
1 
 

SANICLAY-T: simple thermodynamic-based anisotropic plasticity 

model for clays 

  
 

Fabio Rollo (1), Angelo Amorosi (1) * 

 

(1) Sapienza Università di Roma, Department of Structural and Geotechnical Engineering, via Eudossiana 18, 00184 Roma, 

Italy (phone: +39-06-44585982, e-mail: angelo.amorosi@uniroma1.it). 

 

 

 

 

 

 

* Corresponding Author 

 

mailto:angelo.amorosi@uniroma1.it


2 
 

Abstract 

 
In this work the anisotropic model for clays SANICLAY proposed by Dafalias & Taiebat (2013) 

is reformulated within the framework of hyper-elastoplasticity. The model, called SANICLAY-T, is 

fully defined by two scalar potential functions, the free energy and the rate of dissipation. It is first 

presented in the triaxial space and then generalised in the multiaxial one. The model reproduces 

exactly the original one for the case of associate flow rule, while leads to a different outcome for non-

associated flow. When compared to existing hyperplastic models accounting for rotational hardening, 

the proposed one proves to be more versatile, as characterised by less restrictive constraints on the 

hardening and asymptotic behaviour of the soil. The predictive capability of the model is illustrated 

with reference to experimental data on natural and reconstituted clays, highlighting its merits and 

limitations.  
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1 Introduction 

The internal structure of natural soils is rarely isotropic, due to the specific arrangement and 

orientation of the particles developed during the processes of deposition, consolidation and the 

subsequent stress/strain history. This leads to an anisotropic character at the macroscopic level, 

affecting the full range of the mechanical behaviour of soils, that can play a relevant role in many 

geotechnical engineering problems (e.g. Simpson et al., 1996; Zdravković et al., 2002; Franzius et 

al., 2005; Karstunen et al., 2005; Puzrin et al., 2012; Zymnis et al., 2013; Cudny & Partyka, 2017; 

Rezania et al., 2017; Simpson, 2017; Sivasithamparam & Rezania, 2017; Rezania et al., 2018).  

In soil constitutive modelling, anisotropy is often accounted for by mathematical entities, named 

fabric tensors, that account at the continuum level for the directional character of the internal soil 

structure. Recent numerical experiments, carried out by the Distinct Element Method (DEM), have 

clearly indicated that anisotropy affects the whole range of the mechanical behaviour of the 

investigated ideal granular materials, from the early reversible stage up to the critical state conditions 

(e.g. Masson & Martinez, 2001; Fu & Dafalias, 2011; Guo & Zhao, 2013; Wang et al., 2017; Yang 

& Wu, 2017; Theocharis et al., 2019; Wang et al., 2020). 

In clays, the anisotropic behaviour often observed in laboratory testing appears intimately related 

to the corresponding distorted yield surfaces. This has been observed experimentally on various 

clayey soils by carefully probing undisturbed specimens, retrieved from their natural deposit, in a 

stress-controlled triaxial system (e.g. Diaz-Rodriguez et al., 1992; Smith et al., 1992; Callisto & 

Calabresi, 1998; Chin et al., 2007; Huang et al., 2011; Kim & Finno, 2012; Liu et al., 2013; Al-

Sharrad et al., 2017). These results suggest that the plastic anisotropic behaviour of clays can be 

efficiently modelled by a distorted yield surface, inclined with respect to the isotropic axis as 

originally proposed by Hashiguchi (1977) and Sekiguchi & Ohta (1977), characterised by an 

evolution law that modifies its degree of distortion according to the direction of the applied stress-

strain paths, i.e. accounting for plastic strain induced anisotropy, as suggested by Gens (1982). More 

recently, within the framework of hardening plasticity, many authors presented constitutive models 

characterised by distorted and oriented yield surfaces (e.g. Dafalias, 1986; Whittle & Kavvadas, 1994; 

Wheeler et al., 2003; Jiang & Ling, 2010; Dafalias & Taiebat, 2013, 2014; Yang et al., 2015; 

Sivasithamparam & Castro, 2016) in which the evolution of anisotropy is controlled by the so-called 

“rotational hardening” laws. As a matter of fact, the yield surface is distorted and the result is an 

apparent rotation around the origin of the stress space according to a specific hardening law: this is 

why the term “rotational hardening” often denotes this class of elasto-plastic constitutive models. The 
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directional character of the yield locus in the stress space is described by a tensor-like internal variable 

that becomes a scalar-valued stress ratio entity under triaxial conditions, for which several evolution 

laws have been proposed (Zhang et al., 2016). 

However, it is well-known that the thermodynamic consistency of the above formulations is not 

automatically satisfied. Models that violate the thermodynamics principles might lead to unrealistic 

phenomena, one of which is the absence of dissipation or, even worse, the creation of energy under 

cyclic loading (Ko & Masson, 1976; Zytynski et al., 1978). 

A possible strategy to formulate thermodynamic-based constitutive relationships makes use of 

internal variables to describe the past history of the material. In this context, it is worth mentioning 

the hyperplasticity theory proposed by Houlsby & Puzrin (2000, 2006), which can describe a wide 

range of engineering materials, among which soils, including those exhibiting non-associated plastic 

flow rules. Basically, it requires the definition of two scalar functions, the free energy and the rate of 

dissipation. 

In light of this, several single-surface hyperplastic models for clays have been developed in the 

past few years, mainly inspired by the Cam clay-family models (e.g. Collins & Houlsby, 1997; Collins 

& Kelly, 2002; Einav & Puzrin, 2004b; Coombs & Crouch, 2011; Zhang et al., 2018). To account for 

plastic anisotropy, Collins & Hilder (2002) introduced a stress-dependent dissipation function which 

describes a class of distorted yield surfaces, whose shape in the stress space is related to the assumed 

non-associated flow rule. Along this track, Coombs (2011), Coombs et al. (2013) and Coombs (2017) 

extended the formulation to non-axial symmetric triaxial cases, focusing on the uniqueness of critical 

state conditions, while Chen & Yang (2019) discussed the role of the rotational hardening laws from 

a thermodynamic perspective. 

The aim of this work is to formulate a single-surface hyperelasto-plastic anisotropic model for 

clays based on that proposed by Dafalias & Taiebat (2013) within the family of simple anisotropic 

clay plasticity models SANICLAY (Dafalias et al., 2006). This model has been selected as its 

mathematical formulation is relatively simple and its performance is realistic enough when compared 

to experimental observations. The reasons for this reformulation are more than one. First of all, a 

thermodynamically consistent model called SANICLAY-T will be obtained for both elastic and 

plastic regimes. Secondly, we show that some of the limitations of the few similar hyperplastic models 

proposed in the literature can be prevented removing the stored term in the free energy function, once 

a new expression for the rate of dissipation is provided. Therefore, the SANICLAY-T model admits 

volumetric isotropic hardening law as in the original SANICLAY one, also allowing the critical state 

to be anisotropic.  Furthermore, a non-associated flow rule will be introduced along the line tracked 

by Collins & Hilder (2002), leading to a modification of the shape of the yield locus in the Cauchy 
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stress space as compared to the original distorted ellipse. This aspect plays a crucial role when 

reproducing the behaviour of frictional materials and significantly improves the predictive capability 

of the model. 

The structure of the paper is as follows. In section 2 the main ingredients of the hyperplastic 

approach are summarised whereas section 3 is devoted to the description of the SANICLAY-T model. 

The model is presented in its triaxial formulation first, for both associated and non-associated flow 

rules, to then discuss its generalisation to the multiaxial stress space. In section 4 the predictive 

capability of the model is illustrated with reference to experimental results on natural and 

reconstituted clays. 

In the following the soil mechanics sign convention (compressive positive) is assumed, and all 

stresses are effective stresses. Second order tensors are expressed by subscript notation, where 

summation is denoted by the repeated indexes. The strain tensor 1 3ij kk ij ijε ε δ ε ′= +  and the effective 

stress 1 3ij kk ij ijσ σ δ σ ′= +  are symmetric, with the prime denoting their deviatoric parts and ijδ  being 

the Kronecker delta. The stress invariants employed here are the mean effective pressure 1 3 iip σ=  

and the deviatoric stress 3 2 ij jiq σ σ′ ′=  while the corresponding strain invariants are the volumetric 

strain v iiε ε=  and the deviatoric strain 2 3s ij jiε ε ε′ ′= . 

 

2  Thermodynamic constitutive framework 

In this section the key ingredients of the hyperplastic approach are briefly summarised. This 

framework shares many common aspects with the pioneering thermodynamic-based plasticity one 

discussed in Halphen & Nguyen (1975) and Maugin (1992), then applied to geomaterials by Collins 

& Houlsby (1997). For a more complete discussion on the hyperplastic framework, the reader should 

refer to Houlsby & Puzrin (2006).  

Basically, two potentials are necessary to define the constitutive behaviour: the free energy 

function and the dissipation or the yield function, being these latter related each other by a singular 

Legendre transform. In this study attention is limited to the case of rate independent materials and 

isothermal processes, hence the energy function is conveniently expressed in terms of the Helmholtz 

and the Gibbs energies, as the temperature is an independent variable. The use of the Legendre 

transform allows to switch from one to another form of these functions to formulate the constitutive 

model in the most convenient way for the specific application. The energy functions depend on the 
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current stress/strain state and on a series of tensor-like internal variables denoted as ijα . For the 

purposes of this study, a single tensor variable is considered, though the generalisation to more 

variables is straightforward, while the thermal effects are neglected. The rate of dissipation function 

depends on the current state of the material as well as on the rate of the internal variable ijα  and must 

be non-negative not to violate the second law of thermodynamics. From the energy and the dissipation 

functions the generalised stresses ijχ  and the dissipative generalised stresses ijχ  are defined, as 

reported in Table 1.  

 
 Gibbs free energy Helmholtz free energy 

Energy function ( ),ij ijψ ψ σ α=  ( ),ij ijϕ ϕ ε α=  

Stress/strain ij
ij

ψε
σ
∂

= −
∂

 ij
ij

ϕσ
ε
∂

=
∂

 

Generalised stress ij
ij

ψχ
α
∂

= −
∂

 ij
ij

ϕχ
α
∂

= −
∂

 

Rate of dissipation ( ), , 0ij ij ijd dψ σ α α= ≥    ( ), , 0ij ij ijd dϕ ε α α= ≥    

Dissipative generalised stress ij
ij

dψχ
α
∂

=
∂




 ij

ij

dϕ
χ

α
∂

=
∂




 

Yield function ( ), , 0ij ij ijf f ψ σ α χ= =  ( ), , 0ij ij ijf f ϕ ε α χ= =  

Flow rule ij
ij

fL
ψ

α
χ
∂

=
∂

  ij
ij

fL
ϕ

α
χ
∂

=
∂

  

Table 1. General formulation for hyperplasticity theory 

Under the hypothesis of rate independent material the rate of dissipation is a homogeneous first 

order function of ijα  and a degenerate Legendre transform can be identified, providing the yield 

function f and the flow rule in the dissipative generalised stress space, with L a non-negative scalar 

representing the plastic multiplier. Therefore, the formulation is basically defined in the generalised 

stress space, where the flow rule is by definition associated.  

In the following, discussion will be restricted to the stress-based formulation, thus the Gibbs free 

energy will be conveniently employed. We consider the case of an uncoupled material, for which the 

Gibbs free energy can be written in the special form (Collins & Houlsby, 1997): 

 ( ) ( )1 2ij ij ij ijψ ψ σ σ α ψ α= − +  (1) 
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where the term 1ψ  represents the elastic energy function of the stress and 2ψ  is the stored energy 

depending on the internal variables. Differentiating Eq. (1) with respect to the stress results in the 

following expression for the total strain: 

 1 e p
ij ij ij ij

ij ij

ψψε α ε ε
σ σ

∂∂
= − = − + = +

∂ ∂
 (2) 

By virtue of the additive decomposition of the strain in an elastic and plastic parts denoted with 

the superscripts e and p, respectively, one can ascribe the internal variable ijα  to the plastic strain 

tensor. Furthermore, stemming from the definition of the generalised stress in Table 1, it results: 

 2
ij ij

ij

ψχ σ
α
∂

= −
∂

 (3) 

which provides the link between the stress and the generalised stress. By virtue of the fundamental 

assumption of the Ziegler's orthogonality principle (Ziegler, 1977), the dissipative generalised 

stresses and the generalised stresses coincide. Hence, Eq. (3) allows to switch from the yield surface 

f expressed in terms of ijχ  to its dual function f̂  in terms of Cauchy stresses and, similarly, to 

reformulate the flow rule in both generalised and Cauchy stress spaces. The term 2 ijψ α∂ ∂  is called 

“back stress” and plays the role of a shift of the yield locus in the ijσ  representation as compared to 

that obtained in the ijχ  space. It also introduces a kinematic hardening, as the resulting back stress 

depends on the internal variable ijα , thus controlling the evolution of the centre of the yield surface 

without any change in its shape and size. On the other hand, the dependence of the dissipation rate 

on the internal variables introduces other forms of hardening such as isotropic ones, leading to 

contraction and expansion of the yield locus with plastic straining. Therefore, mixed kinematic and 

isotropic hardening is basically obtained by employing the form of the Gibbs free energy of Eq. (1) 

and introducing a dependence of the dissipation function on the plastic strains. However, it is worth 

noting that in some cases different combinations of free energy and dissipation functions can lead to 

the same constitutive model, as discussed by Collins & Houlsby (1997) with reference to the modified 

Cam clay model: in fact, one can neglect the term 2ψ  in Eq. (1) provided the corresponding additional 

term 2
ij

ij

ψ α
α
∂
∂

  is added in the rate of dissipation, thus guaranteeing that the two formulations are 

characterised by the same value of the total energy, sum of the elastic, stored and dissipated 

contributions. 
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Finally, the dissipation function controls the associative or non-associative character of the flow 

rule: the irreversible behaviour is by definition associated in the generalised stress space but it 

becomes non-associated in the Cauchy stress space when the rate of dissipation depends explicitly on 

ijσ . In such circumstances, the shape of the yield surface in the stress space results as modified if 

compared to its dual representation in the ijχ  space. 

 

3 Thermodynamic-based formulation 

In this section the SANICLAY-T model is presented within the framework of hyperelasto-

plasticity. The model is first described in triaxial formulation, then the generalisation to the stress-

strain space is illustrated.  

To guarantee the thermodynamic consistency of the model within the elastic regime, the 

hypoelastic formulation commonly adopted for this class of elasto-plastic constitutive relationships 

is substituted by the nonlinear isotropic hyperelastic one by Houlsby et al. (2005), leading to the 

following expression for the Gibbs free energy: 

 

( ) ( ) ( )

( )( )
( ) ( )

1

2
2

2 2
1

, , , ,

11
1 2 3

p q p q

n

p qn
r

p q p q p q

k n
p q p q

p k n n g

ψ α α ψ α α

α α

−

−

= − + =

 −
= − + − + − −  

 (4) 

where rp  denotes the reference pressure and n, k and g are elastic parameters. Differentiating Eq. 

(4) with respect to the stress results in the volumetric and deviatoric strains, with the internal variables 

pα  and qα  representing the volumetric and deviatoric plastic strains, respectively: 

 
( )

( )

( )

2
2 2

1

2
2 2

1

11
1 3

11
3 3

n

e p
v v v pn

r

n

e p
s s s qn

r

k n
p q p

p p k n g

k n qp q
q p g g

ψε ε ε α

ψε ε ε α

−

−

−

−

 −∂
= − = + = + + ∂ −  

 −∂
= − = + = + + ∂  

 (5a,b) 

The derivatives of Eq. (4) with respect to the internal variable pα  and qα  provide the generalised 

stress pχ  and qχ , equal to the stress p and q, respectively, as the stored energy term 2ψ  is null and 

no elasto-plastic coupling is considered in this work (i.e. the elastic free energy 1ψ  does not depend 

on plastic strains). 
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The additional key ingredient to develop the model within the thermodynamic framework is the 

dissipation function, specifically chosen to re-obtain the yield surface originally proposed by Dafalias 

(1986). First, the case of associated flow rule is discussed and then the model is generalised to account 

for non-associated plasticity. 

3.1 Associated flow rule 

The rate of dissipation is defined as: 

 ( ) ( ) ( )2 2 2 20
0, , ,

2p q p q q p q
pd p Mα α β α βα β α α βα = + + − + +  

         (6) 

where M denotes the slope of the critical state line in the p-q plane, the internal variable 0p  is the 

preconsolidation pressure and the non-dimensional internal variable β  is a stress ratio-like scalar 

value that controls the plastic anisotropy of the material (we denote here the internal variable with  β  

instead of α  as in Dafalias & Taiebat (2013) as the latter refer to the generic internal variable of the 

hyperplastic framework). 

In combination with Eq. (6), two hardening laws are introduced. The first one is a volumetric 

isotropic hardening governing the contraction and the expansion of the elastic domain via the internal 

variable 0p , whose evolution is controlled by the volumetric plastic strain rate according to the well- 

known relation: 

 0 0 0 0,
1 1expin in

p in p
e ep p p pα α

λ κ λ κ
+ + = ⇒ =  − − 

  (7) 

where λ and κ are the slope of the normal consolidation line and the swelling line in the e-lnp 

plane, respectively, and ein and 0,inp  are the initial void ratio and preconsolidation pressure. 

Secondly, a rotational hardening law expressed as the rate of the internal variable β  controls the 

distortion of the yield locus and its evolution with plastic strain. Several rotational hardening laws are 

available in the literature and, even for the SANICLAY model, different rules have been proposed in 

last few years. In this study, for reasons discussed in Dafalias et al. (2020), we adopt the following 

rate evolution equation: 

 ( )bL cpβ β β= −  (8) 

where c is a model parameter controlling the pace of the evolution and bβ  represents the 

equilibrium “bounding” value, function of the current stress ratio η . Along a fixed η  stress path the 

surface rotates from the initial configuration until reaching and then maintaining the equilibrium 
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position, while continues to harden isotropically. Here we adopt the simplest expression, among those 

proposed in the literature, for the equilibrium (bounding) value of β :  ( ) /b xβ η η= ,  with x being a 

model parameter (Dafalias, 1986). Nevertheless, alternative expressions aimed at limiting excessive 

rotations of the yield surface and at controlling the anisotropy at critical state are possible. To this 

purpose, the law discussed by Dafalias & Taiebat (2014) is recalled: 

 

*

1 for

exp 1 for

n

c
b

c
b

m M
M M

M
M M

ηββ η η

ηββ η µ η

     = + − <  
     

  
= − − >  

   

 (9a,b) 

where  cβ  is the value of β  for Mη =  and  m, n*, μ are model parameters (note that the asterisk 

is introduced to avoid confusion with the elastic exponent n of Eq. (4)). 

As expected for rate independent materials, the rate of dissipation is a homogeneous first order 

function of the rates of the internal variables and, according to the hypothesis of associated flow rule, 

is independent of the stress. Note that as 0p  is a positive quantity, the dissipation function satisfies 

the condition 0d ≥  for any value of pα  and qα  if the condition Mβ <  is respected: this was 

already necessary in the SANICLAY model to guarantee a real solution of the yield function but in 

this case the same condition stems from a thermodynamic requirement. Furthermore, it is worth 

noting that the only way for which Eq. (6) is zero, apart from the obvious case in which the behaviour 

is purely elastic, is for  0pα <  and 0qα = . However, the former case holds for 0p =  only, a limiting 

condition for the class of soils under study which also characterises the original SANICLAY 

formulation. 

Finally, by virtue of the degenerate Legendre transform, the yield surface in the dissipative 

generalised stress space p qχ χ−  is obtained from the dissipation function. For the sake of 

conciseness, the analytical procedure to obtain the dual function is reported in Appendix A. The yield 

surface results in: 

 ( ) ( ) ( ) ( )2 2 2
0 0, , , 0p q q p p pf p M pχ χ β χ βχ β χ χ= − − − − =  (10) 

Furthermore, the Ziegler’s orthogonality principle allows to express Eq. (10) in term of stress, 

leading to: 

 ( ) ( ) ( ) ( )2 2 2
0 0

ˆ , , , 0f p q p q p M p p pβ β β= − − − − =  (11) 
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that is the distorted ellipse proposed by Dafalias (1986), thus demonstrating that, apart from the 

elastic regime, the associated version of the SANICLAY model is consistent with the laws of 

thermodynamics. For the special case of 0β =  the modified Cam clay ellipse is recovered. 

3.2 Non-associated flow rule 

In principle there are several ways in which the current stress can be enforced in the dissipation 

function to end up with a non-associated flow rule. Here, along the line tracked by Collins & Hilder 

(2002), we generalise the rate of dissipation of Eq. (6) as: 

 ( ) ( ) ( ) ( )22 2 2 2 2 0
0, , , ,

2p q p q q p q
pd p p A B M γα α β α βα β α α βα= + + − + +         (12) 

where A and B are stress-like quantities defined as: 

 ( ) ( )0 01 ; 1
2 2
p pA p B pγ γδγ δ= − + = − +  (13a,b) 

where γ and δ are two additional dimensionless parameters varying from zero to one. For γ = δ = 

1 Eq. (12) coincides with Eq. (6) as the terms A and B no longer depend on the mean effective pressure 

and the case of associated flow rule in the stress space is recovered. Conversely, as A and B generally 

depend on the stress, the yield function in the p-q plane is no longer an ellipse and, as expected, the 

flow rule becomes non-associated. Furthermore, depending on the parameters γ and δ the yield surface 

in the stress space can be locally concave for small stress levels (Collins & Kelly, 2002; Collins, 

2003). It is worth noting that Eq. (12) is always strictly positive during plastic loading, even for the 

case 0pα <  and 0qα =  being 0 2A pγ> . 

 The parameters γ controls the ratio 0/p p  at critical state while δ governs the slope of the tangent 

to the yield surface corresponding to the critical state condition. As A and B do not depend on the 

deviatoric stress q, the shape of the yield surface is symmetric in compression and extension (Collins 

& Hilder, 2002). However, according to Coombs (2017), an alternative procedure could be adopted 

to obtain non-circular deviatoric sections of the yield surface, introducing a Lode angle dependency 

in the dissipation function. 

The yield function in the dissipative generalised stresses pχ  and qχ  is derived from Eq. (12), as 

illustrated in detail in Appendix A, analogously to what done for the associated case. It results in: 

 ( ) ( ) ( ) ( )
2

22 2 2 2 2 2 2 20
0, , , , 0

2p q q p p
pf p p A B M A B Mγ

χ χ β χ βχ β χ β = − + − − − − = 
 

 (14) 
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The yield locus of Eq. (14) is a distorted ellipse in the pχ - qχ  plane with centre lying on the line 

of slope β , as shown in Figure 1. The position of the centre C of the ellipse, with coordinates 

( )0 02, 2p pγ γβ  depends on the parameters γ while the terms A and B control the size of the yield 

locus. The points D and E in Figure 1 have coordinates ( ) ( )( )1 , 1p pγ β γ− −  and 

( ) ( )( )0 01 , 1p p p pγ γ β γ βγ− + − + , respectively. Therefore, the yield surface passes through the 

origin of the pχ - qχ  axes only for the case γ = 1. In other words, the size and the position of the 

ellipse in the dissipative generalised stress plane depend on the parameters γ and δ and on the current 

values of p and 0p . 

 

Figure 1. Yield surface in the dissipative generalised stress space 

Again, recalling the orthogonality condition and that the generalised stresses pχ  and qχ  coincide 

with the mean pressure p and the deviatoric stress q, respectively, as no back stresses are expected, 

one can write the new yield function in terms of the stress: 

 ( ) ( ) ( ) ( )
2

22 2 2 2 2 2 2 20
0

ˆ , , , 0
2
pf p q p A q p B M p A B Mγ

β β β β = − + − − − − = 
 

 (15) 

Although Eqs. (14) - (15) are analogous from an analytical perspective, their representations in the 

dissipative generalised and Cauchy stress spaces are different as A and B depend on the current value 

of p. Eq. (14) is a distorted ellipse in the pχ - qχ  plane while Eq. (15) assumes different shapes in the 

p-q plane depending on the parameters γ and δ. In fact, within the framework of hyperplasticity, the 

modification of the dissipation function by the introduction of a dependence on the mean effective 

pressure leads to a yield surface in the stress space that is no longer an ellipse.  
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As a consequence, there is no way to reproduce the original non-associated model proposed by 

Dafalias & Taiebat (2013) by the procedure adopted here. In fact, in the traditional elasto-plastic 

formulation both yield and plastic potential surfaces are distorted ellipses, with the constant N 

substituting for M in the expression of the yield surface. What above does not necessarily mean that 

the non-associated version of the original SANICLAY model is thermodynamically inconsistent, but 

rather that the rigorous approach adopted here, despite its well-recognized advantages, does not allow 

to choose the yield function and the flow rule independently of each other, as typically done in 

classical elastoplasticity. Nevertheless, while the proposed formulation is by definition always 

thermodynamically consistent, this is not a priori true for the non-associated Dafalias & Taiebat 

(2013) model, for which the non-negativeness of the dissipation has to be guaranteed along any 

loading process by a proper choice of the model parameters. Furthermore, it is worth noting that 

within the procedure adopted here, the determination of the plastic potential function would be an 

unnecessary mathematical complication as the flow rule stems directly from the derivatives of Eq. 

(14) with respect to the generalised stresses. 

For completeness, all the derivatives of the hyperplastic model, necessary to reformulate it in 

incremental form, are summarised in Appendix B. 

3.3 Multiaxial formulation 

The SANICLAY-T model can be straightforwardly generalised to the multiaxial stress-strain 

space. The Gibbs free energy of Eq. (4) now assumes the form: 

 

( ) ( )

( )( )
( ) ( ) ( )

1

2
2

2
1

,

1 11 1
1 2 9 6 2

ij ij ij ij ij

n

ii ij ij ij ijn
r

k n k n
p k n n g g

ψ σ α ψ σ σ α

σ σ σ σ α

−

−

= − =

  − −
= − − + −  − −    

 (16) 

where the tensor-like internal variable ijα  represents the plastic strain tensor.  

The dissipation function for the general case of non-associated plasticity is expressed in the 

following form, adopting for the internal variable ijα  the decomposition in its isotropic and deviatoric 

parts 1
3ij p ij ijα α δ α′= +  and expressing the tensor value rotational variable ijβ  such that its triaxial 

counterpart is 3 2 ij ijβ β β= : 

 ( ) ( ) ( )22 2 2 0
0

3 2, , ,
2 3 2ij ij p ij ij kl kl ij ij p ij ij

pd p p A B M γ
α β α β α β β α α α β α ′ ′ ′ ′= + + − + + 

 
         (17) 
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with M possibly depending on the Lode angle. Analogously to what previously illustrated, the 

singular Legendre transform provides the yield surface in the dissipative generalised stress space: 

 
( ) ( )( )

2
2 2 2 0

0

2 2 2

3, , ,
2 2

3 0
2

ij ij ij ij p ij ij p ij ij p

ij ij

pf p p A B M

A B M

γχ β χ β χ χ β χ β β χ

β β

  ′ ′= − − + − − +  
  

 − − = 
 

 (18) 

where the dissipative generalised stress tensor is decomposed in its isotropic and deviatoric parts 

ij p ij ijχ χ δ χ′= + . For the Ziegler’s orthogonality principle, the yield surface in the general stress space 

becomes: 

 
( ) ( )( )

2
2 2 2 0

0

2 2 2

3 3ˆ , ,
2 2 2
3 0
2

ij ij ij ij ij ij ij ij

ij ij

pf p A p p B M p

A B M

γσ β σ β σ β β β

β β

  ′ ′= − − + − − +  
  

 − − = 
 

 (19) 

Finally, the rotational hardening rule of Eq. (8) generalises into: 

 ( ),ij b ij ijL cpβ β β= −  (20) 

Where, according to Dafalias & Taiebat (2013, 2014), in the expressions of the equilibrium 

“bounding” value the stress ratio η  is substituted by the stress ratio tensor ij ijr pσ ′=  and of η  by 

3 2 ij ijr r . 

3.4 Discussion on the proposed formulation 

In this section the proposed formulation is discussed and compared to existing ones, aiming at 

highlighting its possible advantages and limitations. 

As a first premise it is worth recalling that, in general, different combinations of Gibbs free energy 

and rate of dissipation functions can lead to similar constitutive outcomes, as discussed in Collins & 

Houlsby (1997) and Houlsby & Puzrin (2006). In particular, one option is that of including the term 

2ψ , which brings in a back stress controlling the position of the yield locus in the stress space during 

the loading process, thus explicitly introducing a form of kinematic hardening via the energy function. 

Alternatively, as in this study, this term can be neglected, i.e. 2 0ψ = , while adding an integrable term 

in the rate of dissipation which accounts for the current values of the isotropic and rotational 

hardening internal variables, that in Eqs. (6) and (12) takes the form ( )0

2
α βα+ p q

p . Houlsby (2019) 

provides an effective geometric interpretation of the above choices with reference to the Modified 
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Cam-Clay model: in the first case ( 2 0ψ ≠ ) the formulation implies an isotropic expansion of the 

yield surface about its centre coupled with a translation of the centre (kinematic hardening), while the 

second option ( 2 0ψ = ) does not involve the translation, as it assumes that the focus for the isotropic 

expansion of the yield surface is not the centre of the ellipse but the origin of the stress space. For 

simple volumetric isotropic hardening models, as the Modified Cam-Clay, the two different options 

lead to the same incremental formulation while this is not necessarily true for models including more 

complex hardening forms, as those discussed in this paper. 

The proposed formulation has much in common with the anisotropic models discussed in Collins & 

Hilder (2002) and Coombs (2017) within the framework of hyperplasticity, though differs from those 

models for the specific forms of the free energy and rate of dissipation, in the sense discussed above. 

In fact, in the above mentioned models the yield surface in the generalised stress space is a distorted 

ellipse centred in the axes origin: this introduces the need for back mean normal and deviatoric 

stresses to obtain the desired representation of the yield surface in the Cauchy stress space. Therefore, 

with reference to the Gibbs free energy of Eq. (1), both formulations account for a similar stored 

energy term 2ψ  which, for instance, according to Collins & Hilder (2002) assumes the form: 

 ( ) ( ) 0,0
2 exp

2 2
p qinpp α βαγγ

ψ λ κ λ κ
λ κ
+ 

= − = −  − 
  

 
 (21) 

where λ  and κ  are the slopes of the virgin and the swelling lines in the ln lnp v−  plane such that 

the centre of the yield surface in the stress space is ( )0 02, 2p pγ βγ . The presence of the stored 

energy of Eq. (21) implies two relevant consequences: (i) the isotropic hardening variable 0p  depends 

on both volumetric and deviatoric plastic strains and (ii) the free energy continues to accumulate at 

critical state. Recently, Chen & Yang (2019) claimed that (ii) is a thermodynamically inadmissible 

result that can be solved by a proper choice of the rotational hardening law characterised by 0β =  at 

critical state (i.e. the yield surface is forced to align back to the hydrostatic axis at critical state). We 

do not share the same opinion, believing that the only thermodynamic requirement that should always 

hold, thus also at critical state, is the following more general energy balance: 

 ij ijdψ ε σ+ = −   (22) 

which does not imply 0ψ = : it allows a more general class of anisotropic critical states as compared 

to those considered by Chen & Yang (2019). In this perspective, the models proposed by Collins & 

Hilder (2002) and by Coombs (2013, 2017) are thermodynamically consistent and represent key 
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achievements in modelling anisotropic hardening of clays. The only concern is in the constraints all 

these formulations imply on the isotropic part of the hardening law, i.e. point (i) of above. 

The manipulation of the free energy and the dissipation functions pursued in this work overcomes 

the above drawbacks. As the stored energy 2 0ψ = , the current value of the internal variable 0p  only 

enters in the rate of dissipation and the yield function in the stress space is obtained regardless of the 

adopted isotropic hardening rule. In this sense the present formulation is less restrictive and allows to 

employ any isotropic hardening law, including those that only depend on the volumetric plastic 

strains, as often assumed when modelling clayey soils. Furthermore, the thermodynamic consistency 

of the model at critical state is guaranteed for any value of β , though one can still consider the 0β =  

condition adopting different rotational hardening laws, like those proposed by Dafalias & Taiebat 

(2014). Therefore, the model can take into account the anisotropic character at critical state, as 

supported by numerical simulations based on the Discrete Element Method (DEM) (e.g. Wang et al., 

2017; Yang & Wu, 2017; Theocharis et al., 2019; Wang et al., 2020), at the same time satisfying the 

more restrictive requirement 0ψ =  considered by Chen & Yang (2019).     

 

4 Numerical implementation 

The proposed formulation has been implemented in a constitutive driver, to mimic the response of 

a single Gauss point of a finite element numerical code, adopting an explicit integration scheme. At 

this scope, the incremental formulation of the model has first been derived (see Appendix B), 

combining the consistency condition and the flow rule to generate the relationship between stress 

increments and total strain increments which, by virtue of the additive decomposition of the strain 

tensor into its elastic and plastic contributions, leads to the following equation: 

 

ˆ

ˆ

ijmn pqkl
mn pqep

ij ijkl kl ijkl kl

ijkl
ij kl

f fD D
D D

f fD H

χ σ
σ ε ε

σ χ

 ∂ ∂
 

∂ ∂ = = − ∂ ∂
 +  ∂ ∂ 

   (23) 

where ijklD  is the fourth-order elastic stiffness tensor provided by Houlsby et al. (2019) as the 

Legendre transform of  the ( )1 ijψ σ term of Eq. 16, and H is the hardening modulus, which takes the 

form: 
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 ( )0 ,
0

ˆ ˆ1 in
b ij ij

p ij

ef f fH p cp
p

β β
λ κ χ β
+∂ ∂ ∂

= − − −
∂ − ∂ ∂

 (24) 

Only the calculation of the first derivatives of the yield surface with respect to the current stress 

and hardening variables are necessary, as illustrated in detail in Appendix B. 

The explicit integration algorithm adopted here requires the yield surface, the hardening laws and 

the gradient of the plastic flow rule to be evaluated and updated at each calculation step. As customary 

in explicit schemes, if the final stress lies within the yield domain purely elastic deformations occur 

and the model response can be calculated exactly, as the hyperelastic formulation is characterised by 

a one-to-one relationship between stress and strain. Conversely, the solution is approximated by the 

adopted numerical integration when the yield surface is attained and plastic flow occurs. 

It is worth noting that the hyperplastic framework simplifies the integration procedure for the case 

of non-associated flow rule as compared to the traditional elasto-plastic one. In fact, within this latter 

approach plastic flow is typically obtained by imposing the plastic potential surface passing through 

the current stress state, thus requiring the introduction of a dummy scalar variable, controlling the 

size of the plastic potential surface, which does not have a specific physical meaning. Conversely, for 

the adopted approach the introduction of such a dummy variable is unnecessary as the plastic flow is 

directly evaluated as the derivative of the yield surface in the dissipative generalised stress space with 

respect to ijχ , related to the current stress ijσ  through Eq. (3). 

 

5 Response of the model 

In this section the response of the anisotropic hyperplastic model is discussed with reference to 

both the associated and non-associated flow rules. First, the influence of the parameters γ and δ on 

the flow rule and on the shape of the yield surface in the stress space are presented. Then, the 

predictive capability of the model is illustrated with reference to some experimental results obtained 

from laboratory tests on natural and reconstituted clays, highlighting the versatility of the model when 

accounting for non-associated flow. 

Figure 2 depicts the yield surfaces in the normalised plane 0 0p p q p−  for fixed rotational 

variable 0.3β = , constant M = 1.08 and different values of the parameters γ and δ. As expected, only 

for γ = δ = 1 the original distorted ellipse is retrieved. In particular, the case (b) of Figure 2 shows 

that for δ = 0 (but in general for small values of δ) the yield locus is locally concave near the origin 
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of the 0p p  axis and becomes more “tear drop” shaped, while for δ = 1 the surface is unrealistically 

larger near the origin than in correspondence of 0p p=  (Figure 2(c)). 

 

Figure 2. Yield surface in the stress space for (a) δ = 1, γ = 1, (b) δ = 0, γ = 1, (c) δ = 1, γ = 0.5, (d) δ = 0.4, γ = 0.6 

 The parameters γ and δ control the non-associativeness of the flow rule in the stress space. Again, 

the only case in which the flow rule is associated in the p-q plane is when γ = δ = 1 whereas the flow 

rule is, by definition, always associated in the generalised stress space. The arrows in Figure 2 

represent the plastic strain rate vectors superposed to the yield surfaces by virtue of the hypothesis of 

coaxiality between those vectors and the stresses.  

It is worth mentioning that the determination of a plastic potential surface, besides the fact that is 

analytically challenging, is not necessary in the hyperplastic procedure as the plastic strain increments 

are given by the normal to the yield surface in the generalised stress space, as highlighted by Collins 

& Hilder (2002). Then, by virtue of the Ziegler’s principle, the plastic strain rate is known for any 

couple of (p, q). This is an advantage from a numerical perspective as no intersection or projection of 

the current stress state on the plastic potential surface is required to determine the direction of the 

current plastic strain rate. Nevertheless, one can obtain something similar to a plastic potential surface 

when representing the dissipative yield surface of Eq. (14) in the p-q plane, as suggested by Collins 

(2005). In particular, for a fixed value of 0p p  (and hence for fixed A and B) the dissipative yield 

surface in the stress space is an ellipse intersecting the yield locus in correspondence of the same 

value, as depicted in Figure 3. Clearly, the normal to the dissipative ellipse in that point denotes the 

direction of the plastic strain rate. 
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Figure 3. Yield surface and dissipative ellipse in the stress space (δ = 0.4, γ = 0.6) 

The non-associated formulation allows to realistically reproduce the shape of the yield surface in 

the p-q plane experimentally observed on natural clays, by a proper choice of the parameters γ and δ. 

At this scope, Figure 4 depicts the yield points for the natural Pisa clay (Callisto & Calabresi, 1998) 

and Taipei clay (Chin et al., 2007) obtained by probing undisturbed samples after reconsolidation to 

the in situ stress state. In the same figure, the yield surfaces predicted by the model for both associated 

and non-associated cases are plotted. The values of the internal variable β  were determined to fit the 

experimental data according the values of M provided by the Authors. The relevant parameters are 

summarised in Table 2. Figure 4 shows that the non-associated formulation is more versatile than the 

associated one as it allows to adapt the shape of the yield surface to the experimental data. 

 

 

Figure 4. Yield loci for (a) Pisa clay and (b) Taipei clay 
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Parameter Values 
 Taipei clay Pisa clay 
M 1.11 0.98 
β 0.3 0.38 
γ 
δ 

0.45 
0.1 

0.5 
0.4 

Table 2. Yield surface parameters for two natural clays 

 

A list of the model parameters is reported in Table 3. The parameters of SANICLAY-T differ from 

those of the Dafalias & Taiebat (2013, 2014) models for the elastic constants and for γ and δ 

controlling the flow rule of the model. The elastic parameters should be calibrated to reproduce the 

non-linear dependence of the elastic stiffness on the current stress state within the very small strain 

range, as discussed by Houlsby et al. (2005) and, more recently, by Amorosi et al. (2020). The 

reference pressure is assumed by default equal to 100kParp =  whereas, in absence of specific 

laboratory or field investigations, k, g and n can be selected to control the response of the model 

within the yield surface, recalling that for isotropic stress states ( ) ( )2 1 3 1 2k g ν ν = + −  , where 

ν  is the Poisson’s ratio. For the constants γ and δ a trial and error procedure can be adopted to 

reproduce the shape of the yield surface that better fits the experimental results, as shown in Figure 

4, and to simulate the behaviour observed in laboratory tests (e.g. triaxial tests) in clays. The 

remaining parameters coincide with those of Dafalias & Taiebat (2013, 2014): the reader can refer to 

those papers for detailed discussions on their calibration procedures. 

The predictive capability of the model is first illustrated with reference to a series of experimental 

data obtained by Wheeler et al. (2003) on the natural Otaniemi clay. Undisturbed samples were 

subjected to two loading stages characterised by constant stress ratio η . Samples were first loaded 

along 1η  to a final mean effective pressure 1fp , unloaded along the same path to 5kPap =  and then 

reloaded following a different stress ratio 2η  to a final mean effective pressure 2fp . According to 

Wheeler et al. (2003) the initial inclination and size of the yield surface are 0.42β =  and 0 20kPap =

. The parameters of the model are summarised in Table 3. The elastic parameter n is close to the unity 

such that the elastic stiffness depends linearly on the mean effective pressure, as typically assumed 

in the Cam clay-like models. The constant k is calibrated to reproduce the slope of the rebound line 

in the logv pε −  plane and g is determined recalling that for isotropic stress states 

( ) ( )2 1 3 1 2k g ν ν = + −  , where ν  is the Poisson’s ratio, equal to 0.2 for Otaniemi clay. The 

parameter x controlling the bounding value bβ  under fixed η  loading was provided by Dafalias & 
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Taiebat (2013) while the parameters γ and δ are calibrated to best fit the laboratory results obtained 

by Wheeler et al. (2003).  

 
Parameters Values 
 Otaniemi clay LCT clay 
pr 100 100 
N 0.99 0.75 
K 116.7 239.3 
G 70 130 
Mc 1.1 1.18 
Me 1.1 0.86 
λ 
κ 
γ 
δ 
c 
x 
βc 
m 
n* 
μ 

0.44 
0.04 
0.2 (1.0) 
0.4 (1.0) 
20 
1.71 
- 
- 
- 
- 

0.066 
0.0077 
0.55 
0.52 
120 
- 
0.23 
0.41 
9 
19 

Table 3. Model parameters for the tested soils 

 

Figure 5 shows the comparison between the experimental data and the response of the model for 

both associated (γ = δ = 1) and non-associated flow rules. Figures 5(a) and 5(c) prove that the non-

associated formulation provides a better prediction of the yield stress during the first loading stage as 

compared to the associated one, since the yield locus is no longer an ellipse. Furthermore, the 

corresponding strain paths in Figures 5(b) and 5(d) are well reproduced by the introduction of the 

non-associated flow rule while in both cases the model underestimates the volumetric strains 

occurring during the first loading stage of the third test (Figures 5(e) and 5(f)). 
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Figure 5. Otaniemi clay: comparison between data and simulations. (a,b) 1 0.6η = , 1 40kPafp = , 2 0.1η = , 2 150kPafp = , (c,d) 

1 0.59η = − , 1 33kPafp = , 2 0.51η = , 2 66kPafp = , (e,f) 1 0.9η = , 1 37kPafp = , 2 0.13η = , 2 151kPafp = . 
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The predictive capability of the model is shown in terms of simulations of undrained triaxial tests 

against experimental data for LCT clay (Gens, 1982). The samples were consolidated under isotropic 

and anisotropic (K0) conditions, then unloaded at various OCR and compressed in a triaxial apparatus 

under undrained conditions. Figure 6 compares the numerical prediction with the experimental data 

for the one-dimensional K0 compression and swelling in the p-q plane. The model is characterised by 

non-associated flow rule and for the equilibrium bounding value bβ  the expression of Eq. (9) is 

adopted to obtain the best back-prediction of the data. The model parameters are synthesised in Table 

3. The material is initially isotropic, with 0β =  and 0 70kPap = , then subjected to a one-

dimensional compressive strain path to a mean effective pressure 233.3kPap =  followed by 

unloading to 62kPap = . The yield surface of the model undergoes a distortion under compression 

with a final value of 0.4β = , whereas the unloading response is purely elastic. The model well 

reproduces the experimental results.  

 

 

Figure 6.  Comparison between data and simulations of one-dimensional consolidation and swelling for LCT clay 

Figure 7 shows the behaviour under undrained triaxial compression and extension. The results are 

plotted in terms of stress paths in the p-q plane and stress-strain curves in the s qε −  plane. The 

samples were reconsolidated at values of OCR = 1, 1.5, 2, 4, 10 for isotropically consolidated states 

and at OCR = 1, 2, 4, 7 for K0 consolidated ones. A first observation is that, despite its analytical 

simplicity, the proposed formulation nicely reproduces the behaviour of samples tested at different 

stress states and OCR using a single set of constitutive parameters. The overall response of the model 

is not noticeably different from what predicted by the original non-associated elasto-plastic 
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formulation (Dafalias & Taiebat, 2014). Nonetheless, it is worth noting that (i) the stress paths of the 

isotropically consolidated elements (Figure 7(a)) no longer show the hook-type shape close to the 

critical state which characterised the original elasto-plastic formulation of the model as a consequence 

of the continuous evolution of the rotational variable at fixed 0p , and (ii) for the anisotropically 

consolidated tests the non-associated flow rule reproduces softening for normally and slightly 

overconsolidated samples (Figure 7(c)-(d)). Furthermore, the response in the p-q plane is significantly 

improved by the nonlinear hyperelastic formulation. In fact, the nonlinear dependence of the elastic 

stiffness on the current stress state produces a volumetric-deviatoric coupling that is responsible of a 

curvature of the stress paths within the elastic domain. 
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Figure 7.  Comparison between data and simulations of undrained triaxial tests for isotropically consolidated (a,b) and K0-
consolidated (c,d) samples of LCT clay 

Finally, Figure 8 compares the results of drained triaxial compression tests with experimental data 

by Gens (1982) on LCT clay for isotropic and anisotropic consolidated samples for OCR = 1, 1.5, 2, 

4. The results are plotted in the a qε −  and a vε ε−  planes, with aε  axial strain. The stress-strain curves 

satisfactorily reproduce the experimental results while the model underpredicts the volumetric 

response. 
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Figure 8.  Comparison between data and simulations of drained triaxial tests for isotropically consolidated (a,b) and K0-consolidated 
(c,d) samples of LCT clay 

 

6 Conclusions 

In this work the single surface elasto-plastic anisotropic model for clays SANICLAY modified by 

Dafalias & Taiebat (2013) is revisited in a thermodynamic perspective. Within the framework of 

hyperelasto-plasticity the model is first presented in the triaxial formulation and then generalised to 

the multiaxial stress-strain space. The formulation is based on two scalar potential functions, the free 

energy and the rate of dissipation, thus guaranteeing the thermodynamic consistency of the model. 

The associated version of the SANICLAY-T model coincides, for the plastic regime, with the original 

one developed within the framework of classical elasto-plasticity, proving its thermodynamic 

consistency. Subsequently, a non-associated version of the model is obtained introducing a 

dependence of the dissipation function on the mean effective pressure. The non-associated flow rule 

leads to non-elliptic yield loci in the Cauchy stress space, whereas in the generalised stress space the 

yield surface is always a distorted ellipse with associated flow rule. The proposed formulation results 

in a more flexible model, as compared to the original elasto-plastic version, as it allows for non-

elliptic yield loci, which seem to be more appropriate to reproduce the behaviour of natural clays. We 
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demonstrated that, differently from most of the hyperplastic anisotropic models available in the 

literature, a proper combination of the free energy and the dissipation functions allows to introduce 

an isotropic hardening depending only on the volumetric plastic strains, as in the original elasto-

plastic SANICLAY model. Furthermore, the formulation is able to reproduce the anisotropic 

character of clays at critical state by a permanent distortion of the yield surface. In fact, as the stored 

energy term is not included in the potential, the rotational variable β  can assume any value at critical 

state in a consistent thermodynamic form. Therefore, the user is free to adopt the specific rotational 

hardening law which better suits the specific application. 

The proposed constitutive relation, despite its relatively simple analytical formulation, proves to 

realistically reproduce some of the main features of the behaviour of clayey soils. The validation 

proposed here indicates that the non-associated version of the SANICLAY-T model should be 

preferred when simulating the behaviour of clays: for example, this assumption allows to mimic the 

fragile stress-strain curves typically observed in K0-compressed specimens of normally consolidated, 

or lightly overconsolidated, clays when shared undrained under triaxial conditions. The introduction 

of a nonlinear isotropic hyperelastic formulations improves the predictive capability of the model 

within the yield surface as compared to the typical hypoelastic model adopted in the SANICLAY 

model, though we are aware that in that range the performance could be significantly improved by 

adopting a continuous hyperplastic approach (e.g. Einav & Puzrin, 2004a; Likitlersuang & Houlsby, 

2006; Apriadi et al., 2013). 

Appendix A 

In the following a simple procedure to derive the yield function from the dissipation function for 

the general case of non-associated flow rule is illustrated. At this scope, the rate of the internal 

variables should be expressed in terms of the dissipative generalised stresses. Recalling the definition 

of the dissipative generalised stress, from Eq. (12) it follows: 

 
( )

( ) ( )

2
0

22 2 2 2 2 2
p q

p
p

p q q

A pd

A B M

α βα γχ
α α βα β α

+∂
= = +
∂ + + −

 

   
 (A1a) 

and 

 
( ) ( )
( ) ( )

2 2 2 2
0

22 2 2 2 2 2
q p q

q
q

p q q

B M A pd

A B M

β α β α βα γχ β
α α βα β α

− + +∂
= = +
∂ + + −

  

   
 (A1b) 
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From the above equations one can deduce the rates of internal variables pα  and qα . In this sense, 

the convenient position ( ) ( )22 2 2 2 2
p q qd A B Mα βα β α= + + −    is made, leading to: 

 ( )2
0

2
p q

p

Ap
d

α βαγχ
+

− =
 

 (A2a) 

and 

 ( ) ( )2 2 2 2
0

2
q p q

q

B M Ap
d

β α β α βαγχ β
− + +

− =
  

 (A2b) 

from which, after few calculations, the rate of the internal variables can be expressed as a function 

of the dissipative generalised stresses as follow: 

 ( ) ( )0
2 2 2 22p p q p

p d d
A B M

γ βα χ χ βχ
β

 = − − −  − 
  (A3a) 

and 

 ( )2 2 2
q p

q d
B M
χ βχ

α
β

−
=

−
  (A3b) 

Now, substituting Eqs. (A3) in the expression of d  and raising to the power of two, one can write: 

 ( ) ( ) ( )
( )

22 222 2 2 2 2 2 20
2 2 2 22

q p
p q q p

p dd A B M d
A B M

χ βχγα βα β α χ
β

− = + + − = − +  − 
    (A4) 

Therefore, 2d  can be eliminated from Eq. (A4) and multiplying all the members for the term 

( )2 2 2 2A B M β−  results in: 

 ( ) ( ) ( )
2

22 2 2 2 2 2 2 20 0
2q p p
pA B M A B Mγχ βχ β χ β − + − − − − = 

 
 (A5) 

that is the equation of the yield function in the dissipative generalised stress plane of Eq. (14). 

Appendix B 
As for classical elastoplasticity, the consistency condition can be imposed to obtain the plastic 

multiplier and express the constitutive relationship in its incremental form. For the proposed model, 

under the simplified triaxial conditions explored in the validation Section 5, it is: 
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( )

0
0

0

0
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p q
p q

p q b
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p p

pf f f f f fp L cp L
p p

χ χ β
χ χ β
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  
 (B1) 

where the rate of the internal variables 0p  and β  are expressed by the isotropic and rotational 

hardening rules reported in Eqs. (7) and (8), respectively. From eq. (B1) the plastic multiplier can be 

specified: 

 
( ) 0

0

p q
p q

b
p p

f f f p
p

L pf f fcp
p

χ χ
χ χ

β β
β α χ
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+ +
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=

∂∂ ∂ ∂
− +

∂ ∂ ∂ ∂

  

 (B2) 

To guarantee that all the derivatives entering in Eq. (B2) are dimensionally consistent, the yield 

function in Eq. (14) is divided by the term 2A . The directions of the plastic flow are:  

 ( ) ( )
2

2 2 0
22 2

2q p p
p

pf BM
A

γβ χ βχ β χ
χ
∂  = − − + − − ∂  

 (B3) 

and 
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 (B4) 

Note that in this case the direction of plastic strain rates depends on the parameters γ and δ as well 

as on the mean effective pressure via the quantities A and B. The other useful derivatives are: 
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with 
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Finally, the derivatives of the yield function f̂  with respect to the stress are: 
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Notation 

,A B  Terms of the dissipation function in Eq. (12) 
c  RH parameter for Eq. (8) 
d  Rate of dissipation 

ijklD  Stiffness tensor 
e  Void ratio 

ine  Initial void ratio 
f  Yield function in generalised stress space 
f̂  Yield function in stress space 
g  Dimensionless shear modulus coefficient 
H  Hardening modulus 
k  Dimensionless bulk modulus coefficient 
L  Plastic multiplier 
M  Critical stress ratio 
m  RH parameter of Eq. (9) 
n  Exponent in power-law relationship for elastic stiffness 

*n  RH parameter of Eq. (9) 
N  Peak stress ratio on the yield surface for the Dafalias & Taiebat (2013) model 
p  Mean effective stress 

0p  Size of the yield surface along the p-axis 

0,inp  Initial size of the yield surface along the p-axis 

rp  Reference pressure 
q  Deviatoric stress 

ijr  Stress ratio tensor 
v  Specific volume 
x  RH parameter 

ijα  Internal variable tensor 
,p qα α  Internal variable in p-q plane 

ijβ  Rotational hardening variable 

,b ijβ  Bound of ijβ  
β  Rotational hardening variable in p-q plane 

bβ  Bound of β  in p-q plane 

cβ  RH parameter of Eq. (9) 
γ  Parameter for the non-associated model 
δ  Parameter for the non-associated model 

ijδ  Kronecker delta 

ijε  Strain tensor 

ijε ′  Deviatoric part of the strain tensor 

sε  Deviatoric strain invariant 

vε  Volumetric strain 
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η  Stress ratio 
κ  Slope of the rebound line in e – lnp plane 
κ  Slope of the rebound line in lnv – lnp plane 
λ  Slope of the compression line in e – lnp plane 
λ  Slope of the compression line in lnv – lnp plane 
µ  RH parameter 
ν  Poisson’s ratio 

ijσ  Stress tensor 

ijσ ′  Deviatoric part of the stress tensor 
ϕ  Helmholtz free energy 

ijχ  Generalised stress tensor 
,p qχ χ  Generalised stresses in triaxial formulation 

ijχ  Dissipative generalised stress tensor 

ijχ′  Deviatoric part of dissipative generalised stress tensor 
,p qχ χ  Dissipative generalised stresses in triaxial formulation 

1 2, ,ψ ψ ψ  Gibbs free energy 
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