
Non-Monotonic Ontology-based Abstractions of Data Services

Gianluca Cima1 , Maurizio Lenzerini1 , Antonella Poggi1,2
1Dipartimento di Ingegneria Informatica, Automatica e Gestionale, Sapienza Università di Roma

2Dipartimento di Lettere e Culture Moderne, Sapienza Università di Roma
{cima, lenzerini, poggi}@diag.uniroma1.it

Abstract

In Ontology-Based Data Access (OBDA), a domain ontol-
ogy is linked to the data sources of an organization in or-
der to query, integrate and manage data through the concepts
and relations of the domain of interest, thus abstracting from
the structure and the implementation details of the data layer.
While the great majority of contributions in OBDA in the last
decade have been concerned with the issue of computing the
answers of queries expressed over the ontology, recent papers
address a different problem, namely the one of providing suit-
able abstractions of data services, i.e., characterizing or ex-
plaining the semantics of queries over the sources in terms of
queries over the domain ontology. Current works on this sub-
ject are based on expressing abstractions in terms of unions
of conjunctive queries (UCQs). In this paper we advocate the
use of a non-monotonic language for this task. As a first con-
tribution, we present a simple extension of UCQs with non-
monotonic features, and show that non-monotonicity pro-
vides more expressive power in characterizing the semantics
of data services. A second contribution is to prove that, simi-
larly to the case of monotonic abstractions, depending on the
expressive power of the languages used to specify the vari-
ous components of the OBDA system, there are cases where
neither perfect nor approximated abstractions exist for a given
data service. As a third contribution, we single out interesting
special cases where the existence of abstractions is guaran-
teed, and we present algorithms for computing such abstrac-
tions in these cases.

1 Introduction
The Ontology-Based Data Access (OBDA) paradigm (Poggi
et al. 2008) has been the subject of many investigations in the
last decade. An OBDA specification Σ consists of a triple
〈O,S,M〉, where O is an ontology expressed in Descrip-
tion Logic (DL) (Baader et al. 2003), S is the schema of
the data sources forming the data layer of an information
system, and M is a mapping between the source schema
and the ontology. The ontology is a logic-based represen-
tation of the underlying domain, and the mapping specifies
the relationship between the data at the sources and the el-
ements in the ontology. Thus, OBDA provides a means for
managing data through the lens of an ontology (Lenzerini
2018), and enables the application of Knowledge Represen-
tation and Reasoning principles and techniques to various
data management tasks.

As testified by (Xiao et al. 2018; Ortiz 2018; Bienvenu
2016), the vast majority of papers dealing with OBDA con-
centrate on query answering. The rewriting approach to this
problem is as follows: given a user query q expressed over
the ontology, find the so-called ontology-to-source rewriting
of q, i.e., a query over the source schema that, once executed
over the data, provides the certain answers to q.

Recent papers (Cima 2017; Lutz, Marti, and Sabellek
2018; Cima, Lenzerini, and Poggi 2019) address a different
issue in OBDA: starting from a query qS expressed over the
sources, the goal is to find the so-called source-to-ontology
rewriting (s-to-o rewriting for short) of qS , i.e., a query qO
over the ontology that is equivalent to the original query,
modulo the ontology and the mapping. Thus, qO repre-
sents an abstraction of the data service represented by qS
in terms of the domain ontology, obtained through the map-
ping. Such notion of abstraction is relevant in different data
management scenarios, such as the ones discussed in (Cima,
Lenzerini, and Poggi 2019; Lutz, Marti, and Sabellek 2018).
As a notable example, it can be used for providing a seman-
tic explanation, i.e., a formulation in terms of the domain
vocabulary, of services expressed over the data layer, such
as queries, and other data analytics tasks.

Example 1. Let Σ = 〈O,S,M〉 be as follows:
O = { Infected v ∃HadContacts,Married v HadContacts,

Patient0 v Infected,Recovered v Infected }
S = { s1, s2, s3, s4, s5 }

M =

{ s1(x) → Infected(x),
s2(x1, x2) → HadContacts(x1, x2),
s3(x1, x2) → Married(x1, x2),
∃y.s1(x) ∧ s4(x, y) → Patient0(x),
s5(x) → Recovered(x) }

We aim at an abstraction for the data service qS(x)← s1(x)
w.r.t. Σ. One can verify that there is no query over O that
precisely describes the data service qS in terms ofO. On the
other hand, if we are happy with a sound approximation of
qS expressed as UCQ over O, then the query returning all
the certain answers of Patient0 is the best we can achieve.
Observe, however, that if we extend the language used to
express abstractions with non-monotonic features, then it is
not difficult to see that the best sound characterization of qS
in terms of O is the query returning the union of the certain
answers of Patient0 with those certain answers of Infected
that are not certain answers of Recovered.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

243

In this paper, we start an investigation of the notion of
abstraction in the case where s-to-o rewritings can be ex-
pressed in a non-monotonic query language. Obviously,
one basic issue to address in this endeavour is selecting
the non-monotonic query language. Our choice in this pa-
per is to use EQL-Lite(UCQ) (Calvanese et al. 2007a), that
is based on a variant of the well-known first-order modal
logic of knowledge/belief (Levesque 1984; Reiter 1990;
Levesque and Lakemeyer 2001). The language incorpo-
rates a minimal knowledge operator K, which is used to
formalize the epistemic state of the knowledge base. In-
formally, the formula Kφ is read as “φ is known to hold
(by the knowledge base)”. Queries in EQL-Lite(UCQ) can
use conjunction, negation, and existential quantification, and
have atoms that are expressed exactly as Kφ, where φ is a
union of conjunctive query (UCQ). With this combination
of operators we can ask for those x such that a given φ(x)
is not known to hold, and this is crucial for characterizing a
set of tuples that are not certain answers to a given source
query. By exploiting such features, one can show that the
best sound characterization of the query qS mentioned in Ex-
ample 1 is qO(x) ← K(Patient0(x)) ∨ (K(Infected(x)) ∧
¬K(Recovered(x))). The epistemic operator enables also
other interesting features. For instance, we can distinguish
between asking for those x such that it is known that there
is y for which R(x, y) holds (where y can be unknown), and
asking for those x such that there is y for which R(x, y) is
known to hold (and therefore y is known).

The issue of using non-monotonic query languages in
OBDA has been rarely addressed. Our work is actu-
ally the first to consider s-to-o rewritings that exploit non-
monotonicity in order to provide powerful abstractions of
data services. We believe that non-monotonic abstractions
can be extremely useful for providing more informative ex-
planations of data services or data sources. Referring to Ex-
ample 1, the non-monotonic abstraction of qS makes it clear
that no instances of Recovered can be inferred to be stored
in source s1, except for those that are also instances of Pa-
tient0. These kinds of characterizations for the content of
data sources or data services cannot be produced if we just
use UCQs as target language.

Our contributions in this paper can be summarized as fol-
lows. Considering as a starting point a specific framework
considered in (Cima, Lenzerini, and Poggi 2019), we pro-
pose the language EQL-Lite(UCQ) for expressing queries
over the ontology, and we discuss why such language pro-
vides a better means to compute abstractions of data services
compared to the language of UCQs (Section 3). In particu-
lar, we show that there are cases where the perfect s-to-o
rewriting is expressible as an EQL-Lite(UCQ) query, but
not as a UCQ. Also, there are cases where the maximally
sound s-to-o rewriting exists in the class of EQL-Lite(UCQ)
queries, but not in the class of UCQ, and cases where such
maximally sound s-to-o rewriting is a better approximation
than the analogous in the class of UCQ. On the other hand,
we also show that, similarly to UCQs (Cima, Lenzerini, and
Poggi 2019), it may happen that no maximally sound s-to-
o rewritings exists in the class of EQL-Lite(UCQ) queries,
and the same holds for minimally complete s-to-o rewrit-

ings (Section 4). In order to address the issue of non-
expressibility, we explore two special cases. In the first case,
we limit the mapping language, and consider the so-called
one-to-one mapping, where each mapping assertion links
one source relation to one ontology element (Section 5). In
the second case, we limit the query language, and we con-
sider a weak version of EQL-Lite(UCQ), where both nested
negation and union are disallowed (Section 6). In both spe-
cial cases, we address the problem of computing the mini-
mally complete and the maximally sound s-to-o rewriting of
a source query, presenting algorithms whenever possible.

2 Preliminaries
We assume basic knowledge about databases (Abite-
boul, Hull, and Vianu 1995) and Description Logics
(DLs) (Baader et al. 2003).
Database and Queries. A database schema (or simply
schema) S is a finite set of predicate symbols, each with
a specific arity. An S-database D is a finite set of facts
s(~c), where s is an n-ary predicate symbol of S , and ~c =
(c1, . . . , cn) is an n-tuple of constants, each taken from a
denumerable infinite set of symbols denoted by Const.

In its general form, an L-query q over a schema S is
a function in a certain class L that can be evaluated over
an S-database D to return the set of answers qD, each an-
swer being a tuple of constants. We assume to deal with
databases supporting queries in First-Order Logic (FOL).
Let ~t be a (possibly empty) tuple of terms, each term be-
ing either a constant or a variable, and S a schema. In
general, a query q with target list ~t over S has the form
q(~t) ← φ(~x), where φ (called the body of the query) is a
FOL open formula whose free variables ~x (also called dis-
tinguished variables) are the variables appearing in ~t. When
the target list is empty, we say that q is boolean. Also, we
accept queries whose body is ⊥ or >. If q is a query of ar-
ity n with target list ~t, and ~c is an n-tuple of constants, then
by q(~t/~c) we denote the boolean query obtained from q(~t)
by substituting each ti with ci. A conjunctive query (CQs)
CQ is a FOL query whose body is an existentially quanti-
fied finite conjunction of atoms. We often write a CQ in
the form q(~t) ← φ(~x, ~y), where in the body of the query
we explicitly indicate with ~x the distinguished variables of
q (i.e., the variables in ~t), and with ~y its existentially quan-
tified variables. We also use the notation φ(~x, Y) instead of
φ(~x, ~y), where Y = {y1, . . . , yk} is the set of variables in
~y, and we write ∃Y instead of ∃y1.∃y2.∃yk. Also, we
write ∃y1.∃y2.∃yk.φ as ∃y1, y2, . . . , yk.φ. Given a CQ
q(~t) ← φ(~x, ~y), we say that an existential variable y in ~y
is a join existential variable if it occurs more than once in
φ. The conjunctive queries with join-free existential vari-
ables (CQJFEs) are CQs with no join existential variables.
A UCQ is a union of a finite set of CQs with same arity, each
called a disjunct of the query. We assume that the semantics
of FOL queries is known. We only point out that, for every
D, if the body of q is ⊥, then qD = ∅, and if the body of q
is >, then qD is the set of all tuples of constants in D whose
arity is the arity of the target list of q.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

244

Ontologies. A DL ontology O is simply a TBox (set of ter-
minological axioms) expressed in a specific DL (O can be
trivially seen as comprising a schema). We are interested
in DL ontologies expressed in DL-Lite−R, the fragment of
the DL DL-LiteR (Calvanese et al. 2004; Calvanese et al.
2007b)1 without disjointness axioms. The semantics of a
DL-Lite−R ontology O is specified through the usual notion
of FOL interpretation (simply interpretation, in the follow-
ing) I = 〈∆I , ·I〉, where I is a model of O, denoted by
I |= O, if it satisfies every axiom in O.
OBDA. An Ontology-based Data Access (OBDA) specifica-
tion (Poggi et al. 2008) consists of a triple Σ = 〈O,S,M〉,
where O is a DL ontology, S , called source schema, is a
schema, andM is a mapping, i.e., a finite set of mapping as-
sertions relating S toO. Mapping assertions are FOL impli-
cations of the form ∀~x.φ(~x, Y) → ϕ(~x, Z), where φ(~x, Y)
and ψ(~x, Z) are bodies of a CQ over S and O, respec-
tively (Lenzerini 2002; Doan, Halevy, and Ives 2012). Map-
ping assertions of the above form, also written as φ(~x, Y)→
ϕ(~x, Z), are called GLAV (Global-and-Local-as-View) map-
ping assertions. Special cases of GLAV mapping assertions
are called pure GAV and one-to-one. A pure GAV mapping
assertion is a GLAV mapping assertion in which the right-
hand side of the implication is simply an atom without ex-
istential variables, constants, or repeated variables, i.e, it is
either of the form A(x), or P (x1, x2), with x1, x2 different
variables. A one-to-one mapping assertion is a GLAV map-
ping assertion where both φ(~x, Y) and ψ(~x, Z) are simply
atoms without constants or repeated variables.

For the semantics of an OBDA specification Σ =
〈O,S,M〉, we consider interpretations I = 〈∆I , ·I〉 for
O with ∆I = Const2. An interpretation I for O is a model
for Σ relative to an S-database D if (i) I |= O, and (ii)
〈D, I〉 |= M, i.e., the FOL interpretation constituted by D
and I, denoted by 〈D, I〉, satisfies all mapping assertions in
M. The set of models for Σ relative to an S-database D is
denoted by ModD(Σ), and D is said to be consistent with Σ
if ModD(Σ) 6= ∅. Note that, if O is expressed in DL-Lite−R,
then ModD(Σ) 6= ∅ for every D.

Chase. Given Σ = 〈O,S,M〉 and a CQ q(~t) ← φ(~x, Y)
over S , we denote byM(q) the conjunction of atoms over
O obtained by applying the so-called oblivious chase (Calı̀,
Gottlob, and Kifer 2013) to the freezing of the body of q (de-
noted as Fq) w.r.t. the set of rules repesented byM. Briefly
speaking, the oblivious chase (or, simply chase) of a set of
atoms F over S w.r.t.M is a set of atoms over O computed
as follows: (i) we start with an empty set of atoms J = ∅,
then (ii) for every GLAV assertion φ(~x, Y) → ϕ(~x, Z) in
M and for every homomorphism h from φ(~x, Y) to F , we
add to J the image of the set of atoms appearing in ϕ(~x, Z)
under h′, that is, J = J ∪ h′(ϕ(~x, Z)), where h′ extends
h by assigning to each variable z ∈ Z a different fresh
variable. We observe that each variable is taken from a de-

1The logic underpinning OWL2QL (Motik et al. 2012), i.e., the
OWL2 profile especially designed for the OBDA scenarios.

2Note, however, that our results can be reformulated in a setting
where interpretations are sets of objects denoted by object identi-
fiers, as usual in OBDA (Poggi et al. 2008).

numerable infinite set of symbols denoted by Var, where
Const ∩ Var = ∅.

If we start from the S-database D instead of q, we can
computeM(D), and if we apply the chase toM(D) w.r.t.
the rules corresponding to the axioms in O, following a de-
terministic strategy that is fair (i.e., is such that if at some
point a rule is applicable then it will be eventually applied),
then we obtain a (possibly infinite) set CM(D)

O of atoms that,
when restricted to the alphabet of O, can be seen as an in-
terpretation for O. The structure CM(D)

O is called canonical
interpretation of O w.r.t. Σ and D (Calvanese et al. 2007b).
Certain Answers. Given an OBDA specification Σ =
〈O,S,M〉, a query qO over O, and an S-database D, the
certain answers of qO w.r.t. Σ and D is the set of tuples ~c of
constants in D such that ~c ∈ qIO for every I ∈ ModD(Σ),
where I is seen as a set of facts over O. We denote by
certqO,Σ, the query over S such that for every S-database
D, certDqO,Σ coincides with the certain answers of qO w.r.t.
Σ and D. It is well known that, for every D consistent with
Σ, certDqO,Σ = qC

M(D)
O ↓, i.e., the certain answers of qO w.r.t.

Σ and D are the answers to q over the canonical interpreta-
tion of O w.r.t. Σ and D (Calvanese et al. 2007c), restricted
to those tuples without variables (operator ↓).

For two queries q1, q2 over O, we write certq1,Σ v
certq2,Σ if certDq1,Σ ⊆ certDq2,Σ for each S-database D. We
also write certq1,Σ < certq2,Σ if certq1,Σ v certq2,Σ and
in addition certDq1,Σ (certDq2,Σ for at least an S-database
D. Finally, we say that q1 and q2 are equivalent w.r.t. Σ, de-
noted by certq1,Σ ≡ certq2,Σ, if both certq1,Σ v certq2,Σ
and certq2,Σ v certq1,Σ hold, that is, certDq1,Σ = certDq2,Σ
for each S-database D.

For an OBDA specification Σ = 〈O,S,M〉, with O a
DL-Lite−R ontology and M a GLAV mapping, if qO is a
UCQ over O, then the UCQ PerfRefqO,Σ over S defined
in (Cima, Lenzerini, and Poggi 2019) computes exactly the
certain answers of qO w.r.t. Σ and D, for every S-database
D, i.e., PerfRefqO,Σ ≡ certqO,Σ.
EQL . We recall the basis of EQL (Calvanese et al. 2007a),
a first-order modal language with a single modal operator
K3, used to formalize the epistemic state of a DL ontology
O, according to the minimal knowledge semantics.

An epistemic interpretation for an ontology O is a pair
〈E, I〉, where E is a (possibly infinite) set of FOL interpre-
tations forO, and I is an interpretation inE. We inductively
define when an EQL sentence ψ is true in an epistemic in-
terpretation 〈E, I〉, written 〈E, I〉 |= ψ, as follows:
〈E, I〉 |= P (~c) if I |= P (~c)
〈E, I〉 |= ψ1 ∧ ψ2 if 〈E, I〉 |= ψ1 and 〈E, I〉 |= ψ2

〈E, I〉 |= ¬ψ if 〈E, I〉 6|= ψ
〈E, I〉 |= ∃x.ψ if 〈E, I〉 |= ψxc for some constant c
〈E, I〉 |= Kψ if 〈E, I ′〉 |= ψ for every I ′ ∈ E,

where ψ, x, and ψxc denote an arbitrary EQL formula, a vari-
able, and the EQL formula obtained by replacing the vari-
able x with the constant c, respectively.

3In fact, EQL includes also equality, which is not considered
here.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

245

As in knowledge base scenarios, in OBDA, among the
various epistemic interpretations, one is typically interested
in the specific ones representing the minimal epistemic state,
i.e., the state with minimal knowledge. Formally, let Σ =
〈O,S,M〉 be an OBDA specification, and let D be an S-
database. Then, a 〈Σ, D〉-EQL-interpretation 〈E, I〉 is an
epistemic interpretation for which E = ModD(Σ) (we re-
mind the reader that all interpretations of ModΣ(D) share
the same domain Const). Finally, we say that an EQL
sentence ψ is EQL-logically implied by 〈Σ, D〉, written
〈Σ, D〉 |=EQL ψ, if for every 〈Σ, D〉-EQL -interpretation
〈E, I〉 we have 〈E, I〉 |= ψ. Given an OBDA specification
Σ = 〈O,S,M〉, an EQL query qO(~t) over O (i.e., an open
EQL formula whose free variables are the variables appear-
ing in ~t), and an S-database D, certDqO,Σ is the set of tuples
~c of constants in D such that 〈Σ, D〉 |=EQL qO(~t/~c).

3 Non-Monotonic Abstractions
We start by recalling the EQL-Lite(UCQ) query language,
and show how queries in such language can be rewritten to
compute certain answers over OBDA specifications. Then,
we specialise the framework presented in (Cima, Lenzerini,
and Poggi 2019) to EQL-Lite(UCQ) queries and show that
there are cases in which it allows to obtain better approx-
imated s-to-o rewritings, compared with the usual OBDA
framework based on UCQs.

3.1 EQL-Lite(UCQ) Query Language
EQL-Lite(UCQ), introduced in (Calvanese et al. 2007a)4, is
the FOL query language whose atoms are epistemic formu-
las of the form K% where % is a UCQ. Formally, let O be a
DL ontology. An EQL-Lite(UCQ) query over O is a possi-
bly open formula built according to the following syntax:

ψ ::= K% | ∃x.ψ | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | ¬ψ

where % is the body of a UCQ over O. We call epistemic
atoms the formulas of the form K% occurring in queries.
Example 2. Consider the OBDA specification of Example 1,
and the following EQL-Lite(UCQ) queries:
q1(x)← ∃y.K(HadContacts(x, y))
q2(x)← ∃y.K(HadContacts(x, y)) ∧ ¬K(Married(x, y))

q1 retrieves all people for whom at least one person is known
they had contacts with, while q2 restricts the answers to q1

by requiring that such person is not known to be a spouse.
Answering EQL-Lite(UCQ) queries over OBDA systems

can be achieved by exploiting a very interesting computa-
tional property of the language, i.e., that one can decouple
the reasoning needed for answering the epistemic atoms,
which can be delegated to the underlying OBDA service
for answering UCQs, from the reasoning needed for deal-
ing with the other operators of the whole query.

Formally, let Σ = 〈O,S,M〉 be an OBDA specification,
and qO be an EQL-Lite(UCQ) query over O, whose epis-
temic atoms are K%1, . . . ,K%m. We denote by qFOL

O the

4Consistently with what we did for EQL , we do not include
(in)equalities in EQL-Lite (UCQ).

FOL query over S , obtained from qO by replacing each epis-
temic atom K%i with the UCQ PerfRef%i,Σ, whose arity is
the number of free variables in %i. From results of (Cal-
vanese et al. 2007a), it is easy to show the following:

Proposition 1. Let Σ = 〈O,S,M〉 be an OBDA specifi-
cation and qO an EQL-Lite(UCQ) query over O. Then for
every S-database D we have certDqO,Σ = qFOL

O
D.

Example 3. Consider the OBDA specification Σ presented
in Example 1, and the following EQL-Lite(UCQ) queries:

• the queries q1 and q2 presented in Example 2,
• %1(x, y)← HadContacts(x, y)

• %2(x, y)← Married(x, y).

Then, the bodies of qFOL
1 and qFOL

2 are ∃y.PerfRef%1(x,y),Σ,
and ∃y.PerfRef%1(x,y),Σ ∧ ¬PerfRef%2(x,y),Σ, respectively,
and therefore they are defined as follows:

qFOL
1 (x)← ∃y.(s2(x, y) ∨ s3(x, y)).

qFOL
2 (x)← ∃y.(s2(x, y) ∨ s3(x, y)) ∧ ¬s3(x, y).

3.2 EQL-Lite(UCQ) S-to-O Rewritings
In this paper, we are interested in the problem of computing
abstractions of data services within an OBDA framework ad-
mitting a non-monotonic query language over the ontology.
Our general goal is to find the query over O that precisely
characterizes the data service, expressed as a query qS over
S , w.r.t. the underlying OBDA specification Σ. Formally,
given an OBDA specification Σ = 〈O,S,M〉 and a query
qS over S , the perfect S-to-O Σ-rewriting of qS is the query
qO overO such that ModD(Σ) 6= ∅ implies certDqO,Σ = qDS ,
for every S-database D (Cima, Lenzerini, and Poggi 2019).

As anticipated in the introduction, we next show that con-
sidering EQL-Lite(UCQ) queries provides more expressiv-
ity in finding s-to-o rewritings, compared to UCQs. In par-
ticular, the next example shows that there are cases where
no perfect S-to-O Σ-rewriting exists in the class of UCQs,
whereas it exists in the class of EQL-Lite(UCQ) queries.

Example 4. Consider the OBDA specification Σ =
〈O,S,M〉 presented in Example 1, and let Σ′ be the OBDA
specification Σ′ = 〈O,S,M′〉, whereM′ is obtained from
M by removing the third mapping. Moreover, let qS(x) ←
∃y.s2(x, y). It is easy to see that no perfect S-to-O Σ′-
rewriting of qS exists in the class of UCQs. Indeed, by in-
specting the mapping, one can see that, since the certain an-
swers of the query qO(x) ← ∃y.HadContacts(x, y) include
the values stored in the first component of s2 but also in s1

and s5, such query is too general for exactly characterizing
qS . On the other hand, consider again the EQL-Lite(UCQ)
query q1 discussed in Example 2. One can verify that q1 is a
perfect S-to-O Σ′-rewriting of qS .

The next example proves that, as for the case of UCQ,
there are OBDA specification Σ = 〈O,S,M〉 and CQ qS
for which no perfect S-to-O Σ-rewriting of qS exists in the
class of EQL-Lite(UCQ) queries.

Example 5. Consider again the OBDA specification Σ =
〈O,S,M〉 of Example 1, the query qS of Example 4, and

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

246

the queries q1 and q2 of Example 2. One can see that, be-
cause of the presence of the third mapping, no perfect S-to-
O Σ-rewriting of qS exists in the class of EQL-Lite(UCQ)
queries. Indeed, on the one hand, q1 is too general because
include the values stored in the first component of both s2

and s3, and, on the other hand, q2 is too specific.
Thus, following (Cima, Lenzerini, and Poggi 2019), we

consider two approximations of the perfect s-to-o rewrit-
ing. First, qO is a sound (respectively, complete) S-to-O
Σ-rewriting of qS if for every S-database D, ModD(Σ) 6= ∅
implies certDqO,Σ ⊆ qDS (resp., qDS ⊆ certDqO,Σ). Sec-
ond, if LO is a class of query, then qO ∈ LO is an LO-
maximally sound (respectively, LO-minimally complete) S-
to-O Σ-rewriting of qS if qO is a sound (respectively, com-
plete) S-to-O Σ-rewriting of qS , and no q′ ∈ LO exists such
that (i) q′ is a sound (respectively, complete) S-to-O Σ-
rewriting of qS , (ii) certqO,Σ v certq′,Σ (resp., certq′,Σ v
certqO,Σ), and (iii) there exists an S-database D such that
certDqO,Σ (certDq′,Σ (respectively, certDq′,Σ (certDqO,Σ).

The following example illustrates these notions and shows
that EQL-Lite(UCQ) allows to find better approximations of
s-to-o rewritings w.r.t. the UCQ query language.
Example 6. Consider the OBDA specification Σ presented
in Example 1, the query qS presented in Example 4, and
the queries q1 and q2 presented in Example 2. We have
that q1 and q2 are an EQL-Lite(UCQ)-minimally com-
plete and an EQL-Lite(UCQ)-maximally sound S-to-O Σ-
rewritings of qS , respectively. Moreover, one can verify
that the UCQ-minimally complete and the UCQ-maximally
sound S-to-O Σ-rewritings of qS are the queries qcO(x) ←
∃y.(HadContacts(x, y)) and qsO(x) ← ⊥(x), respectively.
It is clear that q1 and q2 are better approximations of qS
compared to qcO and qsO, respectively.

In the next section, we carry out a study on the problem of
computing minimally complete and maximally sound s-to-o
rewritings of data services. Taking into account the inex-
pressibility results reported in (Cima, Lenzerini, and Poggi
2019, Theorem 16), we will limit our attention to data ser-
vices expressed as CQJFEs over S and OBDA specifications
with the following characteristics: (i) the ontology language
is DL-Lite−R; (ii) the mapping language is GLAV; (iii) the
query language LO used to express s-to-o rewritings is the
EQL-Lite(UCQ) query language. Sometimes, we will also
consider other classes of queries, in particular UCQ; when
we omit the specification of LO, we implicitly refer to the
class of EQL-Lite(UCQ) queries.

Notice that, as already observed, for an OBDA specifica-
tion Σ = 〈O,S,M〉 based on DL-Lite−R, every S-database
D is consistent with Σ. Therefore, all our results also hold
under the semantics proposed in (Lutz, Marti, and Sabellek
2018), which differs from ours because it defines the perfect
S-to-O Σ-rewriting qO of qS to be such that certDqO,Σ = qDS
for all S-databases D, rather than for all D consistent with
Σ.

4 On the Non-Existence of S-to-O Rewritings
In this section, we show that both EQL-Lite(UCQ)-
minimally complete and EQL-Lite(UCQ)-maximally sound

s-to-o rewritings are not guaranteed to exist, even in the case
of empty ontologies and pure GAV mappings.

We start by focusing on EQL-Lite(UCQ)-minimally com-
plete s-to-o rewritings.
Theorem 1. There is an OBDA specification Σ =
〈O,S,M〉 and a query qS over S such that no
EQL-Lite(UCQ)-minimally complete S-to-O Σ-rewriting of
qS exists.
Proof (sketch). Consider the OBDA specification Σ =
〈O,S,M〉, whereO = ∅, andM is the following mapping:

{ s(x) → C(x),
s1(x) ∧ s2(x) → C(x),
s1(x) → A(x),
s2(x1) ∧ s3(x1, x2) → R(x1, x2),
s1(x2) ∧ s5(x1, x2) → R(x1, x2),
s2(x) ∧ s4(x) → B(x),
s(x1) ∧ s1(x2) ∧ s2(x2) → S(x1, x2) },

and let qS be the boolean CQJFE qS()← ∃y.s(y).
One can verify that each of the following query is a com-

plete S-to-O Σ-rewriting of qS :
• q0
O()← K(∃y.C(y)),

• q1
O() ← (K(∃y.C(y)) ∧ ¬K(∃y1.A(y1) ∧ B(y1))) ∨

(K(∃y, y′.C(y) ∧ S(y, y′))),
• qnO() ← (K(∃y.C(y)) ∧ ¬K(∃y1.A(y1) ∧ B(y1)) ∧
¬K(∃y1, y2.A(y1) ∧ R(y1, y2) ∧ B(y2)) ∧ . . . ∧
¬K(∃y1, y2, . . . , yn.A(y1)∧R(y1, y2)∧R(y2, y3)∧. . .∧
R(yn−1, yn)∧B(yn)))∨(K(∃y, y′.C(y)∧S(y, y′))), for
every n ≥ 2.

Moreover, for every pair i, j ≥ 0 with i < j, one can
verify that certqjO,Σ < certqiO,Σ. It follows that, for ev-

ery n ≥ 0, qn+1
O is a better EQL-Lite(UCQ) complete

approximation of the S-to-O Σ-rewriting of qS compared
to qnO, and therefore, we conclude that no finite query ex-
ists that is an EQL-Lite(UCQ)-minimally complete S-to-
O Σ-rewriting of qS . Intuitively, this is due to the ability
of EQL-Lite(UCQ) of expressing epistemic forms of nega-
tion, which, under certain conditions, allows to exclude non-
sound rewritings, while keeping the rewriting complete.

We now move to EQL-Lite(UCQ)-maximally sound s-to-
o rewritings. Unfortunately, as for the complete case, such
s-to-o rewritings are not guaranteed to exists.
Theorem 2. There is an OBDA specification Σ =
〈O,S,M〉 and a query qS over S such that no
EQL-Lite(UCQ)-maximally sound S-to-O Σ-rewriting of
qS exists.
Proof (sketch). Consider the OBDA specification Σ =
〈O,S,M〉, whereO = ∅, andM is the following mapping:

{ s′(x) → C(x),
s(x) → C(x),
s1(x) → A(x),
s2(x1) ∧ s3(x1, x2) → R(x1, x2),
s1(x2) ∧ s5(x1, x2) → R(x1, x2),
s2(x) ∧ s4(x) → B(x),
s(x1) ∧ s1(x2) ∧ s2(x2) → S(x1, x2) },

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

247

and let qS be the boolean CQJFE qS()← ∃y.s′(y).
One can verify that each of the following query is a sound

S-to-O Σ-rewriting of qS :
• q0
O() ← K(∃y.C(y)) ∧ ¬K(∃y, y′.C(y) ∧ S(y, y′)) ∧
K(∃y0.A(y0) ∧B(y0)),

• qnO() ← K(∃y.C(y)) ∧ ¬K(∃y, y′.C(y) ∧ S(y, y′)) ∧
K((∃y0.A(y0) ∧ B(y0)) ∨ (∃y0, y1.A(y0) ∧ R(y0, y1) ∧
B(y1)) ∨ . . . ∨ (∃y0, y1, . . . , yn.A(y0) ∧ R(y0, y1) ∧
R(y1, y2)∧ . . .∧R(yn−1, yn)∧B(yn))), for every n ≥ 1.

Moreover, for every pair i, j ≥ 0 with i < j, one can ver-
ify that certqiO,Σ < certqjO,Σ

. It follows that, for every

n > 0, qn+1
O is a better EQL-Lite(UCQ) sound approxi-

mation of the S-to-O Σ-rewriting of qS compared to qnO,
and therefore, we conclude that no finite query exists that is
an EQL-Lite(UCQ)-maximally sound S-to-O Σ-rewriting
of qS .

In the light of the above inexpressibility results, we now
explore the following two alternative restricted scenarios.
In the first one (Section 5), we consider one-to-one map-
ping assertions, i.e., a limitation on GLAV mapping asser-
tions. In this case, we show that both EQL-Lite(UCQ)-
minimally complete and EQL-Lite(UCQ)-maximally sound
s-to-o rewritings always exist. In the second one (Sec-
tion 6), we weaken the LO query language by considering
s-to-o rewritings expressed in EQL-Lite−(UCQ), i.e., a frag-
ment of EQL-Lite(UCQ). In this case, while Theorem 2 al-
ready proves that EQL-Lite−(UCQ)-maximally sound s-to-
o rewritings may not exist, we prove that EQL-Lite−(UCQ)-
minimally complete s-to-o rewritings always exist.

5 The Case of One-To-One Mapping
In this section, we study the problem of computing s-to-
o rewritings in EQL-Lite(UCQ), for OBDA specifications
with one-to-one mapping.

In particular, we provide algorithms to compute
EQL-Lite(UCQ)-minimally complete and EQL-Lite(UCQ)-
maximally sound s-to-o rewritings, thus proving that for
OBDA specifications with one-to-one mapping, they are
guaranteed to exist. We now exploit the following property
of one-to-one mapping, which is crucial for the technical
treatment of this section.
Lemma 1. Given a one-to-one mapping M and an S-
database D, the chase of D w.r.t. M can be computed by
computing the union of the chase of each fact in D, i.e.,
M(D) =

⋃
α∈DM(α).

Let us first focus on EQL-Lite(UCQ)-minimally complete
rewritings, and present Algorithm 1. Roughly speaking, the
algorithm computes an EQL-Lite(UCQ) query qO by first
chasing (the incomplete S-database associated to) qS w.r.t.
M, using > to bind possible distinguished variables of qS
not involved in M(qS), and then exploiting the epistemic
operator to bind existential variables coming from qS . Note,
in particular, that the latter is achieved by pushing the subset
Y of the existential variables Y of qS occurring inM(qS)
inside the K operator. Finally, Z denotes the set of fresh
existential variables introduced by the chase.

Algorithm 1 MinimallyComplete

Input:
OBDA specification Σ = 〈O,S,M〉
CQJFE qS(~t)← φ(~x, Y)

Output:
EQL-Lite(UCQ) query qO(~t) over O

1: return qO(~t)← ∃Y .K(∃Z.M(qS) ∧ >(~x)),
where Y ⊆ Y is the subset of existential variables of
qS occurring inM(qS), while Z are fresh variables

Observe that the running time of Algorithm 1 is indepen-
dent of both the size of O and S , and polynomial in the size
of all inputs of the problem (indeed, for one-to-one mapping
there is no query to evaluate when applying the chase). The
following example illustrates the algorithm.

Example 7. Let Σ = 〈O,S,M〉 be such that O = { A1 v
∃P1, A2 v ∃P2 }, S = { s1, s2, s3, s4, s5 }, andM is the
following mapping:

{ s1(x1, x2) → P1(x1, x2),
∃y1, y2.s2(x, y1, y2) → A1(x),
∃y.s3(x, y) → ∃z.P2(x, z),
∃y.s4(x, y) → A2(x),
∃y.s5(x1, x2, y) → P3(x1, x2),
∃y1, y2.s5(x, y1, y2) → A3(x) }

For the CQJFE qS(x)← ∃y1, y2, y3.s1(x, y1)∧ s3(x, y2)∧
s5(c1, c2, y3), one can easily verify that Algorithm 1 returns
the query qO(x) ← ∃y1.K(∃z1.P1(x, y1) ∧ P2(x, z1) ∧
P3(c1, c2) ∧ A3(c1)), which is the unique (up to equiva-
lence w.r.t. Σ) EQL-Lite(UCQ)-minimally complete S-to-O
Σ-rewriting of qS .

Note that qO is not a sound S-to-O Σ-rewriting of qS be-
cause of the axiom A2 v ∃P2 and the mapping s4(x, y) →
A2(x). Without at least one of them, qO is also a sound (and
therefore a perfect) S-to-O Σ-rewriting of qS .

It is easy to see that the queries of the same shape of those
returned by Algorithm 1 enjoy of the following property,
which holds even when considering GLAV mappings rather
than one-to-one mappings.

Lemma 2. Let Σ = 〈O,S,M〉 be an OBDA specification
and D be an S-database. For a boolean query of the form
qO()← ∃Y .K(φ), where φ is a CQ, we have certDqO,Σ true
iff there is a function h from the set of terms occurring in φ
to the set of terms occurring in CM(D)

O (also called homo-
morphism from qO() to CM(D)

O) such that (i) h(c) = c, for
each constant c; (ii) h(Y) is a constant, for each Y ∈ Y ;
(iii) h(φ) ⊆ CM(D)

O , where h(φ) is the image of the set of
atoms in φ under h.

By exploiting Lemmata 1 and 2, we are now ready to
prove the following theorem.

Theorem 3. Algorithm 1 terminates and computes the
unique (up to equivalence w.r.t. Σ) EQL-Lite(UCQ)-
minimally complete S-to-O Σ-rewriting of qS .

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

248

Proof. Termination is trivial, and therefore not discussed.
As for the correctness, observe that the possibly intro-

duced fresh existential variables Z of qO do not appear out-
side the epistemic operator K, and therefore the query qS
corresponds to, or it is contained in, a disjunct of qFOL

O (note
that, since in qO the “¬” operator does not occur, its perfect
ontology-to-source rewriting qFOL

O can be always expressed
as an equivalent UCQ). But then, qS v qFOL

O implies that
qO is a complete S-to-O Σ-rewriting of qS . We now show
that qO is actually the unique (up to equivalence w.r.t. Σ)
EQL-Lite(UCQ)-minimally complete S-to-O Σ-rewriting
of qS . To this aim, we prove by contradiction that each
EQL-Lite(UCQ) query q′O such that certqO,Σ 6v certq′O,Σ
is not a complete S-to-O Σ-rewriting of qS .

Suppose that for an EQL-Lite(UCQ) query q′O we have
certqO,Σ 6v certq′O,Σ. So, there is an S-database D for
which certDqO,Σ 6⊆ certDq′O,Σ

, i.e, ~c ∈ certDqO,Σ and ~c 6∈
certDq′O,Σ

for a tuple of constants ~c. We now exhibit an S-

database D′ such that ~c ∈ qD′

S and ~c 6∈ certD
′

q′O,Σ
.

Since ~c ∈ certDqO,Σ, by Lemma 2 there is an homomor-

phism h from qO(~t/~c) to CM(D)
O such that h(Y) is a constant

occurring in D, for each Y ∈ Y . Let h′ be the function
extending h by assigning a fresh constant cy (resp., cx) to
each existential variable y ∈ Y \ Y (resp., distinguished
variable x not appearing inM(qS)) of qS . Let h′(qS) and
h(qO) ⊆ CM(D)

O be the set of facts corresponding to the im-
age of qS under h′ and the set of atoms corresponding to the
image of qO under h, respectively.

Consider each ground atom α ∈ h′(qS) and its chase
M(α). Since the left-hand side of each mapping assertion
inM is an atom without constants or repeated variables, and
since h(qO) ⊆ CM(D)

O with h(Y) being a constant for each
variable Y ∈ Y , it is not hard to see that there always exists
a homomorphism fromM(α) to CM(D)

O . Due to Lemma 1,
moreover, it follows that there exists a homomorphism from
M(h(qS)) to CM(D)

O .
Consider now the S-database D′ = D ∪ h′(qS). Obvi-

ously, ~c ∈ qD′

S trivially holds. Furthermore, due to Lemma 1
and the above considerations, we have that M(D′) =
M(D)∪M(h′(qS)), in which there exists a homomorphism
from M(h′(qS)) to CM(D)

O . Therefore, we easily derive
that CM(D′)

O and CM(D)
O are homomorphically equivalent.

Clearly, since ~c 6∈ certDq′O,Σ
, we derive ~c 6∈ certD

′

q′O,Σ
. Thus,

~c ∈ qD′

S and ~c 6∈ certD
′

q′O,Σ
imply that q′O is not a complete

S-to-O Σ-rewriting of qS , as required.

We now move to the problem of computing
EQL-Lite(UCQ)-maximally sound s-to-o rewritings,
and present Algorithm 2. In a nutshell, the algorithm starts
by checking whether there is some distinguished variable
of qS not appearing in M(qS), and if this is the case,
then it returns the query ⊥. Otherwise, it computes the
EQL-Lite(UCQ)-minimally complete S-to-O Σ-rewriting
of qS , and for each disjunct qiS in its reformulation qFOL

O

Algorithm 2 MaximallySound

Input:
OBDA specification Σ = 〈O,S,M〉
CQJFE qS(~t)← φ(~x, Y)

Output:
EQL-Lite(UCQ) query qO(~t) over O

1: if there is a variable in ~t not occurring inM(qS) then
2: return qO(~t)← ⊥(~x)
3: end if
4: Let qO(~t) := MinimallyComplete(Σ, qS)
5: for qiS ∈ qFOL

O such that qiS 6v qS do
6: qO(~t) := qO(~t) ∧ ¬∃Yi.K(∃Zi.M(qiS)), where Yi

is the subset of the existential variables of qiS
occurring inM(qiS) and not occurring inM(qS),
while Zi are fresh variables

7: end for
8: return qO(~t)

over S such that qiS 6v qS , it adds a conjunct that is the
negation of the EQL-Lite(UCQ)-minimally complete S-to-
O Σ-rewriting of qiS . Intuitively, by doing so it prevents
the rewriting to return answers that are not in qS . It is
worth noting that Algorithm 2 exploits the property that,
in step 5, since in the EQL-Lite(UCQ)-minimally complete
S-to-O Σ-rewriting of qS the “¬” operator does not occur,
its perfect ontology-to-source rewriting qFOL

O can be always
expressed as an equivalent UCQ over S .

As for the running time of Algorithm 2, we observe that
it is independent of the size of S , polynomial in the size
of both O and M, and exponential in the size of qS . This
latter is due to the fact that qFOL

O in step 5 is in general the
union of an exponential number of CQs with respect to the
number of atoms occurring in qS , and also due to the various
containment check of CQs. Finally, note that the overall
running time is exponential in the size of the input. The
following example illustrates the algorithm.

Example 8. Let Σ = 〈O,S,M〉 be such that O = {A1 v
∃P1, A2 v ∃P2}, S = { s1, s2, s3, s4, s5, s6 }, and M is
the following mapping:

{ s1(x1, x2) → P1(x1, x2),
∃y.s2(x, y) → ∃z.P2(x, z),
∃y.s3(x1, x2, y) → P2(x1, x2),
∃y1, y2.s4(x, y1, y2) → A2(x),
∃y1, y2.s4(y1, y2, x) → ∃z.P3(x, z),
s5(x) → ∃z.P1(x, z),
s6(x) → A1(x) }

and let qS(x) ← ∃y1, y2.s1(x, y1) ∧ s2(x, y2). Al-
gorithm 2 first sets qO equal to the EQL-Lite(UCQ)-
minimally complete S-to-O rewriting of qS , i.e., qO(x) ←
∃y1.K(∃z1.P1(x, y1) ∧ P2(x, z1)). Then, it computes the
perfect ontology-to-source rewriting qFOL

O of qO, which is
the union of the following CQs:

• q1
S(x)← ∃y1, y

1
2 .s1(x, y1) ∧ s2(x, y1

2),
• q2
S(x)← ∃y1, y

2
2 , y

2
3 .s1(x, y1) ∧ s3(x, y2

2 , y
2
3),

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

249

• q3
S(x)← ∃y1, y

3
2 , y

3
3 .s1(x, y1) ∧ s4(x, y3

2 , y
3
3).

While q1
S v qS , it is easy to see that qiS 6v qS for both

i = 2 and i = 3. Thus, the algorithm returns the query:

qO(x)← ∃y1.K(∃z1.P1(x, y1) ∧ P2(x, z1))
∧¬∃y2

2 .K(P1(x, y1) ∧ P2(x, y2
2))

∧¬∃y3
3 .K(∃z2.P1(x, y1) ∧A2(x) ∧ P3(y3

3 , z2)),

which is the unique (up to equivalence w.r.t. Σ)
EQL-Lite(UCQ)-maximally sound S-to-O Σ-rewriting of
qS , but not a complete S-to-O Σ-rewriting of qS .

Theorem 4. Algorithm 2 terminates and computes the
unique (up to equivalence w.r.t. Σ) EQL-Lite(UCQ)-
maximally sound S-to-O Σ-rewriting of qS .

Proof. Termination is trivial, and therefore not discussed.
As for the correctness, we first prove that the query qO

returned by the algorithm is a sound S-to-O Σ-rewriting of
qS . Let D be any S-database and ~c be any tuple of constants
in D such that ~c ∈ certDqO,Σ. By construction of qO and due
to Theorem 3, it follows that ~c ∈ certDqcO,Σ

, where qcO(~t) ←
∃Y .K(∃Z.M(qS)). Therefore, there is at least a disjunct
q′S of qcO

FOL for which~c ∈ q′S
D. Here there are two possible

cases: either q′S 6v qS , or q′S v qS .
In the former case, we have that qO contains a conjunc-

tion of the form ¬∃Y ′.K(∃Z ′.M(q′S)). Observe that, since
q′S is a disjunct of qcO

FOL, each distinguished variable of
q′S appears in M(q′S). Due to Theorem 3, it follows that
∃Y ′.K(∃Z ′.M(q′S)) is actually the body of the query cor-
responding to a complete S-to-O Σ-rewriting of q′S . Thus,
since ~c ∈ q′S

D, the conjunction ∃Y ′.K(∃Z ′.M(q′S)) is as
well true for the tuple of constants ~c, which leads to a contra-
diction to the fact that ~c ∈ certDqO,Σ. As for the latter case,
since ~c ∈ q′S

D and q′S v qS , by definition of query contain-
ment we derive ~c ∈ qDS . Therefore, we conclude that qO is a
sound S-to-O Σ-rewriting of qS .

We now show that qO is actually the unique (up to equiv-
alence w.r.t. Σ) EQL-Lite(UCQ)-maximally sound S-to-O
Σ-rewriting of qS . To this aim, we prove by contradiction
that each EQL-Lite(UCQ) query q′O such that certq′O,Σ 6v
certqO,Σ is not a sound S-to-O Σ-rewriting of qS .

Suppose that for an EQL-Lite(UCQ) query q′O we have
certq′O,Σ 6v certqO,Σ. So, there is an S-database D for
which certDq′O,Σ

6⊆ certDqO,Σ, i.e, ~c ∈ certDq′O,Σ
and ~c 6∈

certDqO,Σ for a tuple of constants ~c. If ~c 6∈ qDS , then q′O is
trivially not a sound S-to-O Σ-rewriting of qS . Therefore,
we assume that ~c ∈ qDS and exhibit an S-database D′ such
that ~c 6∈ qD′

S and ~c ∈ certD
′

q′O,Σ
.

Consider each homomorphism h from qS(~t/~c) to D, and
let h(qS) denote the set of facts corresponding to the image
of qS under h. Clearly, due to Theorem 3 and Lemma 2, the
conjunction ∃Y .K(∃Z.M(qS)) of qO is true under h with
h(Y) being a constant for each variable Y ∈ Y . Since by
assumption ~c 6∈ certDqO,Σ, by construction of qO there is at
least a conjunction ∃Yi.K(∃Zi.M(qiS)) in qO true under h,
where qiS is a disjunct of qcO

FOL such that qiS 6v qS . Let hi

be the homomorphism from ∃Yi.K(∃Zi.M(qiS)) to CM(D)
O

such that hi(Y) = h(Y) for each existential variable Y ∈ Y
occurring also in M(qiS), and hi(x) = h(x) for each dis-
tinguished variable x ∈ ~t. We denote by h′ be the function
extending h by assigning a different fresh constant cy to each
existential variable y 6∈ Yi ∪ Y of qiS .

With similar arguments as those in the proof of Theo-
rem 3, we derive that there exists a homomorphism from
M(h′(qiS)) to CM(D)

O , where h′(qiS) denotes the set of facts
corresponding to the image of qiS(~t/~c) under h′. Further-
more, since qiS is a disjunct of qcO

FOL, and sinceM is a one-
to-one mapping andO is a DL-Lite−R ontology, it is straight-
forward to verify that all the possible logical consequences
of the set of facts h(qS) over the alphabet of O are a subset
of the logical consequences of the set of facts h′(qiS).

Due to the above considerations, we derive that the S-
databaseDh = (D\h(qS))∪h′(qiS) is such that CM(Dh)

O and
CM(D)
O are homomorphically equivalent. By iterating the

above process for each homomorphism h from qS(~t/~c) to
D, since qS is a CQJFE, it is not hard to see that we obtain an
S-databaseD′ such that (i) there is no more homomorphism
from qS(~t/~c) to D′ (thus, ~c 6∈ qD

′

S) and (ii) CM(D′)
O and

CM(D)
O are homomorphically equivalent. Clearly, since ~c ∈

certDq′O,Σ
, we have ~c ∈ certD

′

q′O,Σ
as well. Thus, ~c 6∈ qD

′

S

and ~c ∈ certD
′

q′O,Σ
imply that q′O is not a sound S-to-O Σ-

rewriting of qS , as required.

6 The Case of Restricted Query Language
In this section, we explore the possibility of expressing
s-to-o rewritings in a fragment of the target query lan-
guage EQL-Lite(UCQ) considered so far, which is still non-
monotonic. In particular, while the proof of Theorem 2
shows that epistemic negation already suffices to prevent the
existence of s-to-o rewritings (even with empty ontologies
and pure GAV mappings), the proof of Theorem 1 suggests
to remove the union (i.e., the rule ψ ::= ψ1 ∨ ψ2) from the
syntax of EQL-Lite(UCQ), in order to get an LO ensuring
the existence of LO-minimally complete s-to-o rewritings.

Thus, based on the observation that union can be ex-
pressed by means of conjunction and nested negation, we
next consider the fragment of EQL-Lite(UCQ) where both
nested negation and union operators are disallowed. For-
mally, an EQL-Lite−(UCQ) query is a possibly open for-
mula built according to the following syntax, where % is the
body of a UCQ over O:

ψ ::= K% | ∃y.ψ | ψ1 ∧ ψ2 | ¬δ
δ ::= K% | ∃y.δ

The following example illustrates the EQL-Lite−(UCQ)
query language.
Example 9. The queries qnO for n ≥ 0 used in the proof of
Theorem 2, as well as the queries q1 and q2 of Example 2,
are EQL-Lite−(UCQ) queries. On the contrary, the query
qnO()← K(%)∧¬K(%0)∧¬K(%1)∧ . . .∧¬K(%n)∨K(%′),
introduced in the proof of Theorem 1, is not, for any n ≥ 1.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

250

Note that both Algorithms 1 and 2 return an
EQL-Lite−(UCQ) query. Therefore, Theorem 3 and
Theorem 4 actually show that, in the case of one-to-one
mapping, EQL-Lite−(UCQ) is sufficient for expressing
all kinds of source-to-ontology rewritings. Furthermore,
since the queries involved in the proof of Theorem 2 are
EQL-Lite−(UCQ) queries, such proof in fact shows a
stronger result: even EQL-Lite−(UCQ)-maximally sound
s-to-o rewritings are not guaranteed to exist.

Thus, it remains to study the case of EQL-Lite−(UCQ)-
minimally complete s-to-o rewritings. We now prove that
Algorithm 1 can be used to compute EQL-Lite−(UCQ)-
minimally complete s-to-o rewritings even for OBDA spec-
ifications with GLAV mapping5. Before presenting the re-
sult, we illustrate its application with an example.
Example 10. Let Σ = 〈O,S,M〉 be such that O = ∅,
S = { s1, s2, s3 }, andM is the following:
{ ∃y.s1(x1, x2) ∧ s2(x2, y)→ ∃z.P (x1, z) ∧ P (z, x2),
∃y, y1, y2.s2(x, y) ∧ s3(y, y1, y2)→ ∃z.P ′(x, z),
∃y.s3(y, x, b)→ A(x) }

For the CQ qS(x1, x2)← ∃y1, y2.s1(x1, y1) ∧ s2(y1, y2) ∧
s3(y2, x2, a), one can easily verify that Algorithm 1 re-
turns the query qO(x1, x2) ← ∃y1.K(∃z1, z2.P (x1, z1) ∧
P (z1, y1) ∧ P ′(y1, z2) ∧>(x2)), which is the unique (up to
equivalence w.r.t. Σ) EQL-Lite−(UCQ)-minimally complete
S-to-O Σ-rewriting of qS .
Theorem 5. Algorithm 1 terminates and computes the
unique (up to equivalence w.r.t. Σ) EQL-Lite−(UCQ)-
minimally complete S-to-O Σ-rewriting of qS .

Proof. Termination trivially follows from the termination of
the chase w.r.t. a GLAV mapping (Fagin et al. 2005).

For the correctness, as in the proof of Theorem 3, we have
qS v qFOL

O , where qO is the query returned by the algo-
rithm. Thus, qO is a complete S-to-O Σ-rewriting of qS . We
now show that qO is the unique (up to equivalence w.r.t. Σ)
EQL-Lite−(UCQ)-minimally complete S-to-O Σ-rewriting
of qS . To this aim, we prove by contradiction that each
EQL-Lite−(UCQ) query q′O such that certqO,Σ 6v certq′O,Σ
is not a complete S-to-O Σ-rewriting of qS .

Suppose the existence of an EQL-Lite−(UCQ) query q′O
such that certqO,Σ 6v certq′O,Σ. So, there is an S-database
D for which certDqO,Σ 6⊆ certDq′O,Σ

, i.e, ~c ∈ certDqO,Σ and ~c 6∈
certDq′O,Σ

for a tuple of constants~c. Here, there are two cases:
either q′O contains a negated part ¬δ, i.e., q′O is of the form
q′O(~t′) ← ∃Y ′.K(%1) ∧ . . . ∧K(%n) ∧ ¬(∃W ′.K(%n+1) ∧
. . .∧K(%m)) with %i being a UCQ for each i ∈ [1,m], or q′O
is a query of the form q′O(~t′) ← ∃Y ′.K(%1) ∧ . . . ∧K(%n)
with %i being a UCQ for each i ∈ [1, n].

In the former case, consider a source database D′ ⊇ D
in which each relation s ∈ S contains all possible tuples of
constants appearing in D, qS , and q′O of the same arity of s.
It is straightforward to verify that ~c ∈ qD′

S and ~c 6∈ certD
′

q′O,Σ
,

and thus q′O is not a complete S-to-O Σ-rewriting of qS .
5In this case the running time of the algorithm becomes expo-

nential in the size of M but remains polynomial in the size of qS .

In the latter case, consider CM(D)
O . Since ~c ∈ certDqO,Σ,

by Lemma 2 there is an homomorphism h from qO(~t/~c) to
CM(D)
O such that h(Y) is a constant occurring in D, for each
Y ∈ Y . Consider now ~t = (t1, . . . , tn) and the S-database
D′ corresponding to the freezing of qS(~t) ← φ(~x, Y), i.e.,
the set of facts over S appearing in φ(~x, Y) where each ex-
istential variable y (resp., each distinguished variable x) is
replaced by a different fresh constant cy (resp., cx). Let
~c′ = (c′1, . . . , c

′
n) be the tuple of constants where c′i = cx

if ti = x, and c′i = c if ti = c, for i ∈ [1, n]. Obvi-
ously, ~c′ ∈ qD

′

S trivially holds. Moreover, by construction
of qO and the fact that ~c ∈ certDqO,Σ, there is a function f

from CM(D′)
O to CM(D)

O such that each constant of CM(D′)
O is

mapped to a constant of CM(D)
O . More specifically, there is

a function f such that f(cY) = h(Y) (resp., f(cx) = h(x),
f(c) = h(c) = c) for each existential variable Y ∈ Y
(resp., distinguished variable x, constant c) of qS . Notice
that f(~c′) = ~c. Due to the above function f , and the fact that
from Lemma 2 there is no homomorphism h from q′O(~t′/~c)

to CM(D)
O such that h(y′) is a constant for each y′ ∈ Y ′ (re-

call that ~c 6∈ certDq′O,Σ
and Y ′ are the set of existential vari-

ables of q′O appearing outside the epistemic operator K),
we easily derive that there is no homomorphism h′ from
q′O(~t′/~c′) to CM(D′)

O such that h′(y′) is a constant for each
y′ ∈ Y ′ (otherwise, the function f ◦ h′ would be a homo-
morphism from q′O(~t′/~c) to CM(D)

O with f(h′(y′)) being a
constant for each y′ ∈ Y ′, and, due to Lemma 2, this would
be a contradiction to the fact that ~c 6∈ certDq′O,Σ

). It follows

that ~c′ 6∈ certD
′

q′O,Σ
. Thus, ~c′ ∈ qD′

S and ~c′ 6∈ certD
′

q′O,Σ
imply

that q′O is not a complete S-to-O Σ-rewriting of qS .

7 Conclusions
We have presented the first work on using non-monotonic
languages for expressing abstractions of data services in
OBDA. The concepts and the results presented in this pa-
per show that non-monotonicity is indeed an interesting fea-
ture to consider when computing the s-to-o rewritings of a
source query. There are many interesting directions for con-
tinuing the work presented here. For instance, we aim at
singling out more interesting cases where abstractions ex-
pressed in EQL-Lite(UCQ) can be actually computed. We
observe that the proofs reported in Sections 5 and 6 already
show that the algorithm for computing minimally complete
rewritings in the two restricted settings also work when qS
is a CQ (rather than a CQJFE). On the other hand, it is still
open whether a maximally sound rewriting for a CQ always
exists in the case of one-to-one mapping. Another notable
direction is to study the existence problem in the general
setting: check whether an EQL-Lite(UCQ) s-to-o rewriting
(perfect, or approximated) exists for a given OBDA specifi-
cation and a given source query expressed as a CQ. Finally,
we believe that the notion of abstraction studied here can be
of interest in other data interoperation architectures, such as
peer-to-peer data integration (Calvanese et al. 2003).

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

251

Acknowlegments
This work has been supported by Sapienza under the
project “PRE-O-PRE” and by MIUR, under the SIR project
“MODEUS” - grant n. RBSI14TQHQ, and under the PRIN
2017 project “HOPE” (prot. 2017MMJJRE).

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison Wesley Publ. Co.
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and
Patel-Schneider, P. F., eds. 2003. The Description Logic
Handbook: Theory, Implementation and Applications. Cam-
bridge University Press.
Bienvenu, M. 2016. Ontology-mediated query answering:
Harnessing knowledge to get more from data. In Proceed-
ings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence (IJCAI 2016), 4058–4061.
Calı̀, A.; Gottlob, G.; and Kifer, M. 2013. Taming
the infinite chase: Query answering under expressive rela-
tional constraints. Journal of Artificial Intelligence Research
48:115–174.
Calvanese, D.; Damaggio, E.; De Giacomo, G.; Lenz-
erini, M.; and Rosati, R. 2003. Semantic data integra-
tion in P2P systems. In Proc. of the Int. Workshop on
Databases, Information Systems and Peer-to-Peer Comput-
ing (DBISP2P 2003).
Calvanese, D.; De Giacomo, G.; Lenzerini, M.; Rosati, R.;
and Vetere, G. 2004. DL-Lite: Practical reasoning for rich
DLs. In Proceedings of the Seventeenth International Work-
shop on Description Logic (DL 2004), volume 104 of CEUR
Electronic Workshop Proceedings, http://ceur-ws.org/.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini,
M.; and Rosati, R. 2007a. EQL-Lite: Effective first-order
query processing in description logics. In Proceedings of the
Twentieth International Joint Conference on Artificial Intel-
ligence (IJCAI 2007), 274–279.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007b. Tractable reasoning and efficient
query answering in description logics: The DL-Lite family.
Journal of Automated Reasoning 39(3):385–429.
Calvanese, D.; De Giacomo, G.; Lenzerini, M.; and Vardi,
M. Y. 2007c. View-based query processing: On the relation-
ship between rewriting, answering and losslessness. Theo-
retical Computer Science 371(3):169–182.
Cima, G.; Lenzerini, M.; and Poggi, A. 2019. Semantic
characterization of data services through ontologies. In Pro-
ceedings of the Twenty-Eighth International Joint Confer-
ence on Artificial Intelligence (IJCAI 2019), 1647–1653.
Cima, G. 2017. Preliminary results on ontology-based
open data publishing. In Proceedings of the Thirtieth In-
ternational Workshop on Description Logics (DL 2017),
volume 1879 of CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/.
Doan, A.; Halevy, A. Y.; and Ives, Z. G. 2012. Principles of
Data Integration. Morgan Kaufmann.

Fagin, R.; Kolaitis, P. G.; Miller, R. J.; and Popa, L. 2005.
Data exchange: Semantics and query answering. Theoreti-
cal Computer Science 336(1):89–124.
Lenzerini, M. 2002. Data integration: A theoretical perspec-
tive. In Proceedings of the Twenty-First ACM SIGACT SIG-
MOD SIGART Symposium on Principles of Database Sys-
tems (PODS 2002), 233–246.
Lenzerini, M. 2018. Managing data through the lens of an
ontology. AI Magazine 39(2):65–74.
Levesque, H. J., and Lakemeyer, G. 2001. The Logic of
Knowledge Bases. The MIT Press.
Levesque, H. J. 1984. Foundations of a functional approach
to knowledge representation. Artificial Intelligence 23:155–
212.
Lutz, C.; Marti, J.; and Sabellek, L. 2018. Query ex-
pressibility and verification in ontology-based data access.
In Proceedings of the Sixteenth International Conference on
the Principles of Knowledge Representation and Reasoning
(KR 2018), 389–398.
Motik, B.; Cuenca Grau, B.; Horrocks, I.; Wu, Z.; Fokoue,
A.; and Lutz, C. 2012. OWL 2 Web Ontology Language
profiles (second edition). W3C Recommendation, World
Wide Web Consortium. Available at http://www.w3.org/TR/
owl2-profiles/.
Ortiz, M. 2018. Improving data management using do-
main knowledge. In Proceedings of the Twenty-Seventh In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI 2018), 5709–5713.
Poggi, A.; Lembo, D.; Calvanese, D.; De Giacomo, G.;
Lenzerini, M.; and Rosati, R. 2008. Linking data to on-
tologies. Journal on Data Semantics X:133–173.
Reiter, R. 1990. What should a database know? Journal of
Logic Programming 14:127–153.
Xiao, G.; Calvanese, D.; Kontchakov, R.; Lembo, D.; Poggi,
A.; Rosati, R.; and Zakharyaschev, M. 2018. Ontology-
based data access: A survey. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelli-
gence (IJCAI 2019), 5511–5519.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

252

http://ceur-ws.org/
http://ceur-ws.org/
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-profiles/

	Introduction
	Preliminaries
	Non-Monotonic Abstractions
	EQL-Lite (UCQ) Query Language
	EQL-Lite (UCQ) S-to-O Rewritings

	On the Non-Existence of S-to-O Rewritings
	The Case of One-To-One Mapping
	The Case of Restricted Query Language
	Conclusions

