g
ro

u
n
d

 p
a
rt

ic
le

 p
se

u
d
o
ra

p
id

it
y

0.66 0.69 0.84 0.73 0.75

0.83 0.63 0.77 0.67 0.85

0.87 0.67 0.63 0.66 0.84

0.85 0.68 0.79 0.64 0.84

0.75 0.74 0.86 0.73 0.7

vs K, AUC(FastDIRC)

0.5

0.6

0.7

0.8

0.9

1.0

-1.2 -0.6 -0.0 0.6 1.2

1, signal particle pseudorapidity

-1
.2

-0
.6

-0
.0

0
.6

1
.2

2
,

b
a
ck

g
ro

u
n
d

 p
a
rt

ic
le

 p
se

u
d
o
ra

p
id

it
y

-3.7E-04 3.0E-03 -1.9E-03 4.8E-03 3.6E-04

5.9E-04 -2.0E-03 -4.2E-03 3.0E-03 3.9E-03

5.8E-03 7.1E-03 -7.3E-03 4.1E-03 -8.9E-03

-3.7E-03 -2.9E-03 -4.0E-03 3.1E-03 5.6E-03

-2.2E-03 1.2E-03 4.8E-03 -8.7E-04 -2.5E-03

vs K, AUC(FastDIRC) - AUC(GAN)

0.009

0.006

0.003

0.000

0.003

0.006

0.009

Figure 8.9. Separation power between kaons and pions measured as the area under the
receiver operating characteristic curve (ROC AUC). Left is the FastDIRC simulation;
right is the difference between GAN and FastDIRC AUC scores. The statistical uncer-
tainty is around 0.005. First polished in [296].

The obtained generation model is lightweight. The speed improvement with
respect to the full simulation in GEANT 4 [271] is 8 · 104 times on a single CPU
core. The speed is also improved with respect to the FastDIRC generation, where
a factor up to 80 can be achieved. The batch generation on GPU produces up to 1
million track predictions per second.

The main conclusion of the pilot is that the GANs provide a fast and accurate
way modelling probability distributions and thus make an ideal model to be used
for a fully-parametric simulation. The hardware of the LHCb RICH and BaBar
DIRC detectors is quite different. Still, this difference is abstracted away as we deal
with the high-level PID variables of similar dimensionality. The main distinction
is the complexity of an LHCb event which makes it impossible to include all the
tracks as model inputs.

8.5 Fast Parametric Simulation at LHCb (Lamarr)
The LHCb collaboration is developing an application for parametrised simulation
of the detector response. The main characteristics of Lamarr are described in the
following. As of the moment of writing (April 2020), the work is in progress and so
details are changing fast.

The structure of the PID part of the Lamarr application is presented in figure
8.10. As its input, it takes the particles generated by the Gauss package, introduced

8.5 Fast Parametric Simulation at LHCb (Lamarr) 142

in section 8.2. The propagation is made with a simple transport into a dipole field

Figure 8.10. The architecture of the Lamarr application. Reproduced from [297].

assuming a mean value for the shift of the transverse momentum component of
the particles [298]. The point where the bending is applied is parametrised as a
function of the inverse of the momentum. The propagator performs acceptance
checks before and after the magnet. For tracks that are in acceptance, tracking
resolution and efficiency are emulated according to the measurements on the full
LHCb simulation. Track reconstruction efficiency is modelled by discarding the
track with the probability dependent on its parameters. Resolutions effects are
modelled by applying Gaussian smearing to the track parameters.

For Lamarr, the goal for the simulation of the charged particles PID is learning
the distribution of the analysis-level PID variables conditioned on the tracks kine-
matics and the particle types. There are two important questions when designing
a parametric model:

• Which parameters to use?

• Which data to use for training the model?

And there are two possibilities. The first is to train on the full simulation; the
second is to use the calibration samples described in subsection 4.3.7. In the full

8.5 Fast Parametric Simulation at LHCb (Lamarr) 143

simulation, the Monte-Carlo truth is available, allowing to condition the PID re-
sponse on the (simulated) physical tracks, not the reconstructed ones. Simulation
can be made without the selection bias; this allows the free choice of the parame-
ters, up to conditioning all the PID variables on the whole event. But, of course,
simulation produced in this way can only be as accurate as the full simulation. And
the full simulation of the PID detectors has insufficient precision for many analy-
ses. This necessitated the development of a data-driven way of measuring the PID
requirements efficiencies based on the calibration samples – the PIDCalib package
[22].

Training on real data presents two challenges. First, the set of parameters must
be carefully selected to avoid the bias caused by selection, while still being rich
enough to capture the essential dependencies. Second, the real data is contaminated
by background. Both of the issues have been addressed by the LHCb collaboration
developing the PIDCalb project. A reliable set of parameters consists of the track
momentum, pseudorapidity and the number of reconstructed tracks in the event.
The background is accounted for using the sPlot technique, described in section 6.1.
Overall, this provides the same setup as was used in the pilot study described in
section 8.4.

The PID is simulated with 4 GANs, for RICH, muon likelihood (with and with-
out IsMuon requirement enforced), and global PID. The global PID GAN is condi-
tioned on the output of the subsystem-level GANs. The 2016 calibration samples
are used to train the models:

• D∗+ → D0π+ with D0 → K−π+ for pions and kaons;

• Λ0 → pK− for protons;

• K0
S → π+π− for pions;

• D+
s → φ(1020)π+ with φ(1020) → K+K− for kaons, different momentum

distribution with respect to the ones from D0.

The following section describes in details the GANs developed for simulating
the LHCb RICH.

8.5.1 RICH Fast Simulation

The FastDIRC pilot was designed with the simulating the LHCb RICH in mind,
so the problems are very similar. The model consists of 5 GANs: one for each
particle type. The GAN architecture is presented in figure 8.11. The model input
parameters are the ones used in PIDCalib: momentum, pseudorapidity and the
number of reconstructed tracks in the event. The model outputs are RichDLL* –
the delta log-likelihoods between a particle type hypothesis and the pion hypothesis.
The model is trained on the 2016 calibration samples. The calibrations samples use
the sPlot method to remove the influence of the background. The sWeights are
applied to the loss function. This did not cause the problems like the ones we
describe in chapter 6 for the classification models. A possible explanation is that
during a GAN training the amount of generated data is effectively infinite, which
prevents catastrophic overfitting from occurring, despite the finite real sample.

8.5 Fast Parametric Simulation at LHCb (Lamarr) 144

Both generator and discriminator consist of 10 fully connected hidden layers with
128 units in each, with rectified linear unit (ReLU) activation functions. The latent
space dimensionality for the generator is 64, and the distribution is the standard
normal random vector {N(0, 1), ..., N(0, 1)}. The GANs are conditional: the latent
variable concatenated with the input parameters.

The output dimensionality of the discriminator network is 256. The output
layers of both generator and discriminator do not use activation functions.

We use the quantile transformation to transform both features and target vari-
ables distributions into standard normal. For our dataset, this results in faster
convergence and higher output fidelity, than the commonly used linear scaling. We
use exponential learning rate decay.

On a single CPU core the proposed model is at least 2 orders of magnitude faster
that the full simulation with Geant4.

8.5.2 Preliminary Evaluations

The most basic requirement for the model is a faithful reproduction of the under-
lying distributions. To verify this, we check the 1D distributions of the RichDLL*
variables, they are presented in figure 8.12. The marginal momentum bins contain
smaller statistics and therefore show slightly worse generation quality, while the
central bins show quite good correspondence to the real data.

The objective of the PID variables is distinguishing the particle types. This leads
to a natural quality metric: checking whether the discriminative performances of
the real and generated variables are the same. We do this by computing the ROC
AUC scores for the different particle pairs using the real and simulated RichDLL*.
If the simulation was perfect, the difference in performance would only be caused
by statistical uncertainty. A difference that can not be explained a statistical fluc-
tuation means an imperfection in simulation. The ratio of the differences in ROC
AUCs between the data and simulation to the statistical uncertainties is presented
in figure 8.13. The uncertainty of the differences between AUC values was estimated
using bootstrap [301]. Most of the differences are not greater than a few standard
deviations, with no obviously biased regions. Overall, the proposed model shows a
good approximation of the real data distributions with some imperfections in the
regions with low statistics.

Since GANs are good in reproducing the distributions, it is likely, that the main
source of systematic uncertainty in Lamarr will be the selection of parametrisation
and the training data. To estimate them, we validate the model using a calibration
decay, that was not used for the model training: Λ0

b → Λ+
c µ

−ν̄µ, Λ+
c → pK−π+.

In figure 8.14 the invariant mass of the Λ+
c baryons produced in the decay Λ0

b →
Λ+
c µ

−ν̄µ is presented. The invariant mass is mean is reproduced accurately, while
the peak width is 25% narrower than the reference. In figure 8.15 the decay vertex
χ2 for the decay Λ+

c → pK−π+ is presented. The overall shape of the distribution
is reproduced, but the it is somewhat shifted towards higher values. Note, that in
this preliminary evaluation tracking parameterization is based on 2012 data (Run
I), while the data is from 2016 (Run II). The relevant calibration sample is not
available for Run I. In figure 8.16 we present the comparison between data and
Lamarr for the response of the neural network trained to identify ghost tracks, i.e.

8.6 Conclusion and outlook 145

random combinations of hits not associated to any charged particle. In figure 8.17
the efficiency of proton identification is presented.

8.5.3 Future outlook

Overall, in the preliminary tests, Lamarr shows reasonable agreement with the data.
A few issues must be addressed before Lamarr can be reliably used for physics:

• As demonstrated in figures 8.15 and 8.14 there is a room for improvement in
terms of tracking quality. A tracking parametrisation based on Run II data
is highly likely to improve it;

• Further validation of global PID, that would include all the particle species.

Lamarr will also benefit greatly, should the LHCb collaboration decide to use
GPU for trigger (subsection 4.3.6). Neural networks can run very efficiently on
GPUs and thus the trigger farm would be able to produce a large number of simu-
lated events during the time when there are no collisions.

Another question is whether the setup with multiple nested GANs is prefer-
able to a setup with a single GAN that would output just the combined prob-
ability variables. First, having multiple GANs is slower during inference. The
needed computational and memory complexity of a joint model almost certainly
will be lower than for three separate models. Second, having multiple indepen-
dent subsystem-level models ignores the correlation between the RICH and Muon
variables. When we model the responses, we model the conditional probability
densities: P (RICH DLL|track kinematics) and P (Muon DLL|track kinematics). In
reality, the subdetector responses also depend on the variables, that we do not in-
put into the parametric models, such as the distances to the neighbouring tracks.
For example, two tracks might be very close together, making their PID uncertain.
Even if we do not input this information into the parametric model, it can model the
integral effect of the track closeness. To do so, it “tosses a coin” to decide whether
the track in question has a neighbour that would smear its PID. And if the RICH
GAN and Muon GAN “coins” land differently, the result would be nonphysical, with
one model simulating an isolated track and the other a track whose identification is
smeared by a close neighbour. The magnitude of this effect is yet to be measured,
though. The advantage of having multiple GANs is that by training the GANs sep-
arately, we reduce the problem dimensionality, so each GAN individually is easier
to train. Also, RICH and Muon likelihood variables are sometimes directly used
in physics analysis, although rarely. Those are the cases, where some systematic
effects can be studied, possibly understood and eventually corrected, only at the
level of the single sub-detector.

8.6 Conclusion and outlook
Improving the Monte-Carlo simulation speed is crucial for the LHC Run 3, which will
see a drastic luminosity increase. To keep under control the uncertainty caused by
the simulated sample size, the simulated sample size must increase correspondingly
to the collected real data sample size. The full simulation methods based on Geant 4,

8.6 Conclusion and outlook 146

that were used during the Run 2 can not deliver them under the available computing
budget.

There are technical improvements to simulation software, that take advantage
of the latest hardware developments. The main venues are vector CPU instructions
and switch from multiprocessing to multithreading, that takes advantage of the
increased CPU core count per RAM trend. Yet, those improvements are likely to
be insufficient.

Some methods sacrifice fidelity for speed. Straightforward ab-initio simulation
in high-energy physics fundamentally contains redundant computations, as they
simulate similar processes in the same detector over and over again. Capitalising
on this allows making simulations 1–2 orders of magnitude faster. Some methods,
that build upon this insight, sacrifice events independence by reusing large parts of
the event – e. g. the ReDecay described in subsection 8.3.1. Others replace the full
computation of some interactions in the detector by an empirical approximation1.

For LHCb, we are developing a fully-parametric fast simulation framework, that
covers both the interactions of the particles with the detector and the event recon-
struction. For Run 2, it is trained on the calibration data.

In my part of it, I pioneered using GANs to create a fully-parameterised simu-
lation of high-energy physics detectors, that directly outputs the high-level recon-
struction variables, as opposed to the previous CALO GANs [286, 303], that output
raw calorimeter response. The unique advantage of machine learning approach is
that it can be easily retrained, given a model and a dataset. This is not the case
for most of the other fast simulation methods.

Most fast simulation frameworks are distinct from the corresponding full simu-
lation. A promising way forward is proposed by the GeantV [304]: creating a single
modular software, that would allow the users to tune the various aspects of the
trade-off for their needs. For example, for an LHCb analysis, that relies heavily on
muons in the final state, it would be possible to use the rough parametric simulation
of the RICH and CALO, while retaining the best possible accuracy for the Muon
subdetector. An added benefit of this approach is the streamlined training of para-
metric models with a possibility for automation, as both model inputs and outputs
will be available without the need for additional selection and preprocessing.

Looking into the future, the simulation will remain crucial for achieving the
physics goals of high-energy physics experiments [275]. Various experiment-specific
methods for fast simulation have been developed, but their use has not been univer-
sal. Their application poses an additional burden on the analysts who must spend
the effort to evaluate the impact of the reduced fidelity. Yet, the pressure to sac-
rifice the simulation accuracy for speed is mounting, so their application will likely
be more widespread in the years to come.

1One may argue that the difference is of a degree, not a kind. Geant4 also does not solve the
field theory equations, but uses an assortment of higher-level approximations.

8.6 Conclusion and outlook 147

Data

DLLx,	P,	ETA,
nTracks

Latent	space

Normal,	64

Generator

Dense,	128,	ReLU

.	.	.

Dense,	128,	ReLU

Dense,	128,	ReLU

x10

Dense,	5,	Linear

Critic

Dense,	128,	ReLU
.	.	.

Dense,	128,	ReLU

Dense,	128,	ReLU

x10

Dense,	256,	Linear

Cramér	GAN	Loss

Concatenate
DLLx,	P,	ETA,

nTracks

P,	ETA,
nTracks

Quantile	Transformer
(Normal)

Preprocessing

Figure 8.11. Architecture of the RICH GAN. First presented at [299].

8.6 Conclusion and outlook 148

50 0 50
RichDLLk

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

LHCb preliminary

kaon (real)
kaon (gen)
pion (real)
pion (gen)

50 0 50
RichDLLk

0.000

0.005

0.010

0.015

0.020

0.025
LHCb preliminary

40 20 0 20 40
RichDLLk

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

LHCb preliminary

100 50 0 50 100
RichDLLk

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200
LHCb preliminary

100 50 0 50 100
RichDLLk

0.000

0.005

0.010

0.015

0.020

LHCb preliminary

50 0 50
RichDLLk

0.000

0.005

0.010

0.015

0.020

0.025

LHCb preliminary

100 50 0 50
RichDLLk

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035
LHCb preliminary

50 0 50
RichDLLk

0.000

0.005

0.010

0.015

0.020

0.025

0.030

LHCb preliminary

50 25 0 25 50
RichDLLk

0.000

0.005

0.010

0.015

0.020

0.025

0.030

LHCb preliminary

3.
16

e+
04

 <
=

P
<=

 2
.5

e+
05

1.
52

e+
04

 <
=

P
<=

 3
.1

6e
+0

4
3.

35
e+

03
 <

=
P

<=
 1

.5
2e

+0
4

1.91 <= ETA <= 2.84 2.84 <= ETA <= 3.39 3.39 <= ETA <= 4.88

Figure 8.12. Weighted real data and generated distributions of RichDLLk for kaon and
pion track candidates in bins of pseudorapidity (ETA) and momentum (P, MeV) over
the full phase-space. First published in [300].

1.9 2.5 2.8 3.1 3.4 3.7 4.9
pseudorapidity

3.
3

10
.0

15
.2

21
.9

31
.6

50
.4

25
0.

0
m

om
en

tu
m

, G
eV

-0.43 0.39 0.73 0.15 0.12 0.66

-0.91 -0.16 1.31 1.07 0.20 -0.54

-2.04 -0.05 2.42 1.11 -0.35 -0.81

0.42 0.17 -0.05 2.60 -0.80 2.02

-3.64 2.57 -1.01 0.85 -0.44 -1.84

-8.38 1.60 -1.36 -0.94 -2.24 -4.16

AUC/ (AUC), using RichDLLk, kaons VS pions
LHCb preliminary

6

3

0

3

6

1.9 2.4 2.8 3.1 3.4 3.9 5.0
pseudorapidity

3.
1

8.
5

13
.5

19
.9

29
.5

48
.3

25
0.

0
m

om
en

tu
m

, G
eV

-2.01 0.54 0.20 -0.47 0.80 2.42

0.57 -0.82 -0.35 2.70 -0.64 0.52

-1.17 -0.62 -1.29 -0.95 0.49 0.24

1.03 -1.41 1.47 0.70 -0.54 -0.10

1.46 0.15 0.35 -0.04 -1.12 -3.09

-0.25 1.75 -2.17 -1.20 -1.84 0.62

AUC/ (AUC), using RichDLLmu, muons VS pions
LHCb preliminary

6

3

0

3

6

2.0 2.8 3.2 3.5 3.8 4.1 5.2
pseudorapidity

5.
1

10
.9

14
.7

19
.5

26
.1

38
.1

14
4.

1
m

om
en

tu
m

, G
eV

1.87 -1.88 -1.35 -0.70 -0.56 -0.44

0.82 0.77 0.55 -0.20 1.51 -1.19

-1.20 -0.47 -0.84 0.57 -1.89 1.16

-0.58 -0.83 -1.80 -0.92 -0.24 -0.12

1.43 -0.54 1.36 -1.91 -2.32 2.29

2.25 1.31 0.83 -2.13 -0.75 -1.84

AUC/ (AUC), using RichDLLp, protons VS pions
LHCb preliminary

6

3

0

3

6

Figure 8.13. The ratio of the differences in ROC AUCs between the data and simula-
tion to the statistical uncertainties is for discriminating respectively kaons, muons and
protons from pions, classifying with the RichDLLk, RichDLLmu and RichDLLp variables,
respectively, in bins of momentum and pseudorapidity. First published in [300].

8.6 Conclusion and outlook 149

2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340
)2cmass (MeV/+

cΛ

0

5000

10000

15000

20000

25000

30000

35000

)
2 c

E
ve

nt
s

/ (
 1

 M
eV

/
2016 Data

Lamarr

Model of 2016 data

Signal in 2016 data

Figure 8.14. Invariant mass distribution of reconstructed and simulated Λ+
c baryons

produced in the decay Λ0
b → Λ+

c µ
−ν̄µ and decays as Λ+

c → pK−π+. The data is fitted
with a model composed of a double Gaussian function for the signal and a second-order
polynomial for the combinatorial background. The shape of the signal peak in data
(solid blue line) is compared to the distribution obtained from simulation (magenta
points). First published in [302].

10− 8− 6− 4− 2− 0 2 4
)

vtx
2χlog(+

cΛ

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 LHCb Preliminary
2016 Data

Lamarr

Figure 8.15. Decay vertex χ2 for the decay Λ+
c → pK−π+ of Λc baryons produced in the

semileptonic decay Λ0
b → Λ+

c µ
−ν̄µ. The overall shape of the distribution is reproduced,

but the it is somewhat shifted towards higher values. First published in [302].

8.6 Conclusion and outlook 150

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Proton track GhostProb

0

50

100

150

200

250 LHCb Preliminary
2016 Data

Lamarr

Figure 8.16. Response of a neural network trained to identify ghost tracks, i.e. random
combinations of hits not associated to any charged particle. On data, the neural network
is evaluated on a calibration sample of protons tagged through the decay Λ0

b → Λ+
c µ

−ν̄µ
with Λ+

c → pK−π+. In the simulated sample the ghost probability is the response of
the neural network inside Lamarr. The overall distribution shape is well-reproduce.
The difference in the peak height is around 15% and is compounded by the binning
effects. First published in [302].

8.6 Conclusion and outlook 151

20 40 60 80 100 120 140

Proton momentum [GeV/c]

0

0.2

0.4

0.6

0.8

1

L
o
o
s
e
P
r
o
t
o
n
M
V
A

E
ff

ic
ie

nc
y

of

LHCb Preliminary
2016 Data Lamarr

(a) Loose selection

20 40 60 80 100 120 140

Proton momentum [GeV/c]

0

0.2

0.4

0.6

0.8

1

M
i
l
d
P
r
o
t
o
n
M
V
A

E
ff

ic
ie

nc
y

of

LHCb Preliminary
2016 Data Lamarr

(b) Mild selection

20 40 60 80 100 120 140

Proton momentum [GeV/c]

0

0.2

0.4

0.6

0.8

1

T
i
g
h
t
P
r
o
t
o
n
M
V
A

E
ff

ic
ie

nc
y

of

LHCb Preliminary
2016 Data Lamarr

(c) Tight selection

Figure 8.17. Efficiency of proton identification as a function of momentum evaluated on
the decay Λ0

b → Λ+
c µ

−ν̄µ with Λ+
c → pK−π+. Cyan bars are the 2016 calibration data,

magenta points are the simulation with Lamarr. The three plots correspond to different
decision thresholds applied to the PID response variable. For the majority of the bins
the agreement is within 10%. First published in [302].

152

Chapter 9

Conclusion

The thesis advances particle identification at LHCb on several essential frontiers:

For muon identification, which is discussed in chapter 5, I developed a machine
learning model. When evaluated on data after preliminary filtration (called IsMuon,
described in subsection 4.3.2.1) and setting the decision threshold to maintain 90%
signal efficiency (true positive rate), it reduces background passthrough (false posi-
tive rate) from 14% to 10%, compared to the baseline in the crucial low-momentum
region. The model is implemented in the LHCb trigger. I’ve also investigated the
feasibility of this approach for the data with a high number of primary vertices. I
show that it outperforms the other alternative considered of the upgrade, χ2

CORR
(described in section 5.3). The work has been submitted to proceedings of the
ACAT 2019 conference and is included in the LHCb (as of the time of writing,
internal) note [222]. A paper is in preparation to be submitted to JINST. I have
also prepared muon identification as a problem for a data science competition. The
competition, called the International Data Analysis Olympiad [223], is organised
by Yandex and the Higher School of Economics. It attracted 1287 teams from 78
countries in 2019. Most of the participants are undergraduate Computer Science
students. It aims to bridge the gap between the all-increasing complexity of machine
learning models and the real-world requirements of the industry.

Machine learning on data with sPlot background subtraction My con-
tribution is a rigorous way to use any machine learning methods to obtain class
probabilities from data with sPlot-based background subtraction. Its primary use
case is data-driven training of machine learning models. Aside from that, it can
also be used to check whether a particular event selection routine violates the as-
sumptions behind the sPlot method, as proposed by reference [305]. The method
presented in the thesis has been published in [306] and its extension for the case
of multiple classes with separate background sources has been submitted to ACAT
2019 conference proceedings. The project is described in chapter 6.

For global particle identification, I developed a solution based on gradient
boosting decision trees. It allowed reducing error, as measured by 1-vs-all 1−AUC
(area over the ROC curve) score, by 18%-54% compared to the baseline solution

153

on simulated data. The method is implemented in the LHCb software stack. It has
been published in [255]. It is described in chapter 7.

For fast simulation, combining the calibration samples with the Generative Ad-
versarial Networks [128] allows for a very attractive possibility – a model that is
both faster and more accurate than the full simulation with GEANT4. I performed
a pilot study. I generated Monte-Carlo for BaBar DIRC and developed a model to
simulate it. The simulation is ∼ 8 · 104 times faster than GEANT4 while retaining
reasonable quality. The method has been published in [296]. The work to include
this method into the LHCb software stack is ongoing and has been submitted to
proceedings of the ACAT 2019 conference. The project is described in chapter 8.

On the whole, the developed methods and approaches constitute an interdis-
ciplinary study across computer science and physics. Those methods improve the
state-of-the-art in the aforementioned high energy physics projects. Thus, it al-
lows for increasing the efficiency of current experiments searching for new physics
phenomena and lays the ground for even more sensitive and sophisticated data
processing in future experiments.

154

Appendix A

No Free Lunch Theorem Proof

This proof is my rewrite of the original proof [54] and was first published in [55].
The general idea behind the No Free Lunch theorems is calculating the uniform
average (P (f) = const) over f of the distribution of classifier performance (loss c)
conditioned on various variables.

Lemma 1.

P (c|d, f) =
∑

yH ,yF ,q

δ [c, L (yH , yF)]P (yH |q, d)P (yF |q, f)P (q|d) (A.1)

Proof.
c = L (yH , yF) (A.2)

This value is a function of two random variables: the model prediction yH and sam-
pled target function value yF . By writing this down and expanding the conditional
probabilities, we arrive to the expression A.1:

P (c|q, d, f) =
∑

yH ,yF

δ [c, L (yH , yF)]P (yH , yF |q, d, f)

P (c|d, f) =
∑

yH ,yF ,q

δ [c, L (yH , yF)]P (yH , yF |q, d, f)P (q|d)

=
∑

yH ,yF ,q

δ [c, L (yH , yF)]P (yH |q, d)P (yF |q, f)P (q|d)

(A.3)

Lemma 2. For homogeneous loss L, the uniform average over all f of P (c|d, f)
equals Λ (c) /r.

For any training set, any |Y|, any homogeneous loss L, any OTS method P (q|d)
of selecting the test point, including sampling the same π(x), that was used to select
dX , for any learning algorithm, the average performance over all possible targets is
a constant.

This result ignores the relationship between d and f . In other words, the Y
values for train and test sets are generated from different distributions. Thus it
is not particularly interesting in itself but will rather serve as a base for further
inquiries.

155

Proof. Using Lemma 1, the uniform average over all targets f of P (c|d, f) can be
written as

Ef [P (c|d, f)] =
∑

yH ,yF ,q

δ [c, L (yH , yF)]P (yH |q, d)Ef [P (yF |q, f)]P (q|d) (A.4)

Ef [P (yF |q, f)] = Eff(q, yF) (A.5)

The integration is over all possible values of f . The space of all possible values is
the same for all components, thus the average is a constant that does not depend
on q and yF . Also,

∑
yF

Ef [f(q, yF)] = Ef

[∑
yF

f(q, yF)

]
= 1, (A.6)

therefore
Ef [f(q, yF)] = 1/r. (A.7)

Using the homogeneity property of L:

EfP (c|d, f) =
∑
yH ,q

Λ(c)P (yH |q, d)P (q|d) /r = Λ(c)/r (A.8)

Theorem A.0.1. For vertical P (d|f), and a homogeneous loss L, the uniform
average over all targets f of P (c|f,m) = Λ(c)/r

For any |Y|, any homogeneous loss L, any fixed training set size m, any vertical
method of training set generation, including the conventional IID-generated, for any
OTS method P (q|d) of selecting the test point, including sampling the same π(x),
that was used to select dX , for any learning algorithm, the average performance
over all possible targets is a constant.

This is the result advertised in the beginning. If an algorithm “beats” some
other, including the random guess, on some f ’s, it will necessarily lose on the rest,
so that the average losses will be the same.

Proof.
P (c|f,m) =

∑
d:|d|=m

P (c|d, f)P (d|f) (A.9)

From Lemma 1:

P (c|d, f) =
∑

yH ,yF ,q

δ [c, L (yH , yF)]P (yH |q, d)P (yF |q, f)P (q|d) . (A.10)

Because we consider OTS error, P (q|d) will be non-zero only for q /∈ dX , so
P (yF |q, f) only depends on components of f(x, y) that correspond to x /∈ dX .

We also know that P (d|f) is vertical, so it is independent of the values f(x, yF)
for x /∈ dX .

156

Therefore the integral can be split into two parts, over dimensions corresponding
to dX and X \ dX :

Ef [P (c|f,m)] =
∑

d:|d|=m

[∫
P (c|d, f) dfx/∈dX

∫
P (d|f) dfx∈dX∫

1dfx/∈dXdfx∈dX

]
(A.11)

Again using P (c|d, f) independence from x ∈ dX and Lemma 2:

Efx/∈dX
[P (c|d, f)] = Ef [P (c|d, f)] = Λ(c)/r (A.12)

Ef [P (c|f,m)] = Λ(c)/r
∑

d:|d|=m

[∫
P (d|f) dfx∈dX∫

1dfx∈dX

]
= Λ(c)/r (A.13)

No Free Lunch theorem can also be formulated in Bayesian analysis terms:

Theorem A.0.2. For a vertical P (d|f), uniform P (f), and a homogeneous loss L,
P (c|d) = Λ(c)/r.

Proof.

Ef [P (c|d)] =
∫
P (c|d, f)P (f |d)df∫

df
(A.14)

Using the Bayes theorem,

P (f) = P (f |d)P (d)/P (d|f), (A.15)

and uniformity of P (f):

Ef [P (c|d)] =
∫
P (c|d, f)P (f)P (d|f)/P (d)df∫

1df
= α(d)

∫
P (c|d, f)P (d|f)df∫

1df
, (A.16)

where α(d) is some function. Like in Theorem A.0.1, the integral can be split into
parts that depend on f (x ∈ dX) and f (x /∈ dX):

Ef [P (c|d)] = α(d)

∫
P (c|d, f) dfx/∈dX

∫
P (d|f) dfx∈dX∫

1dfx/∈dXdfx∈dX
. (A.17)

The integral
∫
P (d|f) dfx∈dX can again be absorbed into the d-dependent constant:

Ef [P (c|d)] = β(d)

∫
P (c|d, f) dfx/∈dX∫
1dfx/∈dXdfx∈dX

=
Λ(c)

r

β(d)∫
1dfx∈dX

. (A.18)

To obtain the value of the constant, we integrate both sides over c:∫
Ef [P (c|d)] dc = 1 =

β(d)∫
1dfx∈dX

∫
Λ(c)

r
dc. (A.19)

From Theorem A.0.1 we know that Λ(c)
r is, in fact, a probability, thus

∫ Λ(c)
r dc = 1.

Therefore β(d)∫
1dfx∈dX

= 1 as well. Substituting it back to Formula A.18, we obtain:

Ef [P (c|d)] =
Λ(c)

r
(A.20)

157

Appendix B

Global PID input variables

B.1 Used in ProbNN and our models
Tracking hardware and algorithms are described in the subsection 4.2.1. Here
we list the variables it provides and that are later used in determining the particle
type. Quoting the LHCb documentation [307]:

• TrackChi2PerDof, the track fit χ2 per degree of freedom (the higher is χ2,
the more the tacking algorithm is sure in the track parameters)

• TrackNumDof, the number of degrees of freedom in the track fit

• TrackDOCA, the distance between the track and the z axis

• TrackFitTChi2 the track fit χ2 in TT

• TrackFitTNDoF the number of degrees of freedom in the track fit in TT

• TrackFitVeloChi2 the track fit χ2 in VELO

• TrackFitVeloNDoF the number of degrees of freedom in the track fit in VELO

• TrackGhostProbability output of the NN of the particle to be a ghost

• TrackType the track type (Long, Downstream, Upstream)

• TrackP the track momentum

• TrackPt the track transverse momentum

• TrackMatchChi2 the track fit χ2 per degree of freedom

• TrackNumDof the number of degrees of freedom in the track fit

RICH hardware and algorithms are described in the subsection 4.2.2.1. Here we
list the variables it provides and that are later used in determining the particle type.
Quoting the LHCb documentation [307]:

• RichAboveElThres binary indicator whether the track momentum is above
momentum threshold for electrons to produce Cherenkov light

B.1 Used in ProbNN and our models 158

• RichAboveKaThres binary indicator whether the track momentum is above
momentum threshold for kaons to produce Cherenkov light

• RichAboveMuThres binary indicator whether the track momentum is above
momentum threshold for muons to produce Cherenkov light

• RichAbovePiThres binary indicator whether the track momentum is above
momentum threshold for pions to produce Cherenkov light

• RichAbovePrThres binary indicator whether the track momentum is above
momentum threshold for protons to produce Cherenkov light

• RichDLLbt the RICH delta log-likelihood value for the ’Below Threshold’ hy-
pothesis.

• RichDLLe the RICH delta log-likelihood value for the electron hypothesis

• RichDLLk the RICH delta log-likelihood value for the kaon hypothesis

• RichDLLmu the RICH delta log-likelihood value for the muon hypothesis

• RichDLLp the RICH delta log-likelihood value for the proton hypothesis

• RichDLLpi the RICH delta log-likelihood value for the pion hypothesis

• RichUsedR1Gas used the RICH1 detector in this track ID

• RichUsedR2Gas used the RICH2 detector in this track ID

CALO hardware is described in the subsection 4.2.2.2. Here we list the variables
it provides and that are later used in determining the particle type. Quoting [307,
308, 309]:

• InAccBrem binary indicator whether the bremsstrahlung photons fall into ac-
ceptance

• InAccEcal binary indicator whether the track falls into the geometric accep-
tance of the ECAL

• InAccHcal binary indicator whether the track falls into the geometric accep-
tance of the HCAL

• InAccPrs binary indicator whether the track falls into the geometric accep-
tance of the PRS

• InAccSpb binary indicator whether the track falls into the geometric accep-
tance of the SPD

• BremPIDe the difference between the log-likelihoods for the electron and non-
electron hypotheses

• PrsPIDe the difference between the log-likelihoods for the electron and non-
electron hypotheses derived from the energy deposition in the preshower (PS)

B.1 Used in ProbNN and our models 159

• EcalPIDe the difference between the log-likelihoods for the electron and non-
electron hypotheses derived from the ECAL reading

• HcalPIDe the difference between the log-likelihoods for the electron and non-
electron hypotheses derived from energy deposition in HCAL along the particle
trajectory

• EcalPIDmu the difference between the log-likelihoods for the muon and non-
muon hypotheses derived from the ECAL energy deposition along the particle
trajectory

• HcalPIDmu the difference between the log-likelihoods for the muon and non-
muon hypotheses derived from the HCAL energy deposition along the particle
trajectory

• CaloChargedEcal ECAL cluster energy associated to the track

• CaloChargedPrs Preshower (PS) digits associated to the track

• CaloChargedSpd SPD digits associated to the track

• CaloBremMatch the χ2 value of the track-cluster matching for the bremsstrahlung
photon hypothesis, using the track extrapolation from its direction before the
magnet

• CaloEcalE the ECAL energy deposition along the track line

• CaloElectronMatch the χ2 value of the track-cluster matching the electron
hypothesis, using the track extrapolation from its direction after the magnet

• CaloHcalE the HCAL energy deposition along the track line

• CaloPrsE the PS energy deposition along the track line

• CaloSpdE the SPD energy deposition along the track line

• CaloTrMatch 2D χ2 for Track/CaloCluster matching

• CaloTrajectoryL longitudinal parameter of the ECAL shower

• CaloNeutralEcal cluster energy associated to neutral hypothesis

• CaloNeutralPrs PS digits associated to neutral hypothesis

• CaloNeutralSpd SPD digits associated to neutral hypothesis

MUON hardware is described in the section 5.1. Here we list the variables it
provides and that are later used in determining the particle type. Quoting the
LHCb documentation [307]:

• InAccMuon binary indicator whether the track falls into the geometric accep-
tance of the MUON system

B.2 Additional engineered features 160

• MuonIsMuon binary indicator whether the track passed the IsMuon selection
(subsection 4.3.2.1)

• MuonIsLooseMuon binary indicator whether the track passed the IsMuonLoose
selection (subsection 4.3.2.1)

• MuonBkgLL the log likelihood computed by the muDLL algorithm (section 5.2)
for the track to be not a muon

• MuonMuLL the log likelihood computed by the muDLL algorithm (section 5.2)
for the track to be a muon

• MuonNShared the number of hits in the muon chambers that are shared with
the other tracks

B.2 Additional engineered features
In addition to the variables listed in B.1, we used 20 physically-meaningful combined
features, which were experimentally found to increase performance [263]:

• CaloSumPIDmu = EcalPIDmu + HcalPIDmu

• CaloSumSpdPrsE = CaloSpdE + CaloPrsE

• SpdCaloChargedNeutral = CaloChargedSpd + CaloNeutralSpd

• SpdCaloChargedAcc = CaloChargedSpd + InAccSpd

• SpdCaloNeutralAcc = CaloNeutralSpd + InAccSpd

• RichUsedGas = RichUsedR1Gas + RichUsedR2Gas

• RichAboveSumKaPrTHres = RichAboveKaThres + RichAbovePrThres

• RichAboveSumPiKaElMuTHres = RichAbovePiThres + RichAboveKaThres +
RichAboveElThres + RichAboveMuThres

• acc_cum_sum_3 = InAccSpd + InAccPrs + InAccBrem + InAccEcal

• acc_cum_sum_5= InAccSpd+ InAccPrs+ InAccBrem+ InAccEcal+ InAccHcal
+ InAccMuon

• CombDLLmu_LL combined log likelihood (not delta) for the muon hypothesis

• CombDLLpi_LL combined log likelihood (not delta) for the pion hypothesis

• CombDLLp_LL combined log likelihood (not delta) for the proton hypothesis

• CombDLLe_LL combined log likelihood (not delta) for the electron hypothesis

• CombDLLk_LL combined log likelihood (not delta) for the kaon hypothesis

• RichDLLpi_LL RICH log likelihood (not delta) for the pion hypothesis

B.2 Additional engineered features 161

• RichDLLe_LL RICH log likelihood (not delta) for the electron hypothesis

• RichDLLp_LL RICH log likelihood (not delta) for the proton hypothesis

• RichDLLmu_LL RICH log likelihood (not delta) for the muon hypothesis

• RichDLLk_LL RICH log likelihood (not delta) for the kaon hypothesis

162

Bibliography

[1] R. Aaij et al. “Test of Lepton Universality Using B+ → K+`+`− Decays”. In:
Phys. Rev. Lett. 113 (15 Oct. 2014), p. 151601. doi: 10.1103/PhysRevLett.
113.151601. url: https://link.aps.org/doi/10.1103/PhysRevLett.
113.151601.

[2] R. Aaij et al. “Search for Lepton-Universality Violation in B+ → K+`+`−

Decays”. In: Phys. Rev. Lett. 122 (19 May 2019), p. 191801. doi: 10.1103/
PhysRevLett.122.191801. url: https://link.aps.org/doi/10.1103/
PhysRevLett.122.191801.

[3] R. Aaij et al. “Measurement of the Ratio of Branching Fractions B(B0 →
D∗+τ−ντ)/B(B

0 → D∗+µ−νµ)”. In: Phys. Rev. Lett. 115 (11 Sept. 2015),
p. 111803. doi: 10.1103/PhysRevLett.115.111803. url: https://link.
aps.org/doi/10.1103/PhysRevLett.115.111803.

[4] “Beauty quarks test lepton universality”. In: CERN Courier 58.3 (Mar.
2018). url: https://cds.cern.ch/record/2315229.

[5] R Aaij et al. “Measurement of the Bs
0 → µ+µ− branching fraction and

search for B0 → µ+µ− decays at the LHCb experiment”. In: Physical review
letters 111.10 (2013), p. 101805.

[6] R. Aaij et al. “Measurement of the B0
s → µ+µ− Branching Fraction and

Effective Lifetime and Search for B0 → µ+µ− Decays”. In: Phys. Rev. Lett.
118 (19 May 2017), p. 191801. doi: 10.1103/PhysRevLett.118.191801.
url: https://link.aps.org/doi/10.1103/PhysRevLett.118.191801.

[7] Serguei Chatrchyan et al. “Measurement of the B0
s → µ+µ− branching frac-

tion and search for B0 → µ+µ− with the CMS experiment”. In: Physical
review letters 111.10 (2013), p. 101804.

[8] ATLAS collaboration et al. “Study of the rare decays of B0
s and B0 mesons

into muon pairs using data collected during 2015 and 2016 with the ATLAS
detector”. In: Journal of High Energy Physics 2019.4 (2019), p. 98.

[9] Vardan Khachatryan et al. “Observation of the rare B0
s → µ+µ− decay

from the combined analysis of CMS and LHCb data”. In: Nature 522 (2015),
pp. 68–72. doi: 10.1038/nature14474. arXiv: 1411.4413 [hep-ex].

[10] LHCb Collaboration. “LHCb detector performance”. In: International Jour-
nal of Modern Physics A 30.07 (2015), p. 1530022.

[11] A. A. Alves Jr. et al. “The LHCb detector at the LHC”. In: JINST 3 (2008),
S08005. doi: 10.1088/1748-0221/3/08/S08005.

https://doi.org/10.1103/PhysRevLett.113.151601
https://doi.org/10.1103/PhysRevLett.113.151601
https://link.aps.org/doi/10.1103/PhysRevLett.113.151601
https://link.aps.org/doi/10.1103/PhysRevLett.113.151601
https://doi.org/10.1103/PhysRevLett.122.191801
https://doi.org/10.1103/PhysRevLett.122.191801
https://link.aps.org/doi/10.1103/PhysRevLett.122.191801
https://link.aps.org/doi/10.1103/PhysRevLett.122.191801
https://doi.org/10.1103/PhysRevLett.115.111803
https://link.aps.org/doi/10.1103/PhysRevLett.115.111803
https://link.aps.org/doi/10.1103/PhysRevLett.115.111803
https://cds.cern.ch/record/2315229
https://doi.org/10.1103/PhysRevLett.118.191801
https://link.aps.org/doi/10.1103/PhysRevLett.118.191801
https://doi.org/10.1038/nature14474
https://arxiv.org/abs/1411.4413
https://doi.org/10.1088/1748-0221/3/08/S08005

Bibliography 163

[12] LHCb Trigger and Online Upgrade Technical Design Report. Tech. rep. CERN-
LHCC-2014-016. LHCB-TDR-016. May 2014. url: https://cds.cern.ch/
record/1701361.

[13] I Bediaga et al. Framework TDR for the LHCb Upgrade: Technical Design
Report. Tech. rep. CERN-LHCC-2012-007. LHCb-TDR-12. Apr. 2012. url:
https://cds.cern.ch/record/1443882.

[14] M Clemencic et al. “The LHCb simulation application, Gauss: design, evo-
lution and experience”. In: Journal of Physics: Conference Series. Vol. 331.
3. IOP Publishing. 2011, p. 032023.

[15] Gloria Corti. LHCb Fast Simulation(s). 2016. url: https://indico.cern.
ch / event / 523577 / contributions / 2178698 / attachments / 1279812 /
1900824/GCorti-LHCbFastSim-20160526.pdf.

[16] Benedetto Gianluca Siddi. “A fully parametric option in the LHCb simula-
tion framework”. In: EPJ Web of Conferences. Vol. 214. EDP Sciences. 2019,
p. 02024.

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classi-
fication with deep convolutional neural networks”. In: Advances in neural
information processing systems. 2012, pp. 1097–1105.

[18] Kaiming He et al. “Delving deep into rectifiers: Surpassing human-level per-
formance on imagenet classification”. In: Proceedings of the IEEE interna-
tional conference on computer vision. 2015, pp. 1026–1034.

[19] F Archilli et al. “Performance of the muon identification at LHCb”. In: Jour-
nal of Instrumentation 8.10 (2013), P10020.

[20] R Aaij et al. “Differential branching fraction and angular analysis of the
decay B 0→ K* 0 µ+ µ-”. In: Physical review letters 108.18 (2012), p. 181806.

[21] Muriel Pivk and Francois R Le Diberder. “sPlot: A statistical tool to unfold
data distributions”. In: NIMA 555.1-2 (2005), pp. 356–369.

[22] Lucio Anderlini et al. The PIDCalib package. Tech. rep. LHCb-PUB-2016-
021. CERN-LHCb-PUB-2016-021. Geneva: CERN, July 2016. url: https:
//cds.cern.ch/record/2202412.

[23] Artificial intelligence. Encyclopædia Britannica, Inc. url: https://www.
britannica.com/technology/artificial-intelligence (visited on 10/05/2019).

[24] Pamela McCorduck. “Machines who think”. In: (2004).
[25] Όμηρο. Ιλιάδα. 850.
[26] John McCarthy et al. “A proposal for the dartmouth summer research project

on artificial intelligence, august 31, 1955”. In: AI magazine 27.4 (2006),
pp. 12–12.

[27] P Russel Norvig and S Artificial Intelligence. A modern approach. Prentice
Hall, 2002.

[28] Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. “Deep blue”.
In: Artificial intelligence 134.1-2 (2002), pp. 57–83.

https://cds.cern.ch/record/1701361
https://cds.cern.ch/record/1701361
https://cds.cern.ch/record/1443882
https://indico.cern.ch/event/523577/contributions/2178698/attachments/1279812/1900824/GCorti-LHCbFastSim-20160526.pdf
https://indico.cern.ch/event/523577/contributions/2178698/attachments/1279812/1900824/GCorti-LHCbFastSim-20160526.pdf
https://indico.cern.ch/event/523577/contributions/2178698/attachments/1279812/1900824/GCorti-LHCbFastSim-20160526.pdf
https://cds.cern.ch/record/2202412
https://cds.cern.ch/record/2202412
https://www.britannica.com/technology/artificial-intelligence
https://www.britannica.com/technology/artificial-intelligence

Bibliography 164

[29] Volodymyr Mnih et al. “Playing Atari with Deep Reinforcement Learning”.
In: arXiv preprint arXiv:1312.5602 (2013).

[30] David Silver et al. “Mastering the game of Go with deep neural networks
and tree search”. In: nature 529.7587 (2016), p. 484.

[31] Oriol Vinyals et al. “AlphaStar: Mastering the real-time strategy game Star-
Craft II”. In: DeepMind Blog (2019).

[32] AM Turing. “Computing machinery and intelligence”. In: Mind 59.236 (1950),
p. 433.

[33] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to sequence learn-
ing with neural networks”. In: Advances in neural information processing
systems. 2014, pp. 3104–3112.

[34] Alex Graves and Navdeep Jaitly. “Towards end-to-end speech recognition
with recurrent neural networks”. In: International conference on machine
learning. 2014, pp. 1764–1772.

[35] Herbert A Simon and Allen Newell. “Heuristic problem solving: The next
advance in operations research”. In: Operations research 6.1 (1958), pp. 1–
10.

[36] Daniel Crevier. AI: the tumultuous history of the search for artificial intelli-
gence. Basic Books, 1993.

[37] Richard M Russell. “The CRAY-1 computer system”. In: Communications
of the ACM 21.1 (1978), pp. 63–72.

[38] John McCarthy. Artificial intelligence: a paper symposium: Professor Sir
James Lighthill, FRS. Artificial Intelligence: A General Survey. In: Science
Research Council, 1973. 1974.

[39] Jelena Stajic et al. Rise of the Machines. 2015.
[40] Conditional expectation. url: https://en.wikipedia.org/wiki/Conditional_

expectation.
[41] David Foster. Generative deep learning: teaching machines to paint, write,

compose, and play. O’Reilly Media, 2019.
[42] Alexey Artemov. “Intro into Machine Learning”. In: The Fourth Machine

Learning summer school (2018). url: https://indico.cern.ch/event/
687473/sessions/259653/.

[43] Claire Adam-Bourdarios et al. “The Higgs machine learning challenge”. In:
Journal of Physics: Conference Series. Vol. 664. 7. IOP Publishing. 2015,
p. 072015.

[44] Liudmila Prokhorenkova et al. In: Advances in Neural Information Processing
Systems. 2018, pp. 6638–6648.

[45] Olivier Callot. FastVelo, a fast and efficient pattern recognition package for
the Velo. Tech. rep. 2011.

https://en.wikipedia.org/wiki/Conditional_expectation
https://en.wikipedia.org/wiki/Conditional_expectation
https://indico.cern.ch/event/687473/sessions/259653/
https://indico.cern.ch/event/687473/sessions/259653/

Bibliography 165

[46] S Viret, C Parkes, and D Petrie. LHCb VELO software alignment, Part I:
the alignment of the VELO modules in their half boxes. Tech. rep. LHCb-
2005-101. CERN-LHCb-2005-101. Geneva: CERN, Dec. 2005. url: https:
//cds.cern.ch/record/914076.

[47] Are Strandlie and Rudolf Frühwirth. “Track and vertex reconstruction: From
classical to adaptive methods”. In: Reviews of Modern Physics 82.2 (2010),
p. 1419.

[48] Yassine Alouini. Histogram of most used eval metrics. url: https://www.
kaggle.com/yassinealouini/histogram-of-most-used-eval-metrics
(visited on 10/07/2019).

[49] Sergio Bermejo and Joan Cabestany. “Oriented principal component analysis
for large margin classifiers”. In: Neural Networks 14.10 (2001), pp. 1447–1461.

[50] Solomon Kullback. Statistics and information theory. J. Wiley and Sons,
New York, 1959.

[51] Donald Bamber. “The area above the ordinal dominance graph and the area
below the receiver operating characteristic graph”. In: Journal of mathemat-
ical psychology 12.4 (1975), pp. 387–415.

[52] Elizabeth R DeLong, David M DeLong, and Daniel L Clarke-Pearson. “Com-
paring the areas under two or more correlated receiver operating characteris-
tic curves: a nonparametric approach.” In: Biometrics 44.3 (1988), pp. 837–
845.

[53] Martina Kottas, Oliver Kuss, and Antonia Zapf. “A modified Wald interval
for the area under the ROC curve (AUC) in diagnostic case-control studies”.
In: BMC medical research methodology 14.1 (2014), p. 26.

[54] David H Wolpert. “The supervised learning no-free-lunch theorems”. In: Soft
computing and industry. Springer, 2002, pp. 25–42.

[55] Nikita Kazeev. The Lack of A Priori Distinctions Between Learning Algo-
rithms aka No Free Lunch Theorems for Learning. url: https://github.
com/kazeevn/no_free_lunch.

[56] Anne Auger and Olivier Teytaud. “Continuous lunches are free plus the
design of optimal optimization algorithms”. In: Algorithmica 57.1 (2010),
pp. 121–146.

[57] David H Wolpert. “The existence of a priori distinctions between learning
algorithms”. In: Neural Computation 8.7 (1996), pp. 1391–1420.

[58] Zhou Lu et al. “The expressive power of neural networks: A view from
the width”. In: Advances in neural information processing systems. 2017,
pp. 6231–6239.

[59] Christopher M Bishop. Pattern recognition and machine learning. springer,
2006.

[60] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

https://cds.cern.ch/record/914076
https://cds.cern.ch/record/914076
https://www.kaggle.com/yassinealouini/histogram-of-most-used-eval-metrics
https://www.kaggle.com/yassinealouini/histogram-of-most-used-eval-metrics
https://github.com/kazeevn/no_free_lunch
https://github.com/kazeevn/no_free_lunch
http://www.deeplearningbook.org
http://www.deeplearningbook.org

Bibliography 166

[61] Higher School of Economics. Advanced Machine Learning Specialization. url:
https://www.coursera.org/specializations/aml.

[62] Stan Lipovetsky. “Analytical closed-form solution for binary logit regression
by categorical predictors”. In: Journal of applied statistics 42.1 (2015), pp. 37–
49.

[63] Andrew LMaas, Awni Y Hannun, and Andrew Y Ng. “Rectifier nonlinearities
improve neural network acoustic models”. In: Proc. icml. Vol. 30. 1. 2013, p. 3.

[64] Prajit Ramachandran, Barret Zoph, and Quoc V Le. “Searching for activa-
tion functions”. In: arXiv preprint arXiv:1710.05941 (2017).

[65] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex opti-
mization. Cambridge university press, 2004.

[66] Aimo Törn and Antanas Žilinskas. Global optimization. Vol. 350. Springer,
1989.

[67] David H Wolpert and William G Macready. “No free lunch theorems for
optimization”. In: IEEE transactions on evolutionary computation 1.1 (1997),
pp. 67–82.

[68] Augustin Cauchy. “Méthode générale pour la résolution des systemes d’équa-
tions simultanées”. In: Comp. Rend. Sci. Paris 25.1847 (1847), pp. 536–538.

[69] Jack Kiefer, Jacob Wolfowitz, et al. “Stochastic estimation of the maximum
of a regression function”. In: The Annals of Mathematical Statistics 23.3
(1952), pp. 462–466.

[70] Eduardo D Sontag and Héctor J Sussmann. “Backpropagation can give rise to
spurious local minima even for networks without hidden layers”. In: Complex
Systems 3.1 (1989), pp. 91–106.

[71] Martin L Brady, Raghu Raghavan, and Joseph Slawny. “Back propagation
fails to separate where perceptrons succeed”. In: IEEE Transactions on Cir-
cuits and Systems 36.5 (1989), pp. 665–674.

[72] Marco Gori and Alberto Tesi. “On the problem of local minima in backprop-
agation”. In: IEEE Transactions on Pattern Analysis & Machine Intelligence
1 (1992), pp. 76–86.

[73] Andrew M Saxe, James L McClelland, and Surya Ganguli. “Exact solutions
to the nonlinear dynamics of learning in deep linear neural networks”. In:
arXiv preprint arXiv:1312.6120 (2013).

[74] Yann N Dauphin et al. “Identifying and attacking the saddle point prob-
lem in high-dimensional non-convex optimization”. In: Advances in neural
information processing systems. 2014, pp. 2933–2941.

[75] Anna Choromanska et al. “The loss surfaces of multilayer networks”. In:
Artificial Intelligence and Statistics. 2015, pp. 192–204.

[76] Joohyoung. Deep Learning 이론과 실습 (개정중). 2015. url: https : / /
wikidocs.net/book/498.

[77] Subir Varma and Sanjiv Das. Deep Learning. 2018. url: https://srdas.
github.io/DLBook/.

https://www.coursera.org/specializations/aml
https://wikidocs.net/book/498
https://wikidocs.net/book/498
https://srdas.github.io/DLBook/
https://srdas.github.io/DLBook/

Bibliography 167

[78] Boris T Polyak. “Some methods of speeding up the convergence of iteration
methods”. In: USSR Computational Mathematics and Mathematical Physics
4.5 (1964), pp. 1–17.

[79] Tijmen Tieleman and Geoffrey Hinton. “Lecture 6.5-rmsprop: Divide the
gradient by a running average of its recent magnitude”. In: COURSERA:
Neural networks for machine learning 4.2 (2012), pp. 26–31.

[80] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic opti-
mization”. In: arXiv preprint arXiv:1412.6980 (2014).

[81] Felipe Petroski Such et al. “Deep neuroevolution: Genetic algorithms are a
competitive alternative for training deep neural networks for reinforcement
learning”. In: arXiv preprint arXiv:1712.06567 (2017).

[82] Gavin Taylor et al. “Training Neural Networks Without Gradients: A Scal-
able ADMM Approach”. In: International conference on machine learning.
2016, pp. 2722–2731.

[83] Randal J Barnes. “Matrix differentiation”. In: Springs Journal (2006), pp. 1–
9.

[84] Seppo Linnainmaa. “The representation of the cumulative rounding error of
an algorithm as a Taylor expansion of the local rounding errors”. In: Master’s
Thesis (in Finnish), Univ. Helsinki (1970), pp. 6–7.

[85] Jacob Devlin et al. “Bert: Pre-training of deep bidirectional transformers for
language understanding”. In: arXiv preprint arXiv:1810.04805 (2018).

[86] Geoffrey Hinton et al. “Deep neural networks for acoustic modeling in speech
recognition”. In: IEEE Signal processing magazine 29 (2012).

[87] Jimmy Ba and Rich Caruana. “Do deep nets really need to be deep?” In:
Advances in neural information processing systems. 2014, pp. 2654–2662.

[88] Gregor Urban et al. “Do deep convolutional nets really need to be deep and
convolutional?” In: arXiv preprint arXiv:1603.05691 (2016).

[89] Barret Zoph and Quoc V Le. “Neural architecture search with reinforcement
learning”. In: arXiv preprint arXiv:1611.01578 (2016).

[90] Hanxiao Liu, Karen Simonyan, and Yiming Yang. “Darts: Differentiable ar-
chitecture search”. In: arXiv preprint arXiv:1806.09055 (2018).

[91] Hieu Pham et al. “Efficient neural architecture search via parameter sharing”.
In: arXiv preprint arXiv:1802.03268 (2018).

[92] Ronald J Williams and David Zipser. “A learning algorithm for continually
running fully recurrent neural networks”. In: Neural computation 1.2 (1989),
pp. 270–280.

[93] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. “Learning to forget:
Continual prediction with LSTM”. In: (1999).

[94] Norman Jouppi et al. “Motivation for and evaluation of the first tensor pro-
cessing unit”. In: IEEE Micro 38.3 (2018), pp. 10–19.

Bibliography 168

[95] Shaohuai Shi et al. “Benchmarking state-of-the-art deep learning software
tools”. In: 2016 7th International Conference on Cloud Computing and Big
Data (CCBD). IEEE. 2016, pp. 99–104.

[96] MissingLink. The Complete Guide to Deep Learning with GPUs. url: https:
//missinglink.ai/guides/computer-vision/complete-guide-deep-
learning-gpus/ (visited on 10/06/2019).

[97] Nvidia. NVIDIA TESLA V100 GPU ACCELERATOR. url: https : / /
images.nvidia.com/content/technologies/volta/pdf/437317-Volta-
V100-DS-NV-US-WEB.pdf (visited on 10/06/2019).

[98] NVIDIA V100 tensor core GPU. url: https://www.nvidia.com/en-
us/data-center/v100/ (visited on 02/03/2020).

[99] Xeon Platinum 8253 - Intel. url: https://en.wikichip.org/wiki/intel/
xeon_platinum/8253.

[100] Kayvon Fatahalian, Jeremy Sugerman, and Pat Hanrahan. “Understanding
the efficiency of GPU algorithms for matrix-matrix multiplication”. In: Pro-
ceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graph-
ics hardware. ACM. 2004, pp. 133–137.

[101] Martı́n Abadi et al. TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems. Software available from tensorflow.org. 2015. url: http:
//tensorflow.org/.

[102] Adam Paszke et al. “Automatic Differentiation in PyTorch”. In: NIPS Au-
todiff Workshop. 2017.

[103] Alexey Artemov and Andrey Ustyuzhanin. “Decision Trees and Ensembling
algorithms”. In: The Fifth Machine Learning summer school (2019). url:
https://indico.cern.ch/event/768915/.

[104] Tibshirani R Hastie � and JH Friedman. Elements of statistical learning: data
mining, inference, and prediction. 2003.

[105] Statistical decision series. Statistical Decision Series �. 4. HBR, 1959. url:
https://books.google.ru/books?id=8WwPAQAAMAAJ.

[106] L.M.L. Cam and J. Neyman. Proceedings of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability: Weather modification. Proceedings
of the Fifth Berkeley Symposium on Mathematical Statistics and Probability:
Held at the Statistical Laboratory, University of California, June 21-July 18,
1965 and December 27, 1965-January 7, 1966. University of California Press,
1967. url: https://books.google.ru/books?id=QsBQCBgTx8gC.

[107] Πορφύριος. Εἰσαγωγή. 270.
[108] Mike Hunter (https://stats.stackexchange.com/users/78229/mike-hunter). Who

invented the decision tree? Cross Validated. URL:https://stats.stackexchange.com/q/257585
(version: 2017-04-08). eprint: https : / / stats . stackexchange . com / q /
257585. url: https://stats.stackexchange.com/q/257585.

https://missinglink.ai/guides/computer-vision/complete-guide-deep-learning-gpus/
https://missinglink.ai/guides/computer-vision/complete-guide-deep-learning-gpus/
https://missinglink.ai/guides/computer-vision/complete-guide-deep-learning-gpus/
https://images.nvidia.com/content/technologies/volta/pdf/437317-Volta-V100-DS-NV-US-WEB.pdf
https://images.nvidia.com/content/technologies/volta/pdf/437317-Volta-V100-DS-NV-US-WEB.pdf
https://images.nvidia.com/content/technologies/volta/pdf/437317-Volta-V100-DS-NV-US-WEB.pdf
https://www.nvidia.com/en-us/data-center/v100/
https://www.nvidia.com/en-us/data-center/v100/
https://en.wikichip.org/wiki/intel/xeon_platinum/8253
https://en.wikichip.org/wiki/intel/xeon_platinum/8253
http://tensorflow.org/
http://tensorflow.org/
https://indico.cern.ch/event/768915/
https://books.google.ru/books?id=8WwPAQAAMAAJ
https://books.google.ru/books?id=QsBQCBgTx8gC
https://stats.stackexchange.com/q/257585
https://stats.stackexchange.com/q/257585
https://stats.stackexchange.com/q/257585

Bibliography 169

[109] Laurent Hyafil and Ronald L. Rivest. “Constructing optimal binary decision
trees is NP-complete”. In: Information Processing Letters 5.1 (1976), pp. 15–
17. issn: 0020-0190. doi: https://doi.org/10.1016/0020-0190(76)
90095-8. url: http://www.sciencedirect.com/science/article/pii/
0020019076900958.

[110] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting Sys-
tem”. In: Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining. ACM. 2016, pp. 785–794.

[111] Ricky Ho. Machine Learning: Patterns for Predictive Analytics. 2012. url:
https://dzone.com/refcardz/machine-learning-predictive?chapter=
1.

[112] Decision tree learning. url: https://en.wikipedia.org/wiki/Decision_
tree_learning.

[113] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal
of Machine Learning Research 12 (2011), pp. 2825–2830.

[114] Kai Ming Ting and Lian Zhu. “Boosting support vector machines success-
fully”. In: International Workshop on Multiple Classifier Systems. Springer.
2009, pp. 509–518.

[115] Dinesh Govindaraj. “Can Boosting with SVM as Week Learners Help?” In:
arXiv preprint arXiv:1604.05242 (2016).

[116] Holger Schwenk and Y. Bengio. “Boosting Neural Networks”. In: Neural com-
putation 12 (Sept. 2000), pp. 1869–87. doi: 10.1162/089976600300015178.

[117] Jerome H Friedman. “Greedy function approximation: a gradient boosting
machine”. In: Annals of statistics (2001), pp. 1189–1232.

[118] Guolin Ke et al. “Lightgbm: A highly efficient gradient boosting decision
tree”. In: Advances in Neural Information Processing Systems. 2017, pp. 3146–
3154.

[119] Michal Ferov and Marek Modrý. Enhancing LambdaMART Using Oblivious
Trees. 2016. arXiv: 1609.05610 [cs.IR].

[120] Andrey Gulin, Igor Kuralenok, and Dimitry Pavlov. “Winning the trans-
fer learning track of yahoo!’s learning to rank challenge with yetirank”. In:
Proceedings of the Learning to Rank Challenge. 2011, pp. 63–76.

[121] Ron Kohavi and Dan Sommerfield. “Targeting Business Users with Decision
Table Classifiers.” In: KDD. 1998, pp. 249–253.

[122] Michael Levin. MatrixNet. 2016. url: https://www.slideshare.net/
mlprague/michael-levin-matrixnet-applications-at-yandex.

[123] Anna Veronika Dorogush et al. “Fighting biases with dynamic boosting”. In:
arXiv preprint arXiv:1706.09516v1 (2017). url: https://arxiv.org/abs/
1706.09516v1.

[124] Yandex. Best in class inference and a ton of speedups. url: https : / /
catboost.ai/news/best-in-class-inference-and-a-ton-of-speedups.

https://doi.org/https://doi.org/10.1016/0020-0190(76)90095-8
https://doi.org/https://doi.org/10.1016/0020-0190(76)90095-8
http://www.sciencedirect.com/science/article/pii/0020019076900958
http://www.sciencedirect.com/science/article/pii/0020019076900958
https://dzone.com/refcardz/machine-learning-predictive?chapter=1
https://dzone.com/refcardz/machine-learning-predictive?chapter=1
https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Decision_tree_learning
https://doi.org/10.1162/089976600300015178
https://arxiv.org/abs/1609.05610
https://www.slideshare.net/mlprague/michael-levin-matrixnet-applications-at-yandex
https://www.slideshare.net/mlprague/michael-levin-matrixnet-applications-at-yandex
https://arxiv.org/abs/1706.09516v1
https://arxiv.org/abs/1706.09516v1
https://catboost.ai/news/best-in-class-inference-and-a-ton-of-speedups
https://catboost.ai/news/best-in-class-inference-and-a-ton-of-speedups

Bibliography 170

[125] Chen-Ying Hung et al. “Comparing deep neural network and other machine
learning algorithms for stroke prediction in a large-scale population-based
electronic medical claims database”. In: 2017 39th Annual International Con-
ference of the IEEE Engineering in Medicine and Biology Society (EMBC).
IEEE. 2017, pp. 3110–3113.

[126] Jacques Wainer. “Comparison of 14 different families of classification algo-
rithms on 115 binary datasets”. In: arXiv preprint arXiv:1606.00930 (2016).

[127] Ruslan Salakhutdinov and Geoffrey Hinton. “Deep boltzmann machines”. In:
Artificial intelligence and statistics. 2009, pp. 448–455.

[128] Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in neural
information processing systems. 2014, pp. 2672–2680.

[129] Jürgen Schmidhuber. “Learning factorial codes by predictability minimiza-
tion”. In: Neural Computation 4.6 (1992), pp. 863–879.

[130] Were generative adversarial networks introduced by Jürgen Schmidhuber?
url: https://stats.stackexchange.com/questions/251460/were-
generative - adversarial - networks - introduced - by - j % C3 % BCrgen -
schmidhuber (visited on 12/20/2019).

[131] Generative Adversarial Networks (GANs) in 50 lines of code (PyTorch). url:
https://medium.com/@devnag/generative-adversarial-networks-
gans-in-50-lines-of-code-pytorch-e81b79659e3f (visited on 12/20/2019).

[132] Mehdi Mirza and Simon Osindero. Conditional Generative Adversarial Nets.
2014. arXiv: 1411.1784 [cs.LG].

[133] Martin Arjovsky and Léon Bottou. Towards Principled Methods for Training
Generative Adversarial Networks. 2017. arXiv: 1701.04862 [stat.ML].

[134] Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein Gener-
ative Adversarial Networks”. In: Proceedings of the 34th International Con-
ference on Machine Learning. Ed. by Doina Precup and Yee Whye Teh.
Vol. 70. Proceedings of Machine Learning Research. International Conven-
tion Centre, Sydney, Australia: PMLR, Aug. 2017, pp. 214–223. url: http:
//proceedings.mlr.press/v70/arjovsky17a.html.

[135] Ishaan Gulrajani et al. “Improved Training of Wasserstein GANs”. In: Ad-
vances in Neural Information Processing Systems 30. Ed. by I. Guyon et al.
Curran Associates, Inc., 2017, pp. 5767–5777. url: http://papers.nips.
cc/paper/7159-improved-training-of-wasserstein-gans.pdf.

[136] Vincent Herrmann. Wasserstein GAN and the Kantorovich-Rubinstein Du-
ality. url: https://vincentherrmann.github.io/blog/wasserstein/
(visited on 12/22/2019).

[137] Канторович, Леонид Витальевич and Рубинштейн, Геннадий Шлемович. “Об
одномфункциональном пространстве и некоторых экстремальных задачах”. In:
Доклады Академии наук. Vol. 115. 6. Академия наук СССР. 1957, pp. 1058–
1061.

[138] Lipschitz continuity. url: https://en.wikipedia.org/wiki/Lipschitz_
continuity (visited on 12/23/2019).

https://stats.stackexchange.com/questions/251460/were-generative-adversarial-networks-introduced-by-j%C3%BCrgen-schmidhuber
https://stats.stackexchange.com/questions/251460/were-generative-adversarial-networks-introduced-by-j%C3%BCrgen-schmidhuber
https://stats.stackexchange.com/questions/251460/were-generative-adversarial-networks-introduced-by-j%C3%BCrgen-schmidhuber
https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f
https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1701.04862
http://proceedings.mlr.press/v70/arjovsky17a.html
http://proceedings.mlr.press/v70/arjovsky17a.html
http://papers.nips.cc/paper/7159-improved-training-of-wasserstein-gans.pdf
http://papers.nips.cc/paper/7159-improved-training-of-wasserstein-gans.pdf
https://vincentherrmann.github.io/blog/wasserstein/
https://en.wikipedia.org/wiki/Lipschitz_continuity
https://en.wikipedia.org/wiki/Lipschitz_continuity

Bibliography 171

[139] Marc G Bellemare et al. “The Cramer distance as a solution to biasedWasser-
stein gradients”. In: arXiv preprint arXiv:1705.10743 (2017).

[140] Gábor J Székely. “E-Statistics: The energy of statistical samples”. In: Bowling
Green State University, Department of Mathematics and Statistics Technical
Report 3.05 (2003), pp. 1–18.

[141] David J Lange. “The EvtGen particle decay simulation package”. In: Nu-
clear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 462.1-2 (2001), pp. 152–
155.

[142] Torbjörn Sjöstrand, Stephen Mrenna, and Peter Skands. “PYTHIA 6.4 physics
and manual”. In: Journal of High Energy Physics 2006.05 (2006), p. 026.

[143] Eric M Metodiev, Benjamin Nachman, and Jesse Thaler. “Classification
without labels: Learning from mixed samples in high energy physics”. In:
Journal of High Energy Physics 2017.10 (2017), p. 174.

[144] Flavours of Physics: Finding τ → µµµ. 2015. url: https://www.kaggle.
com/c/flavours-of-physics/ (visited on 01/27/2020).

[145] Vladislav Mironov (littus) and Alexander Guschin. Flavours of Physics Find-
ing τ → µµµ. First place solution. 2015. url: https : / / github . com /
aguschin/flavours-of-physics/blob/master/Flavours_of_Physics_
Finding_tau-3mu_First_place_solution.pdf (visited on 01/27/2020).

[146] Gilles Louppe, Michael Kagan, and Kyle Cranmer. “Learning to pivot with
adversarial networks”. In: Advances in neural information processing systems.
2017, pp. 981–990.

[147] Chase Shimmin et al. “Decorrelated jet substructure tagging using adversar-
ial neural networks”. In: Physical Review D 96.7 (2017), p. 074034.

[148] Justin Stevens and Mike Williams. “uBoost: A boosting method for produc-
ing uniform selection efficiencies from multivariate classifiers”. In: Journal of
Instrumentation 8.12 (2013), P12013.

[149] Alex Rogozhnikov et al. “New approaches for boosting to uniformity”. In:
Journal of Instrumentation 10.03 (2015), T03002.

[150] Kolmogorov–Smirnov test. url: https://en.wikipedia.org/wiki/Kolmogorov%
E2%80%93Smirnov_test (visited on 01/29/2020).

[151] Layne Bradshaw et al. “Mass Agnostic Jet Taggers”. In: SciPost Phys. 8
(1 2020), p. 11. doi: 10.21468/SciPostPhys.8.1.011. url: https://
scipost.org/10.21468/SciPostPhys.8.1.011.

[152] LHCb Collaboration. “Measurement of forward tt̄, W + bb̄ and W + cc̄ pro-
duction in pp collisions at

√
s = 8 TeV”. In: Physics Letters B 767 (2017),

pp. 110–120.
[153] Roel Aaij et al. “First observation of forward Z → bb̄ production in pp

collisions at
√
s = 8 TeV”. In: Physics Letters B 776 (2018), pp. 430–439.

https://www.kaggle.com/c/flavours-of-physics/
https://www.kaggle.com/c/flavours-of-physics/
https://github.com/aguschin/flavours-of-physics/blob/master/Flavours_of_Physics_Finding_tau-3mu_First_place_solution.pdf
https://github.com/aguschin/flavours-of-physics/blob/master/Flavours_of_Physics_Finding_tau-3mu_First_place_solution.pdf
https://github.com/aguschin/flavours-of-physics/blob/master/Flavours_of_Physics_Finding_tau-3mu_First_place_solution.pdf
https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test
https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test
https://doi.org/10.21468/SciPostPhys.8.1.011
https://scipost.org/10.21468/SciPostPhys.8.1.011
https://scipost.org/10.21468/SciPostPhys.8.1.011

Bibliography 172

[154] S.H. Clearwater and E.G. Stern. “A rule-learning program in high energy
physics event classification”. In: Computer Physics Communications 67.2
(1991), pp. 159–182. issn: 0010-4655. doi: https://doi.org/10.1016/
0010-4655(91)90014-C. url: http://www.sciencedirect.com/science/
article/pii/001046559190014C.

[155] Alexander Radovic et al. “Machine learning at the energy and intensity fron-
tiers of particle physics”. In: Nature 560.7716 (2018), p. 41.

[156] Tatiana Likhomanenko et al. “LHCb topological trigger reoptimization”. In:
Journal of Physics: Conference Series. Vol. 664. 8. IOP Publishing. 2015,
p. 082025.

[157] M. Aaboud et al. “Observation of Higgs boson production in association with
a top quark pair at the LHC with the ATLAS detector”. In: Physics Letters
B 784 (2018), pp. 173–191. issn: 0370-2693. doi: https://doi.org/10.
1016/j.physletb.2018.07.035. url: http://www.sciencedirect.com/
science/article/pii/S0370269318305732.

[158] Claudia Marino. Xb Search and Measurement of the Y (1), Y (2S) and Y (3S)
Polarization. Tech. rep. Fermi National Accelerator Lab.(FNAL), Batavia,
IL (United States), 2009.

[159] Michel De Cian. “Machine Learning and Parallelism in the Reconstruction
of LHCb and its Upgrade”. In: EPJ Web of Conferences. Vol. 127. EDP
Sciences. 2016, p. 00006.

[160] M Aaboud et al. “Performance of the ATLAS track reconstruction algorithms
in dense environments in LHC Run 2”. In: The European Physical Journal C
77.10 (2017), p. 673.

[161] The LHCb collaboration. “Identification of beauty and charm quark jets at
LHCb”. In: Journal of Instrumentation 10.06 (July 2015), P06013–P06013.
doi: 10.1088/1748-0221/10/06/p06013. url: https://doi.org/10.
1088%2F1748-0221%2F10%2F06%2Fp06013.

[162] Roel Aaij et al. “A new algorithm for identifying the flavour of B0s mesons
at LHCb”. In: Journal of Instrumentation 11.05 (2016), P05010.

[163] Pierre Baldi et al. “Jet substructure classification in high-energy physics with
deep neural networks”. In: Physical Review D 93.9 (2016), p. 094034.

[164] Miriam Calvo Gomez et al. A tool for γ/π0 separation at high energies. Tech.
rep. LHCb-PUB-2015-016. CERN-LHCb-PUB-2015-016. Geneva: CERN, Aug.
2015. url: https://cds.cern.ch/record/2042173.

[165] Donald Hill, Viktoriia Chekalina, and Martino Borsato. “Boosting Neutral
Particles Identification by Boosting Trees: LHCb case”. CHEP 2018 confer-
ence. 2018. url: https://indico.cern.ch/event/587955/contributions/
2937533/.

[166] R Aaij et al. “New algorithms for identifying the flavour of B0 mesons using
pions and protons”. In: The European Physical Journal C 77.4 (2017), p. 238.

https://doi.org/https://doi.org/10.1016/0010-4655(91)90014-C
https://doi.org/https://doi.org/10.1016/0010-4655(91)90014-C
http://www.sciencedirect.com/science/article/pii/001046559190014C
http://www.sciencedirect.com/science/article/pii/001046559190014C
https://doi.org/https://doi.org/10.1016/j.physletb.2018.07.035
https://doi.org/https://doi.org/10.1016/j.physletb.2018.07.035
http://www.sciencedirect.com/science/article/pii/S0370269318305732
http://www.sciencedirect.com/science/article/pii/S0370269318305732
https://doi.org/10.1088/1748-0221/10/06/p06013
https://doi.org/10.1088%2F1748-0221%2F10%2F06%2Fp06013
https://doi.org/10.1088%2F1748-0221%2F10%2F06%2Fp06013
https://cds.cern.ch/record/2042173
https://indico.cern.ch/event/587955/contributions/2937533/
https://indico.cern.ch/event/587955/contributions/2937533/

Bibliography 173

[167] M Adinolfi et al. “LHCb data quality monitoring”. In: Journal of Physics:
Conference Series 898 (Oct. 2017), p. 092027. doi: 10.1088/1742-6596/
898/9/092027. url: https://doi.org/10.1088%2F1742-6596%2F898%
2F9%2F092027.

[168] M Adinolfi et al. “Performance of the LHCb RICH detector at the LHC”. In:
Eur. Phys. J. C 73.arXiv:1211.6759. CERN-LHCb-DP-2012-003. LHCb-DP-
2012-003 (Oct. 2012), 2431. 25 p. doi: 10.1140/epjc/s10052-013-2431-9.
url: https://cds.cern.ch/record/1495721.

[169] B Denby. “Neural networks and cellular automata in experimental high en-
ergy physics”. In: Computer Physics Communications 49.3 (1988), pp. 429–
448.

[170] Luke de Oliveira et al. “Jet-images—deep learning edition”. In: Journal of
High Energy Physics 2016.7 (2016), p. 69.

[171] Pierre Baldi et al. “Jet substructure classification in high-energy physics with
deep neural networks”. In: Phys. Rev. D 93 (9 May 2016), p. 094034. doi:
10.1103/PhysRevD.93.094034. url: https://link.aps.org/doi/10.
1103/PhysRevD.93.094034.

[172] Daniel Guest et al. “Jet flavor classification in high-energy physics with deep
neural networks”. In: Physical Review D 94.11 (2016), p. 112002.

[173] Gilles Louppe et al. “QCD-aware recursive neural networks for jet physics”.
In: Journal of High Energy Physics 2019.1 (2019), p. 57.

[174] Taoli Cheng. “Recursive neural networks in quark/gluon tagging”. In: Com-
puting and Software for Big Science 2.1 (2018), p. 3.

[175] Steven Farrell et al. “Novel deep learning methods for track reconstruction”.
In: arXiv preprint arXiv:1810.06111 (2018).

[176] Petar Veličković et al. “Graph attention networks”. In: arXiv preprint arXiv:1710.10903
(2017).

[177] Yujia Li et al. Gated Graph Sequence Neural Networks. 2015. arXiv: 1511.
05493 [cs.LG].

[178] F. Scarselli et al. “The Graph Neural Network Model”. In: IEEE Transactions
on Neural Networks 20.1 (Jan. 2009), pp. 61–80. issn: 1941-0093. doi: 10.
1109/TNN.2008.2005605.

[179] Keyulu Xu et al. How Powerful are Graph Neural Networks? 2018. arXiv:
1810.00826 [cs.LG].

[180] Jie Zhou et al. Graph Neural Networks: A Review of Methods and Applica-
tions. 2018. arXiv: 1812.08434 [cs.LG].

[181] Lindsey Gray et al. “Graph Neural Networks for Particle Reconstruction
in High Energy Physics detectors”. In: Machine Learning and the Physical
Sciences Workshop at the 33rd Conference on Neural Information Processing
Systems (NeurIPS) (2019). url: https://ml4physicalsciences.github.
io/files/NeurIPS_ML4PS_2019_83.pdf.

https://doi.org/10.1088/1742-6596/898/9/092027
https://doi.org/10.1088/1742-6596/898/9/092027
https://doi.org/10.1088%2F1742-6596%2F898%2F9%2F092027
https://doi.org/10.1088%2F1742-6596%2F898%2F9%2F092027
https://doi.org/10.1140/epjc/s10052-013-2431-9
https://cds.cern.ch/record/1495721
https://doi.org/10.1103/PhysRevD.93.094034
https://link.aps.org/doi/10.1103/PhysRevD.93.094034
https://link.aps.org/doi/10.1103/PhysRevD.93.094034
https://arxiv.org/abs/1511.05493
https://arxiv.org/abs/1511.05493
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://arxiv.org/abs/1810.00826
https://arxiv.org/abs/1812.08434
https://ml4physicalsciences.github.io/files/NeurIPS_ML4PS_2019_83.pdf
https://ml4physicalsciences.github.io/files/NeurIPS_ML4PS_2019_83.pdf

Bibliography 174

[182] M. Bernardini and K. Foraz. “Long Shutdown 2 @ LHC”. In: CERN Yellow
Reports 2.00 (2016), p. 290. url: https://e-publishing.cern.ch/index.
php/CYR/article/view/159.

[183] CERN. The Large Hadron Collider. url: https://home.cern/science/
accelerators/large-hadron-collider.

[184] Esma Mobs. “The CERN accelerator complex - 2019. Complexe des accéléra-
teurs du CERN - 2019”. In: (June 2019). General Photo. url: https://cds.
cern.ch/record/2684277.

[185] Georges Aad et al. “Observation of a new particle in the search for the
Standard Model Higgs boson with the ATLAS detector at the LHC”. In:
Physics Letters B 716.1 (2012), pp. 1–29.

[186] Serguei Chatrchyan et al. “Observation of a new boson at a mass of 125 GeV
with the CMS experiment at the LHC”. In: Physics Letters B 716.1 (2012),
pp. 30–61.

[187] LHCb Collaboration et al. “Measurement of the track reconstruction effi-
ciency at LHCb”. In: Journal of Instrumentation 10.02 (2015), P02007.

[188] R Aaij et al. “Performance of the LHCb Vertex Locator”. In: Journal of
Instrumentation 9.09 (Sept. 2014), P09007–P09007. doi: 10.1088/1748-
0221/9/09/p09007. url: https://doi.org/10.1088%2F1748-0221%2F9%
2F09%2Fp09007.

[189] Roel Aaij et al. “Performance of the LHCb vertex locator”. In: Journal of
Instrumentation 9.09 (2014), P09007.

[190] Lucio Anderlini. “Measurement of theB+
c meson lifetime usingB+

c → J/ψµ+νµX
decays with the LHCb detector at CERN”. Presented 03 Feb 2015. Jan. 2014.
url: http://cds.cern.ch/record/1980460.

[191] LHCb Collaboration. LHCb Silicon Tracker - Material for Publications. url:
https://lhcb.physik.uzh.ch/ST/public/material/.

[192] Cherenkov radiation. url: https://en.wikipedia.org/wiki/Cherenkov_
radiation (visited on 09/11/2019).

[193] LHCb Collaboration. RICHPicturesAndFigures. url: https://twiki.cern.
ch/twiki/bin/view/LHCb/RICHPicturesAndFigures (visited on 09/12/2019).

[194] Claus Peter Buszello. “LHCb RICH Reconstruction”. In: (Oct. 2007). url:
https://cds.cern.ch/record/1432173.

[195] Eduardo Picatoste Olloqui, LHCb Collaboration, et al. “Lhcb preshower (ps)
and scintillating pad detector (spd): Commissioning, calibration, and moni-
toring”. In: Journal of Physics: Conference Series. Vol. 160. 1. IOP Publish-
ing. 2009, p. 012046.

[196] Oliver Lupton. “Studies of D0 → K0
Sh+h′− decays at the LHCb experiment”.

Presented 14 Sep 2016. July 2016. url: https://cds.cern.ch/record/
2230910.

[197] Tomasz Szumlak. “IOP: Real time analysis with the upgraded LHCb trigger
in Run III”. In: J. Phys.: Conf. Ser. Vol. 898. 2017, p. 032051.

https://e-publishing.cern.ch/index.php/CYR/article/view/159
https://e-publishing.cern.ch/index.php/CYR/article/view/159
https://home.cern/science/accelerators/large-hadron-collider
https://home.cern/science/accelerators/large-hadron-collider
https://cds.cern.ch/record/2684277
https://cds.cern.ch/record/2684277
https://doi.org/10.1088/1748-0221/9/09/p09007
https://doi.org/10.1088/1748-0221/9/09/p09007
https://doi.org/10.1088%2F1748-0221%2F9%2F09%2Fp09007
https://doi.org/10.1088%2F1748-0221%2F9%2F09%2Fp09007
http://cds.cern.ch/record/1980460
https://lhcb.physik.uzh.ch/ST/public/material/
https://en.wikipedia.org/wiki/Cherenkov_radiation
https://en.wikipedia.org/wiki/Cherenkov_radiation
https://twiki.cern.ch/twiki/bin/view/LHCb/RICHPicturesAndFigures
https://twiki.cern.ch/twiki/bin/view/LHCb/RICHPicturesAndFigures
https://cds.cern.ch/record/1432173
https://cds.cern.ch/record/2230910
https://cds.cern.ch/record/2230910

Bibliography 175

[198] R Aaij et al. “Design and performance of the LHCb trigger and full real-time
reconstruction in Run 2 of the LHC”. In: Journal of Instrumentation 14.04
(2019), P04013.

[199] R Aaij et al. “The LHCb trigger and its performance in 2011”. In: Journal
of Instrumentation 8.04 (2013), P04022.

[200] CERN (Meyrin) LHCb Collaboration. Computing Model of the Upgrade
LHCb experiment. Tech. rep. CERN-LHCC-2018-014. LHCB-TDR-018. Geneva:
CERN, May 2018. url: https://cds.cern.ch/record/2319756.

[201] Michel De Cian et al. Fast neural-net based fake track rejection in the LHCb
reconstruction. Tech. rep. LHCb-PUB-2017-011. CERN-LHCb-PUB-2017-
011. Geneva: CERN, Mar. 2017. url: https://cds.cern.ch/record/
2255039.

[202] Yangqing Jia et al. “Caffe: Convolutional Architecture for Fast Feature Em-
bedding”. In: arXiv preprint arXiv:1408.5093 (2014).

[203] G Lanfranchi et al. Tech. rep. LHCb-PUB-2009-013. CERN-LHCb-PUB-
2009-013. Geneva: CERN, Aug. 2009.

[204] Roel Aaij et al. Optimization of the muon reconstruction algorithms for
LHCb Run 2. Tech. rep. LHCb-PUB-2017-007. CERN-LHCb-PUB-2017-007.
Geneva: CERN, Feb. 2017. url: https://cds.cern.ch/record/2253050.

[205] Vladimir V Gligorov, Christopher Thomas, and Michael Williams. The HLT
inclusive B triggers. Tech. rep. LHCb-PUB-2011-016. CERN-LHCb-PUB-
2011-016. LHCb-INT-2011-030. LHCb-INT-2011-030. Geneva: CERN, Sept.
2011. url: https://cds.cern.ch/record/1384380.

[206] Adam Davis et al. PatLongLivedTracking: a tracking algorithm for the recon-
struction of the daughters of long-lived particles in LHCb. Tech. rep. LHCb-
PUB-2017-001. CERN-LHCb-PUB-2017-001. Geneva: CERN, Jan. 2017. url:
https://cds.cern.ch/record/2240723.

[207] Andreas Hoecker et al. “TMVA-Toolkit for multivariate data analysis”. In:
arXiv preprint physics/0703039 (2007).

[208] V Breton, N Brun, and P Perret. A clustering algorithm for the LHCb electro-
magnetic calorimeter using a cellular automaton. Tech. rep. LHCb-2001-123.
Geneva: CERN, Sept. 2001. url: https://cds.cern.ch/record/681262.

[209] D Derkach et al. “LHCb trigger streams optimization”. In: Journal of Physics:
Conference Series 898 (Oct. 2017), p. 062026. doi: 10.1088/1742-6596/
898/6/062026. url: https://doi.org/10.1088%2F1742-6596%2F898%
2F6%2F062026.

[210] T Head. “The LHCb trigger system”. In: Journal of Instrumentation 9.09
(Sept. 2014), pp. C09015–C09015. doi: 10.1088/1748-0221/9/09/c09015.
url: https://doi.org/10.1088%2F1748-0221%2F9%2F09%2Fc09015.

[211] Alessio Piucci. “The LHCb Upgrade”. In: Journal of Physics: Conference
Series 878 (July 2017), p. 012012. doi: 10.1088/1742-6596/878/1/012012.
url: https://doi.org/10.1088%2F1742-6596%2F878%2F1%2F012012.

https://cds.cern.ch/record/2319756
https://cds.cern.ch/record/2255039
https://cds.cern.ch/record/2255039
https://cds.cern.ch/record/2253050
https://cds.cern.ch/record/1384380
https://cds.cern.ch/record/2240723
https://cds.cern.ch/record/681262
https://doi.org/10.1088/1742-6596/898/6/062026
https://doi.org/10.1088/1742-6596/898/6/062026
https://doi.org/10.1088%2F1742-6596%2F898%2F6%2F062026
https://doi.org/10.1088%2F1742-6596%2F898%2F6%2F062026
https://doi.org/10.1088/1748-0221/9/09/c09015
https://doi.org/10.1088%2F1748-0221%2F9%2F09%2Fc09015
https://doi.org/10.1088/1742-6596/878/1/012012
https://doi.org/10.1088%2F1742-6596%2F878%2F1%2F012012

Bibliography 176

[212] LHCb Collaboration. LHCb Tracker Upgrade Technical Design Report. Tech.
rep. CERN-LHCC-2014-001. LHCB-TDR-015. Feb. 2014. url: https://
cds.cern.ch/record/1647400.

[213] R. Aaij et al. “A comprehensive real-time analysis model at the LHCb exper-
iment”. In: Journal of Instrumentation 14.04 (Apr. 2019), P04006–P04006.
doi: 10.1088/1748-0221/14/04/p04006. url: https://doi.org/10.
1088%2F1748-0221%2F14%2F04%2Fp04006.

[214] R. Aaij et al. Allen: A high level trigger on GPUs for LHCb. 2019. arXiv:
1912.09161 [physics.ins-det].

[215] CERN (Meyrin) LHCb Collaboration. LHCb Upgrade GPU High Level Trig-
ger Technical Design Report. Tech. rep. CERN-LHCC-2020-006. LHCB-TDR-
021. Geneva: CERN, May 2020. url: https://cds.cern.ch/record/
2717938.

[216] R. Aaij et al. “Allen: A High-Level Trigger on GPUs for LHCb”. In: Com-
puting and Software for Big Science 4.1 (Apr. 2020). issn: 2510-2044. doi:
10.1007/s41781-020-00039-7. url: http://dx.doi.org/10.1007/
s41781-020-00039-7.

[217] Concezio Bozzi. LHCb Computing Resources: 2020 requests and preview of
the subsequent years. Tech. rep. LHCb-PUB-2019-003. CERN-LHCb-PUB-
2019-003. Geneva: CERN, Feb. 2019. url: https://cds.cern.ch/record/
2657832.

[218] Roel Aaij et al. “Selection and processing of calibration samples to measure
the particle identification performance of the LHCb experiment in Run 2”.
In: EPJ Techniques and Instrumentation 6.1 (2019), p. 1.

[219] Olli Lupton et al. Calibration samples for particle identification at LHCb
in Run 2. Tech. rep. LHCb-PUB-2016-005. CERN-LHCb-PUB-2016-005.
Geneva: CERN, Apr. 2016. url: https://cds.cern.ch/record/2134057.

[220] A Augusto Alves Jr et al. “Performance of the LHCb muon system”. In:
Journal of Instrumentation 8.02 (2013), P02022.

[221] Bernard W Silverman. Density estimation for statistics and data analysis.
Vol. 26. CRC press, 1986.

[222] Lucio Anderlini et al. New muon identification operators. Tech. rep. LHCb-
INT-2019-020. CERN-LHCb-INT-2019-020. Geneva: CERN, Aug. 2019. url:
https://cds.cern.ch/record/2687369.

[223] HSE. International Data Analysis Olympiad. 2016. url: https://idao.
world/.

[224] P. de Simone on behalf of the LNF LHCb group. Tech. rep. url: https:
//agenda.infn.it/event/10287/contributions/.

[225] LHCb Collaboration. LHCb PID Upgrade Technical Design Report. Tech.
rep. CERN-LHCC-2013-022. LHCB-TDR-014. Nov. 2013. url: https://
cds.cern.ch/record/1624074.

[226] C. Patrignani et al. “Review of Particle Physics”. In: Chin. Phys. C40.10
(2016), p. 100001. doi: 10.1088/1674-1137/40/10/100001.

https://cds.cern.ch/record/1647400
https://cds.cern.ch/record/1647400
https://doi.org/10.1088/1748-0221/14/04/p04006
https://doi.org/10.1088%2F1748-0221%2F14%2F04%2Fp04006
https://doi.org/10.1088%2F1748-0221%2F14%2F04%2Fp04006
https://arxiv.org/abs/1912.09161
https://cds.cern.ch/record/2717938
https://cds.cern.ch/record/2717938
https://doi.org/10.1007/s41781-020-00039-7
http://dx.doi.org/10.1007/s41781-020-00039-7
http://dx.doi.org/10.1007/s41781-020-00039-7
https://cds.cern.ch/record/2657832
https://cds.cern.ch/record/2657832
https://cds.cern.ch/record/2134057
https://cds.cern.ch/record/2687369
https://idao.world/
https://idao.world/
https://agenda.infn.it/event/10287/contributions/
https://agenda.infn.it/event/10287/contributions/
https://cds.cern.ch/record/1624074
https://cds.cern.ch/record/1624074
https://doi.org/10.1088/1674-1137/40/10/100001

Bibliography 177

[227] G Lanfranchi et al. The muon identification procedure of the LHCb experi-
ment for the first data. Tech. rep. 2009.

[228] Sarti et al. Tech. rep. LHCb-PUB-2010-002, CERN-LHCb-PUB-2010-002.
2010.

[229] Yoav Freund and Robert E Schapire. “A decision-theoretic generalization of
on-line learning and an application to boosting”. In: Journal of computer and
system sciences 55.1 (1997), pp. 119–139.

[230] Karen Davies and Robert Steiner. A list of Acts of Parliament and awards,
held by Royal Greenwich Observatory Archives. Royal Greenwich Observatory
Archives, 2013. url: http://cudl.lib.cam.ac.uk/view/MS-RGO-00014-
00001/19.

[231] Xavier Amatriain and Justin Basilico. Netflix Recommendations: Beyond
the 5 stars (Part 1). 2012. url: https://netflixtechblog.com/netflix-
recommendations-beyond-the-5-stars-part-1-55838468f429 (visited
on 02/03/2020).

[232] Arindam Bhattacharya. Lessons Learned from Data Science Competitions.
June 19, 2019. url: https://medium.com/opex-analytics/lessons-
learned-from-data-science-competitions-9f9d17bd6ec0.

[233] Jeff Faudi. Important Things you should know before organizing a Kaggle
Competition. url: https://blog.usejournal.com/important-things-
you-should-know-before-organizing-a-kaggle-competition-3911b71701fb?
gi=b0cce3372488.

[234] Tianqi Chen. Story and lessons behind the evolution of xgboost. url: https:
//homes.cs.washington.edu/~tqchen/2016/03/10/story-and-lessons-
behind-the-evolution-of-xgboost.html (visited on 02/03/2020).

[235] C Adam-Bourdarios et al. “The Higgs Machine Learning Challenge”. In:
Journal of Physics: Conference Series 664.7 (Dec. 2015), p. 072015. doi:
10.1088/1742-6596/664/7/072015. url: https://doi.org/10.1088%
2F1742-6596%2F664%2F7%2F072015.

[236] Konrad Budek and Patryk Miziuła. Four ways to use a Kaggle competition
to test artificial intelligence in business. Aug. 24, 2018. url: https : / /
deepsense.ai/four-ways-to-use-a-kaggle-competition-to-test-
artificial-intelligence-in-business/.

[237] Inc. Kaggle. How to Use Kaggle. url: https://www.kaggle.com/docs/
competitions (visited on 05/04/2020).

[238] Ryan Singel. Netflix Spilled Your Brokeback Mountain Secret, Lawsuit Claims.
2009. url: https://www.wired.com/2009/12/netflix-privacy-lawsuit/.

[239] CMS Collaboration et al. “2018 CMS data preservation, re-use and open
access policy”. In: CERN Open Data Portal (2018).

[240] ATLAS Data Access Policy. Tech. rep. ATL-CB-PUB-2015-001. Geneva:
CERN, Mar. 2015. url: https://cds.cern.ch/record/2002139.

http://cudl.lib.cam.ac.uk/view/MS-RGO-00014-00001/19
http://cudl.lib.cam.ac.uk/view/MS-RGO-00014-00001/19
https://netflixtechblog.com/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
https://netflixtechblog.com/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
https://medium.com/opex-analytics/lessons-learned-from-data-science-competitions-9f9d17bd6ec0
https://medium.com/opex-analytics/lessons-learned-from-data-science-competitions-9f9d17bd6ec0
https://blog.usejournal.com/important-things-you-should-know-before-organizing-a-kaggle-competition-3911b71701fb?gi=b0cce3372488
https://blog.usejournal.com/important-things-you-should-know-before-organizing-a-kaggle-competition-3911b71701fb?gi=b0cce3372488
https://blog.usejournal.com/important-things-you-should-know-before-organizing-a-kaggle-competition-3911b71701fb?gi=b0cce3372488
https://homes.cs.washington.edu/~tqchen/2016/03/10/story-and-lessons-behind-the-evolution-of-xgboost.html
https://homes.cs.washington.edu/~tqchen/2016/03/10/story-and-lessons-behind-the-evolution-of-xgboost.html
https://homes.cs.washington.edu/~tqchen/2016/03/10/story-and-lessons-behind-the-evolution-of-xgboost.html
https://doi.org/10.1088/1742-6596/664/7/072015
https://doi.org/10.1088%2F1742-6596%2F664%2F7%2F072015
https://doi.org/10.1088%2F1742-6596%2F664%2F7%2F072015
https://deepsense.ai/four-ways-to-use-a-kaggle-competition-to-test-artificial-intelligence-in-business/
https://deepsense.ai/four-ways-to-use-a-kaggle-competition-to-test-artificial-intelligence-in-business/
https://deepsense.ai/four-ways-to-use-a-kaggle-competition-to-test-artificial-intelligence-in-business/
https://www.kaggle.com/docs/competitions
https://www.kaggle.com/docs/competitions
https://www.wired.com/2009/12/netflix-privacy-lawsuit/
https://cds.cern.ch/record/2002139

Bibliography 178

[241] Peter Clarke. LHCb External Data Access Policy. Tech. rep. LHCb-PUB-
2013-003. CERN-LHCb-PUB-2013-003. Geneva: CERN, Feb. 2020. url: https:
//cds.cern.ch/record/1543410.

[242] ALICE collaboration et al. “ALICE data preservation strategy”. In: CERN
Open Data Portal (2013). url: http://doi.org/10.7483/OPENDATA.
ALICE.54NE.X2EA.

[243] 2019. url: https://github.com/stsopov/IDAO_2019_MuID_first_
track/.

[244] 2019. url: https://github.com/danchern97/IDAO-2019.
[245] O Shapovalov. “Большой адронный коллайдер и Одноклассники”. In: Хабр,

Блог компании Singularis (2019). url: https://habr.com/ru/company/
singularis/blog/449430/.

[246] Official productions of LHCb real data. url: https://twiki.cern.ch/
twiki/bin/view/Main/ProcessingPasses.

[247] A. J. Bevan et al. “The Physics of the B Factories”. In: The European Physical
Journal C 74.11 (Nov. 2014), p. 3026. issn: 1434-6052. doi: 10.1140/epjc/
s10052-014-3026-9. url: https://doi.org/10.1140/epjc/s10052-014-
3026-9.

[248] GitHub issue: Ensemble models (and maybe others?) don’t check for negative
sample_weight, last accesed: 2019-06-01. https://github.com/scikit-
learn/scikit-learn/issues/3774. (Visited on 06/01/2019).

[249] Thomas Keck. “Machine learning algorithms for the Belle II experiment and
their validation on Belle data”. PhD thesis. KIT, Karlsruhe, 2017. doi: 10.
1007/978-3-319-98249-6. url: https://publikationen.bibliothek.
kit.edu/1000078149.

[250] Benjamin Lipp. “sPlot-based training of multivariate classifiers in the Belle
II analysis software framework”. In: Bachelor thesis, KIT (2015).

[251] D Martschei et al. “Advanced event reweighting using multivariate analysis”.
In: Journal of Physics: Conference Series. Vol. 368. 1. IOP Publishing. 2012,
p. 012028.

[252] Pierre Baldi, Peter Sadowski, and Daniel Whiteson. “Searching for exotic
particles in high-energy physics with deep learning”. In: Nature communica-
tions 5 (2014), p. 4308.

[253] Dheeru Dua and Casey Graff. UCI Machine Learning Repository. 2017. url:
http://archive.ics.uci.edu/ml.

[254] Mikhail Hushchyn. “Machine Learning based Global Particle Identification
Algorithms at the LHCb Experiment”. July 2018. url: https://cds.cern.
ch/record/2631902.

[255] Denis Derkach et al. “Machine-Learning-based global particle-identification
algorithms at the LHCb experiment”. In: Journal of Physics: Conference
Series 1085 (Sept. 2018), p. 042038. doi: 10.1088/1742-6596/1085/4/
042038. url: https://doi.org/10.1088%2F1742-6596%2F1085%2F4%
2F042038.

https://cds.cern.ch/record/1543410
https://cds.cern.ch/record/1543410
http://doi.org/10.7483/OPENDATA.ALICE.54NE.X2EA
http://doi.org/10.7483/OPENDATA.ALICE.54NE.X2EA
https://github.com/stsopov/IDAO_2019_MuID_first_track/
https://github.com/stsopov/IDAO_2019_MuID_first_track/
https://github.com/danchern97/IDAO-2019
https://habr.com/ru/company/singularis/blog/449430/
https://habr.com/ru/company/singularis/blog/449430/
https://twiki.cern.ch/twiki/bin/view/Main/ProcessingPasses
https://twiki.cern.ch/twiki/bin/view/Main/ProcessingPasses
https://doi.org/10.1140/epjc/s10052-014-3026-9
https://doi.org/10.1140/epjc/s10052-014-3026-9
https://doi.org/10.1140/epjc/s10052-014-3026-9
https://doi.org/10.1140/epjc/s10052-014-3026-9
https://github.com/scikit-learn/scikit-learn/issues/3774
https://github.com/scikit-learn/scikit-learn/issues/3774
https://doi.org/10.1007/978-3-319-98249-6
https://doi.org/10.1007/978-3-319-98249-6
https://publikationen.bibliothek.kit.edu/1000078149
https://publikationen.bibliothek.kit.edu/1000078149
http://archive.ics.uci.edu/ml
https://cds.cern.ch/record/2631902
https://cds.cern.ch/record/2631902
https://doi.org/10.1088/1742-6596/1085/4/042038
https://doi.org/10.1088/1742-6596/1085/4/042038
https://doi.org/10.1088%2F1742-6596%2F1085%2F4%2F042038
https://doi.org/10.1088%2F1742-6596%2F1085%2F4%2F042038

Bibliography 179

[256] Rec project v30r4. 2019. url: https://gitlab.cern.ch/lhcb/Rec/tree/
v30r4/Rec/ChargedProtoANNPID/src.

[257] Pablo de Castro and Tommaso Dorigo. “INFERNO: Inference-Aware Neural
Optimisation”. In: Computer Physics Communications 244 (2019), pp. 170–
179. issn: 0010-4655. doi: https://doi.org/10.1016/j.cpc.2019.
06.007. url: http://www.sciencedirect.com/science/article/pii/
S0010465519301948.

[258] R. Aaij et al. “Measurement of the B0
s → µ+µ− Branching Fraction and

Search for B0 → µ+µ− Decays at the LHCb Experiment”. In: Phys. Rev. Lett.
111 (10 Sept. 2013), p. 101805. doi: 10.1103/PhysRevLett.111.101805.
url: https://link.aps.org/doi/10.1103/PhysRevLett.111.101805.

[259] C. Jones. ANN PID Retuning. url: https://indico.cern.ch/event/
508832/.

[260] E Polycarpo and J R T De Mello-Neto. Muon identification in LHCb. Tech.
rep. LHCb-2001-009. revised version number 1 submitted on 2001-08-03
10:41:14. Geneva: CERN, Mar. 2001. url: https://cds.cern.ch/record/
691581.

[261] A C S Assis-Jesus et al. Multivariate Methods for Muon Identification at
LHCb. Tech. rep. LHCb-2001-084. revised version number 1 submitted on
2001-07-27 11:31:43. Geneva: CERN, July 2001. url: https://cds.cern.
ch/record/684673.

[262] M Gandelman and E Polycarpo. The Performance of the LHCb Muon Identi-
fication Procedure. Tech. rep. LHCb-2007-145. CERN-LHCb-2007-145. Geneva:
CERN, Mar. 2008. url: https://cds.cern.ch/record/1093941.

[263] Гущин Михаил Иванович . “Применение методов машинного обучения в за-
дачах обработки и хранения данных в экспериментах физики высоких энергий
”. PhD thesis. Московский физико-технический институт (государственный
университет) , 2019.

[264] Parameter tuning. url: https://catboost.ai/docs/concepts/parameter-
tuning.html.

[265] Elena Truskova. “Познаём Нирвану – универсальную вычислительную плат-
форму Яндекса”. In: Хабр, Блог компании Яндекс (2018). url: https : / /
habr.com/ru/company/yandex/blog/351016/.

[266] Mikhail Hushchyn and Denis Derkach. Plots for yPID. url: https : / /
indico.cern.ch/event/668115/.

[267] Mikhail Hushchyn and Denis Derkach. YandexPID: MC/Data Studies. 2018.
url: https://indico.cern.ch/event/704687/.

[268] S Tolk et al. Data driven trigger efficiency determination at LHCb. Tech. rep.
LHCb-PUB-2014-039. CERN-LHCb-PUB-2014-039. Geneva: CERN, May 2014.
url: http://cds.cern.ch/record/1701134.

[269] Norraphat Srimanobhas. Introduction to Monte Carlo for Particle Physics
Study. 2010. url: https://indico.cern.ch/event/92209/contributions/
2114409/.

https://gitlab.cern.ch/lhcb/Rec/tree/v30r4/Rec/ChargedProtoANNPID/src
https://gitlab.cern.ch/lhcb/Rec/tree/v30r4/Rec/ChargedProtoANNPID/src
https://doi.org/https://doi.org/10.1016/j.cpc.2019.06.007
https://doi.org/https://doi.org/10.1016/j.cpc.2019.06.007
http://www.sciencedirect.com/science/article/pii/S0010465519301948
http://www.sciencedirect.com/science/article/pii/S0010465519301948
https://doi.org/10.1103/PhysRevLett.111.101805
https://link.aps.org/doi/10.1103/PhysRevLett.111.101805
https://indico.cern.ch/event/508832/
https://indico.cern.ch/event/508832/
https://cds.cern.ch/record/691581
https://cds.cern.ch/record/691581
https://cds.cern.ch/record/684673
https://cds.cern.ch/record/684673
https://cds.cern.ch/record/1093941
https://catboost.ai/docs/concepts/parameter-tuning.html
https://catboost.ai/docs/concepts/parameter-tuning.html
https://habr.com/ru/company/yandex/blog/351016/
https://habr.com/ru/company/yandex/blog/351016/
https://indico.cern.ch/event/668115/
https://indico.cern.ch/event/668115/
https://indico.cern.ch/event/704687/
http://cds.cern.ch/record/1701134
https://indico.cern.ch/event/92209/contributions/2114409/
https://indico.cern.ch/event/92209/contributions/2114409/

Bibliography 180

[270] I Belyaev et al. “Handling of the generation of primary events in Gauss,
the LHCb simulation framework”. In: Journal of Physics: Conference Series.
Vol. 331. 3. IOP Publishing. 2011, p. 032047.

[271] John Allison et al. “Geant4 developments and applications”. In: IEEE Trans-
actions on nuclear science 53.1 (2006), pp. 270–278.

[272] D Müller et al. “ReDecay: A novel approach to speed up the simulation at
LHCb”. In: The European Physical Journal C 78.12 (2018), p. 1009.

[273] C Bozzi and S Roiser. “The LHCb software and computing upgrade for Run
3: opportunities and challenges”. In: Journal of Physics: Conference Series
898 (Oct. 2017), p. 112002. doi: 10.1088/1742-6596/898/11/112002.

[274] Dominik Müller. “Adopting new technologies in the LHCb Gauss simulation
framework”. In: EPJ Web Conf. 214 (2019), 02004. 6 p. doi: 10.1051/
epjconf/201921402004. url: https://cds.cern.ch/record/2701777.

[275] The HEP Software Foundation et al. “A Roadmap for HEP Software and
Computing R&D for the 2020s”. In: Computing and Software for Big Science
3.1 (Mar. 2019), p. 7. issn: 2510-2044. doi: 10.1007/s41781-018-0018-8.
url: https://doi.org/10.1007/s41781-018-0018-8.

[276] R. Aaij et al. “Measurement of the Ratio of the B0 → D∗−τ+ντ and B0 →
D∗−µ+νµ Branching Fractions Using Three-Prong τ -Lepton Decays”. In:
Phys. Rev. Lett. 120 (17 Apr. 2018), p. 171802. doi: 10.1103/PhysRevLett.
120.171802. url: https://link.aps.org/doi/10.1103/PhysRevLett.
120.171802.

[277] Adam Davis. Fast Simulations at LHCb. Nov. 2019. url: https://indico.
cern.ch/event/773049/contributions/3474742/.

[278] V. Khachatryan et al. “Searches for electroweak neutralino and chargino
production in channels with Higgs, Z, and W bosons in pp collisions at 8
TeV”. In: Phys. Rev. D 90 (9 Nov. 2014), p. 092007. doi: 10.1103/PhysRevD.
90.092007. url: https://link.aps.org/doi/10.1103/PhysRevD.90.
092007.

[279] The CMS Collaboration et al. “Search for top-squark pair production in the
single-lepton final state in pp collisions at

√
s = 12TeV”. In: The European

Physical Journal C 73.12 (Dec. 2013), p. 2677. issn: 1434-6052. doi: 10.
1140/epjc/s10052-013-2677-2. url: https://doi.org/10.1140/epjc/
s10052-013-2677-2.

[280] Salavat Abdullin et al. “The fast simulation of the CMS detector at LHC”.
In: Journal of Physics: Conference Series. Vol. 331. 3. IOP Publishing. 2011,
p. 032049.

[281] Sezen Sekmen. Fast simulation in CMS. July 2017. url: https://indico.
cern.ch/event/614935/contributions/2625507/.

[282] Sezen Sekmen et al. “Recent developments in CMS fast simulation”. In: arXiv
preprint arXiv:1701.03850 (2017).

https://doi.org/10.1088/1742-6596/898/11/112002
https://doi.org/10.1051/epjconf/201921402004
https://doi.org/10.1051/epjconf/201921402004
https://cds.cern.ch/record/2701777
https://doi.org/10.1007/s41781-018-0018-8
https://doi.org/10.1007/s41781-018-0018-8
https://doi.org/10.1103/PhysRevLett.120.171802
https://doi.org/10.1103/PhysRevLett.120.171802
https://link.aps.org/doi/10.1103/PhysRevLett.120.171802
https://link.aps.org/doi/10.1103/PhysRevLett.120.171802
https://indico.cern.ch/event/773049/contributions/3474742/
https://indico.cern.ch/event/773049/contributions/3474742/
https://doi.org/10.1103/PhysRevD.90.092007
https://doi.org/10.1103/PhysRevD.90.092007
https://link.aps.org/doi/10.1103/PhysRevD.90.092007
https://link.aps.org/doi/10.1103/PhysRevD.90.092007
https://doi.org/10.1140/epjc/s10052-013-2677-2
https://doi.org/10.1140/epjc/s10052-013-2677-2
https://doi.org/10.1140/epjc/s10052-013-2677-2
https://doi.org/10.1140/epjc/s10052-013-2677-2
https://indico.cern.ch/event/614935/contributions/2625507/
https://indico.cern.ch/event/614935/contributions/2625507/

Bibliography 181

[283] Andrea Giammanco. “The Fast Simulation of the CMS Experiment”. In:
Journal of Physics: Conference Series 513.2 (June 2014), p. 022012. doi:
10.1088/1742-6596/513/2/022012. url: https://doi.org/10.1088%
2F1742-6596%2F513%2F2%2F022012.

[284] Johan Alwall, Philip C Schuster, and Natalia Toro. “Simplified models for
a first characterization of new physics at the LHC”. In: Physical Review D
79.7 (2009), p. 075020.

[285] Michela Paganini, Luke de Oliveira, and Benjamin Nachman. “CaloGAN:
Simulating 3D high energy particle showers in multilayer electromagnetic
calorimeters with generative adversarial networks”. In: Physical Review D
97.1 (2018), p. 014021.

[286] Michela Paganini, Luke de Oliveira, and Benjamin Nachman. “Accelerating
Science with Generative Adversarial Networks: An Application to 3D Particle
Showers in Multilayer Calorimeters”. In: Phys. Rev. Lett. 120 (4 Jan. 2018),
p. 042003. doi: 10.1103/PhysRevLett.120.042003. url: https://link.
aps.org/doi/10.1103/PhysRevLett.120.042003.

[287] Georges Aad et al. “The ATLAS simulation infrastructure”. In: The European
Physical Journal C 70.3 (2010), pp. 823–874.

[288] D. Salamani et al. “Deep Generative Models for Fast Shower Simulation
in ATLAS”. In: 2018 IEEE 14th International Conference on e-Science (e-
Science). Oct. 2018, pp. 348–348. doi: 10.1109/eScience.2018.00091.

[289] Martin Erdmann, Jonas Glombitza, and Thorben Quast. “Precise simulation
of electromagnetic calorimeter showers using a Wasserstein Generative Ad-
versarial Network”. In: Computing and Software for Big Science 3.1 (2019),
p. 4.

[290] Chekalina, Viktoria et al. “Generative Models for Fast Calorimeter Simu-
lation: the LHCb case>”. In: EPJ Web Conf. 214 (2019), p. 02034. doi:
10.1051/epjconf/201921402034. url: https://doi.org/10.1051/
epjconf/201921402034.

[291] The DELPHES 3 collaboration et al. “DELPHES 3: a modular framework
for fast simulation of a generic collider experiment”. In: Journal of High
Energy Physics 2014.2 (Feb. 2014), p. 57. issn: 1029-8479. doi: 10.1007/
JHEP02(2014)057. url: https://doi.org/10.1007/JHEP02(2014)057.

[292] I Adam et al. “The DIRC particle identification system for the BaBar exper-
iment”. In: Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment 538.1-3
(2005), pp. 281–357.

[293] John Hardin and Mike Williams. “FastDIRC: a fast Monte Carlo and recon-
struction algorithm for DIRC detectors”. In: JINST 11.10 (2016), P10007.
doi: 10.1088/1748-0221/11/10/P10007. arXiv: 1608.01180 [physics.data-
an].

[294] The BaBar Detector. url: https://www.slac.stanford.edu/BFROOT/
www/doc/workbook/detector/detector.html (visited on 12/27/2019).

https://doi.org/10.1088/1742-6596/513/2/022012
https://doi.org/10.1088%2F1742-6596%2F513%2F2%2F022012
https://doi.org/10.1088%2F1742-6596%2F513%2F2%2F022012
https://doi.org/10.1103/PhysRevLett.120.042003
https://link.aps.org/doi/10.1103/PhysRevLett.120.042003
https://link.aps.org/doi/10.1103/PhysRevLett.120.042003
https://doi.org/10.1109/eScience.2018.00091
https://doi.org/10.1051/epjconf/201921402034
https://doi.org/10.1051/epjconf/201921402034
https://doi.org/10.1051/epjconf/201921402034
https://doi.org/10.1007/JHEP02(2014)057
https://doi.org/10.1007/JHEP02(2014)057
https://doi.org/10.1007/JHEP02(2014)057
https://doi.org/10.1088/1748-0221/11/10/P10007
https://arxiv.org/abs/1608.01180
https://arxiv.org/abs/1608.01180
https://www.slac.stanford.edu/BFROOT/www/doc/workbook/detector/detector.html
https://www.slac.stanford.edu/BFROOT/www/doc/workbook/detector/detector.html

Bibliography 182

[295] I. Adam et al. “The DIRC detector at BaBar”. In: Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detec-
tors and Associated Equipment 433.1 (1999), pp. 121–127. issn: 0168-9002.
doi: https://doi.org/10.1016/S0168-9002(99)00352-6. url: http:
//www.sciencedirect.com/science/article/pii/S0168900299003526.

[296] Denis Derkach et al. “Cherenkov detectors fast simulation using neural net-
works”. In: Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment 952 (2020),
p. 161804. issn: 0168-9002. doi: https://doi.org/10.1016/j.nima.2019.
01.031.

[297] B. Siddi L. Anderlini A. Davis. Update on Lamarr. Oct. 1, 2019. url: https:
//indico.cern.ch/event/850731/contributions/3584359/ (visited on
12/27/2019).

[298] Adam Davis and Benedetto Gianluca Siddi. Development and Deployment
of a Delphes Based Simulation in Gauss. Tech. rep. LHCb-INT-2019-013.
CERN-LHCb-INT-2019-013. Geneva: CERN, May 2019. url: https://cds.
cern.ch/record/2674629.

[299] Denis Derkach et al. “Data Driven Simulation of Cherenkov Detectors using
Generative Adversarial Network”. In: Machine Learning and the Physical
Sciences Workshop at the 33rd Conference on Neural Information Processing
Systems (NeurIPS) (Dec. 2019). url: https : / / ml4physicalsciences .
github.io/files/NeurIPS_ML4PS_2019_40.pdf.

[300] A Maevskiy et al. “Fast Data-Driven Simulation of Cherenkov Detectors
Using Generative Adversarial Networks”. In: Journal of Physics: Conference
Series 1525 (Apr. 2020), p. 012097. doi: 10.1088/1742-6596/1525/1/
012097. url: https://doi.org/10.1088%2F1742-6596%2F1525%2F1%
2F012097.

[301] Patrice Bertail, Stéphan J Clémençcon, and Nicolas Vayatis. “On bootstrap-
ping the ROC curve”. In: Advances in Neural Information Processing Sys-
tems. 2009, pp. 137–144.

[302] “Performance of the Lamarr Prototype: the ultra-fast simulation option in-
tegrated in the LHCb simulation framework”. In: (Oct. 2019). url: https:
//cds.cern.ch/record/2696310.

[303] Luke de Oliveira, Michela Paganini, and Benjamin Nachman. “Learning Par-
ticle Physics by Example: Location-Aware Generative Adversarial Networks
for Physics Synthesis”. In: Computing and Software for Big Science 1.1 (Sept.
2017), p. 4. issn: 2510-2044. doi: 10.1007/s41781-017-0004-6. url:
https://doi.org/10.1007/s41781-017-0004-6.

[304] S. Vallecorsa. “Generative models for fast simulation”. In: Journal of Physics:
Conference Series 1085 (Sept. 2018), p. 022005. doi: 10.1088/1742-6596/
1085/2/022005. url: https://doi.org/10.1088%2F1742-6596%2F1085%
2F2%2F022005.

https://doi.org/https://doi.org/10.1016/S0168-9002(99)00352-6
http://www.sciencedirect.com/science/article/pii/S0168900299003526
http://www.sciencedirect.com/science/article/pii/S0168900299003526
https://doi.org/https://doi.org/10.1016/j.nima.2019.01.031
https://doi.org/https://doi.org/10.1016/j.nima.2019.01.031
https://indico.cern.ch/event/850731/contributions/3584359/
https://indico.cern.ch/event/850731/contributions/3584359/
https://cds.cern.ch/record/2674629
https://cds.cern.ch/record/2674629
https://ml4physicalsciences.github.io/files/NeurIPS_ML4PS_2019_40.pdf
https://ml4physicalsciences.github.io/files/NeurIPS_ML4PS_2019_40.pdf
https://doi.org/10.1088/1742-6596/1525/1/012097
https://doi.org/10.1088/1742-6596/1525/1/012097
https://doi.org/10.1088%2F1742-6596%2F1525%2F1%2F012097
https://doi.org/10.1088%2F1742-6596%2F1525%2F1%2F012097
https://cds.cern.ch/record/2696310
https://cds.cern.ch/record/2696310
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1088/1742-6596/1085/2/022005
https://doi.org/10.1088/1742-6596/1085/2/022005
https://doi.org/10.1088%2F1742-6596%2F1085%2F2%2F022005
https://doi.org/10.1088%2F1742-6596%2F1085%2F2%2F022005

Bibliography 183

[305] Benjamin Bentner. “Study of the performance of a kinematic constraint re-
construction of the missing momentum in partially reconstructed events in”.
Bachelor’s Thesis. Department of Physics and Astronomy Heidelberg Univer-
sity, 2019. url: https://www.physi.uni-heidelberg.de/Publications/
ThesisBentner.pdf.

[306] M. Borisyak and N. Kazeev. “Machine Learning on data with sPlot back-
ground subtraction”. In: Journal of Instrumentation 14.08 (Aug. 2019), P08020–
P08020. doi: 10.1088/1748-0221/14/08/p08020. url: https://doi.org/
10.1088%2F1748-0221%2F14%2F08%2Fp08020.

[307] PIDCalib Packages. url: https://twiki.cern.ch/twiki/bin/view/LHCb/
PIDCalibPackage.

[308] Vanya Belyaev et al. Calorimeter PIDs. Mar. 2003. url: https://www.
google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&
uact=8&ved=2ahUKEwiNm-vvme_kAhWCo4sKHcAEAFUQFjAAegQIABAB&url=
https%3A%2F%2Fwww.slideserve.com%2Fbeata%2Fcalorimeter-pids-
vanya-belyaev-ioury-gouz-vladimir-romanovsky-grygory-rybkin&
usg=AOvVaw0_yJmuLOIthAedfATB382j.

[309] Johannes Albrecht et al. Upgrade trigger &; reconstruction strategy: 2017
milestone. Tech. rep. LHCb-PUB-2018-005. CERN-LHCb-PUB-2018-005. Geneva:
CERN, Mar. 2018. url: http://cds.cern.ch/record/2310579.

https://www.physi.uni-heidelberg.de/Publications/ThesisBentner.pdf
https://www.physi.uni-heidelberg.de/Publications/ThesisBentner.pdf
https://doi.org/10.1088/1748-0221/14/08/p08020
https://doi.org/10.1088%2F1748-0221%2F14%2F08%2Fp08020
https://doi.org/10.1088%2F1748-0221%2F14%2F08%2Fp08020
https://twiki.cern.ch/twiki/bin/view/LHCb/PIDCalibPackage
https://twiki.cern.ch/twiki/bin/view/LHCb/PIDCalibPackage
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwiNm-vvme_kAhWCo4sKHcAEAFUQFjAAegQIABAB&url=https%3A%2F%2Fwww.slideserve.com%2Fbeata%2Fcalorimeter-pids-vanya-belyaev-ioury-gouz-vladimir-romanovsky-grygory-rybkin&usg=AOvVaw0_yJmuLOIthAedfATB382j
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwiNm-vvme_kAhWCo4sKHcAEAFUQFjAAegQIABAB&url=https%3A%2F%2Fwww.slideserve.com%2Fbeata%2Fcalorimeter-pids-vanya-belyaev-ioury-gouz-vladimir-romanovsky-grygory-rybkin&usg=AOvVaw0_yJmuLOIthAedfATB382j
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwiNm-vvme_kAhWCo4sKHcAEAFUQFjAAegQIABAB&url=https%3A%2F%2Fwww.slideserve.com%2Fbeata%2Fcalorimeter-pids-vanya-belyaev-ioury-gouz-vladimir-romanovsky-grygory-rybkin&usg=AOvVaw0_yJmuLOIthAedfATB382j
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwiNm-vvme_kAhWCo4sKHcAEAFUQFjAAegQIABAB&url=https%3A%2F%2Fwww.slideserve.com%2Fbeata%2Fcalorimeter-pids-vanya-belyaev-ioury-gouz-vladimir-romanovsky-grygory-rybkin&usg=AOvVaw0_yJmuLOIthAedfATB382j
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwiNm-vvme_kAhWCo4sKHcAEAFUQFjAAegQIABAB&url=https%3A%2F%2Fwww.slideserve.com%2Fbeata%2Fcalorimeter-pids-vanya-belyaev-ioury-gouz-vladimir-romanovsky-grygory-rybkin&usg=AOvVaw0_yJmuLOIthAedfATB382j
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwiNm-vvme_kAhWCo4sKHcAEAFUQFjAAegQIABAB&url=https%3A%2F%2Fwww.slideserve.com%2Fbeata%2Fcalorimeter-pids-vanya-belyaev-ioury-gouz-vladimir-romanovsky-grygory-rybkin&usg=AOvVaw0_yJmuLOIthAedfATB382j
http://cds.cern.ch/record/2310579

	Introduction
	New Physics and the LHCb Experiment in Search of It
	Machine Learning
	My Contribution

	Machine Learning
	A Very Brief History of Artificial Intelligence
	Machine Learning Formalism
	Model and Training
	Hyperparameters

	Measuring Model Quality
	Accuracy
	Mean Squared Error (MSE)
	LogLoss
	Area Under the Receiver Operating Characteristic (ROC AUC)

	No Free Lunch Theorem
	Formalism
	Example
	Implications

	Deep Learning
	Logistic Regression
	Deep Neural Networks
	Optimisation
	Training Deep Neural Networks
	Designing Neural Networks
	Implementing Neural Networks
	Conclusion

	Gradient Boosting Decision Tree (GBDT)
	Decision Tree
	Boosting
	Implementing GBDT
	Conclusion

	Generative models
	Generative Adversarial Network (GAN)
	Wasserstein GAN
	Cramer (Energy) GAN

	Conclusion

	Machine Learning in High-Energy Physics
	Training and Validation
	HEP-specific Machine Learning
	Learning to Pivot with Adversarial Networks
	Boosting to Uniformity

	Primary Applications
	Event Selection: Separating Signal and Background
	Event Reconstruction
	Monitoring and Data Quality

	Conclusion and Outlook

	The LHCb experiment
	The Large Hadron Collider (LHC)
	The LHC Accelerator System
	The Large Experiments at the LHC

	The LHCb Detector
	Tracking
	Particle Identification

	LHCb Data Processing
	Hardware Trigger (L0)
	Software Trigger (HLT)
	Offline Data Processing
	Historical Perspective: Run 1
	Upgrade Towards Run 3
	HLT1 on GPU (Allen)
	Calibration Samples
	Machine Learning at LHCb

	Muon Identification
	Muon Detector
	muDLL
	Correlated 2
	Machine learning for Run II
	Machine Learning Towards Run III
	Algorithms Evaluation
	Data Analysis Olympiad (IDAO)
	Introduction
	Muon ID Competition

	Conclusion

	Machine Learning on Data With sPlot Background Subtraction
	sPlot
	The Problem of Negative Weights
	Related Work
	Proposed Approaches
	sWeights Averaging (Constrained MSE)
	Exact Maximum Likelihood
	Classes with Separate Background

	Experimental Evaluation
	UCI Higgs
	LHCb Muon Identification

	Conclusion

	Global Charged Particle Identification
	Objective and Formalisation of the Global PID
	Adding Likelihoods
	Combining Information with Machine Learning
	State-of-the-art Machine Learning
	Performance
	Simulation
	Real Data: Calibration Samples

	Conclusion

	Fast Simulation of the Cherenkov Detector
	The Role of Simulated Data in High-Energy Physics Experiments
	Detector Design
	Data Analysis

	Simulation in LHCb
	Technical Improvements to Full Simulation

	Fast Simulation
	ReDecay
	Parametrisation and Simplification
	CaloGAN

	Pilot study: BaBar DIRC
	DIRC detector
	Our model
	Evaluation Results

	Fast Parametric Simulation at LHCb (Lamarr)
	RICH Fast Simulation
	Preliminary Evaluations
	Future outlook

	Conclusion and outlook

	Conclusion
	No Free Lunch Theorem Proof
	Global PID input variables
	Used in ProbNN and our models
	Additional engineered features

	Bibliography

