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Review

Introduction

Telomeres are specialized DNA–protein structures, capping 
the end of each linear chromosome. Human telomeric 
DNA is constituted by a variable of tandem repeats of 
double‑stranded TTAGGG, ranging from 2 to 30 kb, and by 
a 3’‑G‑rich single‑stranded overhang (G‑tail), with a length 
of around 150 nt.[1] Telomeres are also capped by six proteins 
that form the shelterin complex: telomeric repeat binding factor 
1 (TRF1), telomeric repeat binding factor 2 (TRF2), tripeptidyl 
peptidase I, protection of telomeres 1, TRF1‑interacting 
nuclear factor 2, and repressor/activator protein 1.[2‑4]

Telomeric DNA, along with the shelterin protein complex, 
maintains the telomere‑specific structure, allows discrimination 
of telomeres from double‑stranded DNA breaks, and protects 

the ends of the chromosomes from degradation, fusion, and 
recombination for maintaining genomic integrity.[5,6]

Telomere length shortening plays a crucial role in the cellular 
process of replicative senescence;[7,8] in each cycle of DNA 
replication, the inability of DNA polymerase complex 
to replicate the 3’‑end of the lagging strand in the linear 
chromosomes leads to telomere shortening.[9] The ends of 
chromosomes progressively shorten until the cells reach the 
maximal number of cell divisions (Hayflick limit), undergoing 
chromosomal instability, senescence, and apoptosis.[7‑10] The 
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average telomere length typically ranges from 10 to 15 kb in the 
human somatic cells and shortens at a rate of around 50–200 bp 
with each cell division; in the absence of telomere maintenance 
mechanisms  (TMMs), cells divide in an average between 
50 and 70  times before the loss of chromosome capping 
function at telomeres leads to replicative senescence.[11] When 
a critical telomere length is reached, further shelterin proteins 
lose their binding sites and telomeric DNA cannot form a 
protective secondary structure.[12,13]

Cancer cells overcome this limit and escape from replicative 
senescence by activating a TMM, necessary for unlimited 
replication and immortalization of the neoplastic cells, 
preventing genetic instability associated with critical telomere 
shortening.[1,7,8] Neoplastic cells rely on two mechanisms 
to elongate telomeres:  (a) reactivation of telomerase 
expression and  (b) activation of alternative lengthening of 
telomere (ALT).[14‑20]

The aim of this review was to describe the incidence of 
TMM via telomerase or ALT in different histological/
molecular subtypes of pediatric brain tumors  (PBTs), since 
telomerase‑targeted and ALT‑targeted therapies are currently 
tested in preclinical studies and could constitute a promising 
approach for certain tumor types.

Database Search Strategy

Literature review was electronically performed using PubMed 
database. The following combinations of keywords were 
used to initially select the articles to be evaluated: alternative 
lengthening of telomere; telomerase activation; telomerase 
target therapy; ALT target therapy, senescence escape, 
and TMM in pediatric brain tumors. Most of the elected 
studies (144/191, 75.4% of all references) were published from 
2010 to 2020. The older publications from 1985 to 2009 were 
included in consideration to their relevance in the description 
of telomerase or ALT mechanisms, of their incidence in cancer, 
and of the targeted therapies.

Telomere Maintenance Mechanism via Telomerase 
Reactivation

Human telomerase is a reverse‑transcriptase heterodimer 
formed by a noncoding RNA template  (telomerase RNA 
component), an enzymatic subunit  (telomerase reverse 
transcriptase [TERT]), and a series of auxiliary components.[21] 
Telomerase is responsible for synthesizing telomeric DNA 
to compensate the erosion of telomeres during each DNA 
replication.[22] Telomerase RNA component is necessary as a 
template for the elongation of telomeres, while TERT catalyzes 
the process with its reverse‑transcriptase activity by adding 
nucleotides to the chromosome 3’‑ends.[21,22]

The expression and activity of telomerase are strictly 
controlled.[23] Some long‑lived cells, as stem cells, germinal 
cells, and early progenitor cells, require telomere length 
maintenance for escaping from senescence and allowing 

unlimited replication; these cells normally use the enzyme 
telomerase to maintain telomere length.[24] In contrast, the 
majority of human somatic cells, except lymphocytes and 
endothelial cells, completely lack telomerase activity.[25]

Neoplastic cells from several tumor types (85%–90%) use the 
canonical TMM to maintain telomere length by reactivating 
telomerase expression, allowing them to escape from replicative 
senescence and apoptosis.[25,26] The main genetic alterations 
associated with telomerase‑dependent TMM in tumor cells 
are (1) TERT promoter (TERTp) mutations; (2) amplification 
of the gene TERT; (3) structural rearrangements of regulatory 
elements; and (4) epigenetic changes of TERTp.

TERTp hotspot mutations are located − 124 bp (C228T) 
and − 146 bp (C250T) upstream of the transcriptional start 
site ATG and are the most common alterations related to 
telomerase up‑regulation, harbored by a wide spectrum 
of human tumors including melanomas  (67%–85%), 
brain tumors  (28%–84% glioblastoma and 19%–42% 
medulloblastoma), hepatocellular carcinomas  (24%–59%), 
bladder cancers  (~50%), thyroid cancers  (~30%), and 
cutaneous squamous cell carcinomas (~50%).[14,27]

TERT amplification is a rare alteration that correlates with 
telomerase reactivation in cancer. Barthel et  al.,[14] in a 
cohort including 6835 patients and covering 31 tumor types, 
showed the presence of amplification in a total of only 
4% of tumors. TERT can be also activated by structural 
rearrangements (~3%), leading to repositioning of enhancer 
elements that activate TERT transcription, more frequently 
found in neuroblastoma.[14,28] Finally, TERTp methylation 
provided an additional regulatory mechanism for TERT 
expression.[14] In particular, the hypermethylation of TERTp 
on a specific region rich in CpG sites – 600 bp upstream of 
the transcription start site, called UTSS region, was found to 
be associated with telomerase upregulation.[29,30] This opposite 
association between TERTp methylation and increased 
TERT expression may result from loss of CTCF binding, a 
transcriptional repressor reported to specifically bind to the 
unmethylated TERTp DNA.[14,31]

Moreover, the activity of telomerase is also regulated by 
the shelterin complex and the telomeric repeat containing 
RNA  (TERRA), which is transcribed by RNA polymerase 
II from subtelomeric and telomeric DNA.[2,32,33] The main 
alterations on TERTp associated with telomerase upregulation 
in cancer are shown in Figure 1.

Telomere Maintenance Mechanism via Alternative 
Lengthening of Telomere

In cancer cells which do not reactivate telomerase, the 
maintenance of telomere length is achieved via ALT, a 
telomerase‑independent, recombination‑based mechanism. 
ALT mechanism was originally shown in the immortalized 
cell lines and subsequently found in several types of human 
cancers.[15,16] Compared to telomerase reactivation, a lower 
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proportion of cancers  (10%–15% overall) activate ALT to 
maintain telomere length and escape from senescence.[14,17‑19]

The prevalence of ALT in cancers is not uniform across the 
different tumor types; Heaphy et  al.[18] have systematically 
analyzed the presence of ALT phenotype in 6110 primary 
tumors from 94 different cancer subtypes by telomere‑specific 
fluorescence in  situ hybridization, showing ALT activation 
in 3.73% (228/6110) of all tumors, arising from the bladder, 
cervix, endometrium, esophagus, kidney, liver, central nervous 
system (CNS), and lung. At present, several studies showed that 
among TMM‑positive cancers, the majority of ALT‑activated 
tumors arise from neuroendocrine systems  (e.g., pancreatic 
neuroendocrine tumor), mesenchymal and neuroectodermal 
cells including bone  (e.g., osteosarcoma), soft tissues  (e.g., 
leiomyosarcoma), and peripheral nervous system and 
CNS (e.g., glioblastoma), while ALT has rarely been reported 
in epithelial malignancies.[14,17‑19,34‑36] ALT was also found in 
pediatric cancers; a recent study analyzed the presence of 
ALT in 653 pediatric patients with 23 cancer types from the 
Pediatric Cancer Genome Project, highlighting the activation of 
ALT in 28.7% of solid tumors, 10.5% of brain tumors (mostly 
high‑grade glioma), and 4.3% of hematological cancers.[20]

The co‑existence of telomerase and ALT pathways was 
previously found in various tumor types; however, at present, 
it has not yet been clear whether the activation of telomerase 
and ALT can co‑exist within the same cell or within different 
heterogeneous cell subpopulations in a tumor, and whether 
switching between the two mechanisms is possible.[37‑39]

Alternative lengthening of telomere mechanism
ALT mechanism is dependent on the activation of a 
homologous recombination DNA‑repair mechanism to 
maintain the telomere length.[40‑42]

The first study in yeast showed the existence of two distinct 
recombination pathways to maintain telomere length in the 
absence of telomerase, a RAD51‑dependent and ‑independent 
mechanism.[43] Subsequently, studies on the human neoplastic 
cells revealed that TMM via ALT is mediated by a pathway 
of break‑induced replication[44,45] Dilley et  al.[40] evidenced 
the direct implication of three DNA‑repair and recombination 
proteins  (POLD3, PCNA, and RAD52) in the human 
mechanism of ALT. As recently reported by Zhang et al.,[46] 
ALT occurs through two distinct break‑induced replication‑like 
mechanisms; one recombination mechanism requires RAD52 
for maintaining telomeres, while RAD52‑knockout cells use a 
mechanism dependent on POLD3 and POLD4, demonstrating 
the bifurcated framework and dynamic nature of ALT.

However, although several hallmarks, mutations, and 
de‑regulations involved in the ALT pathway have been 
discovered, the molecular mechanism remains still elusive.

Hallmarks of Alternative Lengthening of Telomere
TMM via ALT exhibits several hallmarks:  (1) long and 
heterogeneous telomere length,[18,35,42]  (2) presence of 
ALT‑associated promyelocyt ic  leukemia nuclear 
bodies  (APBs),[36,42,47]  (3) presence and accumulation of 
extrachromosomal telomere repeats, with generation of high 

Figure 1: Schematic representation of telomerase reactivation by TERTp mutations, TERTp methylation and rearrangements of enhancer elements. 
(A) TERT promoter region on chromosome 5 with the DNA sequence of the hotspot mutations C250T and C228T, evidencing the presence of 
double peaks in chromatograms.  (B) Methylation of TERTp on CpG sites of UTSS region, which are hypermethylated in tumors that upregulate 
telomerase. (C) Structural rearrangements of regulatory elements distant from TERT locus, which reposition of enhancer factors that activate TERT 
transcription. TERT: Telomerase reverse transcriptase
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levels of C‑rich circular telomeric DNA repeats (C‑circles),[48‑52] 
and  (4) elevated level of telomere sister chromatid 
exchanges[49,51‑53]

Previous works showed that telomere length distribution in 
the ALT‑positive cells is highly heterogeneous and ranges 
from less than 3 kb to more than 50 kb, differently from 
telomerase‑positive cells in which all telomeres typically 
have a similar length of around 10 kb.[18,19,35,50] Tumors with 
ALT pathway exhibit different telomere length distribution 
within individual cells and across tumor cell populations.[34,37] 
Previous studies also revealed the presence of telomeric 
clusters around the promyelocytic leukemia bodies, forming 
structures named APBs in ALT‑activated cells;[36] APBs 
contain proteins that are known to function in DNA‑repair 
and recombination processes, suggesting that APBs could 
provide a recombinogenic microenvironment to promote 
ALT.[42,45‑47] Moreover, a recent work identified a new 
marker of ALT: the upregulation of the long noncoding 
RNA TERRA; it has been shown that mammalian cell lines 
harboring active ALT have higher TERRA levels compared 
with telomerase‑positive cells.[54] However, the role of 
TERRA in the activation of ALT has not yet been fully 
clarified.[55]

The most common and reliable methods for detecting the 
activation of ALT in the neoplastic cells are the evaluation 
of telomere length by quantitative fluorescence in  situ 
hybridization,[16,18,35] the C‑circle assay,[51] and the APBs 
assay.[42,56] However, a systematic comparison from different 
methods of ALT detection is still challenging due to 
differences in laboratory techniques, data configuration, and 
normalization.[34,38,57]

Alternative lengthening of telomere‑associated genetic 
alterations
It has been shown that ALT is frequently associated with 
loss‑of‑function mutations in the chromatin remodeling genes, 
α‑thalassemia/mental retardation syndrome X‑linked (ATRX) 
and death domain‑associated protein (DAXX).[18,35,58] Moreover, 
mutations in other genes, such as H3F3A coding for the 
histone H3.3, SMARCAL1, and IDH1, have been described in 
ALT‑positive cells, suggesting their involvement in the ALT 
development.[59‑62]

ATRX is an ATP‑dependent helicase, part of the SWI/SNF 
family; it has been shown that ATRX, and its partner DAXX, 
function together as a chromatin remodeling complex that loads 
the histone variant H3.3 into telomeric and other repetitive 
heterochromatic regions.[63,64] The depletion of ATRX in the 
murine cells leads to the loss of the histone H3.3 at telomeres, 
creating a more open chromatin environment accessible to 
recombination proteins.[65] Therefore, it has been shown a 
strong association between ATRX loss and ALT in several 
neoplastic cell lines and tumor types.[18,35,58,66]

ATRX inactivation can be driven not only by point mutations, 
insertion or deletion of bases, large deletions, but also by 

genetic alterations not detected by direct DNA sequence 
analysis such as promoter silencing mutations; these alterations 
are not localized to any specific domain of the protein and are 
correlated with the loss of its nuclear expression, detectable 
by immunohistochemistry.[35,58,62]

Functional inactivation of DAXX was found to be 
associated with ALT, less frequently compared to ATRX 
and only in few cancer types; in particular, DAXX mutations 
characterized ALT‑positive pancreatic neuroendocrine 
tumors (22%) and were mutually exclusive with ATRX.[35,67] 
However, the role of DAXX in ALT process is still poorly 
understood.

Recently, as described below, mutations on the gene 
H3F3A have been identified to play a significant role in the 
pathogenesis of pediatric high‑grade brain tumors and seem to 
be linked with the ALT phenotype.[62,68‑71] Moreover, a recent 
study in ALT‑positive glioblastomas evidenced that mutations 
on SMARCAL1, a member of the SWI/SNF family chromatin 
remodeling proteins, were associated with ALT, suggesting 
the SMARCAL1‑inactivating alterations as a novel genetic 
mechanism of ALT.[59,60]

The main hallmarks and genetic alterations involved in the 
ALT activation are shown in Figure 2.

Telomere Maintenance Mechanisms in Pediatric 
Brain Tumors

CNS tumors are the most common solid tumors affecting 
childhood (0–19 years) and the principle cause of cancer‑related 
death in the pediatric age (0–14 years).[71-74] PBTs account for 
around 15%–20% of all neoplastic disease in children and 
comprise multiple separate pathological entities with different 
survival, symptoms, and localizations.[71,72]

In the past, PBTs were diagnosed and graded according to 
the histological criteria. During the last years, the extensive 
use of high‑throughput molecular, genetic, and epigenetic 
profiling techniques largely increased the knowledge on the 
origin and biological features of these pediatric neoplasms; 
recent updates in the genetic/molecular characterization of 
PBTs have shown a substantial heterogeneity even among 
PBTs with the same histological classification, such as 
molecular subgroups of medulloblastoma,[75‑77] glioma,[69,71,78] 
and ependymoma.[79-81] Consequently, adult brain tumors 
and PBTs have been re‑classified, combining histologic and 
molecular data, with significant clinical correlations in terms 
of anatomical location and prognosis.[71,82]

In recent years, several studies have also shown that gliomas 
in children differ fundamentally from those in adults, regarding 
genetic and epigenetic profiles, associated driver mutations, 
radiological features, anatomical distribution, and clinical 
outcome, leading to the separation of several PBTs from 
the adult counterparts.[69‑71,83,84] In line with these findings, 
the incidence of TMMs in adult and pediatric cancers has 
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been found substantially different, confirming that adult and 
pediatric tumors should be considered separately also regarding 
the activation of TMMs.[14,20,34,85]

All previous reported incidences of TMMs triggered by 
telomerase or ALT in various histological/molecular subtypes 
of pediatric brain tumors are summarized in Table 1.

Pediatric high‑grade glioma
Diffuse high‑grade gliomas account for ~11% of all CNS tumors 
in children.[69,71,72] Different from gliomas in adults, which tend 
to be restricted to the cerebral hemispheres, pediatric high‑grade 
gliomas (pHGGs) can arise throughout the CNS, with around 50% 
of cases occurring in midline locations.[69,83] IDH1/2 mutations 
and TERTp mutations are key molecular alterations for adult 
patients but are relatively rare in pediatric gliomas, which are 
characterized by mutations in the gene H3F3A encoding the 
histone H3.3.[20,66,69,86,87]

The two hotspot variants H3.3‑K27M and H3.3‑G34R/V 
define different pHGG molecular subgroups;[69] a novel 
diagnostic entity entitled “diffuse midline glioma  (DMG) 
H3‑K27M‑mutant” has been introduced in the WHO 
classification of CNS tumors,[71] while the clinicopathological 
significance of H3.3‑G34R/V has not been completely 
elucidated but will probably constitute an own biological entity 
in the upcoming classification.[78]

Interestingly, pHGGs are frequently mutated in ATRX, which 
incorporate the histone H3.3 into telomeres;[18,35,68,69,88,89] in 
particular, hemispheric pHGGs with H3.3‑G34R/V showed a 
significant overlap with ATRX mutations.[62,68,35,70,88]

As previously described, telomerase‑dependent TMM is 
generally triggered by TERTp mutations (C228T and C250T) 
and hypermethylation,[14,20,29,30] while ALT‑dependent TMM 
activation is mediated by the deregulation of ATRX/DAXX/
H3.3 complex.[18,35,58,66] TMM via telomerase‑dependent 
mechanism seems to be uncommon in pHGGs, given the low 
frequency of TERTp mutations (1.5%–11%) and the absence 
of telomerase reactivation,[20,66,87] while the presence of ALT 
in pHGGs was associated with loss of ATRX, highlighting 
a significantly increased prevalence of ALT in pediatric  
glioblastoma (44%).[18] Subsequently, given that pediatric 
gliomas frequently harbored key genetic alterations on ATRX 
and H3F3A, several studies showed that pHGGs activated 
ALT mechanism with high incidence (19.2%–53%).[20,68‑70,90,91]

Furthermore, tumors previously referred as diffuse intrinsic 
pontine gliomas; a class of high‑grade glial tumors of the 
brainstem significantly enriched in H3.3‑K27M (60%–80%) 
and H3.1  (HIST3H1B)‑K27M mutations  (20%) is now 
included in the newly defined entity DMG.[71,92-94] Two 
independent studies showed the presence of ALT activation 
in 3/11 (27.2%) and 9/48 (18.8%) DMGs, respectively, not 

Figure  2: Schematic representation of telomere maintenance triggered by ALT. Image summarizes the main alterations associated with ALT  (in 
the box) and shows the hallmarks of ALT, including long and heterogeneous telomere length (A), ultrabright telomeric signals in ALT‑positive tumor 
analyzed via Q‑FISH, compared with ALT‑negative sample (B), formation of APBs and extrachromosomal telomere C‑circles (C). ALT: Alternative 
lengthening of telomere, APBs: ALT‑associated promyelocytic leukemia nuclear bodies, Q‑FISH: Quantitative fluorescence in situ hybridization. (B) 
Reprinted from Minasi et al.[107]
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always associated with histone mutations.[68,90] Moreover, 
high telomerase RNA component and TERT expression were 
identified in 11/15  (73.3%) DMG samples, and given the 
high incidence of telomerase expression, authors suggested 
that telomerase inhibition may be a promising therapeutic 
approach.[68] However, in strong contrast with this publication, 
other studies evidenced a very low frequency of TERTp 
mutations in DMGs (~2%).[69,95]

At present, it is clear that a subpopulation of pHGGs activates 
ALT, while the reactivation of telomerase is rare; in the future, a 
promising therapeutic approach for these ALT‑positive patients 
could be represented by the novel ALT‑targeted drugs.

Pediatric low‑grade glioma
Pediatric low‑grade gliomas  (pLGGs), defined as WHO 
grade I and II neoplasms, constitute approximately 30% 
of all PBTs and are a heterogeneous group of tumors 
with different histological changes, including pilocytic 
astrocytoma (~16% of all CNS pediatric tumors), pilomyxoid 
astrocytoma, diffuse grade II astrocytoma, ganglioglioma, and 
pleomorphic xanthoastrocytoma.[71,96] The survival rates of 
pediatric patients with LGGs are good, with 5‑year survival 
around 75% overall and 10‑year survival over 90% for patients 
with complete resection of tumor.[74]

Several genetic/molecular alterations were reported in pLGGs; 
in particular, de‑regulation of factors involved in the signaling 
pathway of mitogen‑activated protein kinase, including BRAF 
mutation or KIAA1549:BRAF fusion, FGFR1 mutation or 
structural rearrangement, NF1 mutation, NTRK‑family fusions, 
and alterations in MYB or MYBL1.[96-98] The development of 

drugs which specifically target BRAF, FGFR1, and NTRK has 
led to the possibility of further therapeutic options for these 
neoplasms, using specific inhibitors currently in progress of 
clinical trials.[96,99]

Only few studies explored the role of TMMs in pLGGs. 
Tabori et  al.[100] first analyzed telomerase reactivation and 
ALT in a cohort of pLGGs; authors never found telomerase 
activity  (0/11). Moreover, 0/45 pLGGs in this study were 
positive for ALT.[100] Authors showed that pLGGS lack 
any mechanism of telomere maintenance, induced both by 
telomerase and ALT, suggesting that senescence triggered by 
telomere shortening could play a key role in pLGG evolution 
and could explain the spontaneous growth arrest and regression 
that occasionally characterizes pLGGs.[100] Subsequently, 
other publications observed ALT in only 1/84  (1.19%) and 
1/38 (2.6%) pLGGs, respectively, confirming that TMM via 
ALT is almost absent in pLGG.[20,90]

Medulloblastoma
Medulloblastoma is a grade IV tumor and represents a 
heterogeneous class of embryonal tumors, mostly localized 
in the cerebellum; it is the second most common PBT, 
accounting for approximately 20% of all primary CNS tumors 
in children.[71,101]

Medulloblastomas comprise four molecular‑defined 
subgroups (WNT, SHH, Group 3, and Group 4), associated 
with different cells of origin, specific genetic landscapes, 
copy number alterations, methylation profiles, and different 
clinical outcome of patients.[76,77,102] The outcome of WNT 
subgroup is excellent, with a 5‑year survival rate over 95%, 

Table 1: Incidence of telomere maintenance mechanisms triggered by telomerase and alternative lengthening of 
telomere in different types of pediatric brain tumors, analyzed in several cohorts from different studies

Tumor type Telomerase‑dependent TMM (%) ALT‑dependent TMM (%)
pHGG 11% TERTp mutation[66] 44%[18]

3% TERTp mutation[87] 22%[90]

0%[20] 53% all, 27.2% in DMG[68]

73.3% in DMG[68] 19.2%[69]

2% TERTp mutation in DMG[95] 18.8% in DMG[90]

pLGG 0%[100] 0%[100]

1.19%[90]

2.6%[20]

MDB 85.7%[100] 7%[18]

20.8% TERTp mutation, mainly SHH[66] 2.2%[90]

21% TERTp mutation, mainly SHH[106]

18.2% TERTp mutation in metastatic MDB[107] 32% in metastatic MDB[107]

EPD 64%[116] 0%[116]

2.7% TERTp mutation[66] 0%[90]

0% TERTp mutation[87]

0% TERTp mutation[117] 0%[117]

Other rare pediatric 
CNS tumors

0% TERTp mutation[66] 0% AT/RT[90]

0% TERTp mutation[87] 22.6% choroid plexus tumors[90]

AT/RT: Atypical teratoid/rhabdoid tumor, ALT: Alternative lengthening of telomere, CNS: Central nervous system, DMG: Diffuse midline glioma, EPD: 
Ependymoma, MDB: Medulloblastoma, pHGG: Pediatric high‑grade glioma, pLGG: Pediatric low‑grade glioma, TMM: Telomere maintenance mechanism, 
SHH: Sonic Hedgehog molecular subgroup

[Downloaded free from http://www.jglioma.com on Sunday, October 18, 2020, IP: 10.232.74.27]



Minasi, et al. Telomere maintenance in pediatric brain tumors

Glioma  ¦  Volume 3  ¦  Issue 3  ¦  July-September 2020 111

while Group 3 patients exhibit the worst survival (45%–60%); 
Group 4 and SHH are characterized by intermediate overall 
survival  (75%–80%), depending on the histology, presence 
of metastases, and molecular alterations as MYC and MYCN 
amplification.[77,102-104] Moreover, each of these molecular 
subgroups is characterized by intertumoral heterogeneity, 
comprising different genetic subtypes.[76,105]

Several studies have investigated the incidence of TMMs 
in medulloblastomas and the presence of telomerase‑  and 
ALT‑associated molecular alterations in these heterogeneous 
tumors. The first study by Tabori et  al.[100] observed the 
telomerase activity in 6/7 medulloblastomas  (85.7%). 
Moreover, a later publication found the presence of TERTp 
mutations in 19/91 medulloblastomas (20.8%), associated with 
older patients.[66] Subsequently, other studies confirmed the 
presence of TERTp mutations in approximately 18%–21% of 
medulloblastomas, highlighting that the highest incidence of 
TERTp mutation was observed in adult patients of SHH group, 
while Group 3 and Group 4 medulloblastomas harbored this 
alteration in <5% of cases.[76,87,106]

Moreover, medulloblastomas can often present leptomeningeal 
dissemination, and approximately 30% of pediatric 
medulloblastomas occur with metastasis at the onset.[102,104] A 
recent study showed that medulloblastomas with metastasis 
at the onset harbored TERTp mutations in 18.2% of 
samples belong to all molecular subgroups, suggesting that 
TMM‑induced by telomerase reactivation is not restricted to 
SHH variant in metastatic patients.[107]

It has been shown that alterations affecting the ATRX/DAXX/H3.3 
complex are uncommon in medulloblastomas; DAXX and 
H3F3A mutations were never observed,[35,89,107] while ATRX 
mutations were extremely rare  (1.5%).[35,108,109] Regarding 
the presence of ALT, 55 medulloblastomas were analyzed 
and ALT was observed in 7% of tumors, mostly associated 
with anaplastic histology  (18%).[18] Later, ALT activation 
was found in 3/137  (2.19%) medulloblastomas, suggesting 
that ALT does not have a primary role.[90] Moreover, another 
study showed a higher incidence of ALT (32.1%) in metastatic 
medulloblastomas, highlighting that it could be a common process 
in medulloblastomas with metastatic spread at diagnosis.[107]

At present, a subpopulation of SHH adult medulloblastomas 
seems to frequently activate telomerase to maintain the telomere 
length, while ALT appears to be rare in medulloblastomas but 
more frequent in metastatic ones. Further studies in larger 
series of patients will be needed, to better understand the role 
of TMMs in medulloblastomas.

Pediatric ependymoma
Ependymomas arise from ependymal cells, which form 
the lining of ventricles in the brain and the central canal 
of spinal cord and produce cerebrospinal fluid; these 
tumors account for 6%–10% of cancers in children.[73,110,111] 
Approximately 90% of ependymomas in children occur 
intracranially, in the posterior fossa or within supratentorial 

compartments.[72,80] The clinical outcome of pediatric patients 
with ependymomas is highly variable; the 10‑year overall 
survival of ependymomas is approximately 60%, with spinal 
ependymomas associated with better prognosis compared to 
intracranial.[72,112] Histologically, ependymomas are composed 
by different subtypes and are classified as subependymoma 
and myxopapillary ependymoma (grade I), which are almost 
exclusively in adults, classic ependymoma  (grade II), and 
anaplastic ependymoma  (grade III); however, histological 
criteria showed poor predictive value.[71,81,111]

During the last years, several studies showed that ependymomas 
are characterized by heterogeneous genetic mutations, different 
epigenetic profiles, and copy number alterations.[71,79-81,113] In 
particular, two distinct molecular subgroups of posterior fossa 
ependymomas (PFA and PFB) have been defined; PFA affects 
predominantly infants and is associated with genetic alterations 
of VEGF, PDGFR, and mitogen‑activated protein kinase 
pathway, while PFB affects predominantly older children and 
adults, occurs less frequently, and is associated with better 
prognosis.[79,114] Moreover, it has been shown that the fusion 
C11orf95‑RELA on chromosome 11 represents a key genetic 
alteration in supratentorial ependymomas, harbored by more 
than 70% of cases.[71,81,114]

Regarding the activation of TMMs, Tabori et  al.[115] first 
highlighted a correlation between pediatric ependymomas and 
telomerase activity. Then, another study, using TRAP assay, 
found that 23/36 (64%) ependymomas activated telomerase to 
maintain the telomere length; all these samples were negative 
for TERTp mutations but exhibited a strong association with 
TERTp hypermethylation.[116] Other studies confirmed very low 
frequency or even absence of TERTp mutations in pediatric 
ependymomas, suggesting that telomerase reactivation could be 
triggered by TERTp hypermethylation or other alterations.[66,87,117]

Moreover, 76 pediatric ependymomas were analyzed by 
telomere fluorescence in situ hybridization and C‑circle assay, 
and none of these cases showed the presence of ALT or the 
loss of ATRX nuclear expression.[116] Authors evidenced that 
telomerase‑dependent mechanism appears to be frequently 
activated in pediatric ependymomas, while ALT‑dependent 
mechanism is absent, suggesting the use of telomerase 
inhibitors as a promising therapeutic strategy for these 
tumors.[116] Subsequently, other studies confirmed the absence 
of ALT in pediatric ependymomas.[90,117]

Further studies will be necessary to elucidate the impact 
of telomerase reactivation in ependymomas; however, 
these data suggest that telomerase‑dependent TMM may 
represent a key mechanism for senescence escape in pediatric 
ependymomas.

Other rare pediatric central nervous system tumors
Other rarer CNS tumors in children comprise pediatric 
meningiomas, rare embryonal tumors, pineoblastomas, 
ge rmina l  t umors ,  cho ro id  p l exus  t umors ,  and 
craniopharyngiomas (<5% of frequency each).[71,118]
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Meningiomas are infrequent in childhood, accounting for 
1%–4% of all pediatric CNS tumors, compared to 20% of all 
adult CNS tumors; pediatric meningiomas are histologically 
atypical  (grade II) or anaplastic  (grade III) and are often 
associated with chromosome 22 alterations and NF2 gene 
deletion.[119,120] In addition to medulloblastoma, other rarer 
embryonal tumors of the CNS comprise “embryonal tumor 
with multilayered rosettes (ETMR), C19MC‑altered,” recently 
described as tumor entity in the WHO, and atypical teratoid/
rhabdoid tumor  (AT/RT).[71] ETMR  (grade IV) typically 
occurs in children under 3 years, it is associated with poor 
prognosis, and it is characterized by LIN28 expression and 
the 19q13.42 locus amplification, which contains a cluster of 
microRNAs (C19MC).[71,121] AT/RT (grade IV) accounts for 
1%–2% of PBTs, it more often occurs in children under the 
age of 1 year, and it is characterized by 22q deletion and loss 
of INI1/SMARCB1/BAF47 expression.[71,73,122]  Pineoblastoma 
at raw 20 and 22 (grade IV) is a malignant tumor of the pineal 
region that represents around 1% of all pediatric CNS tumors; 
pinealoblastomas show an aggressive clinical behavior, often 
harbor germline mutations on RB1 and DICER, and are often 
associated with congenital retinoblastoma.[71,123,124] Germinal 
tumors are a heterogeneous group of cancers that account for 
3%–4% of PBTs, histologically divided into germinomas and 
nongerminomas; genetically, these tumors are often associated 
with KIT, KRAS, and NRAS mutations.[71,125,126] Choroid plexus 
tumors  (grade I–III) are around 2% of all PBTs and often 
occur in patients under 2 years; they arise from neuroectoderm 
and can be associated with TP53 germline mutations.[127,128] 
Craniopharyngioma (grade I) can occur in pediatric age in two 
histological subtypes, adamantinomatous and papillary, and 
the incidence in children is 3%–5%; the most common genetic 
alterations associated with craniopharyngiomas are CTNNB1 
mutation, frequent in adamantinomas, and BRAFV600E 
mutation, frequent in adults.[71,118,129]

Given the rarity of these PBTs, only few studies analyzed 
their association with TMMs induced by telomerase or ALT. 
Two independent publications showed the absence of TERTp 
mutations in meningiomas, craniopharyngiomas, embryonal 
tumors, and germinal tumors, suggesting the lack of telomerase 
reactivation in these types of cancer.[66,87]

Moreover, all these tumor entities do not seem to be associated 
with alterations on ATRX/DAXX/H3.3 complex; regarding 
ALT activation, a single study found 0/29 AT/RT ALT‑positive 
cases, while choroid plexus tumors exhibited the presence of 
ALT in 7/31 (22.6%) samples.[90] However, at present, there are 
insufficient amount of data regarding the incidence of TMMs 
in all these pediatric rare neoplastic entities, and further studies 
are necessary.

Therapies against Telomere Maintenance 
Mechanisms

There are several promising novel anticancer therapies that 
target TMM induced by telomerase or ALT with good potential 

for clinical applications. The immortalization of neoplastic 
cells, with the activation of one TMM, is an almost universal 
hallmark of cancers, whereas normal cells are not able to 
prevent telomere shortening.[1,7,8,10] For this reason, TMMs 
and related factors involved in the telomerase or ALT appear 
to be ideal targets for the development of anticancer therapies, 
potentially applicable to many cancers.

As described below, several therapeutic strategies have been 
used to inhibit telomerase, as oligonucleotide and small 
molecules;[130,131] moreover, multiple ALT‑targeted drugs 
have been tested, including recombination inhibitors, histone 
deacetylase inhibitors, or G‑quadruplex (G4) stabilizer.[132,133]

However, due to the complexity of these mechanisms,[46] the 
possible co‑existence of telomerase/ALT pathways within 
the same cell or the same tumor,[37,39] the ability of tumors 
to switch from a TMM to another one,[34] and the difficulty 
in identifying telomerase/ALT inhibitors which specifically 
block telomere elongation in vivo,[130,133‑135] the optimal design 
of a TMM‑targeted therapy remain yet unclear and additional 
researches are needed.

Antitelomerase therapies
As previously described, the telomerase complex can be 
upregulated in the neoplastic cells, and it is considered a good 
target for anticancer therapy because most somatic cells do 
not have telomerase activity;[25] the selective inactivation of 
telomerase in tumors appear to be ideal to kill the neoplastic 
cells without influencing most normal cells.[136] Thus, there are 
many telomerase‑based therapies in the clinical development 
and under investigation.[130,131,136] Current telomerase‑targeted 
therapies include (1) telomerase inhibitors, as oligonucleotides 
and small molecules,  (2) immunotherapeutic approaches, 
as vaccines,  (3) telomerase‑directed gene therapy, 
and (4) phytochemicals.[131]

Several studies showed that antisense oligonucleotides can 
inhibit telomerase, inducing telomere shortening and senescence 
in the neoplastic cell lines.[137‑139] The most widely developed 
and successful is the thio‑phosphoramidate oligonucleotide 
inhibitor called Imetelstat or GRN163 L (Geron Corporation, 
Menlo Park, CA, USA), which binds the RNA template, 
blocking telomerase activity.[137,140] Randomized preclinical 
phase II studies utilizing Imetelstat have been conducted 
on many cancer types, such as nonsmall cell lung cancer, 
breast cancer, and glioblastoma; interestingly, it has been 
shown an effective inhibition of telomerase, with a reduction 
of tumorigenicity and invasiveness, without significant 
short‑term side effects, suggesting the possible use of Imetelstat 
as combinatory therapy.[141‑143] However, the long‑term 
effects of this treatment have not yet fully investigated, in 
particular, the effects on normal cells that transiently express 
telomerase, such as germ cells, lymphocytes, and endothelial 
cells; moreover, this therapeutic approach has proved too 
toxic in children with recurrent brain tumors, due to patients 
commonly developing severe hematological long‑term side 
effects.[144]
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Recently, another telomere target therapy was validated in 
preclinical studies, which is based on the incorporation of 
6‑thio‑2’‑deoxyguanosine (6‑thio‑dG), a telomerase substrate 
precursor nucleoside, into telomeres by telomerase.[145] In vivo 
studies showed that 6‑thio‑dG incorporation created DNA 
damage and induced cell death in cancer cell lines, constituting 
a promising strategy for telomerase‑positive pediatric CNS 
tumors.[145]

Another approach is the use of small molecule telomerase 
inhibitors, as epigallocatechin‑3‑gallate and BIBR1532;[135,146] 
however, at present, all these molecules have demonstrated 
limited improvement in the prognosis of patients.[141,147]

Another strategy aimed at blocking telomerase‑related 
immortality is the immunotherapeutic approach, using the 
active site of telomerase as a target to develop vaccines.[148] 
The vaccine mechanism is based on the use of peptides 
generated by the degradation of TERT, which are presented 
on the cell surface via the MHC pathway, triggering the 
response of cytotoxic T‑lymphocytes that recognize and kill 
the peptide‑presenting cells.[149] Several clinical studies have 
evaluated the use of TERT immunotherapy combined with 
chemotherapy as anticancer approach with variable results 
in many tumor types, such as glioblastoma, nonsmall lung 
cancer, melanoma, pancreatic cancer, and prostate cancer.[150‑157] 
At present, the most promising TERT vaccine is represented 
by the GV1001, an MHC II peptide used for the treatment of 
solid cancers, showing an improvement of survival in patients 
with pancreatic tumors.[158,159] The telomerase‑related vaccines 
have shown acceptable safety and tolerability, and some of 
them have generated an immune response in a proportion 
of patients;[151,152,158,160] however, the limited success in many 
clinical studies seem to be dependent on the development of 
self‑tolerance and the effects of immunosuppressive tumor 
microenvironment on T‑cells response.[130,157]

Finally, a variety of substances derived from plants 
(phytochemicals) have demonstrated to partially inhibit 
telomerase activity and have been used as anticancer 
strategies, including allicin, sulforaphane, curcumin, and 
genistein.[161‑165] Moreover, numerous drugs have been 
demonstrated to have additional effects on telomerase activity, 
as tyrosine kinase inhibitors, PI3K‑Akt‑mTOR pathway 
inhibitors (e.g., rapamycin), DNA methylation inhibitors, and 
temozolomide.[166‑171]

Despite multiple and extensive studies, at present, only one 
telomerase inhibitor (Imetelstat) is under evaluation in a phase 
3 clinical trial, and one vaccine (GV1001) has been approved 
by the FDA for immunotherapy of pancreatic cancer.

Antialternative lengthening of telomere therapies
ALT is a potential therapeutic target in cancers lacking 
telomerase activity. Recently, several studies identified 
multiple factors involved in the ALT activation associated 
with different types of cancer, which could be used as 
potential targets for therapy. Two recent reviews summarized 

a list of potential ALT‑targeted drugs, such as inhibitors 
of recombination factors  (ATR, RAD52, SET domain 
bifurcated 1 protein  [SETDB1], and FANCM), histone 
deacetylase inhibitors, G4 stabilizer, inhibitors of APBs 
formation (SUMO E3 ligase), and other strategies to restore the 
proper functioning of the ATRX/DAXX/H3.3 complex.[132,133]

ALT is mediated by a pathway of break‑induced replication 
dependent on ATM, ATR, RFC, and PCNA.[40] The inhibition of 
ATR disrupts ALT and triggers chromosome fragmentation and 
apoptosis in a panel of cancer cell lines, suggesting a promising 
approach in the treatment of ALT‑activating tumors.[132,172] The 
recent evidence regarding the implication of RAD52 in the 
break‑induced replication mechanism and ALT activation has 
suggested the use of this protein as potential target for future 
treatments.[40,46,132] Another ALT‑specific target of interest is 
FANCM, recently found to be essential for proliferation of 
ALT cells;[173] previous studies showed that the inhibition of 
FANCM is extremely toxic for ALT‑positive cells, suggesting 
the possibility of development of FANCM inhibitors.[174,175] 
Moreover, another publication highlighted that the formation 
of the chromatin environment on subtelomeric DNA which 
triggers ALT is mediated by H3K9 methyltransferase activity 
of SETDB1, and the loss of this enzyme leads to the reduced 
recruitment of ALT‑related factors, suggesting the use of 
SETDB1 inhibitors as a future therapy.[176]

Another anti‑ALT strategy is the use of histone deacetylase 
inhibitors, which could be used to selectively inhibit ALT by 
blocking the histone deacetylation complex that promotes 
recombination on telomeric DNA;[177] however, it is still 
unclear whether histone deacetylase inhibitors could be 
effective enough to induce ALT‑positive cells death, without 
side effects in the nonneoplastic cells.[178] Another approach 
tested to inhibit ALT is the use of APBs formation inhibitors, 
as SUMO E3 ligases.[179]

Moreover, one of the most promising approaches is the 
possibility to target a specific secondary structure of telomeres 
called G4; these DNA G4 are noncanonical four‑stranded 
helical structures rich in guanine.[180] Interestingly, it has 
been shown that G4 ligands inhibit both telomerase and ALT 
pathway, inducing senescence and apoptosis.[181‑183] At present, 
two of these G4 stabilizers reached the stage of clinical 
trial: CX‑3543  (at phase 2) for several tumors, including 
neuroendocrine tumors, carcinoid tumors, and lymphoma, and 
CX‑5461  (at phase 1) for patients with BRCA1/2‑deficient 
tumors.[183] However, the application of these ligands in 
ALT‑positive tumors is still under study, due to the low 
selectivity of G4 ligands which could cause unexpected side 
effects.[184]

Finally, one of the most recent and exciting opportunities 
for immunotherapy is the use of oncolytic viruses against 
neoplastic cells with loss of ATRX/DAXX. As previously 
described, ATRX loss has been directly associated with ALT 
in several tumor types.[18,35,58,62‑64,66] It has been shown that 
ATRX and DAXX have also a role in the innate viral immune 
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response, protecting cells from viral infection, and several 
viruses  (e.g., adenovirus, Epstein–Barr virus, and herpes 
simplex virus) use a protective mechanism to repress ATRX/
DAXX‑mediated response.[132,185‑188] During the early stage of 
infection, these viruses have been shown to express a protein 
called ICP0 that induces the blockage of ATRX/DAXX and the 
degradation of promyelocytic leukemia bodies;[185,189] in line 
with these findings, ICP0‑null viruses are not able to infect 
and replicate inside ATRX‑positive cells.[186] Therefore, the 
use of ICP0‑null oncolytic viruses to directly kill ALT‑positive 
neoplastic cells with ATRX loss, without side effects on non-
neoplastic cells that normally express ATRX, could constitute 
a promising therapy.[132,186,190]

However, it is necessary to highlight that, at present, there are 
no data regarding the use of an ALT‑targeted therapy in human 
patients that progressed beyond phase 2 in clinical trials.[133]

Conclusions

ALT is a common mechanism in ATRX/H3.3‑mutated 
pHGGs, choroid plexus tumors, and medulloblastomas 
with metastatic spread at diagnosis; ALT‑targeted therapies 
could represent a promising future strategy to treat these 
patients, probably combined with radio‑and chemotherapy. 
Telomerase‑dependent TMM appears to be a common 
mechanism in SHH‑medulloblastomas, associated with older 
patients and TERTp mutations, and in pediatric ependymomas, 
rarely associated with TERTp mutations while more frequently 
induced by TERTp hypermethylation or other alterations; 
these patients could potentially benefit in the future from 
antitelomerase therapies. Telomerase and ALT mechanisms are 
almost absent in LGGs, pediatric meningiomas, rare embryonal 
tumors (ETRM and AT/RT, pineoblastomas), germinal tumors, 
and craniopharyngiomas.

Further studies are necessary to better elucidate other genetic 
and epigenetic alterations associated with these mechanisms, to 
identify the best reproducible and reliable methods for TMMs 
detection in clinical practice, and to evaluate the effects of 
targeted therapies.
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