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Abstract. Convolutional Neural Networks (CNNs) have been widely
used in the field of audio recognition and classification, since they often
provide positive results. Motivated by the success of this kind of approach
and the lack of practical methodologies for the monitoring of construction
sites by using audio data, we developed an application for the classifi-
cation of different types and brands of construction vehicles and tools,
which operates on the emitted audio through a stack of convolutional
layers. The proposed architecture works on the mel-spectrogram repre-
sentation of the input audio frames and it demonstrates its effectiveness
in environmental sound classification (ESC) achieving a high accuracy. In
summary, our contribution shows that techniques employed for general
ESC can be also successfully adapted to a more specific environmental
sound classification task, such as event recognition in construction sites.

Keywords: Deep learning, Convolutional neural networks, Audio pro-
cessing, Environmental sound classification, Construction sites.

1 Introduction

In last years, many research efforts have been made towards the event classifica-
tion of audio data, due to the availability of cheap sensors [1]. In fact, systems
based on acoustic sensors are of particular interest for their flexibility and cheap-
ness [2]. When we consider generic outdoor scenarios, an automatic monitoring
system based on a microphone array would be an invaluable tool in assessing
and controlling any type of situation occurring in the environment [3]. This in-
cludes, but is not limited to, handling large civil and/or military events. The
idea in these works is to use Computational Auditory Scene Analysis (CASA)
[4], which involves Computational Intelligence and Machine Learning techniques,
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to recognize the presence of specific objects into sound tracks. This last problem
is a notable example of Automatic Audio Classification (AAC) [5], the task of
automatically labeling a given audio signal in a set of predefined classes.

Getting into the more specific field of environmental sound classification
(ESC) in construction site, the closest attempts have been performed by Cheng
et al. [6], who used Support Vector Machines (SVM) to analyze the activity of
construction tools and equipment. Recent applications of AAC have also been
addressed to audio-based construction sites monitoring [7–9], in order to improve
the construction process management of field activities. This approach is reveal-
ing itself as a promising method and a supportive resource for unmanned field
monitoring and safety surveillance that leverages construction project manage-
ment and decision making [8, 9]. More recently, several studies extend these ef-
forts to more complicated architectures exploiting Deep Learning techniques [10].

In the literature, it is possible to find several instances of successful appli-
cations in the field of environmental sound classification that make use of deep
learning. For example, in the work of Piczak [11], the author exploits a 2-layered
CNN working on the spectrogram of the data to perform ESC, reaching an
average accuracy of 70% over different datasets. Other approaches, instead of
using handcrafted features such as the spectrogram, perform end-to-end environ-
mental sound classification obtaining higher results with respect to the previous
ones [12, 13].

Inspired and motivated by the MelNet architecture described by Li et al. [14],
which has been proven to be remarkably effective in environmental sound clas-
sification, the aim of this paper is to develop an application able to recognize
vehicles and tools used in construction sites, and classify them in terms of type
and brand. This task will be tackled with a neural network approach, involving
the use of a Deep Convolutional Neural Network (DCNN), which will be fed
with the mel spectrogram of the audio source as input. The classification will be
carried on five classes extracted from audio files collected in several construction
sites, containing in situ recordings of multiple vehicles and tools. We demonstrate
that the proposed approach for ESC can obtain good results (average accuracy
of 97%) to a very specific domain as the one of construction sites.

The rest of this paper is organized as follows. Section 2 describes the pro-
posed approach used to perform the sound classification. Section 3 introduces
the experimental setup, while Section 4 shows the obtained numerical results.
Finally, section 5 concludes the paper and outlines some future directions.

2 The proposed approach

CNNs are a particular type of neural networks, which use the convolution oper-
ation in one or more layers for the learning process. These networks are inspired
by the primal visual system, and are therefore extensively used with image and
video inputs [10]. A CNN is composed by three main layers:

– Convolutional Layer: The convolutional layer is the one tasked with ap-
plying the convolution operation on the input. This is done by passing a
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filter (or kernel) over the matricial input, computing the convolution value,
and using the obtained result as the value of one cell of the output matrix
(called feature map); the filter is then shifted by a predefined stride along its
dimensions. The filters parameters are trained during the training process.

– Detector layer: In the detector layer, the output of the convolution is
passed through a nonlinear function, usually a ReLU function.

– Pooling layer: The pooling layer is meant to reduce the dimensionality of
data by combining the output of neuron clusters at one layer into one single
neuron in the subsequent layer.

The last layer of the network is a fully connected one (a layer whose units
are connected to every single unit from the previous one), which outputs the
probability of the input to belong to each of the classes.

CNNs in a machine learning system show some advantages with respect to
traditional fully connected neural networks, because they allow sparse interac-
tions, parameters sharing and equivariant representations.

The reasons why we used CNNs in our approach is due to the intrinsic nature
of audio signals. CNNs are extensively used with images and, since the spectrum
of the audio is an actual picture of the signal, it is straightforward to see why
CNNs are a good idea for such kind of input, being able to exploit the adjacency
properties of audio signals and recognize patterns in the spectrum images that
can properly represent each one of the classes taken into consideration.

The proposed architecture consists in a DCNN composed of eight layers, as
shown in Fig. 1, that is fed with the mel spectrogram extracted from audio signals
and its time derivative. Specifically, we have as input a tensor of dimension
60 × 2 × 2 that is a couple of images representing the spectrogram and its time
derivative: 60 is the number of mel bands, while 2 is the number of time buckets.
Then, we have five convolutional layers, followed by a dense fully connected layer
with 200 units and a final softmax layer that performs the classification over the
5 classes. The structure of the proposed network is summarized in the following
Table 1, and it can be graphically appreciated in Fig. 1.

Layer Input Shape Filters Kernel Size Strides Output Shape

Conv1 [batch, 60, 2, 2] 24 (6,2) (1,1) [batch, 60, 2, 24]
Conv2 [batch, 60, 2, 24] 24 (6,2) (1,1) [batch, 60, 2, 24]
Conv3 [batch, 60, 2, 24] 48 (5,1) (2,2) [batch, 30, 1, 48]
Conv4 [batch, 30, 1, 48] 48 (5,1) (2,2) [batch, 15, 1, 48]
Conv5 [batch, 15, 1, 48] 64 (4,1) (2,2) [batch, 8, 1, 64]
Flatten [batch, 8, 1, 64] – – – [batch, 512]
Dense [batch, 512] – – – [batch, 200]

Output - Dense [batch, 200] – – – [batch, 5]

Table 1. Parameters of the proposed DCNN architecture.
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All the layers employ a ReLu activation function except for the output layers
which uses a Sofmax function. The optimizer chosen for the network is an Adam
Optimizer [15], with the a learning rate set to 0.0005. Such value was chosen
by performing a grid search in the range [0.00001, 0.001]. Moreover, a dropout
strategy, with a rate equal to 30%, has been used in the dense layer.

Fig. 1. Graphical representation of the proposed architecture.

Regarding the setting of other hyper-parameters, different strategies were
adopted. For the batch size, a grid search was used to determine the most ap-
propriate values. The filter size and the stride were set reasonably according
to the input size. Small filters were adopted such to capture small, local and
adjacent features that are typical of audio data. Lastly, to prevent the network
depth from either exploding in size, adding unnecessary complexity for no ac-
tual return, or not being high enough, therefore returning substandard results,
we decided to use the same amount of layers as other related works, such as the
one in [14], as a baseline. Variations on this depth have not shown appreciable
improvements on the overall effectiveness of the networks classification, so it has
been kept unchanged.

2.1 Spectrogram Extraction

The proposed DCNN uses, as its inputs, the mel spectrogram that is a version
of the spectrogram where the frequency scale has been distorted in a perceptual
way, and its time derivative.

The technique used to extract the spectrogram from the sample is the same
used by Piczak [11], via the Python library librosa4 . The frames were re-
sampled to 22,050 Hz, then a window of size 1024 with hop-size of 512 and 60
mel bands has been used. A mel band represents an interval of frequencies which
are perceived to have the same pitch by human listeners. They have been found
to be performing in speech recognition.

With this parameters, and the chosen length of 30 ms for the frames (see
next sections), we obtain a small spectrogram of 60 rows (bands) and 2 columns

4 Available at: https://librosa.github.io/
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(buckets). Then, using again librosa, we compute the derivative of the spec-
trogram and we overlap the two matrices, obtaining a dual channel input which
is fed into the network.
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Fig. 2. Example of a log-mel spectrogram extracted from a fragment along with its
derivative. On the abscissa we find the time buckets, each of which representing a
sample about 23 ms long, while on the ordinates the log-mel bands. Since our fragments
are 30 ms long, the spectrogram we extract will contain 2 buckets.

3 Experimental setup

3.1 Dataset

The authors collected audio data of equipment operations in several construction
sites consisting diverse construction machines and equipments. Unlike artificially
built datasets, when working with real data different problems arise, such as noise
due to weather conditions and/or workers talking among themselves. Thus, we
focused our work on the classification of a reduced number of classes, specifically
Backhoe JD50D Compact, Compactor Ingersoll Rand, Concrete Mixer, Excavator
Cat 320E, Excavator Hitachi 50U. Classes which did not have enough usable
audio (too short, excessive noise, low quality of the audio) were ignored for this
work. The activities of these machines were observed during certain periods, and
the audio signals generated were recorded accordingly. A Zoom H1 digital handy
recorder has been used for data collection purposes. All files have been recorded
by using a sample rate of 44,100 Hz and a total of about one hour of sound data
(eight different files for each machine) has been used to train the architecture.

3.2 Data Preprocessing

In order to feed the network with enough and proper data, each audio file for
each class is segmented into fixed length frames (the choice of the best frame
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size is described in the experiment section). As first step, we split the original
audio files into two parts, training samples (70% of the original length) and test
samples (30% of the original length). This is done to avoid testing the network
on data used previously to train the network, as this would cause the network
to overfit and give misleading results.

Then, we perform data augmentation by splitting the files into smaller seg-
ments of 30 ms, each of which overlaps the subsequent one by 15 ms. We then
compute the Root Mean Square (RMS) of every signal of these frames, and drop
the ones with too small power with respect to the average RMS of the different
segments, in order to remove the frames which contain mostly silence.

After that, the dataset is balanced by taking N samples for each class, where
N is the number of elements contained in the class with the least amount of sam-
ples. In this way, we avoid the problem of having certain classes with an abnor-
mal number of usable audio segments being potentially either over-represented or
under-represented and negatively impacting the training of the model, especially
due to the presence of multiple models of the same vehicle.

Using the Python library librosa, we extract the waveform of the audio
tracks from the audio samples and, using the same library, we generate the log-
scaled mel spectrogram [16] of the signal and its time derivative that will be the
input to the network.

Numerical results have been evaluated in terms of accuracy, recall, precision
and F1 score [17].

4 Numerical Results

4.1 Selecting the frame size

A sizeable amount of time was spent into finding the proper length for the audio
segments. This is of crucial importance since, if the length is not adequate, the
network will not be able to learn proper features that clearly characterize the
input. Hence, in order to select the most suitable length, we generated different
dataset variants by splitting the audio using different frame lengths, and we sub-
sequently trained and tested different models on the differently-sized datasets.
The testing results in terms of overall accuracy are show in Fig 3.

As we can see, with a smaller frame size better results are obtained, while
we notice a drop as the size increases. It is also interesting to observe that with
a very large frame size the accuracy tends to slightly improve again. However,
the use of long frames does not lead to anything interesting since the network
may tend to learn an ensemble of the signal that is not significant and useful to
work in fast-response applications (hazard detection, activity monitoring, etc.).
Finally, the optimal frame size is obtained by selecting a duration of 30 ms, since
it led not only to achieve a high accuracy but also a larger number of samples.

In order to properly test the network we performed a K-fold cross validation,
with K = 5. The results of the classification are shown in the next subsection.
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Fig. 3. Overall classification accuracy according to different sample sizes of the audio
frames.

4.2 Classification Results

As just stated, a 5-fold cross validation was performed and the results are shown
in Table 2. The dataset was split into training set and validation set (80% –
20%) for each fold.

Class Accuracy Recall Precision F1

Backhoe JD50D Compact 98.52 97.23 95.54 96.34
Compactor Ingersoll Rand 98.73 97.89 95.71 96.76
Concrete Mixer 99.21 98.49 97.58 98.03
Excavator Cat 320E 99.19 97.34 98.60 97.96
Excavator Hitachi 50U 98.99 97.82 97.16 97.49

All classes 97.08 97.34 97.30 97.32

Table 2. 5-Fold cross validation classification results (in %).

As we can notice, the network achieves very high results in all the metrics,
demonstrating its effectiveness in this particular domain. Even though our classes
also include vehicles of the same type (we have two excavators and a backhoe,
which is a kind of excavator as well), such classes are discriminated in a very
clear and accurate way as the net recognizes also the brand of the machine.
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After having performed the cross validation, we trained the network again on
the original version of the dataset (training set 70% and test set 30%) and tested
it. The way the network learns can be seen in Fig. 4; the learning is actually
really fast as we see that high overall accuracy values are reached within few
epochs and thus the convergence is rapid. The accuracy results obtained are
shown in the confusion matrix in Fig. 5. From this figure, it is clear that all
classes are well correctly recognized, since the accuracy is always higher than
95%. The class with worst result is the Excavator Cat 320E that performs at
95% of accuracy.
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Fig. 4. Overall accuracy obtained on the test set.

As a comparison, we perform classification with other five state-of-the-art
classifiers, namely Random Forest, Multilayer Perceptron (MLP), k-NN and Sup-
port Vector Machine (SVM) [17]. These classifiers take into their inputs a set
of 62 features extracted from audio signals. All details, features and parameters
of the implemented classifiers can be found in [8]. Results of these considered
approaches, averaged over the five classes, are shown in Table 3. From this ta-
ble, we can see that the state-of-the-art approaches always produce worse results
than those of the proposed architecture, shown in the last line of Table 3. This is
due to the powerful feature representation and discrimination of the used DCNN
and the mel spectrogram signal representation.
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Fig. 5. Confusion matrix obtained by the proposed approach.

4.3 Prediction

The proposed approach can be used to promptly predict the active working
vehicles and tools. In fact, with such an approach, project managers will be
able to remotely and continuously monitor the status of workers and machines,
investigate the effective distribution of hours, and detect issues of safety in a
timely manner.

In order to predict a new sample in input, the recorded audio file is split into
frames as described above. Every frame will be classified as belonging to one of
the classes and the audio track will be labeled according to the majority of the

Approach Accuracy Recall Precision F1

Random Forest 93.16 93.21 93.40 93.30
MLP 91.06 93.20 91.34 92.26
k-NN 85.28 85.32 86.04 85.68
SVM 83.66 83.75 84.63 84.19
DCNN (Proposed) 97.08 97.34 97.30 97.32

Table 3. Averaged results of compared classifiers (in %).
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labels among all the frames. In this way, we can also see what is the probability
for the input track to belong to each of the classes.

5 Conclusions and Future Work

In this paper, we demonstrated that it is possible to apply a neural approach
already tested in environmental sound classification to a more specific and chal-
lenge domain, that is the one of construction sites, obtaining rather high results.
Such architecture works with small audio frames and, for practical applications,
the ability to perform a classification using very short samples can lead to the
possibility to use such network in time-critical applications in construction sites
that require fast responses, such as hazard detection and activity monitoring.

Up to now, the proposed architecture was tested on five classes obtaining
an accuracy of 97%. The idea is to try to increase the number of classes to
include more tools and vehicles employed in building sites, in order to lead in
the future to a more reliable and useful system. Moreover, the most interesting
way to extend the work would be to try to combine more architectures in order
to establish which kind of neural networks can help the audio classification in
construction sites.
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