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TOWARDS A REVERSED FABER-KRAHN INEQUALITY FOR THE

TRUNCATED LAPLACIAN

ISABEAU BIRINDELLI, GIULIO GALISE, AND HITOSHI ISHII

Abstract. We consider the nonlinear eigenvalue problem, with Dirichlet boundary condi-

tion, for a class of very degenerate elliptic operators, with the aim to show that, at least for

square type domains having fixed volume, the symmetry of the domain maximize the principal

eigenvalue, contrary to what happens for the Laplacian.

2010 Mathematical Subject Classification: 35J70, 35P30.

1. Introduction

Let us recall that if Ω is a strictly convex domain and λN(X) indicates the largest eigenvalue

of the symmetric matrix X then there exists µ+
1 > 0 and ϕ(·) > 0 in Ω such that

{

λN(D
2ϕ) + µ+

1 ϕ = 0 in Ω

ϕ = 0 on ∂Ω.

This was proved in [5]. With a little abuse, but for obvious reasons, we called µ+
1 and ϕ

respectively the principal eigenvalue and eigenfunction for the operator P+
1 (D

2u) = λN(D
2u)

in Ω. The value µ+
1 shares many features with µ(∆) the principal eigenvalue of the Laplacian

with homogenous Dirichlet conditions, e.g. the fact that µ+
1 is a barrier for the validity of the

maximum principle. But, strikingly, also many differences. We naturally wondered if other

qualitative properties could be extended from µ(∆) to µ+
1 .

Let us start by stating our most surprising result.

“Among rectangles with given measure the square has the largest eigenvalue µ+
1

and the eigenvalue of the ball of same measure will be even larger than that of

the square.”

This is surprising since, as it is well known, on the contrary, for µ(∆) the principal eigenvalue

of the Laplacian, the Faber-Krahn inequality states that

“Among domains with given measure the ball has the smallest eigenvalue µ(∆)”

which, in its much weaker form, reduces to the obvious fact
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“Among rectangles with given measure the square has the smallest eigenvalue

µ(∆).”

In [5] we consider a more general class of operators, sometimes called truncated Laplacian,

which we now describe. For any N ×N symmetric matrix X , let

(1) λ1(X) ≤ λ2(X) ≤ · · · ≤ λN(X)

be the ordered eigenvalues of X . For k ∈ [1, N ], k integer, let

(2) P−
k (D

2u) =

k
∑

i=1

λi(D
2u) and P+

k (D
2u) =

k
∑

i=1

λN+1−i(D
2u).

For k = N these operators coincide with the Laplacian, hence we will always consider k < N .

We want to emphasize that they are fully nonlinear elliptic operators that are degenerate at

every point and in every direction.

The truncated Laplacian initially appears in Sha [19, 20] and Wu [21] in order to investi-

gate compact manifolds having k-convex boundary, i.e. such that the sum of any k principal

curvature functions is positive. Later the operators P±
k can be found in [1], where Ambrosio

and Soner developed a level set theory to the the mean curvature evolution of surfaces with

arbitrary codimension. More recently we wish to recall the theory of subequations of Harvey

and Lawson, see e.g. [15, 16], which give a new geometric interpretation of solutions, and the

works of Caffarelli, Li and Nirenberg [9, 10] concerning removable singularities along smooth

manifolds for Dirichlet problems associated to P−
k . The extended version of the maximum

principle and the study of positive solutions has been done in [2, 14, 13], see also [11] in the

case of entire solutions. The case k = 1 is treated in the nice paper of Oberman and Silvestre

[18] about convex envelope. Blanc and Rossi in [8] consider a similar class of operators, when

one takes just one eigenvalue of the Hessian matrix, but not necessarily the first or last one.

Following Berestycki, Nirenberg, Varadhan [4], one can define a “candidate” for the principal

eigenvalue:

µ−
k = sup{µ ∈ R, ∃ φ > 0 in Ω,P−

k (D
2φ) + µφ ≤ 0},

or

µ+
k = sup{µ ∈ R, ∃ φ > 0 in Ω,P+

k (D
2φ) + µφ ≤ 0}.

Interestingly, µ−
k = +∞ for any bounded domain Ω, while µ+

k < +∞. Hence we will concentrate

on the latter. As recalled above, in [5] the existence of an eigenfunction was done only for k = 1

and when Ω is strictly convex.
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Observe that studying µ+
1 in rectangles had a triple interest, on one hand we wished to see,

in the simplest case, if the strict convexity was a necessary condition for the existence of the

eigenfunction. On the other hand we hoped to construct eigenfunctions for k > 1. Finally, it

was a way to see if one could expect some relationship between the symmetry of the domain

and the size of the principal eigenvalue, as in Faber-Krahn inequalities. We shall now discuss

what we have obtained in these three directions.

On this third point we have seen at the beginning that one should, if anything, expect a

reversed Faber-Krahn inequality. We wish to point out another feature that cannot be extend

from µ(∆) to µ+
1 , it is the famous result of Lieb. He showed, in [17], that if A,B ⊂ R

N are two

bounded domains, then

(3) inf
x∈RN

µ (∆, A ∩ Bx) < µ(∆, A) + µ(∆, B),

µ(∆,Ω) being the principal eigenvalue of the Laplacian with Dirichlet boundary conditions in

Ω and Bx = x+B denoting B translated by x ∈ R
N .

The inequality (3) is not true in general for µ+
1 , actually it is reversed if A and B are some

specific rectangles.

Concerning the first point, the remark we need to make is that, even though rectangles are

not strictly convex, in Theorem 4 we construct explicitly an eigenfunction and its corresponding

eigenvalue; the eigenfunction is a product of functions of one variable. The proof is not at all

obvious but it uses only elementary tools from linear algebra and ode.

The question of whether the condition on the strict convexity is necessary for the existence

of the eigenfunction ϕ was raised in [5]. It was related in particular with the fact that we could

prove global Lipschitz regularity for the Dirichlet problem under that hypothesis.

Let us observe that the eigenfunctions that we construct are indeed only Hölder continuous

up to the boundary which confirms that in general, in order to get Lipschitz regularity up to

the boundary, the hypothesis of the strict convexity cannot be removed. In this paper, thanks

to the eigenfunctions in squares that we have constructed, we extend the regularity results to

domains that are convex but not necessarily strictly convex. Indeed in that case, we shall prove

that, under the condition that near the boundary the forcing term is not “too” negative, the

solution of the Dirichlet problems exists and it is Hölder continuous up to the boundary. This

is done in Theorem 5.

On the other hand it is not clear if the condition which we require on the forcing term is

necessary. For example, suppose that f ≤ −1 in some domain Ω which is not strictly convex;
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can we expect that there are solutions of

P+
1 (D

2u) = f in Ω, u = 0 on ∂Ω?

We expect the answer to be negative.

Concerning k ≥ 1, remark that if Ω = Bρ ⊂ R
N we can construct the eigenvalue µ+

k of P+
k

and a corresponding eigenfunction in term of those of the Laplacian in space dimension k.

Let φ(x) := v(|x|) and µ(∆) be respectively the eigenvalue and the eigenfunction of the

Laplacian in the ball of radius ρ in R
k. Hence v satisfies:

(4)

{

v′′(r) + k−1
r
v′(r) + µ(∆)v(r) = 0 for r ∈ (0, ρ)

v′(0) = 0, v(ρ) = 0.

Since v′ ≤ 0, arguing as in [6]:

(

v′′(r)− v′(r)

r

)′

≥ −k
r

(

v′′(r)− v′(r)

r

)

and v′′(r) ≥ v′(r)
r

for any r ∈ (0, ρ). Set u(x) = v(|x|) for x ∈ Bρ, then

P+
k (D

2u(x)) + µ(∆)u(x) = v′′(|x|) + k − 1

|x| v′(|x|) + µ(∆)v(|x|) = 0, x ∈ Bρ.

This implies that

(5) µ+
k = µ(∆)

and answers the question that there are at least some domains for which the principal eigen-

functions exists even for k > 1. On the other hand, for the rectangles we don’t know if there is

a corresponding eigenfunction. Indeed, contrarily to the case k = 1 and k = N , we prove that

for k = 2, . . ., N − 1, if it exists, the eigenfunction cannot be a function which is the product

of functions of one variable. It is worth pointing out that other fully nonlinear operators for

which this is true, are the Pucci extremal operators. This was proved in [7].

The paper is organized in the following way. The next section is preliminary, instead in

section 3 we construct the explicit eigenfunctions for k = 1 and we treat also the case k > 1.

Section 4 is devoted to existence and the Hölder regularity in convex domain of the Dirichlet

problem.
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2. Preliminaries

We denote by S
N the set of N ×N symmetric real matrices equipped with its usual partial

order. The eigenvalues of X ∈ S
N will be henceforth arranged in the nondecreasing order (1).

The norm of X is

‖X‖ = max
i=1,...,N

|λi(X)| .

The operators P±
k , which are fully nonlinear degenerate elliptic operators, can be equivalently

defined either by the partial sums (2) or by the representation formulas

P−
k (X) = min

{

k
∑

i=1

〈Xvi, vi〉 | vi ∈ R
N and 〈vi, vj〉 = δij , for i, j = 1, . . . , k

}

P+
k (X) = max

{

k
∑

i=1

〈Xvi, vi〉 | vi ∈ R
N and 〈vi, vj〉 = δij , for i, j = 1, . . . , k

}

.

(6)

From (6) one deduce the inequalities

P−
k (X − Y ) ≤ P±

k (X)− P±
k (Y ) ≤ P+

k (X − Y )

and the Lipschitz continuity of P±
k : SN 7→ R: for any X, Y ∈ S

N

(7)
∣

∣P±
k (X)−P±

k (Y )
∣

∣ ≤ k ‖X − Y ‖ .

The following elementary linear algebra Lemma will play a key role.

Lemma 1. Let a, b ∈ R and let us consider the symmetric matrix

(8) M(a, b) =





















a b b . . . b

b a b . . . b
...

...
. . .

...
...

b . . . b a b

b b . . . b a





















.

Then, for b 6= 0, the eigenvalues of M(a, b) are

• a− b with multiplicity N − 1 and and its eigenspace is V =
{

x ∈ R
N :

∑N
i=1 xi = 0

}

;

• a + (N − 1)b which is simple and its eigenspace V ⊥ spanned by (1, . . . , 1)T.
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3. Construction of eigenfunctions.

3.1. Cube. Let Q2R be the N -dimensional open cube with center 0 and side length 2R, i.e.

Q2R = (−R,R)N .

We start by computing the principal eigenvalue µ+
1 in Q2R for the operator P+

1 by constructing

a positive eigenfunction having the multiplicative form

(9) u(x) =
N
∏

i=1

f(xi) x ∈ Q2R,

with f a positive smooth function to be determined. By homogeneity we assume u(0) = 1,

hence f(0) = 1. To find out f , we compute

∂iiu(x) = f ′′(xi)
∏

k 6=i

f(xk) for i = 1, . . . , N

∂iju(x) = f ′(xi)f
′(xj)

∏

k 6=i,j

f(xk) for i, j = 1, . . . , N and i 6= j.

In particular on the diagonal D = {x ∈ Q2R : x1 = . . . = xN} we deduce that

D2u(x) = fN−2(x1) ·M
(

f ′′(x1)f(x1), (f
′(x1))

2
)

,

where the matrix M is given by (8). Using Lemma 1 with a = f ′′(x1)f(x1) and b = (f ′(x1))
2 ≥

0, we have

P+
1 (D

2u(x)) = fN−2(x1) ·
(

f ′′(x1)f(x1) + (N − 1)(f ′(x1))
2
)

for x ∈ D.

In particular

(10) P+
1 (D

2u(x)) + µu(x) = 0 for x ∈ D

if and only if,

(11)

{

f ′′(t)f(t) + (N − 1)(f ′(t))2 + µf 2(t) = 0 t ∈ (−R,R)
f(−R) = f(R) = 0.

Which is equivalent to
{

(fN)′′(t) +NµfN(t) = 0 t ∈ (−R,R)
f(−R) = f(R) = 0

and

(12) µ =
1

N

( π

2R

)2

, f(t) = N

√

cos(
π

2R
t).
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Now we need to prove that for such f , the function u given by (9) is in turn a solution in the

whole cube Q2R. By means of the representation formula (6) this is equivalent to show that

(13) max
v∈RN \{0}

〈D2u(x)v, v〉
|v|2 = −µu(x) ∀x ∈ Q2R.

Let x ∈ Q2R and let v = (f(x1)ξ1, . . . , f(xN)ξN)
T, with ξ1, . . . , ξN ∈ R and such that |v| 6= 0.

Then

〈D2u(x)v, v〉 =
[

N
∑

i=1

f ′′(xi)f(xi)ξ
2
i + 2

∑

i>j

f ′(xi)f
′(xj)ξiξj

]

u(x)

and using (11)

〈D2u(x)v, v〉 = −
[

µ

N
∑

i=1

f 2(xi)ξ
2
i + (N − 1)

N
∑

i=1

(f ′(xi))
2ξ2i − 2

∑

i>j

f ′(xi)f
′(xj)ξiξj

]

u(x)

= −
[

µ|v|2 +
∑

i>j

(f ′(xi)ξi − f ′(xj)ξj)
2

]

u(x)

≤ −µu(x)|v|2.

(14)

Taking the supremum over (ξ1, . . . , ξN) 6= (0, . . . , 0) we deduce that

max
v∈RN \{0}

〈D2u(x)v, v〉
|v|2 ≤ −µu(x).

Let

(15) D̃ = {x ∈ Q2R, ∃ i0 ∈ {1, . . . , N} s.t.
∏

j 6=i0

xj 6= 0}.

Setting ξi =
∏

j 6=i f
′(xj), let

v̂ = (f(x1)
∏

j 6=1

f ′(xj), . . . , f(xN)
∏

j 6=N

f ′(xj))
T.

For x ∈ D̃, we have v̂ · ei0 6= 0 since the only zero of f ′(t) in (−R,R) is t = 0. In this way

|v̂| > 0 and

(16) 〈D2u(x)v̂, v̂〉 = −µu(x)|v̂|2.

In view of (14), (16), then for every x ∈ D̃

(17) P+
1 (D

2u(x)) + µu(x) = 0 .

By continuity, see (7), equality (17) continues to be true in the whole cube. Summing up we

have obtained the following
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Theorem 2. The principal eigenvalue of P+
1 in the cube Q2R is

(18) µ+
1 =

1

N

( π

2R

)2

and a corresponding principal eigenfunction if given by u(x) =
N
∏

i=1

N

√

cos
( π

2R
xi

)

.

Conversely to what one could expect, the only cases in which the eigenvalue problem

(19)















P+
k (D

2u) + µu = 0 in Q2R

u > 0 in Q2R

u = 0 on ∂Q2R

has a solution of type (9) are k = 1 and k = N . This is proved in the following

Theorem 3. Let 2 ≤ k ≤ N − 1 and let us assume that u is a solution of (19). Then there

are no functions f ∈ C2(−R,R) such that u(x) =
∏N

i=1 f(xi).

Proof. By contradiction let us assume that u(x) =
∏N

i=1 f(xi) is a solution of (19). Arguing as

in the proof of Theorem 2, we discover that f must satisfy

(20) kf ′′(t)f(t) + (N − k)(f ′(t))2 + µf 2(t) = 0 for t ∈ (−R,R).

Hence f(t) = (cos( π
2R
t))

k
N and µ = 1

N

(

kπ
2R

)2
. We claim that the function

u(x) =

N
∏

i=1

(cos(
π

2R
xi))

k
N

fails to be a solution of

P+
k (D

2u(x)) + µu(x) = 0

for some x ∈ Q2R\D. Let v1, . . . , vk ∈ R
N be such that vi · vj = δij for i, j = 1, . . . , k.

Using the equation (20), for x ∈ Q2R:

k
∑

i=1

〈

D2u(x)vi, vi
〉

=
k
∑

i=1

[

− µ

k
− N − k

k

N
∑

l=1

(f ′(xl))
2

f 2(xl)
(vi)

2
l

+ 2
∑

l>m

f ′(xl)

f(xl)

f ′(xm)

f(xm)
(vi)l(vi)m

]

u(x)

= −
[

µ+
k
∑

i=1

〈

M

(

N − k

k
,−1

)

wi, wi

〉

]

u

(21)

where

wi =

(

f ′(x1)

f(x1)
(vi)1, . . . ,

f ′(xN )

f(xN)
(vi)N

)T
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andM(N−k
k
,−1), see Lemma 1, has eigenvalue 1−k

k
N < 0 which is simple and N

k
with multiplic-

ity N − 1. Now the idea is to choose x ∈ Q2R and v1, . . . , vk such that w1 is in the eigenspace

relative to −k−1
k
N and w2, . . . , wk are in the orthogonal eigenspace.

Let β > α > 0 be real fixed number . Let x ∈ Q2R such that x1 = . . . = xN−1 and

f ′(x1)

f(x1)
= α

f ′(xN )

f(xN)
= β.

Note that such choice is possible since f ′(t)
f(t)

= − kπ
2RN

tan( π
2R
t) maps the interval (−R,R) onto

R. Setting γ2 = (αβ)2

(N−1)β2+α2 we define

(22) v1 = γ

(

1

α
, . . . ,

1

α
,
1

β

)T

,

so that w1 = γ(1, . . . , 1)T and

(23) 〈Mw1, w1〉 = −k − 1

k
N2γ2.

Now we consider k − 1 orthonormal vectors v2, . . . , vk of the (N − 2)-dimensional subspace of

R
N

V =
{

v ∈ R
N : (v)1 + . . .+ (v)N−1 = 0, (v)N = 0

}

.

In this way w2, . . . , wk belong to the eigenspace relative to N
k
and

(24)

k
∑

i=2

〈Mwi, wi〉 =
N(k − 1)

k
α2.

Since by construction 〈vi, vj〉 = δij for any i, j = 1, . . . , k, we can use (23)-(24) in (21) to

discover that

P+
k (D

2u(x)) = max
〈vi,vj〉=δij

k
∑

i=1

〈

D2u(x)vi, vi
〉

= −
[

µ+ min
〈vi,vj〉=δij

k
∑

i=1

〈Mwi, wi〉
]

u(x)

≥ −
[

µ+
N(k − 1)

k

(

α2 −Nγ2
)

]

u(x)

and (α2 −Nγ2) is strictly negative by the choice β > α > 0. This contradicts the fact that u

is a solution of (19) in the whole square. �
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3.2. Reversed baby Faber-Krahn inequality. Let R > 0 and let α = (α1, . . . , αN) be such

that αi > 0 for any i = 1, . . . , N . We consider the N -dimensional open rectangle with center 0

and side lengths 2α−1
i R, i.e.

Rect(α) =
N
∏

i=1

(−α−1
i R, α−1

i R).

Note that

|Rect(α)| = (2R)N
N
∏

i=1

1

αi

= |Q2R|

if, and only if,
∏N

i=1 α1 = 1. We are going to show that

(FK) “ The cube has the largest µ+
1 among rectangles with a given measure ”.

Theorem 4. Let α = (α1, . . . , αN) be such that αi > 0 for i = 1, . . . , N . Then the principal

eigenvalue of P+
1 in Rect(α) is

(25) µ+
1 =

1
1

α2
1

+ . . .+
1

α2
N

( π

2R

)2

.

Moreover there exists p = (p1, . . . , pN), pi > −1 for any i = 1, . . . , N , such that

u(x) =

N
∏

i=1

(

cos(
π

2R
αixi)

)
1

pi+1

is a principal eigenfunction.

Before giving the proof of the theorem let us explicitly remark that, in view of (18), (25),

the statement (FK) reduce to the well know inequality between harmonic mean and geometric

mean:
N

1

α2
1

+ . . .+
1

α2
N

≤ N

√

α2
1 · . . . · α2

N .

The equality occurs if, and only if, the rectangle is a cube. Moreover it is worth to point out

that from (25) we immediately deduce that the infimum of µ+
1 among all domains with fixed

measure is zero.

Proof of Theorem 4. For p = (p1, . . . , pN) to be fixed and i = 1, . . . , N , let us consider the

functions

fi(t) =
(

cos(
π

2R
t)
)

1

pi+1

t ∈ (−R,R).

Note that

(f pi+1
i )′′(t) +

( π

2R

)2

f pi+1(t) = 0 t ∈ (−R,R)
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which yield

(26) (pi + 1)fi(t)f
′′
i (t) + pi(pi + 1)(f ′

i(t))
2 +

( π

2R

)2

f 2
i (t) = 0.

Set

u(x) =

N
∏

i=1

fi(αixi) x ∈ Rect(α),

hence

∂iiu(x) = α2
i f

′′
i (αixi)

∏

k 6=i

fk(αkxk) for i = 1, . . . , N

∂iju(x) = αiαjf
′
i(αixi)f

′
j(αjxj)

∏

k 6=i,j

fk(αkxk) for i, j = 1, . . . , N and i 6= j.

For x ∈ Rect(α) and v = (v1, . . . , vN)
T such that |v| 6= 0 one has

〈

D2u(x)v, v
〉

=

N
∑

i=1

α2
i f

′′
i (αixi)

∏

k 6=i

fk(αkxk)v
2
i + 2

∑

i>j

αiαjf
′
i(αixi)f

′
j(αjxj)

∏

k 6=i,j

fk(αkxk)vivj.

Setting vi = fi(αixi)ξi, ξi ∈ R for i = 1, . . . , N , the previous equality reads as

〈

D2u(x)v, v
〉

=

[

N
∑

i=1

α2
i f

′′
i (αixi)fi(αixi)ξ

2
i + 2

∑

i>j

αiαjf
′
i(αixi)f

′
j(αjxj)ξiξj

]

u(x).

Now, using (26), we obtain

〈

D2u(x)v, v
〉

= −
[

( π

2R

)2
N
∑

i=1

α2
i

pi + 1
v2i +

N
∑

i=1

pi(f
′
i(αixi)αiξi)

2

− 2
∑

i>j

αiαjf
′
i(αixi)f

′
j(αjxj)ξiξj

]

u(x)

= −
[

( π

2R

)2
N
∑

i=1

α2
i

pi + 1
v2i + 〈Mw,w〉

]

u(x),

(27)

where

(28) w = (f ′
1(α1x1)α1ξ1, . . . , f

′
N(αNxN)αNξN)

T

and

M =















p1 −1 . . . −1

−1 p2 . . . −1
...

...
. . .

...

−1 . . . −1 pN















.
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Our aim is now to prove that there exist p1, . . . , pN and a positive constant κ such that

α2
i

pi + 1
=

1

κ
for i = 1, . . . , N

λ1(M) = 0 ≤ λ2(M) ≤ . . . ≤ λN(M).

(29)

Since pi = κα2
i − 1 we obtain

M = −









1 . . . 1
... · · · ...

1 . . . 1









+ κ diag(α2
1, . . . , α

2
N).

Hence for any w = (w1, . . . , wN)
T

〈Mw,w〉 = −(w1 + . . .+ wN)
2 + κ(α2

1w
2
1 + . . .+ α2

Nw
2
N)

and (29) follows by taking

(30) κ = max
|w|6=0

(w1 + . . .+ wN)
2

α2
1w

2
1 + . . .+ α2

Nw
2
N

=
1

α2
1

+ . . .+
1

α2
N

.

Coming back now to (27), we deduce that

〈

D2u(x)v, v
〉

= −
[

( π

2R

)2 1

κ
|v|2 + 〈Mw,w〉

]

u(x)

≤ −
( π

2R

)2 1

κ
|v|2u(x) for any v ∈ R

N .

Moreover the equality 〈D2u(x)v, v〉 = −
(

π
2R

)2 1
κ
|v|2 is achieved if w, which is given by (28),

realize the maximum in (30). Then if f ′
i(αixi) 6= 0 it is sufficient to take ξ1, . . . , ξN such that

f ′
i(αixi)αiξi =

1
α2
i

. Since f ′
i(t) = 0 implies t = 0, we deduce that

(31)

P+
1 (D

2u(x)) = max
v∈RN\{0}

〈D2u(x)v, v〉
|v|

2

= − 1
1

α2
1

+ . . .+
1

α2
N

( π

2R

)2

u(x) if

N
∏

i=1

xi 6= 0.

By continuity the equality (31) still holds in the whole Rect(α). �

The previous results show that the behavior of the principal eigenvalues µ(∆) of the Laplacian

∆ and µ+
1 of P+

1 is opposite with respect to the symmetry of the domain, at least for square type

domains. Note that in Rect(α) one has µ(∆) = ( π
2R
)2
∑N

i=1 α
2
i , while µ

+
1 = ( π

2R
)2
(

∑N

i=1
1
α2
i

)−1

.

This surprising feature can be further strengthened:

(FK2)

“ The ball has a larger principal eigenvalue than the cube having the same measure ”.
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Let us consider the ball Bρ of radius ρ > 0. We know, by (5), that

µ+
1 (Bρ) =

(

π

2ρ

)2

,

with u(x) = cos( π
2ρ
|x|) as principal eigenfunction. Now if we fix the measure, say equals to

(2R)N , and we take ρ = 2Rω
− 1

N

N , being ωN the measure of the unit ball in R
N , then

|Bρ| = |Q2R|

and

µ+
1 (Bρ) =

( π

2R

)2 ω
2

N

N

4
>

1

N

( π

2R

)2

= µ+
1 (Q2R).

3.3. On the principal eigenvalue for the intersection of rectangles. As was said in the

introduction, in [17] Lieb showed that if A,B ⊂ R
N are two bounded domains, then

(32) inf
x∈RN

µ (∆, A ∩ Bx) < µ(∆, A) + µ(∆, B).

We now show that the inequality (32) is not true in general for µ+
1 , actually it is reversed if A

and B are some specific rectangles. Let us assume N = 2 for simplicity and let

A =

(

− R

α1

,
R

α1

)

×
(

− R

α2

,
R

α2

)

, B =

(

− R

α2

,
R

α2

)

×
(

− R

α1

,
R

α1

)

.

Without loss of generality we may suppose α1 ≤ α2. Then using (18) one has

inf
x∈RN

µ+
1 (A ∩Bx) = µ+

1

(

(

− R

α2
,
R

α2

)2
)

=
α2
2

2

( π

2R

)2

,

whereas

µ+
1 (A) = µ+

1 (B) =
α2
1α

2
2

α2
1 + α2

2

( π

2R

)2

in view of (25). In this way if we choose α2
2 > 3α2

1, then

(33) inf
x∈RN

µ+
1 (A ∩Bx) > µ+

1 (A) + µ+
1 (B).

In higher dimension, N ≥ 3, let us consider α = (α1, α2, . . . , αN), α̃ = (α2, α1, . . . , αN) and

˜̃α = (α2, α2, . . . , αN) with 0 < α1 ≤ . . . ≤ αN . Set

A = Rect(α), B = Rect(α̃).

Then

inf
x∈RN

µ+
1 (A ∩Bx) = µ+

1

(

Rect( ˜̃α)
)

=
1

2
α2
2

+
∑N

i=3
1
α2
i
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and so (33) is satisfied by choosing α ∈ R
N in such a way

1

α2
1

>
3

α2
2

+
N
∑

i=3

1

α2
i

.

4. Application: Hölder continuity in convex domains

We study the global Hölder continuity of viscosity solutions of

(34)

{

P+
1 (D

2u) = f(x) in Ω

u = 0 on ∂Ω

where Ω ⊂ R
N is a bounded convex domain and f is a continuous and bounded function in Ω.

For notational simplicity let Q ≡ Qπ and Q(y) be respectively the N -dimensional open cubes

with centers 0 and y ∈ R
N and side length π, i.e.

Q =
(

−π
2
,
π

2

)N

, Q(y) =

N
∏

i=1

(

yi −
π

2
, yi +

π

2

)

.

By convexity and rescaling, the domain Ω may be expressed as “intersection of cubes” of side

length π: there exist a subset C of Y ×O, O being the set of N ×N orthogonal matrices and

Y ⊂ R
N , such that

(35) Ω =
⋂

(y,O)∈C

OQ(y),

where OQ(y) = {Ox : x ∈ Q(y)}.

Let us denote by φ(x) =
N
∏

i=1

N
√
cosxi the eigenfunction provided Theorem 2. Note that for any

(y, O) ∈ C, the function φy,O(x) = φ(OTx− y) solves

(36)

{

P+
1 (D

2φy,O) +
1
N
φy,O = 0 in OQ(y)

φy,O = 0 on ∂(OQ(y)).

Moreover for any x, z ∈ OQ(y) one has

(37) |φy,O(x)− φy,O(z)| ≤
(√

N |x− z|
)

1

N

.

Theorem 5 (Hölder). Let Ω be given by (35). If there exist α > 0 and β ∈ (0, 1] such that

(38) f(x) ≥ −α
(

inf
C
φy,O(x)

)β

∀x ∈ Ω,

then there exits a unique viscosity solution u of (34). Moreover u ∈ C0, β
N (Ω) and the Hölder

norm of u depends only on α, β, N and the L∞ norms of u and f .
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Proof. The existence and uniqueness of u follows from Perron’s method, [12, Theorem 4.1].

For this, note that the construction of a continuous subsolution u of (34), with general f , is

standard under the uniform exterior sphere (or cone) condition of Ω. On the other hand, owing

to the degeneracy of the operator P+
1 with respect inf type operations, the equivalent argument

used for subsolutions actually fails for the construction of supersolutions null on the boundary.

This is the point where the assumption (38) is used. For any x ∈ Ω let

u(x) =
Nα

β
inf
C
φ
β
y,O(x).

Using (37), then for any x, z ∈ Ω one has

|u(x)− u(z)| ≤ Nα

β
sup
C

∣

∣

∣
φ
β
y,O(x)− φ

β
y,O(z)

∣

∣

∣

≤ Nα

β
sup
C

|φy,O(x)− φy,O(z)|β ≤ Nα

β

(√
N |x− z|

)
β
N

.

Hence u ∈ C0, β
N (Ω). Moreover for any (y, O) ∈ C and any x ∈ Ω

P+
1

(

D2Nα

β
φ
β
y,O(x)

)

≤ Nα(β − 1)φβ−2
y,O (x)P−

1 (Dφy,O(x)⊗Dφy,O(x))

+Nαφ
β−1
y,O (x)P+

1 (D
2φy,O(x))

= Nαφ
β−1
y,O (x)P+

1 (D
2φy,O(x))

= −αφβ
y,O(x)

≤ f(x).

(39)

Then u, which is the infimum of all φy,O, is in turn a supersolution of (34). Moreover u = 0 on

∂Ω. Hence the Perron’s method provides existence and uniqueness for (34).

Let us prove now that the solution u ∈ C0, β
N (Ω). Without loss of generality we may assume

u 6≡ 0.

Let ∆δ = {(x, y) ∈ Ω× Ω : |x− y| < δ} where δ is a positive number such that

(40) 2 ‖u‖∞
β

N

(

1− β

N

)

δ−2 > ‖f‖∞ .

Set M = max

(

N
1+

β
2N α
β

,
2‖u‖

∞

δ
β
N

)

. We assume by contradiction that

(41) 0 < max
∆δ

{

u(x)− u(y)−M |x− y| β
N

}

= u(x0)− u(y0)−M |x0 − y0|
β
N .

In particular x0 6= y0. If |x0 − y0| = δ then

0 < u(x0)− u(y0)−M |x0 − y0|
β
N ≤ 2 ‖u‖∞ −Mδ

β
N ≤ 0,
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by the choice of M . If y0 ∈ ∂Ω, then there exist (ỹ0, Õ) ∈ C such that Ω ⊂ ÕQ(ỹ0) and

y0 ∈ ∂(ÕQ(ỹ0)). As in (39), the function ψ(x) = Nα
β
φ
β

ỹ0,Õ
(x) satisfies in Ω the inequality

P+
1 (D

2ψ) ≤ f(x). Moreover ψ ≥ 0 on ∂Ω. By comparison u ≤ ψ in Ω, hence

(42) 0 < u(x0)− u(y0)−M |x0 − y0|
β
N ≤ ψ(x0)− ψ(y0)−M |x0 − y0|

β
N ≤ 0,

in view of (37) and the choice of M . The above contradictions imply that (x0, y0) ∈ ∆δ

or (x0, y0) ∈ ∂Ω × Ω. From (41) we deduce that u − ϕ has a local minimum at y0 with

ϕ(y) = −M |y − x0|
β
N . Then

f(y0) ≥ P+
1 (D

2ϕ(y0)) ≥M
β

N

(

1− β

N

)

δ
β
N
−2 ≥ 2 ‖u‖∞

β

N

(

1− β

N

)

δ−2

and this contradicts (40). �

Remark 6. Following the argument of the previous proof and looking at (42), it is clear that

the global C0,γ Hölder continuity, γ ∈ (0, 1), is still true for any nonpositive supersolutions

u of (34) without assuming the convexity of Ω (note that u ≤ 0 forces f to be nonnegative

somewhere). On the other hand the global regularity fails if instead we consider nonnegative

supersolutions. For example let us consider the nonnegative continuous function

u(x) =











1

σ −
∑N

i=1 log(cosxi)
if x ∈ Q

0 if x ∈ ∂Q.

We are going to choose σ in such a way that u be concave, in particular P+
1 (D

2u) ≤ 0 in Q.

Let v(x) :=
∑N

i=1 g(xi) :=
∑N

i=1 log(cosxi), then ∇u = 1
(σ−v)2

∇v while

D2u =
1

(σ − v)3
(2∇v ⊗∇v + (σ − v)D2v).

And then, since (D2v)ij = δijg
′′(xi), for any w ∈ R

N

〈

D2u(x)w,w
〉

=
1

(σ − v)3
(2(∇v · w)2 + (σ − v)

N
∑

i=1

g′′(xi)w
2
i )

=
1

(σ − v)3



2

(

N
∑

i=1

tan(xi)wi

)2

− (σ − v)

N
∑

i=1

1

cos2(xi)
w2

i





≤ 1

(σ − v)3
((2N − σ)

N
∑

i=1

1

cos2(xi)
w2

i )

= 0 if σ = 2N.
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On the other hand for any γ ∈ (0, 1]

sup
x,y∈Q
x 6=y

|u(x)− u(y)|
|x− y|γ = +∞.
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