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Abstract— This paper presents a decentralized Model Predic-
tive Control (MPC) for Plug-in Electric Vehicles (PEVs) charg-
ing, in presence of both network and drivers’ requirements.
The open loop optimal control problem at the basis of MPC is
modeled as a consesus with regularization optimization problem
and solved by means of the decentralized Alternating Direction
Method of Multipliers (ADMM). Simulations performed on a
realistic test case show the potential of the proposed control
approach and allow to provide a preliminary evaluation of the
compatibility between the required computational effort and
the application in real time charging control system.

NOMENCLATURE
t Current time
tdepr Departure time of vehicle r ∈ Rt
Tt Set of time instants in the control window
Rt Set of charging PEVs at time t
p PEV charging power

SOC PEV state of charge
SOCref Desired PEV state of charge

e PEV state of charge error
ξ PEV conversion losses
P Scheduled aggregated charging power
P ref Reference aggregated charging power
E Aggregated charging power tracking error
D PEV cost function
C Load area cost function
∆t Sampling time
r, τ Generic elements of sets Rt, Tt (subscript)
ρ augmented lagrangian parameter
ε ADMM tolerance

I. INTRODUCTION

Following the achievements of the 2020 climate and
energy framework [1], the European Commission has estab-
lished new challenging targets for 2030, with the objective of
gradually decarbonizing the energy sector by moving away
from fossil fuels [2]. In this context a key role is going to be
played by plug-in electric vehicles (PEVs), provided that the
aggregated power needed for charging is controlled to match
power generation from renewables and keep feasible oper-
ation of electricity distribution grids [3], [4]. The problem
of PEV charging control has been intensively investigated
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during the last decade: beyond the satisfaction of driver
preferences for charging, typical requirements taken into
account at network level involve voltage regulation [5]–
[7], active power regulation [8], [9], minimization of power
losses [10], [11], overload avoidance [12]–[14], balancing
among charging power and local generation [15]–[17], etc.
Several methodologies have been applied such as several
forms of optimization [18], [19], learning techniques [20],
model predictive control (MPC) [21]–[24], etc.; among them
MPC has been successfully field tested in the context of
some EU research projects [25] and has been applied in
pioneer production environments [26]. However the need of
solving in real time the MPC inherent optimization problem
raises concerns, especially when increasing the number and
duration of simultaneous charging sessions. Though com-
plexity can be partially broken by clustering charging PEVs
according to the electricity grid topology [27] and substations
power rating, promising results are expected to come from
the machinery of well established decentralized optimization
techniques [28], using which a set of less challenging prob-
lems are solved in parallel and driven iteratively towards the
optimal solution of the original centralized problem.

In this paper we propose an original application of the
alternating direction method of multipliers (ADMM) to the
problem of decentralized PEVs charging control, in presence
of requirements concerning the regulation of the aggregated
PEVs charging power and the respect of drivers’ privacy
[29] and charging preferences; we model the optimization
problem at the basis of the MPC framework as a consensus
with regularization optimization problem and we take ad-
vantage of ADMM in order to achieve an effective real time
decentralized control implementable in practice in realistic
charging scenarios. The proposed formulation reconsiders
the control objectives characterizing the successfully field
tested centralized formulation presented in [30] and [31], also
taking into account some decentralized optimization concepts
characterizing the preliminary work [32].

This work raises in the context of the EU research project
5G Solutions [33], which aims to show the effectiveness of
the 5G communication technology in use cases defined over
several application fields: in the context of smart grids, its
low latency and high reliability are key features expected
to allow real time decentralized PEVs charging control
techniques characterized by a potentially large number of
communications among the optimization agents.

The remainder of the paper is organized as follows. Sec-
tion II outlines the charging scenario and the control objec-
tives. Section III presents the problem formulation. Section



IV at first recalls the main concepts and results at the basis
of ADMM and consensus with regularization optimization
problem, and then shows how the proposed formulation can
be put in this latter form. Section V is dedicated to the
presentation of simulations and the discussion of the related
results. In section VI the concluding remarks are drawn
together with the expected future developments.

II. SCENARIO AND CONTROL OBJECTIVES

The reference scenario considers a load area, namely a
node of the electricity distribution grid hosting a set of
charging stations available for the provisioning of the charg-
ing service; all the charging stations share the same point
of connection to the grid (typically a MV/LV substation).
A reference charging power is assigned to the load area,
representing a target load curve optimizing some operation
criteria; this reference may be in principle time-dependent
and subject to modifications over the time through short-
term notification (demand side management (DSM) signal).
Each driver connecting his/her PEV to a charging station is
expected to declare the initial and desired state of charge
(SOC) and the time of departure from the charging station.

The control system is in charge of computing in real time
the charging power setpoints that each PEV has to actuate
during its charging session; in this work we consider the
following control objectives:

1) Power tracking. The aggregated charging power in the
load area has to track the time-dependent reference.

2) Charging preferences. Each PEV has to reach the de-
sired SOC level no later than the departure time.

3) Privacy. The charging power setpoint has to be com-
puted locally (i.e. at the level of each PEV) without
sharing PEV parameters and driver’s charging prefer-
ences with external agents.

For a detailed explanation of the reference scenario and re-
lated use cases the reader can refer to the previous work [30].

III. CONTROL PROBLEM FORMALIZATION

The proposed control is based on the well known MPC
methodology [34]. At each sampling time a measure (or at
least an estimation) of the SOC is taken from all connected
PEVs; then, a proper open loop optimal control problem
is solved, which provides an optimal control sequence over
the control window for each PEV, whose the first sample is
actually applied to the plant. The procedure is then repeated
at the upcoming sampling time to realize a real time closed
loop control framework.

In the following we define the open loop optimal control
problem at the basis of the MPC framework. In what follows
t denotes the current time, Tt = {t, t+ 1, . . . , t+H − 1} is
the set of discrete time instants within the control window
starting from t, τ the generic time instant within the set.
The set Rt is introduced to denote the PEVs connected to
the charging stations at t and consequently being part of the
control problem.

The open loop optimal control problem is built taking into
account the requirements reported in Section II, together with

technical limitations and constraints related both to the PEVs
and the load area. In order to model requirements 1 and 2
we consider a target function of the form

J =
∑
τ∈Tt

[ ∑
r∈Rt

Dr(er(τ/t)) + C(E(τ/t))

]
(1)

in which Dr and C are proper functions accounting for
performances at PEVs and load area levels respectively.
As far as concerns each PEV, a function Dr is introduced
to model the disutility resulting from the deviation of the
current state of charge from the desired one. Defining the
SOC error at τ as er(τ/t) = SOCr(τ/t) − SOCrefr , the
function Dr is taken as

Dr(er(τ/t)) = αre
2
r(τ/t) ∀τ ∈ Tt (2)

where αr represents a weight used to balance the charging
preference requirements among different agents.

As far as concerns the load area, the function C is intro-
duced to penalize the deviation of the aggregated charging
power with respect to the reference power. Defining the
tracking error at τ as E(τ/t) = P (τ/t) − P ref (τ/t), the
function C is taken as

C(E(τ/t)) = β(τ/t)E(τ/t)2 ∀τ ∈ Tt (3)

where β(τ/t) is a weight used to enforce the tracking at
time instants near to the current time t. Combining the cost
items (2) and (3) in the target function (1) and minimizing it
introduces a trade-off between two competing requirements:
the one of charging the PEVs as fast as possible and the
one of smoothing the aggregated charging power so that it
tracks a target curve which guarantees proper operation of
the load area over the time. The connection among the above
mentioned competing terms is given by the power balance
in the load area and the SOC error dynamics. The former is
expressed by the equality constraint∑

r∈Rt

pr(τ/t) = P (τ/t) , ∀τ ∈ Tt (4)

while the latter is modeled by the linear discrete time
invariant system

er(τ+1/t)=er(τ/t)−(1−ξr)∆t pr(τ/t),∀τ ∈ Tt,∀r ∈ Rt
er(t/t) = er(t),∀r ∈ Rt

(5)

where ξr is a parameter accounting for the conversion losses,
∆t represents the sampling time and the intial SOC error
er(t) is the measure taken from the PEV at t. In order
to enforce the satisfaction of charging preferences, the hard
constraints

er(t
dep
r ) = 0 , ∀r ∈ Rt (6)

is included in the problem formalization, where tdepr repre-
sents the departure time of the r-th vehicle.

Finally, other constraints come from the technical lim-
itations on the PEV charging power and the aggregated



charging power in the load area. We consider in this paper
the box contraints

pminr ≤ pr(τ/t) ≤ pmaxr , ∀r ∈ Rt , ∀τ ∈ Tt (7)

Pmin ≤ P (τ/t) ≤ Pmax , ∀τ ∈ Tt. (8)

In the light of the above, taking into account control
objective 3 and introducing for notational convenience the
vectors pr = col(pr(τ/t), pr(τ + 1/t), ..., pr(τ +H − 1/t)),
P = col(P (τ/t), P (τ + 1/t), ..., P (τ +H − 1/t)), P ref =
col(P ref (τ/t), P ref (τ + 1/t), ..., P ref (τ + H − 1/t)), the
open loop optimal control problem at the basis of the MPC
scheme can be stated as follow.

Problem 1: For a given set Rt of PEVs, each one charac-
terized by a pair of charging preferences (SOCref , tdep),
connected to a load area having an aggregated charging
power reference P ref , find a decentralized strategy allowing
to compute the optimal values of the control sequences
pr,∀r ∈ Rt, and P which minimize the target function (1),
such that constraints (4), (5), (6), (7), (8) are satisfied.

IV. DECENTRALIZED SOLVING PROCEDURE

In this section, we recall the theoretical background of
ADMM and we discuss how the open loop optimal control
problem can be handled in order to solve it by means of a
decentralized approach.

A. Centralized ADMM
The ADMM is an iterative algorithm which solves op-

timization problems blending the advantages coming from
the decomposability of the dual ascent algorithm and the
convergence properties of the method of multipliers [35].
Consider an optimization problem of the form

min
x,z

f(x) + g(z)

s.t. Ax+Bz = c
(9)

where x ∈ Rn, z ∈ Rm, f : Rn → R ∪ {+∞}, g : Rm →
R ∪{+∞}, A ∈ Rq×n, B ∈ Rq×m and c ∈ Rq . Define the
augmented Lagrangian as

Lρ(x, z, λ) = L0(x, z, λ) + (ρ/2)||Ax+Bz − c||22 (10)

where ρ is a positive tuning parameter and

L0(x, z, λ) = f(x) + g(z) + λT (Ax+Bz − c) (11)

is the unaugmented Lagrangian related to problem (9). Then
consider the following assumptions.

Assumption 1: The functions f : Rn −→ R ∪ {+∞} and
g : Rm −→ R ∪ {+∞} are closed, proper, and convex.

Assumption 2: The unaugmented Lagrangian L0 has a
saddle point.
Assuming assumptions 1 and 2 hold, the ADMM algorithm
finds the optimal solution through the following iterations:

xk+1 := arg min
x

Lρ(x, λ
k, zk)

zk+1 := arg min
z

Lρ(x
k+1, λk, z)

λk+1 := λk + ρ(Axk+1 +Bzk+1 − c).

(12)

The procedure is iterated until when, for some k, the so
called primal and dual residuals respectively satisfy the
conditions

||Axk+1 +Bzk+1 − c||22 < ε

||ρATB(zk+1 − zk)||22 < ε
(13)

where the parameter ε is a proper tolerance value. Notice that
both x-update and z-update tasks require the knowledge of x
and z at previous or current iteration, so that this procedure
can not be executed in parallel by independent agents.

B. Distributed ADMM

In some cases the ADMM algorithm can be special-
ized to be executed in a decentralized way. Pose x =
col(x1, x2, ..., xN ), where the components xi ∈ Rni take
the name of local variables, and suppose that the function
f(x) can be expressed as a sum of N independent functions
fi(xi). Consider the problem

min
x,z,z̃

N∑
i

fi(xi) + g(z)

s.t. xi − z̃i = 0, i = 1 . . . N

(14)

in which the auxiliary variables, components of z̃ =
col(z̃1, z̃2, ..., z̃N ), are introduced to replace the local vari-
ables in the linear constraint linking x and z. This prob-
lem is known as consensus with regularization optimization
problem. Considering the augmented Lagrangian of problem
(14), the machinery of ADMM brings to the definition of the
iteration scheme

xk+1
i := arg min

xi

fi(xi) + λkTi xi + (ρ/2)||xi − z̃ki ||22

(zk+1, z̃k+1) := arg min
z,z̃

g(z) +
N∑
i=1

(−λkTi z̃i + (ρ/2)||xk+1
i − z̃i||22)

λk+1
i := λki + ρ(xk+1

i − z̃k+1
i )

(15)

which converges to the optimal solution of (14) under the
previously mentioned Assumptions 1 and 2.

Equations (15) define a decentralized ADMM algorithm
able to be executed in parallel by N local agents each
one optimizing a specific local objective fi(xi), one global
agent optimizing the regularization term g(z), driven by the
updates of the Lagrangian multipliers λi.

C. Open loop control problem decomposition

It is straightforward to realize how the machinery of
decentralized ADMM can be applied to the open loop
optimal control problem defined in section III. Remembering
the definition of tracking error and using equation (5), the
target function (1) and the power balance constraint (4) can
be rewritten in terms of the PEVs charging power and the
aggregated charging power to define a problem of the form
(9), in which x = p = col(p1, p2, ..., pN ), N = |Rt| and z =
P . Further the problem (9) is enriched with constraints (6),
(7) and (8) affecting separately the behaviour of the PEVs
and the load area. Additionally, considering that the target
function is separable in the components pr, by introducing



TABLE I: Charging sessions

PEV ID Initial SOC [%] Start Time End Time

1 11.46% 00:30 03:10
2 22.92% 00:30 02:45
3 26.58% 00:30 02:50
4 19.25% 02:10 05:30
5 16.67% 02:10 04:40
6 19.25% 02:25 05:05
7 31.67% 02:55 05:35
8 8.75% 04:25 07:05
9 30.42% 04:50 08:10

10 19.25% 05:00 08:35
11 50,00% 06:25 08:50
12 35.83% 06:55 09:30
13 26.58% 07:05 10:40
14 0,00% 07:55 12:30
15 8.75% 08:50 11:20
16 19.25% 09:10 12:40
17 58.33% 09:35 13:45
18 8.33% 10:50 13:25
19 8.33% 11:40 15:25
20 11.46% 12:30 15:35

the auxiliary variables z̃i ∈ Rni , where ni = H , the open
loop optimal control problem takes the form (14), in which
the global variable z is linked to the auxiliary variables
through the power balance constraint z =

∑N
i=1 z̃i.

In the light of the above, the decentralized ADMM pro-
cedure (15) can be applied to the problem at study, provided
that the xi-update and the z-update are performed taking
into account the respective additional constraints. Further,
notice that the xi-update is influenced by local parameters
and the auxiliary variable z̃i, which embeds the behaviour
of the other agents, without giving information about them.

V. SIMULATION RESULTS

In order to validate the proposed problem formulation and
solving procedure, two simulations have been performed.
The control system has been set to work with a sampling time
∆t = 5 minutes over a control window of 3 hours (36 sam-
pling periods); the weight of the SOC error cost appearing in
target function (1) has been set to α = 0.3, while the weight
of the tracking error cost has been chosen as the function
β(τ/t) = 0.6/(τ − t + 1). The augmented Lagrangian
parameter and the tolerance of the ADMM algorithm have
been set to ρ = 1 and ε = 0.001. All the PEVs have a battery
capacity SOCmax = 24 kWh, conversion losses parameter
ξ = 0.1, minimum and maximum charging power pmin =
0 kW and pmax = 22 kW. The minimum and maximum
aggregated charging power in the load area are Pmin = 0 kW
and Pmax = 200 kW. The simulations have been performed
using Julia 1.0.5 as simulation environment and Gurobi
8.1.1. as optimization solver, running on an Intel®Core™i7-
8565U, 1.80 GHz processor. Though the proposed control
is decentralized, the simulations are performed on the same
processor, in order to assess the computational effort of
the control in absence of communications latency among
optimization agents.

Fig. 1: Sim. I - Aggregated load (continuous line), reference
aggregated load (dashed line).

Fig. 2: Sim. I - Number of connected PEVs over the time.

Fig. 3: Sim. I - Evolution of the PEVs state of charge.

Fig. 4: Sim. I - PEVs charging power, selection of 4 vehicles.

A. c

The first simulation is based on the sequence of charging
sessions reported in Table I; all the session requests are
characterized by a 100 % of desired SOC level. A flat
reference power of 31.5 kW is assigned to the load area. As



Fig. 5: Sim. I - Number of iterations needed for convergence.

shown in Fig. 1 the proposed decentralized control allows
to satisfy the tracking requirement pretty well; once reached
the steady-state, the maximum tracking error is 7% of the
reference power. The control properly manages the fluctua-
tions in the number of connected PEVs (Fig. 2), smoothing
the aggregated charging power. A careful comparison of
Fig. 1 and 2 reveals that degradated tracking performances
are expected at times when there is not sufficient request of
power in the load area; consequently, the application in a
real system requires to properly choose the power reference
based on hystorical data, or to properly modify it over the
time so that it can be actually tracked by the control system.

Fig. 3 shows the evolution of SOC over the time for all
PEVs. All the charging preferences are satisfied in terms
of desired SOC at the departure time. Fig. 4 reports the
charging power schedules of 4 charging sessions taking place
simultaneously. It is interesting to see that, though PEVs do
not share information about preferences among them, they
collaborate changing their own controls over the time so that
the charging preferences of all PEVs in the cluster are met.
See for example how PEV 7 changes its schedule at time
03:05 to let PEVs 5 and 6 complete the charging session
before their departure time.

Looking at the ADMM performances, Fig. 5 reports the
number of iterations needed to find the solution of the open
loop optimal control problem at each sampling instant. It
is worth noting that large peaks in the number of iterations
arise at times when a new charging session becomes part of
the optimization problem. Looking at the evolution of the
primal and dual residual over the iterations, for the worst
case occuring at 08:00 (Fig. 6), it can be noticed that relaxing
the tolerance to 0.01 would imply the algorithm to converge
approximately within 20 iterations. Finally it is interesting to
see how the chosen sampling time affects the convergence
performances of the algorithm in terms of needed iterations
and related computation time, neglecting the latency of com-
munications among the optimization agents: Fig. 7, related to
the first nontrivial optimization occurring at 00:30, provides
a realistic indication about the minimum sampling time that
can be used in a real time application of the proposed
control scheme, and represents a benchmark for assessing
the impact of communications latency on the control system
performances.

Fig. 6: Sim. I - Evolution of primal and dual residuals for
the optimization performed at 08:00.

Fig. 7: Sim. I - Number of iterations needed for conver-
gence and computation time versus sampling time, for the
optimization performed at 00:30.

B. Simulation II

The second simulation is aimed at testing the ability of
the control system to react to a short-term modification
of the load area reference power (DSM signal); examples
of application in a real scenario are the provisioning of a
power balancing service to the network operator and the
reaction to an update in the forecast of power generation
from renewable energy sources. To this purpose the same test
case characterizing simulation 1 is reconsidered and a DSM
signal in sent to the controller notifyng that the reference
power is modified starting from 04:00 to gradually relaxing
the aggregated charging power to 22 kW over a 6 hours
temporal window. Fig. 8 shows the aggregated schedule
which is actually realized at the end of the simulation period:
the control system continues to guarantee good tracking
performances (9% of tracking error), while still guaranteeing
proper evolution of PEVs’ SOC towards the desired SOC.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper a MPC based PEVs charging control scheme
has been presented. The open loop optimal control problem
at the basis of MPC has been modeled as a consesus with
regularization optimization problem and solved by means of
a decentralized ADMM algorithm. The proposed approach
allows to jointly meet control requirements at load area
level (reference charging power tracking) and at PEVs level
(charging preferences and privacy). The computational effort
related to the decentralized optimization algorithm has been



Fig. 8: Sim. II - Aggregated load (continuous line), reference
aggregated load (dashed line).

preliminary assessed in terms of number of needed iterations
to reach optimality and computation time, assuming zero
communication latency among optimization agents. As a
result, this study provides a proof about the potential of the
proposed control approach and a preliminary evaluation of
the computational effort; future works will consider addi-
tional requirements (according to the IEC61851 international
standard) and the impact assessment of communications
reliability and latency on the control system performances,
as a result of the design and demonstration activities carried
out in the context of the EU 5G Solutions research project.
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