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Università di Roma “La Sapienza”

Piazzale Aldo Moro 2, 00185 Roma, Italy
e-mail: dalessan@mat.uniroma1.it

and
Department of Mathematics,
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Abstract

The problem of the commutative equivalence of semigroups generated
by semi-linear languages is studied. In particular conditions ensuring
that the Kleene closure of a bounded semi-linear code is commutatively
equivalent to a regular language are investigated.
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1 Introduction

In this paper, we study the commutative equivalence of context-free and regular
languages. Two words are said to be commutatively equivalent if one is obtained
from the other by rearranging the letters of the word. Two languages L1 and L2

are said to be commutatively equivalent if there exists a bijection f : L1 → L2

such that every word u ∈ L1 is commutatively equivalent to f(u). This notion
plays an important role in the study of several problems of Theoretical Computer
Science such as, for instance, in the Theory of Codes, where it is involved in the
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celebrated Schützenberger conjecture about the commutative equivalence of a
maximal finite code with a prefix code (see e.g. [3, 36]). The question of our
interest can be formulated as follows:

Commutative Equivalence Problem. Given a context-free language L1,
does there exist a regular language L2 which is commutatively equivalent to L1?

In the sequel, for short, we refer to it as CE Problem. A language which is
commutatively equivalent to a regular one will be called commutatively regular.

It is worth noticing that commutatively equivalent languages share the same
alphabet and their generating series are equal. In particular, the generating
series of a commutatively regular language must be rational. This remark leads
us to recall that a conceptually related study was conducted by Béal and Perrin
in [2], where the generating series of regular languages on alphabets of prescribed
size are studied. Béal and Perrin provided a characterization of such series and
this remarkable contribution thus defines the theoretical setting in which the
CE Problem can be naturally fitted in.

For our discussion, the following notions are useful. Given a language L,
the growth function gL returns, for any non-negative integer n, the number of
the words of L whose length is less than or equal to n. A language L is called
sparse if its growth function is polynomially upper bounded. A language L is
said to be of exponential growth if there exists a real number k > 1 such that
gL(n) > kn for all sufficiently large n. Two results are relevant in this context.
The first proved in [5, 32, 38] states that every context-free language is either
sparse or of exponential growth. The second, proved in [28, 34], states that the
class of sparse context-free languages coincides with that of bounded context-
free languages. We recall that a language L is termed bounded if there exist
k words u1, . . . , uk such that L ⊆ u∗1 · · ·u∗k. Bounded context-free languages
play a meaningful role in Computer Science and in Mathematics and have been
widely investigated in the past so that their structure has been characterized by
several theorems [4,9,10,12,13,17–19,22,23,25–31,34,35,37]. A characterization
of regular bounded sets, based upon a combinatorial property of the factors of
the words of the language, has been obtained by Restivo [37] and, subsequently,
extended to context-free languages by Boasson and Restivo [4].

Very recently, results on the counting functions of context-free languages,
based upon the notion of strongly counting-regularity, have been obtained in
[29]. An excellent survey on the relationships between bounded languages and
semigroups has been given by de Luca and Varricchio in [19].

Another theorem that is central in this setting has been proved by Ginsburg
and Spanier [22] (see also [23]). This theorem allows one to represent, in a
canonical way, bounded context-free languages by means of sets of vectors. For
this purpose, let us first introduce a notion. Let L ⊆ u∗1 · · ·u∗k be a bounded
language where, for every i = 1, . . . , k, ui is a word over the alphabet A. Let
ϕ : Nk → u∗1 · · ·u∗k be the map defined as: for every tuple (`1, . . . , `k) ∈ Nk,

ϕ(`1, . . . , `k) = u`11 · · ·u
`k
k .
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The map ϕ is called the Ginsburg map. Ginsburg and Spanier proved that L
is context-free if and only if the subset ϕ−1(L) of Nk is a finite union of linear
sets, each having a stratified set of periods. Roughly speaking, a stratified set
of periods corresponds to a system of well-formed parentheses.

In view of Ginsburg and Spanier’s theorem, bounded context-free languages
are special instances of a broader class of languages called bounded semi-linear.
A language L ⊆ u∗1 · · ·u∗k is called bounded semi-linear if L = ϕ(B), where B is
a semi-linear set, that is, a finite union:

n⋃
i=1

Bi, (1)

of linear subsets Bi of Nk, 1 ≤ i ≤ n, of dimension mi ≥ 0:

Bi = {bi0 + xi1bi1 + · · ·+ ximi
bimi

| x1, . . . , xmi
∈ N}, (2)

where bij ∈ Nk, 1 ≤ i ≤ n, 0 ≤ j ≤ mi.
In [14–16] the solution (in the affirmative) of the CE Problem was given for

sparse languages: Every bounded context-free language L1 is commutatively
equivalent to a regular language L2. Moreover the language L2 can be effectively
constructed starting from an effective presentation of L1 (e.g. a context-free
grammar generating L1). It is also shown that the CE Problem can be solved
in the affirmative for the wider class of bounded semi-linear languages.

In contrast with the results mentioned above, the CE Problem remains open
for the class of context-free languages of exponential growth.

A relevant fact in this context is that the generating series of a commutatively
regular language L is always rational. This implies that the answer to the CE
Problem is not affirmative in general. Indeed, there exist context-free languages
whose generating series are algebraic but not rational. It is worth noting that
Flajolet even provided remarkable examples of linear unambiguous context-free
languages with a transcendental generating series [21, Theorem 3].

The study of the CE Problem has been further investigated by the authors
in connection with languages of exponential growth generated by unambiguous
non-expansive grammars [1] and unambiguous minimal linear grammars [11,
24], respectively. In particular conditions ensuring that such languages are
commutatively regular have been provided [6].

It is worth noting that unambiguous minimal linear grammars give a gener-
alization of the concept of unique-factorization code since they inherit several
properties of this structure [8].

As a continuation of this work, we investigate the CE Problem with respect
to the Kleene closure of languages. This operation is of interest for this study
since it preserves the property of context-freeness of languages, while it does not
preserve the property of boundedness: finite sets of non-commuting words are
the simplest example of bounded languages whose Kleene closure is not bounded.
It is also interesting to note that Dyck and semi-Dyck languages provide another
natural class of monoids that are not commutatively regular. In view of the
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classical theorem by Chomsky and Schützenberger for the representation of
context-free languages, such monoids can be considered very general. It is useful
to observe that a Dyck monoid is a free monoid whose minimal set of generators,
i.e. the set of Dyck prime words, is a context-free bifix code.

In contrast with the previous situation, the main result of this paper shows,
up to a technical restriction, that the monoid generated by a bounded semi-
linear code is commutatively regular. Precisely, the main contribution of the
paper is the following.

Theorem 1 Let L be a bounded semi-linear language and L = ϕ(B) where B
is the semi-linear set of Eq. (1) associated with L.

Suppose that, for every i = 1, . . . , n and every j = 0, . . . ,mi, the vector
bij of Eq. (2) is such that its corresponding word ϕ(bij) contains two distinct
letters.

If L is a code, then there exists a regular code L′ which is commutatively
equivalent to L. Consequently, L∗ is commutatively equivalent to (L′)∗. More-
over, L′ can be effectively constructed starting from an effective presentation of
L.

It is worth noticing that the validity of Theorem 1 by no means depends
upon the choice of the representation of the semi-linear set associated with the
language. Indeed Proposition 1 will show that the restriction imposed on the
image, under the Ginsburg map, of the generators of the semi-linear set defining
the language, is equivalent to the existence of a real number ρ < 1 such that,
for every z ∈ L and all a ∈ A, one has |z|a < ρ|z|, where |z|a is the number of
occurrences of the letter a in z and |z| is the length of z.

In order to prove Theorem 1 we use two arguments: the first concerns codes
and equations of words and makes it possible to separate the languages that
represent the simple sets Bi of the decomposition of B. The second one is a
technique of an algebro-geometrical nature for the decomposition of semilinear
sets into disjoint parallelepipeds.

As a surprising application of the tools mentioned above, we also prove
that a bounded semi-linear language satisfying the hypotheses of Theorem 1 is
commutatively equivalent to the union of a finite set and a regular code. The
latter result still holds even if the language is not a code (Proposition 5).

The paper is organized as follows. In Section 2, preliminaries on bounded
semi-linear languages and codes are presented. In Section 3, some results of
combinatorial flavour used in the proof of Theorem 1, are provided. Section 4 is
devoted to the proof of our main result, while Section 5 presents some concluding
remarks.

Some results of this paper have been presented at WORDS 2019 [7].

2 Preliminaries

The aim of this section is to introduce some preliminary results on semi-linear
sets and bounded context-free languages. We assume that the reader is familiar
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with the basic notions of context-free languages (see [3, 23] for a reference).
The free abelian monoid on k generators is identified with 〈Nk,+〉 with the

usual additive structure.

Definition 1 Let B be a subset of Nk. The following definitions hold:

1. B is linear if there are b0,b1, . . . ,bm ∈ Nk such that

B = {b0 + x1b1 + · · ·+ xmbm | xi ∈ N, 1 ≤ i ≤ m}. (3)

2. B is simple if there are b0,b1, . . . ,bm ∈ Nk such that (3) holds true and
b1, . . . ,bm are linearly independent in Q.

3. B is semi-linear if B is a finite union of linear sets in Nk.

4. B is semi-simple if B is a finite disjoint union of simple sets in Nk.

It is well known that a simple set B has a unique representation in the form (3)
with b1, . . . ,bm linearly independent in Q. It will be called the unambiguous
representation (or, briefly, the representation) of B. The vector b0 is called
constant and b1, . . . ,bm are called generators of the representation, respectively.
The number m is called the dimension of B. Obviously one has m ≤ k and the
dimension of a singleton is 0.

The following is an important characterization of semi-linear sets.

Theorem 2 (Eilenberg and Schützenberger [20]) Let B be a subset of Nk. Then
B is semi-linear if and only if B is semi-simple.

It is worth to remark that Theorem 2 was proved independently by Ito in [33].
Let A = {a1, . . . , at} be an alphabet of t letters and let A∗ be the free monoid

generated by A. The empty word of A∗ is denoted by ε and the set A∗ \ {ε} is
denoted by A+. The length of every word u is denoted by |u|.

For every a ∈ A and u ∈ A∗, the number of occurrences of a in u will be
denoted by |u|a. We let ψ : A∗ → Nt denote the Parikh map over A, defined,
for each u ∈ A∗, as

ψ(u) = (|u|a1 , |u|a2 , . . . , |u|at).

The map ψ is a monoid epi-morphism from A∗ onto Nt. The kernel congruence
of ψ is called the commutative equivalence of A∗.

Given words u, v ∈ A∗, u is called a factor of v if v = pus, for some p, s ∈ A∗.
In particular, if in the latter, p = ε (resp., s = ε), then u is called a prefix of v
(resp., a suffix of v). The set of factors of u is denoted Fact(u). For an arbitrary
subset L of words of A∗, Fact(L) =

⋃
u∈L Fact(u).

A subset L of words of A+ is said to be a code (over A) if every word of L+

admits a unique factorization in term of words of L. A set L over the alphabet
A is said to be a prefix set if LA+ ∩ L = ∅.

Let L1, L2 be two languages over A. We say that L1 is commutatively equiv-
alent to L2 if there is a bijection f : L1 → L2 such that, for every u ∈ L1, one
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has ψ(u) = ψ(f(u)). In the sequel, by simplicity, if L1 and L2 are so, we write
L1 ∼ L2. If u1, . . . , uk are k words of A+, the Ginsburg map

ϕ : Nk → u∗1 · · ·u∗k, (4)

is the map defined, for each tuple (`1, . . . , `k) ∈ Nk, as:

ϕ(`1, . . . , `k) = u`11 · · ·u
`k
k .

By a remarkable observation of [26, Lemma 2.1], the function obtained as the re-
striction of ϕ on the semi-linear set of Eq. (1) is injective. Moreover a previously
mentioned theorem by Ginsburg and Spanier [22] provides a fundamental tool
to represent, in terms of semi-linear sets, the bounded context-free languages.
For our purposes, these two results can be stated as follows.

Theorem 3 Let L ⊆ u∗1 · · ·u∗k be a bounded semi-linear language. Then there
exists a semi-simple set B of Nk such that ϕ(B) = L and ϕ is injective on B.
Moreover, B can be effectively constructed.

In particular, the condition above holds for bounded context-free languages.

We end this section by stating two properties that will be used in the next
sections, even without any explicit mention. Both are simple corollaries of the
corresponding definitions introduced above.

Lemma 1 For all a ∈ A, the function mapping any v ∈ Nk into |ϕ(v)|a is
a linear function of Nk into N, as well as the function mapping any v ∈ Nk
into |ϕ(v)|. Moreover, composing the Ginsburg map and the Parikh map, one
obtains a linear function of Nk into Nt.

Proof Let v = (`1, . . . , `k) be an element of Nk and a ∈ A. By definition, one
has ϕ(v) = u`11 · · ·u

`k
k and, therefore,

|ϕ(v)|a = |u`11 · · ·u
`k
k |a =

k∑
i=1

`i|ui|a.

Hence, |ϕ(v)|a is the scalar product of the vector v by (|u1|a, . . . , |uk|a). We
conclude that the function mapping any v ∈ Nk into |ϕ(v)|a is linear.

The linearity of the other two functions considered in the statement follows
from the result above and the equations

|ϕ(v)| =
t∑
i=1

|ϕ(v)|ai , ψ(ϕ(v)) = (|ϕ(v)|a1 , . . . , |ϕ(v)|at), v ∈ Nk.

This completes the proof. 2

Lemma 2 Let (Yi)i∈I and (Zi)i∈I be partitions of the languages Y and Z,
respectively. If one has Yi ∼ Zi for all i ∈ I, then the languages Y and Z are
commutatively equivalent.

Proof The bijections fi : Yi → Zi, i ∈ I, preserving the Parikh vectors piece-
wise define a bijection f : Y → Z with the same property. 2
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3 Some results of combinatorics on words

In this section, we provide properties of the combinatorial structure of the
bounded semi-linear languages satisfying the hypotheses of Theorem 1. These
properties will be used to construct the solution of our main problem.

3.1 On some combinatorial properties of bounded semi-
linear languages

We start to establish a useful characterization of the languages satisfying the
hypotheses of Theorem 1.

Proposition 1 Let L be a bounded semi-linear language and

B =

n⋃
i=1

{bi0 + x1bi1 + · · ·+ xmibimi | xi ∈ N, 1 ≤ i ≤ mi} (5)

be a semi-linear set such that L = ϕ(B), bij ∈ Nk, 1 ≤ i ≤ n, 0 ≤ j ≤ mi, and
bij 6= 0, 1 ≤ i ≤ n, 0 ≤ j ≤ mi. The following two conditions are equivalent:

(i) for every i = 1, . . . , n and j = 0, . . . ,mi, the word ϕ(bij) contains two
distinct letters,

(ii) there exists a real number ρ < 1 such that, for every z ∈ L and all a ∈ A,
one has

|z|a < ρ|z|.

Proof Let us verify that (i) implies (ii). If (i) holds true, then for all a ∈ A,
i = 1, . . . n, and j = 0, . . . ,mi one has |ϕ(bij)|a/|ϕ(bij)| < 1. Thus, there is
ρ < 1 such that

|ϕ(bij)|a
|ϕ(bij)|

< ρ,

for a ∈ A, 1 ≤ i ≤ n, 0 ≤ j ≤ mi. A word z ∈ L can be written as

z = ϕ(bi0 + x1bi1 + · · ·+ xmi
bimi

)

with 1 ≤ i ≤ n, x1, . . . , xmi
∈ N. Thus, in view of Lemma 1, for all a ∈ A,

|z|a = |ϕ(bi0)|a +

mi∑
j=1

xj |ϕ(bij)|a < ρ|ϕ(bi0)|+
mi∑
j=1

xjρ|ϕ(bij)| = ρ|z|.

Now, let us verify that (ii) implies (i). Taking z = ϕ(bi0), 1 ≤ i ≤ n,
Condition (ii) gives |ϕ(bi0)|a < ρ|ϕ(bi0)| < |ϕ(bi0)|. This inequality shows
that ϕ(bi0) is not a power of a.

Now, take z = ϕ(bi0 + qbij), 1 ≤ i ≤ n, 1 ≤ j ≤ mi, q > 0. Then, by
linearity from Lemma 1, Condition (ii) becomes

|ϕ(bi0)|a + q|ϕ(bij)|a < ρ|ϕ(bi0)|+ qρ|ϕ(bij)|.
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Dividing both sides of this equation by q and letting q tend to +∞, one obtains
|ϕ(bij)|a ≤ ρ|ϕ(bij)| < |ϕ(bij)|, so that ϕ(bij) is not a power of a. By the
arbitrariness of a, we conclude that all words ϕ(bij) contain at least two distinct
letters. 2

Remark 1 Clearly, any semi-linear set has several representations in the form
(5). However, Proposition 1 has the following useful consequence: the property
that for all the vectors bij involved in (5), the word ϕ(bij) contains at least two
distinct letters does not depend upon the choice of such a representation.

We conclude this section with the following lemma. It implies that, in order
to prove Theorem 1, it suffices to prove that every bounded semi-linear language
satisfying the Condition (i) of the above proposition is commutatively equivalent
to a regular code.

Lemma 3 Let Y and Z be two commutatively equivalent codes. Then Y ∗ and
Z∗ are commutatively equivalent.

Proof Let f : Y → Z be the bijection such that ψ(f(y)) = ψ(y) for all y ∈ Y .
We shall prove that this map can be uniquely extended to an isomorphism
g : Y ∗ → Z∗, preserving Parikh vectors. Indeed, it is sufficient to set

g(u) =

{
ε if u = ε
f(y1) · · · f(yn) if u = y1 · · · yn, yi ∈ Y, 1 ≤ i ≤ n. (6)

As Y is a code, the definition is consistent since any word u ∈ Y + admits a
unique factorization u = y1 · · · yn, with yi ∈ Y , 1 ≤ i ≤ n. Moreover, taking
into account that f is a bijection and Z is a code, any word v ∈ Z+ admits a
unique factorization v = f(y1) · · · f(yn), with yi ∈ Y , 1 ≤ i ≤ n. This ensure
that g is a bijection. Notice that if u = y1 · · · yn, with yi ∈ Y , 1 ≤ i ≤ n, then

ψ(f(u)) = ψ(f(y1) · · · f(yn)) =

n∑
i=1

ψ(f(yi)) =

n∑
i=1

ψ(yi) = ψ(u).

We conclude that Y ∗ ∼ Z∗. 2

3.2 On bounded languages and codes

We will now prove some results relating bounded languages with codes.
In the sequel of this section, we assume that L is a bounded language on the

alphabet A satisfying Condition (ii) of Proposition 1:

There exists a real number ρ < 1 such that for all v ∈ L, and all
a ∈ A, |v|a < ρ|v|.

As L is bounded, one has L ⊆ u∗1 · · ·u∗k where k is a fixed positive integer and
u1, . . . , uk ∈ A∗. Our first result shows how to obtain some words which are not
factors of L∗.

8



Lemma 4 There exists a positive integer γ such that for every pair of distinct
letters a, b ∈ A,

(aγb)2k+1 /∈ Fact(L∗). (7)

Proof We take an integer γ such that γ ≥ (2k + 1)/(1 − ρ) and γ ≥ |ui|,
1 ≤ i ≤ m. By an argument introduced in [14, Lemma 9] one can verify that
(aγb)k /∈ Fact(L).

Now, by contradiction, suppose (aγb)2k+1 ∈ Fact(L∗). Taking into account
that (aγb)k cannot be a factor of L, we can factorize

(aγb)2k+1 = s1vs2,

with v ∈ L∗, a suffix s1 and a prefix s2 of some words of L and, moreover,
|si| < |(aγb)k|, i = 1, 2. Hence,

|v| > |(aγb)2k+1| − 2|(aγb)k| > γ. (8)

On the other side, one has |v|a < ρ|v| and |v|b ≤ 2k+1, so that |v| < ρ|v|+2k+1.
From this inequality, one easily derives |v| < (2k + 1)/(1 − ρ) ≤ γ, which
contradicts (8). 2

Let γ be as in the previous lemma. We set

H = {a(aγb)2k+2v | a, b ∈ A, a 6= b, v ∈ A∗}. (9)

Notice that H is a right ideal of A∗, i.e., HA∗ = H. A useful combinatorial
property of the set H is that the product L∗H is unambiguous as shown by the
following.

Lemma 5 Let x, x′ ∈ L∗ and s, s′ ∈ H. If xs = x′s′, then x = x′ and s = s′.

Proof By the definition of H, there are letters a, b, c, d ∈ A and words v, v′ ∈
A∗ such that s = a(aγb)2k+2v, s′ = c(cγd)2k+2v′, a 6= b and c 6= d. Thus, the
equation xs = x′s′ can be rewritten as

xa(aγb)2k+2v = x′c(cγd)2k+2v′.

By contradiction suppose |x| > |x′|. Taking into account that by Lemma 4 the
word (cγd)2k+1 cannot be a factor of x, one obtains

x = x′c(cγd)pcq, aγ+1 = cγ−qdcq, b(aγb)2k+1v = cγ−qd(cγd)2k−pv′,

with some 0 ≤ p ≤ 2k, 0 ≤ q ≤ γ. From the second of the equations above, one
derives that c = a and d = a, which yields a contradiction, as c 6= d.

A similar contradiction is obtained if |x′| > |x|. We conclude that |x| = |x′|
and, consequently, x = x′ and s = s′. 2
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Consider a partition

L =

n⋃
i=1

Li, (10)

of the set L and a collection of prefix codes

Wi ⊆ H, (11)

i = 1, . . . , n.

Proposition 2 If L is a code, then Y =
⋃n
i=1 LiW

∗
i is a code.

Proof By contradiction, suppose that Y is not a code. Then, there is a relation

y1y2 · · · ym = y′1y
′
2 · · · y′m′ (12)

with y1, . . . ym, y
′
1 . . . y

′
m′ ∈ Y and y1 6= y′1. Let us verify that y1, y

′
1 /∈ L and

there are an index i and words z, w,w′ such that

y1 = zw, y′1 = zw′, z ∈ Li, w, w′ ∈W+
i . (13)

We assume that in each side of (12) appears some element of Y \L =
⋃n
i=1 LiW

+
i .

Indeed, if it is not the case, it is sufficient to append such a word to both sides
of the equation.

Thus, let p, p′ be the least indices such that yp, y
′
p′ ∈ Y \ L. Then there are

i, i′ ∈ {1, . . . , n}, z ∈ Li, w ∈ W+
i , z′ ∈ Li′ and w′ ∈ W+

i′ such that yp = zw
and y′p′ = z′w′. In view of (12) one has

y1 · · · yp−1z wyp+1 · · · ym = y′1 · · · y′p′−1z
′ w′y′p′+1 · · · y′m′ .

Notice that, by the minimality of p and p′ one has y1 · · · yp−1z, y
′
1 · · · y′p′−1z

′ ∈
L∗. On the other side, since Wi,Wi′ ⊆ H and H is a right ideal, one has
wyp+1 · · · ym, w′y′p′+1 · · · y′m′ ∈ H+Y ∗ = H. Thus, by Lemma 5 one gets

y1 · · · yp−1z = y′1 · · · y′p′−1z
′.

Taking into account that L is a code and y1 6= y′1, one easily derives that
p = p′ = 1 and z = z′. The former identity shows that y1, y

′
1 /∈ L and the latter

implies, in particular, i = i′, so that w,w′ ∈W+
i . Thus, (13) is established.

With no loss of generality, we assume that |y1| ≥ |y′1|. Thus, from (12) one
has y1 = y′1s, sy2 · · · ym = y′2 · · · y′m′ , for some s ∈ A∗, and also

zsy2 · · · ym = zy′2 · · · y′m′ . (14)

Moreover, s 6= ε, as y1 6= y′1. Let us verify that zs ∈ Y . Indeed, from (13) one
easily derives that w = w′s. Taking into account that w,w′ ∈ W+

i and Wi is a
prefix code, one obtains s ∈W+

i and, therefore, zs ∈ LiW+
i ⊆ Y .

Thus, (14) is formally equal to (12), with y1 = zs and y′1 = z. However, in
this case, one has y′1 = z ∈ L. In view of this contradiction, we conclude that
Y is necessarily a code. 2
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Clearly, if one removes the hypothesis that L is a code, the previous propo-
sition does not hold true, since L ⊆ Y . However, the next proposition shows
that the set Y \ L is a code also in this case.

Proposition 3 The set Z =
⋃n
i=1 LiW

+
i is a code.

Proof The proof is very similar to that of Proposition 2. Thus, we limit
ourselves to outline it, focusing on the main differences.

By contradiction, suppose that Z is not a code. Then, there are y1, . . . , ym,
y′1, . . . , y

′
m′ ∈ Z such that y1 6= y′1 and the relation (12) is satisfied. With no

loss of generality, we assume that |y1| ≥ |y′1|. Actually, one has |y1| > |y′1| as, in
the case that |y1| = |y′1|, from (12) one would derive y1 = y′1. Since y1, y

′
1 ∈ Z,

there are i, i′ ∈ {1, . . . , n}, z ∈ Li, w ∈ W+
i , z′ ∈ Li′ and w′ ∈ W+

i′ such that
y1 = zw and y′1 = z′w′. In view of (12) one has

zwy2 · · · ym = z′w′y′2 · · · y′m′ .

Proceeding as in the proof of Proposition 2, one obtains that

z = z′, i = i′, w = w′s, sy2 · · · ym = y′2 · · · y′m′ ,

with s ∈ W+
i . Since y′2 ∈ Z, there are i′′ ∈ {1, . . . , n}, z′′ ∈ Li′′ and w′′ ∈ W+

i′′

such that y′2 = z′′w′′. Thus, in view of the previous equations, one has

sy2 · · · ym = z′′w′′y′3 · · · y′m′ .

One has z′′ ∈ L and sy2 · · · ym, w′′y′3 · · · y′m′ ∈ H, so that by Lemma 5 one
derives z′′ = ε, and, consequently, ε ∈ L. This yields a contradiction, because
|u|a < ρ|u| for all u ∈ L and a ∈ A, while |ε|a = ρ|ε| = 0. 2

The following lemma, which will be useful in the sequel, shows that the code
Y considered in Proposition 2 is partitioned by the sets LiW

∗
i and, similarly,

the set Z considered in Proposition 3 is partitioned by the sets LiW
+
i .

Lemma 6 The sets LiW
∗
i , 1 ≤ i ≤ n, are pairwise disjoint.

Proof A word y ∈ LiW ∗i ∩ LjW ∗j , 1 ≤ i, j ≤ n can be factorized as

y = ziwi = zjwj , with zi ∈ Li, wi ∈W ∗i , zj ∈ Lj , wj ∈W ∗j .

Let us verify that zi = zj . Indeed, this is trivial if both wi and wj are empty
and is a straightforward consequence of Lemma 5 if both wi and wj are non-
empty, as W+

i ,W
+
j ⊆ H. Finally, if only one of the words wi and wj , say wi, is

non-empty, then one has ywi = ziwiwi = zjwi and the conclusion follows again
from Lemma 5. Thus, in any case zi = zj ∈ Li ∩Lj and, since the sets Li form
a partition, one has i = j. 2

The following lemma provides a tool to construct prefix codes included in
H. We notice that it holds in the general hypothesis that H is of the form (9)
with k and γ any positive integers.

11



Lemma 7 Let z1, . . . , zm be words (not necessarily distinct) and suppose that
each of them contains at least two distinct letters. For all N ≥ (2k + 2)γ +m,
there exist m distinct words w1, . . . , wm ∈ H such that W = {w1, . . . , wm} is a
prefix code and

ψ(wi) = Nψ(zi), i = 1, . . . ,m. (15)

Proof We first define the required words and then prove that they fulfill the
desired property. For every i = 1, . . . ,m, we define the word wi as follows. Let
a and b be two distinct letters occurring in zi. Then one has

|zNi |a, |zNi |b ≥ N ≥ (2k + 2)γ + i ≥ 2k + 3.

Thus, we can consider a word ẑi obtained from zNi by deleting (2k + 2)γ + i
occurrences of a and 2k + 3 occurrences of b. We set

wi = a(aγb)2k+2ai−1b ẑi.

By construction, one has wi ∈ H and ψ(wi) = ψ(zNi ) = Nψ(zi), i = 1, . . . ,m.
Let us verify that W = {w1, . . . , wm} is a prefix code. Let 1 ≤ i < j ≤ m.

Then, there are letters a, b, c, d ∈ A such that a(aγb)2k+2ai−1b is a prefix of wi,
c(cγd)2k+2cj−1d is a prefix of wj , with a 6= b and c 6= d. Clearly, the word
a(aγb)2k+2ai−1b cannot be a prefix of c(cγd)2k+2cj−1d. Indeed, otherwise, one
would have a = c, b = d and i = j. We derive that neither wi is a prefix of wj ,
nor wj is a prefix of wi. Thus the words wi, i = 1, . . . ,m are pairwise distinct
and W is a prefix code. 2

4 The construction of the regular language

Partitions of semi-linear sets have been one of the main tools for the solution of
the CE problem for sparse context-free languages [14]. Here, we present a very
simplified version of the decomposition considered in [14], which, however, in
this case is sufficient for our purpose.

Proposition 4 Let B ⊆ Nk be a semi-simple set and N be a positive integer.
Then B is a disjoint union of finitely many simple sets of the form{

b +N

m∑
i=1

xibi

∣∣∣ xi ∈ N, 1 ≤ i ≤ m
}
, (16)

with 0 ≤ m ≤ k, b,b1, . . . ,bm ∈ Nk and b1, . . . ,bm linearly independent.

Proof Since, by Definition 1, any semi-simple set is a finite disjoint union of
simple sets, we may reduce ourselves, with no loss of generality, to the case that
B is a simple set. In such a case, one has

B =
{

b0 +

m∑
i=1

xibi

∣∣∣ xi ∈ N, 1 ≤ i ≤ m
}

12



with 0 ≤ m ≤ k, b0, . . . ,bm ∈ Nk and b1, . . . ,bm linearly independent. Thus,
any vector v ∈ B can be uniquely written as

v = b0 +

m∑
i=1

(ri +Nxi)bi = b0 +

m∑
i=1

ribi +N

m∑
i=1

xibi, (17)

with 0 ≤ ri < N and xi ≥ 0, i = 1, . . . ,m. In other terms, any vector of B can
be uniquely written as b +N

∑m
i=1 xibi with

b ∈ R =
{

b0 +

m∑
i=1

ribi

∣∣∣ 0 ≤ ri < N, i = 1, . . . ,m
}
.

This ensures that the set B is the disjoint union of the sets (16) with b ∈ R.
Since R is finite, the statement is proved. 2

In the sequel of this section, we make the following assumption:

The set L ⊆ u∗1 · · ·u∗k is a bounded semi-linear language satisfying
the hypotheses of Theorem 1.

Thus, by Proposition 1, all results of Section 3.2 apply to L. In particular,
by Lemma 4, there is an integer γ > 0 such that (aγb)2k+1 /∈ Fact(L∗) for all
a, b ∈ A and one can consider the set H defined by (9).

In view of Theorem 3, one has L = ϕ(B) for some semi-simple set B ⊆ Nk
and ϕ is injective on B. Let N ≥ (2k + 2)γ + k. In view of Proposition 4, we
assume that

B =

n⋃
j=1

Bj ,

where the sets B1, . . . , Bn are pairwise disjoint simple sets of the form (16). We
denote Lj = ϕ(Bj), j = 1, . . . , n.

Now, we construct regular languages which are commutatively equivalent to
the languages Lj .

Lemma 8 For every j = 1, . . . , n, there are a regular language L′j and a prefix
code Wj ⊆ H such that Lj ∼ L′j and L′j ⊆ LjW ∗j .

Proof The set Bj has the form (16) that is,

Bj =
{

b +N

m∑
i=1

xibi

∣∣∣ xi ∈ N, 1 ≤ i ≤ m
}
,

with 0 ≤ m ≤ k, b,b1, . . . ,bm ∈ Nk and b1, . . . ,bm linearly independent.
By Proposition 1 (see also Remark 1) the words ϕ(b1), . . . , ϕ(bm) contain
two distinct letters and, therefore, by Lemma 7, there exist m distinct words
w1, . . . , wm ∈ H such that Wj = {w1, . . . , wm} is a prefix code and

ψ(wi) = Nψ(ϕ(bi)), i = 1, . . . ,m. (18)

13



We set L′j = ϕ(b)w∗1 · · ·w∗m. Thus, L′j is regular and L′j ⊆ LjW
∗
j . Hence, in

order to complete the proof, it suffices to verify that Lj ∼ L′j .
Since ϕ is injective on B and the set Bj is simple, any word of Lj = ϕ(Bj) can

be uniquely written as ϕ
(
b +N

∑m
i=1 xibi

)
with x1, . . . , xm ∈ N. On the other

side, as Wj is a code, any word of L′j = ϕ(b)w∗1 · · ·w∗m can be uniquely written
as ϕ(b)wx1

1 · · ·wxm
m with x1, . . . , xm ∈ N. Thus, there is a bijection f : Lj → L′j

mapping the generic word ϕ
(
b + N

∑m
i=1 xibi

)
of Lj onto ϕ(b)wx1

1 · · ·wxm
m .

Moreover, by Lemma 1, one has

ψ
(
ϕ
(
b +N

m∑
i=1

xibi

))
= ψ(ϕ(b)) +

m∑
i=1

xiNψ(ϕ(bi)),

while

ψ(ϕ(b)wx1
1 · · ·wxm

m ) = ψ(ϕ(b)) +

m∑
i=1

xiψ(wi).

Hence, in view of (18), the left-hand sides of the two previous equations are
equal. This proves that the bijection f preserves the Parikh vectors and, there-
fore, Lj and L′j are commutatively equivalent. Thus, the proof is completed. 2

We are now ready to prove our main theorem.

Proof of Theorem 1 Since B is the disjoint union of the sets Bj , 1 ≤ j ≤ n,
and ϕ is injective on B, L has the partition

L =

n⋃
j=1

Lj .

Let L′j and Wj , 1 ≤ j ≤ n, be the languages determined by the previous lemma.
By Proposition 1 and Lemma 6, the languages LjW

∗
j and, consequently, their

subsets L′j , are pairwise disjoint. Thus, taking into account that Lj ∼ L′j ,
1 ≤ j ≤ n, by Lemma 2, one obtains that L is commutatively equivalent to the
language

L′ =

n⋃
j=1

L′j ,

which is regular since all the languages L′j are regular.
Let us verify that if L is a code, then L′ is a code, too. Indeed, since

L′j ⊆ LjW
∗
j , 1 ≤ j ≤ n, one has L′ ⊆

⋃n
j=1 LjW

∗
j . By Proposition 1 and

Proposition 2, this latter set is a code as well as its subset L′.
In view of Lemma 3, we conclude that L∗ and L′∗ are commutatively equiv-

alent. This shows the second assertion in Theorem 1.
Finally we observe that, since all the steps of the proof of Theorem 1 are

effective, we get an explicit construction of the language L′. This completes the
proof. 2

The following example clarifies some of the basic ideas underlying the proof
of Theorem 1.

14



Example 1 Let L be the bounded semi-linear language over the alphabet A =
{a, b} defined as

L = {ambnanbh | n > m > h > 0}.
The Ginsburg map

ϕ : N4 → a∗b∗a∗b∗

is defined as

ϕ(x1, x2, x3, x4) = ax1bx2ax3bx4 , x1, x2, x3, x4 ∈ N.

We have L = ϕ(B), where B is the simple subset of N4

B = {b0 + x1b1 + x2b2 + x3b3 | x1, x2, x3 ≥ 0},

with b0 = (2, 3, 3, 1), b1 = (1, 1, 1, 1), b2 = (1, 1, 1, 0), b3 = (0, 1, 1, 0).
It is easily verified that L is a code. Moreover ϕ(b0) = a2b3a3b, ϕ(b1) =
abab, ϕ(b2) = aba, ϕ(b3) = ba, so that the hypotheses of Theorem 1 are satis-
fied.

The words (ab)2 and (ba)2 are not factors of L∗. Hence, we may take

H = {a(ab)3, b(ba)3}A∗.

Moreover, in order to carry out the construction in the proof of Lemma 7, we
need N ≥ |a(ab)3aab|a, |a(ab)3aab|b, so that we may take N = 6.

With such a choice for N , the set B will be partitioned in the simple sets

{b + 6x1b1 + 6x2b2 + 6x3b3 | x1, x2, x3 ≥ 0} (19)

with b = b0 + r1b1 + r2b2 + r3b3, r1, r2, r3 = 0, . . . , 5. Set h0 = 1 + r1,
m0 = 2 + r1 + r2, n0 = 3 + r1 + r2 + r3, h = x1, m = x1 +x2, n = x1 +x2 +x3.
Then the sets (19) can be rewritten as

{(m0 + 6m,n0 + 6n, n0 + 6n, h0 + 6h) | n ≥ m ≥ h ≥ 0},

with h0 = 1, . . . , 6, m0 = h0 + 1, . . . , h0 + 6, n0 = m0 + 1, . . . ,m0 + 6. Conse-
quently the language L is partitioned in the sets

{am0+6mbn0+6nan0+6nbh0+6h | n ≥ m ≥ h ≥ 0}. (20)

The words

w1 = a(ab)3ba8b8, w2 = a(ab)3aba7b2, w3 = a(ab)3aabb2

belong to H, satisfy the identities ψ(wi) = 6ψ(ϕ(bi)), i = 1, 2, 3, and the set
W = {w1, w2, w3} is a prefix code. Thus, the set (20) is commutatively equiva-
lent to the regular code am0bn0an0bh0w∗1w

∗
2w
∗
3 and, therefore, L is commutatively

equivalent to the regular code⋃
h0=1,...,6

m0=h0+1,...,h0+6
n0=m0+1,...,m0+6

am0bn0an0bh0 w∗1 w
∗
2 w
∗
3 .
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We conclude this section establishing a surprising application of Proposi-
tion 3.

Proposition 5 Let L be a bounded semi-linear language which satisfies the
equivalent conditions (i) and (ii) of Proposition 1. Then L is commutatively
equivalent to the union of a finite set and a regular code.

Proof We have shown that L is commutatively equivalent to the union L′ of
the sets L′j determined by Lemma 8. By inspecting the proof of that lemma,
one can see that these sets have the form

L′j = ujw
∗
1 · · ·w∗m

where Wj = {w1, . . . , wm} is a code and uj ∈ Lj . Hence, L′j \ {uj} ⊆ LjW
+
j

and therefore

L′ \ {u1, . . . , un} ⊆
n⋃
j=1

LjW
+
j .

The right hand side of the previous equation is a code by Proposition 3. Thus,
L is commutatively equivalent to the union of the finite set {u1, . . . , un} and
the regular code L′ \ {u1, . . . , un}. 2

5 Concluding Remarks

In this paper, we started the study of the Kleene closure of bounded semi-linear
languages in connection with the CE Problem. We have given a positive answer
to this problem in the case that the bounded semi-linear language is a code
satisfying some restriction on the number of letters of the words that generate
the language.

A continuation of this research could naturally concern Theorem 1. It would
be interesting to extend the theorem by dropping the combinatorial restriction
on the words of the language, or by relaxing the property of being a code.

The interest of the last question is related to the following aspects. As men-
tioned in the Introduction, the generating series of a commutatively regular
language is always rational. Thus, in the search for criteria to characterize com-
mutatively regular context-free languages, it would be interesting to investigate
whether such languages coincide with those whose generating series are rational.

If the languages generated by all non-terminals of an unambiguous context-
free grammar have a rational generating series, then the grammar belongs to the
class of non-expansive context-free grammars [1]. For this class of grammars, the
CE Problem admits a positive answer in several instances [6,8]. Also, bounded
context-free languages are generated by non-expansive grammars [35].

On the other side, it is interesting to observe that, among the rational oper-
ations on languages, the Kleene closure is the sole operation not preserving the
property of boundedness. Thus, in view of the last remarks, the study of the
conditions that guarantee that a monoid generated by a bounded semi-linear
language is commutatively regular appears as a natural issue.
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