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Transport of micro-bubbles in turbulent shear

flows
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Eudossiana 18, 00184 Roma, Italy

E-mail: paolo.gualtieri@uniroma1.it

Abstract. The dynamics of micro-bubbles, which are typical in many industrial applications,

is addressed by means the Direct Numerical Simulations (DNS) of two prototypal flows, namely a

homogeneous shear flow and a fully developed pipe flows. This preliminary study has a two-fold

purpose. The homogenous turbulent shear flow is useful to characterize the bubble dynamics

in terms of their eventual clustering properties which is expected to be controlled by the Stokes

number. The time history of the fluid pressure experienced by the bubbles during their evolution

is recorded and successively employed to force the Rayleigh-Plesset equation [1]. The ensuing

data are used to address a posteriori the bubble diameter statistics in view of bubble collapse

induced by strong and intermittent turbulent pressure fluctuations. The turbulent pipe flow

simulations serve to address the bubble dynamics in wall bounded flows. Here the bubbles are

observed to accumulate in the near-wall region with different intensity depending on the bubble

dimensions.

1. Introduction

Many natural and technological applications present regimes where micro-bubbles are

transported by a carried eventually turbulent flow. For instance, the cavitation events and the

collapse of the bubbles are of primary importance in the propeller design due to the structural

damages caused by cavitation.

This paper deals with the dynamics of a point-like disperse phase in prototypal turbulent

shear flows, a homogeneous shear flow and a pipe flow, laden with particles of different density

ratios ranging from neutrally buoyant particles with ρp/ρf = 1 to the typical density ratios of

the bubbles, i.e. ρp/ρf = 10−2 − 10−3. The turbulent carrier flow is resolved by means of the

Direct Numerical Simulation of the incompressible Navier-Stokes equations at a moderate value

of the Reynolds number. The carrier phase transports inertial particles which are assumed to

small in comparison with the smallest hydrodynamical scale, i.e. the Kolmogorov dissipative

scale η. In such conditions the particles dynamics is well captured by the equations reported

in [2] and [3], namely

dxp
dt

= vp(t); τp
dvp
dt

= [u(xp, t)− vp(t)] +
3

2

τp(
1
2 +

ρp
ρf

)Du

Dt
(xp, t) , (1)

where xp and vp are the particle instantaneous position and velocity, respectively, u(xp, t)

is the fluid velocity at the particle position, ρp/ρf is the particle to fluid density ratio,
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τp = (ρp/ρf )d2p/(18νf ) is the particle relaxation time (with dp the particle diameter and νf
the fluid kinematic viscosity). Equations (1) hold for particles whose diameter is smaller

than the Kolmogorov scale, dp/η � 1 and particle Reynolds number smaller than one,

Rep = (|u − vp|)dp/νf � 1. The first and second terms on the right hand side of eq. (1) are

the Stokes drag and the added mass respectively. In the latter Du/Dt is the fluid acceleration

evaluated at the particle position. Equations (1) are time-integrated following the Lagrangian

trajectory of the disperse phase and, when needed, the fluid velocity and the fluid acceleration

ensuing from the time-integration of the background turbulent field are interpolated at the

particle position.

Panels (a) and (c) of figure 1 address the two geometries considered here, namely the

homogeneous shear flow in panel (a) and the turbulent pipe flow in panel (c). Briefly the

homogeneous shear flow consists in a 3D periodic box where turbulent fluctuations are forced

by an imposed mean velocity gradient see [4]. The computational domain of physical size

4π × 2π × 2π is discretized by means of 288× 144× 144 collocation points where equations are

solved by means of a pseudo-spectral method. This allows to resolve the Kolmogorov scale at

the selected Reynolds number of Reλ = 80. The pipe flow consists in a cylindrical duct with

periodic conditions in the axial direction. The motion of the fluid is obtained by enforcing a

constant mean pressure gradient along the pipe, see [5]. Here the pipe length is 2πR where

R is the pipe radius. In this case the code exploits staggered finite difference method to solve

the Navier-Stokes equations in cylindrical coordinates on a discrete grid of 256 × 192 × 256

points in the azimuthal, radial and axial direction respectively. Both codes take advantage of a

low-storage Runge-Kutta scheme for the temporal integration of the carrier and disperse phase.

Several simulations have been performed to span the particle space parameter. In fact, in

the limit of small particle Reynolds number Rep � 1, the only two parameters describing the

different motion regimes of the disperse phase are the particle Stokes number, namely the fluid

to particle characteristic time ratio, St = τp/τf and the particle to fluid density ratio ρp/ρf .

Concerning the homogeneous shear flow we have considered three different Stokes numbers, based

on the Kolmogorov time scale, and four values of the density ratio, namely Stη = 0.5, 0.1, 0.01

and ρp/ρf = 1, 0.1, 0.01, 0.001 which amounts to twelve different cases. In the pipe flow two

Stokes number, based on the wall-unit time-scale, and five values of the density ratio, namely

St+ = 0.2, 2 and ρpρf = 5, 1, 0.1, 0.01, 0.001 are available amounting to ten cases. The turbulent

Reynolds number based on the Taylor scale is Reλ = 80 for the homogeneous shear flow and the

friction Reynolds number is Reτ = 310 for the pipe flow configuration.

2. Results and Discussion

Figure 1 reports the instantaneous configuration of the disperse phase for the two geometries

addressed in this paper, namely panel (b) for the homogeneous shear flow and panel (d) for

the pipe flow. Some few slices are reported to give a visual representation of the underlying

turbulent fluctuations in panels (a) and (c). In the homogeneous shear flow it is shown the

instantaneous configuration of the disperse phase pertaining to Stη = 0.5 and ρp/ρf = 0.001.

These are the typical values for bubbles which are well known to accumulate in the low pressure

region of the turbulent field, i.e. in the coherent vortical structures. This feature clearly emerge

from the scatter plot in panel (b) where the bubbles form filament-like structures which mark

to the cores of the turbulent vortices. Concerning the pipe flow, at first sight, no significant

spatial localization of particles appears in the case of St=0.2 and ρp/ρf = 0.001 probably due

to a relatively small value of the Stokes number.

More quantitative statistical results are shown in figure 2. Panels (a) and (b) show the

the radial distribution function g00 versus the spatial separation r/η. The radial distribution
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(a) (b)

(c) (d)

Figure 1. Instantaneous configuration of the fluid domain and for the homogeneous shear

flow, panel (a), and for the pipe flow, panel (c). Colors denotes the stream-wise fluid velocity

intensity. Panel (b): instantaneous configuration of the disperse phase in the homogeneous shear

flow corresponding to Stη = 0.5 and ρp/ρf = 0.001. Panel (d): instantaneous configuration of

the disperse phase in the pipe flow at St=0.2 and ρp/ρf = 0.001. Bubbles are colored with their

stream-wise velocity intensity.

function actually measures the probability to find a particle pair at a certain distance r. The

different curves in the panel address the effect of the Stokes number Stη at a fixed density

ratio ρp/ρf = 0.001 (panel (a)) and the effect of the density ratio at fixed Stokes number

Stη = 0.1 (panel (b)). As expected, for vanishing Stokes number (Lagrangian tracers), the

particle distribution behaves as a spatially homogeneous distribution and the radial distribution

function assumes the unitary value at all separations. However, when the Stokes number is

increased, small scale clustering occurs, i.e. g00(r) diverges at small separations, see figure 2

panel (a). The behavior of particles at fixed Stokes number, St+ = 0.1, depending on the

particle/fluid density ratio, shows that for bubbles ρp/ρf = 0.001 the clustering formation is

more intense than the other cases ρp/ρf → 1. Dealing with the turbulent pipe flow, panels

(c) and (d) report the particle mean concentration profile normalized with the homogeneous

concentration for two different values of the Stokes number, St+ = 2 panel (c) and St+ = 0.5

panel (d). The disperse phase appears to segregate in the near wall region. In particular

the segregation intensity increases with the increase of the Stokes number and the maximum

concentration peak moves away from wall by decreasing the particle density, staying in any cases

in the viscous sublayer or the buffer layer.

A deeper analysis of the transport of bubbles in a turbulent flow calls into play the particle

radius dynamics obtained by the Rayleight-Plesset [1] forced by the fluid pressure history

experienced along their trajectory. In particular, due to the preferential sampling of turbulent
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Figure 2. Top panels: radial distribution function g00 versus normalized separation r/η at fixed

density ratio ρp/ρf = 0.001 and different Stokes number Stη (panel (a)), and at fixed Stokes

number Stη = 0.1 and different density ratios (panel (b)). Bottom panels: wall-normal mean

particle concentration as a function of the normalized wall-normal distance y+ = (1 − r)/y∗

where y∗ is the wall unit. Two Stokes number are showed, St+ = 2, panel (c), and St+ = 0.5,

panel (d).

fluctuations, the light bubbles accumulate in relatively low pressure region of the flow. It follow

that the fluctuations of the radius are strongly intermittent and the tails of the ensuing p.d.f is

characterized by intense and relatively probable events.
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